JP2007270170A - Sinter cake-supporting stand - Google Patents

Sinter cake-supporting stand Download PDF

Info

Publication number
JP2007270170A
JP2007270170A JP2006094046A JP2006094046A JP2007270170A JP 2007270170 A JP2007270170 A JP 2007270170A JP 2006094046 A JP2006094046 A JP 2006094046A JP 2006094046 A JP2006094046 A JP 2006094046A JP 2007270170 A JP2007270170 A JP 2007270170A
Authority
JP
Japan
Prior art keywords
sintering
raw material
sinter cake
stand
support stand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006094046A
Other languages
Japanese (ja)
Inventor
Susumu Matsuno
松野  進
Yasunari Mitsui
康徳 三井
Daisuke Shimose
大輔 下瀬
Atsushi Takagi
敦 高木
Makoto Hotta
真 堀田
Yohei Ito
洋平 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Kurimoto Mec Ltd
Original Assignee
Nippon Steel Corp
Kurimoto Mec Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Kurimoto Mec Ltd filed Critical Nippon Steel Corp
Priority to JP2006094046A priority Critical patent/JP2007270170A/en
Publication of JP2007270170A publication Critical patent/JP2007270170A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prolong the service life of a sinter cake-supporting stand disposed on a sintering pallet of a sintering machine. <P>SOLUTION: The following sections of a stand main body part 2, to be in contact with raw materials for sintering, are composed of a composite layer 4 prepared by dispersing alumina particles of 3 to 7 mm particle size in a matrix of heat resistant cast steel: a top surface; anteroposterior inclined surfaces; the upper part of both lateral surfaces; and the flange part along the above inclined surfaces. By this method, progress of wear in these sections can be retarded, and replacement cycle can be extended. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高炉等で原料として使用される焼結鉱を製造する焼結機のシンターケーキ支持スタンドに関する。   The present invention relates to a sinter cake support stand of a sintering machine for producing sintered ore used as a raw material in a blast furnace or the like.

高炉等の製鉄プロセスでは、粉鉄鉱石を焼結機で塊状に焼き固めた焼結鉱を原料として使用することが多い。図4は一般的な焼結機による焼結鉱製造工程を示す。この焼結鉱製造工程では、まず、主原料の粉鉄鉱石、副原料の石灰石および燃料のコークスを、それぞれホッパー11、12、13から切り出し、返鉱ホッパー14から切り出した返鉱とともにミキサー15で調湿、造粒して焼結原料とする。この焼結原料をサージホッパー16に搬送して一旦貯蔵した後、ドラムフィーダー17から切り出し、シュート18を介して焼結パレット19の供給部に供給することにより、焼結パレット19上に焼結原料層20を形成する。そして、焼結パレット19により搬送される焼結原料層20の表層のコークスに点火炉21で点火して、焼結原料層20の下方に空気を吸引しながらコークスを燃焼させ、この燃焼熱で焼結原料層20を上層から下層へ順次焼結していく。このようにして焼結が完了した原料は、焼結鉱として焼結パレット19の排出部から排出される。   In iron making processes such as blast furnaces, sintered ore obtained by sintering powder iron ore into a lump with a sintering machine is often used as a raw material. FIG. 4 shows a sinter production process by a general sintering machine. In this sintered ore production process, firstly, the main raw material powdered iron ore, the auxiliary raw material limestone, and the fuel coke are cut out from the hoppers 11, 12, and 13, respectively, and the returned ore cut out from the return hopper 14 together with the mixer 15. Condition and granulate to make a sintered raw material. The sintered raw material is transported to the surge hopper 16 and temporarily stored, then cut out from the drum feeder 17 and supplied to the supply portion of the sintered pallet 19 via the chute 18 so that the sintered raw material is placed on the sintered pallet 19. Layer 20 is formed. Then, the coke on the surface layer of the sintering raw material layer 20 conveyed by the sintering pallet 19 is ignited by an ignition furnace 21, and the coke is burned while sucking air below the sintering raw material layer 20. The sintering raw material layer 20 is sequentially sintered from the upper layer to the lower layer. The raw material thus sintered is discharged from the discharge part of the sintering pallet 19 as sintered ore.

