JP2007269902A - Method for hydrocracking wax - Google Patents

Method for hydrocracking wax Download PDF

Info

Publication number
JP2007269902A
JP2007269902A JP2006095256A JP2006095256A JP2007269902A JP 2007269902 A JP2007269902 A JP 2007269902A JP 2006095256 A JP2006095256 A JP 2006095256A JP 2006095256 A JP2006095256 A JP 2006095256A JP 2007269902 A JP2007269902 A JP 2007269902A
Authority
JP
Japan
Prior art keywords
wax
catalyst
catalyst layer
hydrocracking
solid acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006095256A
Other languages
Japanese (ja)
Other versions
JP4769110B2 (en
Inventor
Hiroyuki Seki
浩幸 関
Masahiro Azuma
正浩 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2006095256A priority Critical patent/JP4769110B2/en
Priority to PCT/JP2007/054921 priority patent/WO2007114000A1/en
Priority to RU2008142949/04A priority patent/RU2428458C2/en
Priority to CN200780011021.1A priority patent/CN101410489B/en
Priority to MYPI20083716A priority patent/MY146666A/en
Priority to AU2007231959A priority patent/AU2007231959B2/en
Publication of JP2007269902A publication Critical patent/JP2007269902A/en
Application granted granted Critical
Publication of JP4769110B2 publication Critical patent/JP4769110B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/12Noble metals
    • B01J29/126Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/14Inorganic carriers the catalyst containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/18Crystalline alumino-silicate carriers the catalyst containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/10Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for hydrocracking wax, with which both the yield of middle distillate and the yield of lubricating oil base are achieved at a high level and a gas oil fraction having an excellent low-temperature fluidity is produced. <P>SOLUTION: The method for hydrocracking wax comprises circulating wax from a first catalytic layer of a catalytic reaction part to a third catalytic layer in the presence of hydrogen in a fixed bed reactor equipped with a catalytic reaction part in which the first catalytic layer containing a first amorphous solid acid, a second catalytic layer containing zeolite and the third catalytic layer containing a second amorphous solid acid are arranged in this order. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はワックスの水素化分解方法に関する。   The present invention relates to a method for hydrocracking wax.

近年、環境にやさしいクリーンな液体燃料、すなわち硫黄分および芳香族炭化水素の含有量が低い燃料が求められている。そこで、クリーン燃料の製造法について様々な検討されており、その一つとしてフィッシャー・トロプシュ(FT)合成法が注目されている。FT合成法は、一酸化炭素と水素を原料とするもので、パラフィン含有量に富み且つ硫黄分を含まない液体燃料基材を製造することができるため、将来的にも期待されている。   In recent years, environmentally friendly clean liquid fuels, that is, fuels with a low content of sulfur and aromatic hydrocarbons have been demanded. Therefore, various studies have been conducted on a method for producing clean fuel, and one of them is the Fischer-Tropsch (FT) synthesis method. Since the FT synthesis method uses carbon monoxide and hydrogen as raw materials and can produce a liquid fuel base material having a high paraffin content and no sulfur content, it is expected in the future.

FT合成法においてはワックスが生成し得るが、このワックスを水素化分解し、その分解生成物をクリーン燃料の基材として用いることも可能である。この場合、一般的にガソリンや軽油の液体燃料基材として使用可能な中間留分が目的物となる。そこで、中間留分選択性を重視した液体燃料基材の製造方法が検討されている。例えば、特許文献1には、非結晶性シリカアルミナに白金を担持した触媒を使用してワックスから中間留分を製造する方法が記載されている。   In the FT synthesis method, a wax can be generated, but it is also possible to hydrocrack the wax and use the decomposition product as a clean fuel substrate. In this case, a middle distillate that can be used as a liquid fuel base material for gasoline or light oil is generally a target product. Therefore, a method for producing a liquid fuel base material that emphasizes middle distillate selectivity has been studied. For example, Patent Document 1 describes a method for producing a middle distillate from wax using a catalyst in which platinum is supported on amorphous silica alumina.