上記のような焼結方法では、焼結原料層の上層部が下層部よりも先に焼結されて焼結塊(以下、「シンターケーキ」と記す。)となるため、焼結が進むにつれて原料層の下層部がシンターケーキの重みを受けて圧縮され、高密度になっていく。焼結原料層が高密度化すると、通気性が低下して、コークスの燃焼速度の低下や燃焼むらが生じる。その結果、焼結速度が遅くなるし、焼結パレットから排出される焼結鉱の品質のばらつきも大きくなり、生産性が低下しやすい。   In the above sintering method, the upper layer portion of the sintering raw material layer is sintered before the lower layer portion to form a sintered mass (hereinafter referred to as “sinter cake”). The lower part of the raw material layer is compressed under the weight of the sinter cake and becomes dense. When the sintered raw material layer is densified, the air permeability is lowered, resulting in a reduction in the combustion rate of coke and uneven combustion. As a result, the sintering speed is slowed, the quality of the sintered ore discharged from the sintering pallet is highly varied, and the productivity tends to be lowered.

そこで、焼結パレットに、シンターケーキの重みを受ける支持部材(以下、「シンターケーキ支持スタンド」、または単に「スタンド」と記す。)を、焼結原料層に埋没するように設置することにより、原料層の下層部の高密度化による通気性の低下を防止し、焼結鉱の生産性の向上を図ることが提案されている(例えば、特許文献1、2参照。)。このシンターケーキ支持スタンドは、焼結パレットの供給部から排出部へ向かう途中で高さ方向に大きな温度差が生じ、焼結パレットの排出部から供給部へ戻るときには全体が冷却されることにより、繰り返し熱応力を受けるので、一般に、耐熱疲労性に優れ、十分な高温強度を有する耐熱鋳鋼で形成されることが多い。
特開平2−293586号公報 特開平4−168234号公報
Therefore, by installing a support member that receives the weight of the sinter cake (hereinafter referred to as “sinter cake support stand” or simply “stand”) on the sintering pallet so as to be buried in the sintering raw material layer, It has been proposed to prevent a decrease in air permeability due to densification of the lower layer portion of the raw material layer and to improve the productivity of the sintered ore (see, for example, Patent Documents 1 and 2). This sinter cake support stand has a large temperature difference in the height direction on the way from the supply part of the sintering pallet to the discharge part, and when it returns from the discharge part of the sintering pallet to the supply part, the whole is cooled, Since they are repeatedly subjected to thermal stress, they are generally formed of heat-resistant cast steel having excellent heat fatigue resistance and sufficient high-temperature strength.
JP-A-2-293586 JP-A-4-168234

しかしながら、上記シンターケーキ支持スタンドは、焼結パレットの供給部に焼結原料が供給されるときや、パレット排出部で焼結完了後の原料が焼結鉱として排出されるときに原料と擦れ合って摩耗するので、減肉により徐々にシンターケーキの重みを支えきれなくなって、焼結原料層の通気性低下を防止できなくなる。このため、焼結鉱製造工程では比較的頻繁なスタンド交換が必要であり、新品スタンドの製作費用やスタンド交換にかかる手間が焼結機全体のメンテナンスコストを押し上げる要因の一つとなっている。また、スタンド交換作業のために焼結機の休止期間が長くなるという問題もある。   However, the sinter cake support stand rubs against the raw material when the sintering raw material is supplied to the supply part of the sintering pallet or when the raw material after sintering is discharged as the sintered ore at the pallet discharging part. Therefore, the weight of the sinter cake cannot be supported gradually due to the thinning, and the air permeability of the sintered raw material layer cannot be prevented from being lowered. For this reason, relatively frequent stand replacement is required in the sintered ore manufacturing process, and the cost of manufacturing a new stand and the trouble of replacing the stand are factors that increase the maintenance cost of the entire sintering machine. In addition, there is also a problem that the rest period of the sintering machine becomes longer due to the stand replacement work.

本発明の課題は、焼結機の焼結パレットに設置されるシンターケーキ支持スタンドの長寿命化を図ることである。   An object of the present invention is to extend the life of a sinter cake support stand installed on a sintering pallet of a sintering machine.

上記の課題を解決するために、本発明は、焼結機の焼結パレット上に形成される焼結原料層に埋没するように設置されて、前記焼結原料層の上層部の焼結により生成したシンターケーキを支持するシンターケーキ支持スタンドにおいて、前記焼結原料と接触する部位の少なくとも一部を、耐熱鋳鋼の母材に硬質粒子を分散させた複合層で形成するようにしたのである。このようにすれば、シンターケーキ支持スタンドの焼結原料との接触部の摩耗の進行を遅らせ、交換周期を延長することができる。   In order to solve the above problems, the present invention is installed so as to be buried in a sintering raw material layer formed on a sintering pallet of a sintering machine, and by sintering the upper layer portion of the sintering raw material layer. In the sinter cake support stand that supports the produced sinter cake, at least a part of the portion that contacts the sintering raw material is formed of a composite layer in which hard particles are dispersed in a base material of heat-resistant cast steel. In this way, it is possible to delay the progress of wear at the contact portion of the sinter cake support stand with the sintered raw material and extend the replacement cycle.

前記硬質粒子の素材としては、酸化物、炭化物、窒化物のいずれかを採用するとよい。具体的には、アルミナ(Al)、マグネシア(MgO)、ジルコニア(ZrO)、炭化珪素、窒化珪素のいずれかを採用することが望ましい。これらの各素材は原料と反応しにくく、適度な硬さ(ビッカース硬さでHV800〜4000、好ましくはHV900〜4000)を有しているからである。なお、各素材の硬さは、アルミナがHV2000程度、マグネシアがHV975程度、ジルコニアがHV1300程度、炭化珪素がHV2500程度、窒化珪素がHV3300程度である。 As the material for the hard particles, any one of oxide, carbide, and nitride may be employed. Specifically, it is desirable to employ any one of alumina (Al 2 O 3 ), magnesia (MgO), zirconia (Zr 2 O), silicon carbide, and silicon nitride. This is because each of these materials hardly reacts with the raw material, and has an appropriate hardness (Vickers hardness: HV 800 to 4000, preferably HV 900 to 4000). The hardness of each material is about HV2000 for alumina, about HV975 for magnesia, about HV1300 for zirconia, about HV2500 for silicon carbide, and about HV3300 for silicon nitride.

また、前記硬質粒子の粒径は、3〜7mmとすることが望ましい。硬質粒子を耐熱鋳鋼の鋳造時に複合する場合、粒径が3mm未満の硬質粒子を使用すると、粒子間に耐熱鋳鋼の溶湯が入り込みにくくなって複合層が薄くなりやすく、一方、7mmを超える粒径の硬質粒子を使用すると、粒子間の母材面積が増大するので、粒子間の母材が焼結原料と擦れ合いやすくなり、いずれも耐摩耗性向上効果が小さくなるからである。このとき、複合層の硬質粒子の配合割合は、硬質粒子と母材の体積比が10:90〜90:10の範囲に収まるようにし、複合層の厚みは3〜10mmとするとよい。   The hard particles preferably have a particle size of 3 to 7 mm. When compounding hard particles when casting heat-resistant cast steel, if hard particles with a particle size of less than 3 mm are used, the melt of the heat-resistant cast steel is difficult to enter between the particles and the composite layer tends to be thin, whereas the particle size exceeding 7 mm When the hard particles are used, the area of the base material between the particles is increased, so that the base material between the particles is easily rubbed with the sintered raw material, and the effect of improving the wear resistance is reduced. At this time, the mixing ratio of the hard particles in the composite layer is such that the volume ratio of the hard particles to the base material is within the range of 10:90 to 90:10, and the thickness of the composite layer is preferably 3 to 10 mm.

本発明は、上述したように、シンターケーキ支持スタンドの焼結原料との接触部を、耐熱鋳鋼の母材に硬質粒子を分散させた複合層で形成するようにしたので、スタンドの摩耗の進行を遅くして、スタンドを長寿命化することができる。従って、このスタンドを用いた焼結機は、従来よりもスタンドの交換周期が長く、新品スタンドの製作費やスタンド交換作業の労務費の減少によりメンテナンスコストの削減が図れる。また、スタンド交換作業のための休止期間を短縮することもできる。   In the present invention, as described above, the contact portion with the sintering raw material of the sinter cake support stand is formed by the composite layer in which hard particles are dispersed in the base material of the heat-resistant cast steel. It is possible to extend the life of the stand by slowing down. Therefore, the sintering machine using this stand has a longer stand replacement cycle than before, and the maintenance cost can be reduced by reducing the production cost of the new stand and the labor cost of the stand replacement work. In addition, the suspension period for the stand replacement work can be shortened.