また、ワックスに含まれるノルマルパラフィンを水素異性化によってイソパラフィンに変換し、イソパラフィン含有量に富む生成物を潤滑油基材として使用することが検討されている。ワックスから潤滑油基材を製造する方法として、特許文献2には、非結晶性シリカアルミナにコバルト、モリブデン、ニッケルなどを担持した触媒を用いる方法、特許文献3には、ゼオライト系触媒を用いる方法が記載されている。
特開平6−41549号公報 国際公開第00/14183号パンフレット 国際公開第04/081157号パンフレット
Further, it has been studied to convert normal paraffin contained in wax into isoparaffin by hydroisomerization and to use a product rich in isoparaffin as a lubricant base material. As a method for producing a lubricating oil base material from wax, Patent Document 2 discloses a method using a catalyst in which cobalt, molybdenum, nickel or the like is supported on amorphous silica alumina, and Patent Document 3 discloses a method using a zeolite catalyst. Is described.
JP-A-6-41549 International Publication No. 00/14183 Pamphlet International Publication No. 04/081157 Pamphlet

ところで、一般に分解とは分子量の低下を伴う化学反応を意味し、異性化とは分子量を維持したままで他の化合物への転換を意味する。水素化分解では被処理炭化水素よりも低沸点の炭化水素が生成する。一方、水素異性化では被処理炭化水素の炭素数を維持したままでその分岐度が高められる。ワックスを被処理炭化水素として、これを触媒の存在下において水素化分解する場合、水素化分解反応及び水素異性化反応が複雑に絡み合いながらで進行する。   By the way, in general, decomposition means a chemical reaction accompanied by a decrease in molecular weight, and isomerization means conversion to another compound while maintaining the molecular weight. Hydrocracking produces hydrocarbons with lower boiling points than the hydrocarbons being treated. On the other hand, in the hydroisomerization, the degree of branching is increased while maintaining the carbon number of the hydrocarbon to be treated. When wax is treated as a hydrocarbon to be treated and hydrocracked in the presence of a catalyst, the hydrocracking reaction and the hydroisomerization reaction proceed in a complicated manner.

ワックスから液体燃料基材や潤滑油基材を製造するための要素技術として、従来、これに使用する触媒の技術開発が精力的に行われてきた。しかしながら、水素化分解は、水素異性化に加え、水素移行や炭素析出などの反応も伴うものであり反応機構が複雑である。このため、触媒に焦点を当てた長年の研究開発にも関わらず、必ずしも所望の特性を有する分解生成物を得ることができなかった。   As an elemental technology for producing a liquid fuel base material and a lubricating oil base material from wax, conventionally, technical development of a catalyst used for this has been vigorously performed. However, hydrocracking involves reactions such as hydrogen transfer and carbon deposition in addition to hydroisomerization, and the reaction mechanism is complicated. For this reason, despite many years of research and development focused on catalysts, it was not always possible to obtain decomposition products having the desired characteristics.

具体的には、ワックスの水素化分解における目的物である中間留分の収率を十分に高水準とすることができなかった。また、異性化率が不十分であることに起因して中間留分、特に軽油留分の低温流動性が不十分となったり、潤滑油基材の収率が低水準に留まったりするといった問題が生じていた。   Specifically, the yield of the middle distillate, which is the target product in the hydrocracking of wax, could not be made sufficiently high. Also, problems such as insufficient low temperature fluidity of middle distillate, especially light oil distillate due to insufficient isomerization rate, and low yield of lubricant base material. Has occurred.

本発明は、このような実情に鑑みてなされたものであり、中間留分の収率及び潤滑油基材の収率の両方を高水準に達成できると共に、低温流動性に優れた軽油留分を製造可能なワックスの水素化分解方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and is capable of achieving both high yields of middle distillate and lubricating oil base material at a high level, and a light oil distillate excellent in low-temperature fluidity. It is an object of the present invention to provide a method for hydrocracking a wax that can be used to produce a wax.

本発明に係るワックスの水素化分解方法は、第1の非結晶性固体酸を含有する第1の触媒層、ゼオライトを含有する第2の触媒層、及び第2の非結晶性固体酸を含有する第3の触媒層がこの順序で配置された触媒反応部を備える固定床反応装置において、水素の存在下、ワックスを、触媒反応部の第1の触媒層から第3の触媒層に向けて流通させることを特徴とする。   The method for hydrocracking wax according to the present invention comprises a first catalyst layer containing a first amorphous solid acid, a second catalyst layer containing zeolite, and a second amorphous solid acid. In the fixed bed reaction apparatus including the catalyst reaction section in which the third catalyst layers are arranged in this order, the wax is directed from the first catalyst layer of the catalyst reaction section to the third catalyst layer in the presence of hydrogen. It is characterized by being distributed.