以下、図面に基づき、本発明の実施形態を説明する。このシンターケーキ支持スタンド1は、図1(a)〜(c)に示すように、台形板状の本体部2とその下部に連続する取付部3とからなり、図2に示すように、一般的な焼結鉱製造工程(図4参照)の焼結機の焼結パレット19に2〜4列配置される(図2は2列配置の例)。本体部2の高さは300mmであり、この本体部2が焼結パレット19上に形成されて600mm程度の高さとなる焼結原料層20に埋没し、焼結原料層20の上層部の焼結により生成したシンターケーキを支持するようになっている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIGS. 1A to 1C, the sinter cake support stand 1 includes a trapezoidal plate-like main body portion 2 and a mounting portion 3 continuing below the main body portion 2. As shown in FIG. Two to four rows are arranged on a sintering pallet 19 of a sintering machine in a typical sinter manufacturing process (see FIG. 4) (FIG. 2 shows an example of a two-row arrangement). The height of the main body 2 is 300 mm, and the main body 2 is formed on the sintering pallet 19 and buried in the sintering raw material layer 20 having a height of about 600 mm. It is designed to support the sinter cake produced by ligation.

前記本体部2と取付部3とは、耐熱鋳鋼で一体鋳造されており、図1に示したように、焼結原料と接触する本体部2表面のうち、上面、前後の傾斜面および両側面の上部と傾斜面に沿う縁部が、母材に硬質粒子を分散させた複合層4で形成されている。この複合層4は、厚みTが3〜10mmとなっており、硬質粒子としては、粒径が3〜7mmのアルミナが使用されているが、その素材にはマグネシア、ジルコニア、炭化珪素、窒化珪素等の酸化物、炭化物、窒化物を用いてもよい。   The main body portion 2 and the mounting portion 3 are integrally cast of heat-resistant cast steel, and as shown in FIG. 1, the upper surface, the front and rear inclined surfaces, and both side surfaces of the main body portion 2 surface in contact with the sintering raw material The upper part and the edge part along the inclined surface are formed of a composite layer 4 in which hard particles are dispersed in a base material. The composite layer 4 has a thickness T of 3 to 10 mm, and as the hard particles, alumina having a particle size of 3 to 7 mm is used. The material is magnesia, zirconia, silicon carbide, silicon nitride. Such oxides, carbides, and nitrides may be used.

次に、このスタンドの製造方法について説明する。まず、製品となるスタンドの所定の部位から複合層の体積分だけ削り取った形状の発泡模型を作製し、硬質粒子を複合させようとする部位に両面テープを貼り付けて、テープ表面にアルミナ粒子を密に貼着したうえ、別のテープでアルミナ粒子をマスキングする。次に、発泡模型に塗型剤を塗布した後、鋳枠に模型をセットするとともに砂を充填して鋳型を形成する。そして、鋳枠に耐熱鋳鋼の溶湯を注入すると、溶湯の熱により発泡模型およびテープが気化して、溶湯が鋳型内に充填され、模型表面に貼着されていたアルミナ粒子の間に入り込むことにより、所定の部位にアルミナ粒子を複合させた製品が得られる。   Next, the manufacturing method of this stand is demonstrated. First, create a foam model with a shape that is the volume of the composite layer cut from a predetermined part of the product stand, and attach double-sided tape to the part where hard particles are to be composited. After tightly sticking, mask the alumina particles with another tape. Next, after applying a coating agent to the foamed model, the model is set on a casting frame and filled with sand to form a mold. Then, when the molten metal of heat-resistant cast steel is injected into the casting frame, the foam model and the tape are vaporized by the heat of the molten metal, and the molten metal is filled in the mold and enters between the alumina particles adhered to the model surface. A product in which alumina particles are combined at a predetermined site is obtained.

ここで、アルミナ粒子の粒径を3〜7mmに揃えることにより、注湯時に粒子間に溶湯が入り込みやすく、かつ粒子間の母材面積の増大を極力抑えるようにしたので、複合層4を適度な厚みに形成できるし、粒子間の母材と焼結原料との擦れ合いが抑えられ、十分な耐摩耗性向上効果が得られる。   Here, by aligning the particle size of the alumina particles to 3 to 7 mm, the molten metal easily enters between the particles during pouring, and the increase in the base material area between the particles is suppressed as much as possible. It can be formed with a sufficient thickness, and the friction between the base material and the sintered raw material between the particles can be suppressed, and a sufficient wear resistance improving effect can be obtained.

なお、上記のスタンド製造方法では、アルミナ粒子を両面テープで発泡模型の表面に貼り付けたが、円柱状に成形したアルミナを模型の所定部位に押し込むようにしてもよい。このとき、アルミナ端部を模型表面から露出させておけば、注湯時にアルミナの配列が乱れにくくなり、より均一にアルミナを製品の所定部位に分散させることができる。   In the above stand manufacturing method, the alumina particles are attached to the surface of the foamed model with a double-sided tape. However, alumina formed into a cylindrical shape may be pushed into a predetermined part of the model. At this time, if the end portion of the alumina is exposed from the model surface, the arrangement of the alumina is less likely to be disturbed during pouring, and the alumina can be more uniformly dispersed in a predetermined portion of the product.

このシンターケーキ支持スタンドは、上記の構成であり、焼結原料との接触面のうち、焼結原料との擦れ合いによる摩耗の進行が早い部位を、耐熱鋳鋼の母材に硬質のアルミナ粒子を分散させた複合層4で形成したので、この部位の摩耗の進行が従来よりも遅く、長寿命である。   This sinter cake support stand has the above-described structure, and a portion of the contact surface with the sintering raw material where the wear progresses quickly due to rubbing with the sintering raw material is made of hard alumina particles on the base material of the heat-resistant cast steel. Since the composite layer 4 is dispersed, the progress of wear at this portion is slower than in the prior art and has a long life.

図3(a)〜(c)は本体部形状の変形例を示す。この変形例では、本体部2の上面が上方に凸の円弧面に形成されており、その分高さも図1の例より100mm高くなっているが、上面、前後の傾斜面および両側面の上部と傾斜面に沿う縁部が母材にアルミナ粒子を分散させた複合層4で形成され、その厚みTが3〜10mmとなっている点は、図1の例と同じである。   3A to 3C show modified examples of the shape of the main body. In this modification, the upper surface of the main body 2 is formed as an upwardly convex arcuate surface, and the height is 100 mm higher than that of the example of FIG. 1, but the upper surface, the front and rear inclined surfaces, and the upper portions of both side surfaces The edge along the inclined surface is formed of the composite layer 4 in which alumina particles are dispersed in the base material, and the thickness T is 3 to 10 mm, which is the same as the example of FIG.

aは実施形態のスタンドの正面図、bはaの側面図、cはaのI−I線断面図a is a front view of the stand of the embodiment, b is a side view of a, c is a cross-sectional view taken along line II of a aは図1のスタンドの設置状態を示す斜視図a is a perspective view which shows the installation state of the stand of FIG. aは本体部形状の変形例の正面図、bはaの側面図、cはaのIII−III線断面図a is a front view of a modification of the shape of the main body, b is a side view of a, and c is a sectional view taken along line III-III of a 一般的な焼結鉱製造工程の説明図Illustration of general sinter manufacturing process

符号の説明Explanation of symbols

1 スタンド
2 本体部
3 取付部
4 複合層
11、12、13、14 ホッパー
15 ミキサー
16 サージホッパー
17 ドラムフィーダー
18 シュート
19 焼結パレット
20 焼結原料層
21 点火炉
DESCRIPTION OF SYMBOLS 1 Stand 2 Main-body part 3 Attachment part 4 Composite layer 11, 12, 13, 14 Hopper 15 Mixer 16 Surge hopper 17 Drum feeder 18 Chute 19 Sintering pallet 20 Sintering raw material layer 21 Ignition furnace

Claims (4)

焼結機の焼結パレット上に形成される焼結原料層に埋没するように設置されて、前記焼結原料層の上層部の焼結により生成したシンターケーキを支持するシンターケーキ支持スタンドにおいて、前記焼結原料と接触する部位の少なくとも一部が、耐熱鋳鋼の母材に硬質粒子を分散させた複合層で形成されていることを特徴とするシンターケーキ支持スタンド。   In a sinter cake support stand that is installed so as to be buried in a sintering raw material layer formed on a sintering pallet of a sintering machine and supports a sinter cake generated by sintering the upper layer portion of the sintering raw material layer, A sinter cake support stand, characterized in that at least a part of a portion in contact with the sintering raw material is formed of a composite layer in which hard particles are dispersed in a base material of heat-resistant cast steel. 前記硬質粒子の素材が、酸化物、炭化物、窒化物のいずれかであることを特徴とする請求項1に記載のシンターケーキ支持スタンド。   The sinter cake support stand according to claim 1, wherein the material of the hard particles is any one of oxide, carbide, and nitride. 前記硬質粒子の素材が、アルミナ、マグネシア、ジルコニア、炭化珪素、窒化珪素のいずれかであることを特徴とする請求項2に記載のシンターケーキ支持スタンド。   The sinter cake support stand according to claim 2, wherein the material of the hard particles is any one of alumina, magnesia, zirconia, silicon carbide, and silicon nitride. 前記硬質粒子の粒径を、3〜7mmとしたことを特徴とする請求項1乃至3のいずれかに記載のシンターケーキ支持スタンド。   The sinter cake support stand according to any one of claims 1 to 3, wherein the hard particles have a particle size of 3 to 7 mm.
JP2006094046A 2006-03-30 2006-03-30 Sinter cake-supporting stand Pending JP2007270170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006094046A JP2007270170A (en) 2006-03-30 2006-03-30 Sinter cake-supporting stand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006094046A JP2007270170A (en) 2006-03-30 2006-03-30 Sinter cake-supporting stand