本発明によれば、三層の触媒層を備える触媒反応部において水素化分解反応及び水素異性化反応を進行せしめることによって、中間留分の収率及びノルマルパラフィンからイソパラフィンへの異性化率の両方を高水準に達成することができる。中間留分の収率が十分に高いため、ワックスから液体燃料基材を効率的に製造することができる。また、異性化率を十分に高くすることができるため、得られる軽油留分及び潤滑油留分の低温流動性が十分に高くなる。   According to the present invention, both the yield of middle distillate and the isomerization rate from normal paraffin to isoparaffin are obtained by advancing hydrocracking reaction and hydroisomerization reaction in a catalytic reaction section having three catalyst layers. Can be achieved at a high level. Since the yield of middle distillate is sufficiently high, a liquid fuel substrate can be efficiently produced from wax. Moreover, since an isomerization rate can be made high enough, the low temperature fluidity | liquidity of the light oil fraction obtained and a lubricating oil fraction becomes high enough.

なお、本発明でいう中間留分とは沸点150℃以上360℃以下の炭化水素を90質量%以上含有する留分を意味し、潤滑油留分とは沸点が360℃を超える炭化水素を90質量%以上含有する留分を意味する。また、軽油留分とは、中間留分の一部であって、沸点260℃以上360℃以下の炭化水素を90質量%以上含有する留分を意味する。   In the present invention, the middle fraction means a fraction containing 90% by mass or more of hydrocarbon having a boiling point of 150 ° C. or higher and 360 ° C. or lower, and the lubricating oil fraction means 90% of hydrocarbon having a boiling point of higher than 360 ° C. This means a fraction containing at least mass%. The light oil fraction means a fraction that is a part of the middle fraction and contains 90% by mass or more of hydrocarbons having a boiling point of 260 ° C. or higher and 360 ° C. or lower.

また、本発明によれば、十分に高い収率で潤滑油基材を製造することが可能となる。潤滑油基材は、一般に、分解生成物の潤滑油留分に含まれるノルマルパラフィンを主成分とするワックス分の含有量を低減させる脱ろう処理を行うことで製造される。本発明の方法で得られる分解生成物に含まれる潤滑油留分は、水素異性化によってイソパラフィンの含有率に富んでいるため、脱ろう処理により除去されるノルマルパラフィンが少なく、潤滑油基材の高い収率が達成される。   Moreover, according to this invention, it becomes possible to manufacture a lubricating oil base material with a sufficiently high yield. Lubricating oil base materials are generally manufactured by performing a dewaxing treatment that reduces the content of the wax mainly composed of normal paraffin contained in the lubricating oil fraction of decomposition products. Since the lubricating oil fraction contained in the decomposition product obtained by the method of the present invention has a high isoparaffin content by hydroisomerization, there is little normal paraffin removed by the dewaxing treatment, and the lubricating oil base material High yields are achieved.

本発明においては、第2の触媒層がゼオライトとして、USYゼオライト(超安定化Y型ゼオライト)を含有することが好ましい。第2の触媒層がUSYゼオライトを含有すると、他の種類のゼオライトを含有する場合と比較し、水素化分解をより効率的に行うことができるためである。   In the present invention, the second catalyst layer preferably contains USY zeolite (ultra-stabilized Y-type zeolite) as zeolite. This is because when the second catalyst layer contains USY zeolite, hydrocracking can be performed more efficiently than in the case of containing other types of zeolite.

また、第1及び第3の触媒層が第1又は第2の非結晶性固体酸として、それぞれシリカアルミナ、シリカジルコニア及びシリコアルミノフォスフェートから選ばれる1種以上を含有することが好ましい。第1又は第2の非結晶性固体酸が上記非結晶性固体酸を含有すると、上記以外の非結晶性固体酸を含有する場合と比較し、異性化率をより向上させることができるためである。   Moreover, it is preferable that the 1st and 3rd catalyst layer contains 1 or more types chosen from a silica alumina, a silica zirconia, and a silicoaluminophosphate as a 1st or 2nd non-crystalline solid acid, respectively. When the first or second non-crystalline solid acid contains the non-crystalline solid acid, the isomerization rate can be further improved as compared with the case where the non-crystalline solid acid other than the above is contained. is there.

また、第1及び第3の触媒層がそれぞれ第1又は第2の非結晶性固体酸に担持された白金及びパラジウムから選ばれる1種以上の金属を含有し、第2の触媒層がゼオライトに担持された白金及びパラジウムから選ばれる1種以上の金属を含有することが好ましい。第1及び第3の触媒層、並びに、第2の触媒層において、非結晶性固体酸又はゼオライトに白金及び/又はパラジウムが担持された触媒を使用すると、これらの金属が担持されていない触媒を使用した場合と比較し、水素化分解をより効率的に行うことができるためである。   Each of the first and third catalyst layers contains one or more metals selected from platinum and palladium supported on the first or second amorphous solid acid, and the second catalyst layer is made of zeolite. It is preferable to contain one or more metals selected from supported platinum and palladium. If a catalyst in which platinum and / or palladium is supported on an amorphous solid acid or zeolite is used in the first and third catalyst layers and the second catalyst layer, a catalyst in which these metals are not supported is used. This is because hydrocracking can be performed more efficiently than when it is used.

本発明で使用するワックスは、フィッシャー・トロプシュ合成により得られるものであることが好ましい。FT合成法により得られるワックスは実質的に硫黄分や芳香族炭化水素などの環境負荷物質を含有しない。このため、原料のワックスがFT合成法により得られるものであると、環境負荷物質の含有量が十分に低減化された中間留分及び潤滑油基材が製造可能となる。   The wax used in the present invention is preferably obtained by Fischer-Tropsch synthesis. The wax obtained by the FT synthesis method is substantially free from environmentally hazardous substances such as sulfur and aromatic hydrocarbons. For this reason, when the raw material wax is obtained by the FT synthesis method, it becomes possible to produce a middle distillate and a lubricant base material in which the content of environmentally hazardous substances is sufficiently reduced.

本発明によれば、中間留分の収率及び潤滑油基材の収率の両方を高水準に達成できると共に、低温流動性に優れた軽油留分を製造可能なワックスの水素化分解方法が提供される。   According to the present invention, there is provided a method for hydrocracking wax capable of producing a light oil fraction excellent in low-temperature fluidity while achieving both high yield of middle distillate and yield of lubricating oil base material. Provided.

以下、図面を参照して本発明の好適な実施形態について詳細に説明する。図1は本発明の実施形態に係る固定床反応装置の好ましい一例を示す説明図である。図1に示した固定床反応装置は、反応塔10内で水素化分解及び水素異性化を行うもので、反応塔10内には触媒反応部1が配置されている。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory view showing a preferred example of a fixed bed reactor according to an embodiment of the present invention. The fixed bed reactor shown in FIG. 1 performs hydrocracking and hydroisomerization in a reaction tower 10, and a catalytic reaction section 1 is arranged in the reaction tower 10.

反応塔10の頂部には反応塔10内に水素を供給するためのラインL1が連結されており、ラインL1の反応塔10との連結部よりも上流側にはワックスを供給するためのラインL2が連結されている。これにより、ワックスを水素と共に反応塔10内に導入し、触媒反応部1を通過させてワックスの水素化分解及び水素異性化を行うことが可能となっている。また、反応塔10の底部には、分解生成物を抜き取るためのラインL3が連結されている。   A line L1 for supplying hydrogen into the reaction tower 10 is connected to the top of the reaction tower 10, and a line L2 for supplying wax to the upstream side of the connection portion of the line L1 with the reaction tower 10 is connected. Are connected. As a result, it is possible to introduce wax into the reaction tower 10 together with hydrogen and pass the catalyst reaction unit 1 to hydrocrack and hydroisomerize the wax. A line L3 for extracting a decomposition product is connected to the bottom of the reaction tower 10.

なお、図1には水素供給ラインL1とワックス供給ラインL2が合流している反応装置の例を示したが、水素供給ラインL1とワックス供給ラインL2とはそれぞれ別個に反応塔10に連結されていてもよい。また、ワックスの流通方向は、図1に示したように反応塔10の頂部側から底部側に向かう方向とすることが好ましい。   Although FIG. 1 shows an example of a reactor in which the hydrogen supply line L1 and the wax supply line L2 are joined, the hydrogen supply line L1 and the wax supply line L2 are separately connected to the reaction tower 10 respectively. May be. Further, the flow direction of the wax is preferably the direction from the top side to the bottom side of the reaction tower 10 as shown in FIG.

触媒反応部1は、第1の非結晶性固体酸を含有する触媒層1a(第1の触媒層)と、ゼオライトを含有する触媒層1b(第2の触媒層)と、第2の非結晶性固体酸を含有する触媒層1c(第3の触媒層)とを備えている。触媒反応部1においては、触媒層1a、触媒層1b及び触媒層1cの順序でこれらの触媒層が上流側から下流側に向けて配置されている。なお、第1及び第2の非結晶性固体酸は、同一であっても相違するものであってもよい。   The catalyst reaction unit 1 includes a catalyst layer 1a (first catalyst layer) containing a first amorphous solid acid, a catalyst layer 1b (second catalyst layer) containing zeolite, and a second amorphous crystal. And a catalyst layer 1c (third catalyst layer) containing a basic solid acid. In the catalyst reaction part 1, these catalyst layers are arrange | positioned from the upstream to the downstream in order of the catalyst layer 1a, the catalyst layer 1b, and the catalyst layer 1c. The first and second amorphous solid acids may be the same or different.