Publications (1)

Publication Number Publication Date
JP2007270170A true JP2007270170A (en) 2007-10-18

Family

ID=38673276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006094046A Pending JP2007270170A (en) 2006-03-30 2006-03-30 Sinter cake-supporting stand

Country Status (1)

Country Link
JP (1) JP2007270170A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119988A1 (en) * 2009-04-16 2010-10-21 新日本製鐵株式会社 Sintering machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286661A (en) * 1986-06-04 1987-12-12 Kawasaki Heavy Ind Ltd Enclosed casting method for high hard grain
JPH05200526A (en) * 1992-01-24 1993-08-10 Mitsubishi Heavy Ind Ltd Production of wear resistant composite material
JPH102677A (en) * 1996-06-14 1998-01-06 Nippon Steel Corp Sinter cake support stand
JP2002013876A (en) * 2000-06-29 2002-01-18 Nippon Steel Corp Stand for supporting sintering cake, method of making the same and method for repairing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286661A (en) * 1986-06-04 1987-12-12 Kawasaki Heavy Ind Ltd Enclosed casting method for high hard grain
JPH05200526A (en) * 1992-01-24 1993-08-10 Mitsubishi Heavy Ind Ltd Production of wear resistant composite material
JPH102677A (en) * 1996-06-14 1998-01-06 Nippon Steel Corp Sinter cake support stand
JP2002013876A (en) * 2000-06-29 2002-01-18 Nippon Steel Corp Stand for supporting sintering cake, method of making the same and method for repairing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119988A1 (en) * 2009-04-16 2010-10-21 新日本製鐵株式会社 Sintering machine

Similar Documents

Publication Publication Date Title
AU2011258841B2 (en) Composite chute liner
CN103261444B (en) The ceramic end liner of blast furnace hearth
JP2010058155A (en) Ceramic composite member
CN109851333B (en) Nano sol combined wear-resisting plate for blast furnace main iron runner and preparation method and application thereof
US6580743B1 (en) Stave cooler
JP2007270170A (en) Sinter cake-supporting stand
PL167827B1 (en) Method of lining a furnace or the like with refractory bricks and refractory brick therefor
EA037858B1 (en) Wear resistant transfer or distribution chutes
JP5488209B2 (en) Method for producing sintered ore, design method for sinter cake support stand, and method for determining layer thickness of raw material packed bed
JP2012149863A (en) Lining structure of furnace bottom refractory of shaft furnace
JP4436222B2 (en) Immersion tube for vacuum degassing
JP5461831B2 (en) Sinter cake support stand
US6428743B1 (en) Trough having an erosion-resistant precast shape
JP2006329594A (en) Sintered cake support stand
JP4512564B2 (en) Special steel for sinter cake support stand
WO2006077786A1 (en) Reverse slant lining structure of furnace with reduced part structure
RU2807794C1 (en) Method for increasing wear resistance of hammer mill beaters
JP5391810B2 (en) Structure of gas blowing part of molten metal container
JPH01272707A (en) Stave for cooling furnace wall in blast furnace
JP2002332512A (en) Trough for molten metal and slag
Whiteley Developments in critical areas of blast furnace linings
JPWO2011040425A1 (en) Blast furnace morning glory structure and design method thereof
JPH051336A (en) Method for supplying bedding ore into pallet in sintering machine
JPH06273062A (en) Induction furnace
JPH05271730A (en) Stave cooler providing heat stress releasing type inclined functional material

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080319

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110607

A131 Notification of reasons for refusal

Effective date: 20110614

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403