触媒層1a及び触媒層1cを構成する非結晶性固体酸を含有する触媒(以下、「非結晶性固体酸触媒」という。)としては、水素化分解能及び水素異性化能を有する触媒であれば特に制限されないが、その担体として、シリカアルミナ、シリカジルコニア、アルミナボリア、シリカチタニア、シリカマグネシア、カオリナイト、アルミノフォスフェート及びシリコアルミノフォスフェートから選ばれる1種以上の非結晶性固体酸を含有する触媒を用いることが好ましく、シリカアルミナ、シリカジルコニア及びシリコアルミノフォスフェートから選ばれる1種以上の非結晶性固体酸を含有する触媒を用いることがより好ましい。   The catalyst containing the non-crystalline solid acid constituting the catalyst layer 1a and the catalyst layer 1c (hereinafter referred to as “non-crystalline solid acid catalyst”) may be any catalyst having hydrogenation resolution and hydroisomerization ability. Although not particularly limited, the carrier contains at least one amorphous solid acid selected from silica alumina, silica zirconia, alumina boria, silica titania, silica magnesia, kaolinite, aluminophosphate and silicoaluminophosphate. A catalyst is preferably used, and a catalyst containing at least one amorphous solid acid selected from silica alumina, silica zirconia and silicoaluminophosphate is more preferably used.

また、非結晶性固体酸触媒としては、上記の担体上に、周期律表第VI族Aの金属及び/又は第VIII族の金属を担持させた触媒が好ましい。第VI族Aの金属としては、具体的には、クロム、モリブデン、タングステンなどが挙げられる。また、第VIII族の金属としては、具体的には、コバルト、ニッケル、ロジウム、パラジウム、イリジウム、白金などが挙げられる。これらの中でも、パラジウム及び/又は白金が好ましく、白金がより好ましい。担体に担持させる金属量は特に制限はないが、好ましくは、担体に対して0.01〜2質量%であり、担体に担持させる金属がパラジウム及び/又は白金の場合、好ましくは、0.05〜2質量%である。触媒層1a及び触媒層1cを構成する非結晶性固体酸触媒が含有する金属は、同一であっても相違するものであってもよい。   Further, as the non-crystalline solid acid catalyst, a catalyst in which a metal of group VI of the periodic table and / or a metal of group VIII is supported on the above support is preferable. Specific examples of the Group VI A metal include chromium, molybdenum, and tungsten. Specific examples of the Group VIII metal include cobalt, nickel, rhodium, palladium, iridium, and platinum. Among these, palladium and / or platinum are preferable, and platinum is more preferable. The amount of metal supported on the support is not particularly limited, but is preferably 0.01 to 2% by mass with respect to the support. When the metal supported on the support is palladium and / or platinum, preferably 0.05 It is -2 mass%. The metals contained in the non-crystalline solid acid catalyst constituting the catalyst layer 1a and the catalyst layer 1c may be the same or different.

非結晶性固体酸触媒は、担体成型のためのバインダーを更に含有してもよい。バインダーは特に制限されないが、好ましいバインダーとしてはアルミナまたはシリカが挙げられる。担体の形状は特に制限されず、粒状、円柱状(ペレット)などの形状とすることができる。なお、触媒層1a及び触媒層1cを構成する非結晶性固体酸触媒が含有するバインダーは、同一であっても相違するものであってもよい。   The amorphous solid acid catalyst may further contain a binder for carrier molding. The binder is not particularly limited, but preferred binders include alumina or silica. The shape of the carrier is not particularly limited, and may be a granular shape, a cylindrical shape (pellet), or the like. In addition, the binder which the amorphous solid acid catalyst which comprises the catalyst layer 1a and the catalyst layer 1c contains may be the same, or may differ.

触媒層1bを構成するゼオライトを含有する触媒(以下、「ゼオライト系触媒」という。)は、水素化分解能及び水素異性化能を有する触媒であれば特に制限されないが、その担体として、USYゼオライト、HYゼオライト、モルデナイト、βゼオライト及びΩゼオライトから選ばれる1種以上のゼオライトを含有する触媒を用いることが好ましく、これらの中でもUSYゼオライトを含有する触媒と用いることが特に好ましい。ゼオライト系触媒の担体がUSYゼオライトを含んで構成される場合、担体に占めるUSYゼオライトの割合は特に制限されないが、分解生成物の軽質化の抑制の点から、USYゼオライトの割合は、担体全量を基準として、15質量%以下が好ましく、5質量%以下がより好ましい。   The catalyst containing the zeolite constituting the catalyst layer 1b (hereinafter referred to as “zeolite-based catalyst”) is not particularly limited as long as it has hydrogenation resolution and hydroisomerization ability. It is preferable to use a catalyst containing one or more types of zeolite selected from HY zeolite, mordenite, β zeolite and Ω zeolite, and among these, it is particularly preferable to use a catalyst containing USY zeolite. When the support of the zeolitic catalyst includes USY zeolite, the proportion of USY zeolite in the support is not particularly limited, but from the viewpoint of suppressing the lightening of the decomposition products, the proportion of USY zeolite is the total amount of the support. As a standard, 15 mass% or less is preferable, and 5 mass% or less is more preferable.

また、USYゼオライトにおけるシリカ/アルミナのモル比は特に制限されないが、好ましくは20〜200、より好ましくは25〜100、最も好ましくは30〜60である。また、USYゼオライトの平均粒子径は、好ましくは1.0μm以下、より好ましくは0.5μm以下である。なお、USYゼオライトの平均粒子径が1.0μmより大きいと、得られる分解生成物が軽質化する傾向にある。   The molar ratio of silica / alumina in USY zeolite is not particularly limited, but is preferably 20 to 200, more preferably 25 to 100, and most preferably 30 to 60. The average particle size of USY zeolite is preferably 1.0 μm or less, more preferably 0.5 μm or less. In addition, when the average particle diameter of USY zeolite is larger than 1.0 μm, the obtained decomposition product tends to be lightened.

また、ゼオライト系触媒としては、上記の担体上に、周期律表第VI族Aの金属及び/又は第VIII族の金属を担持させた触媒が好ましい。第VI族Aの金属としては、具体的には、クロム、モリブデン、タングステンなどが挙げられる。また、第VIII族の金属としては、具体的には、コバルト、ニッケル、ロジウム、パラジウム、イリジウム、白金などが挙げられる。これらの中でも、パラジウム及び/又は白金が好ましく、白金がより好ましい。担体に担持させる金属量は特に制限はないが、好ましくは、担体に対して0.01〜2質量%であり、担体に担持させる金属がパラジウム及び/又は白金の場合、好ましくは、0.05〜2質量%である。   Further, the zeolite-based catalyst is preferably a catalyst in which a metal of group VI of the periodic table and / or a metal of group VIII is supported on the above support. Specific examples of the Group VI A metal include chromium, molybdenum, and tungsten. Specific examples of the Group VIII metal include cobalt, nickel, rhodium, palladium, iridium, and platinum. Among these, palladium and / or platinum are preferable, and platinum is more preferable. The amount of metal supported on the support is not particularly limited, but is preferably 0.01 to 2% by mass with respect to the support. When the metal supported on the support is palladium and / or platinum, preferably 0.05 It is -2 mass%.

ゼオライト系触媒は、担体成型のためのバインダーを更に含有してもよい。バインダーは特に制限されないが、好ましいバインダーとしてはアルミナまたはシリカが挙げられる。担体の形状は特に制限されず、粒状、円柱状(ペレット)などの形状とすることができる。   The zeolitic catalyst may further contain a binder for carrier molding. The binder is not particularly limited, but preferred binders include alumina or silica. The shape of the carrier is not particularly limited, and may be a granular shape, a cylindrical shape (pellet), or the like.

触媒反応部1における第1及び第2の非結晶性固体酸触媒、並びに、ゼオライト系触媒の充填量(容積)の比率は特に限定されないが、触媒層1bを構成するゼオライト系触媒の充填量を1容積部とすると、触媒層1aを構成する第1の非結晶性固体酸触媒の充填量は、0.5〜3容積部であることが好ましい。第1の非結晶性固体酸触媒の充填量が0.5〜3容積部の範囲外であると、範囲内である場合と比較し、中間留分の収率が低くなる傾向がある。   The ratio of the amount (volume) of the first and second amorphous solid acid catalysts and the zeolite-based catalyst in the catalyst reaction unit 1 is not particularly limited, but the amount of the zeolite-based catalyst constituting the catalyst layer 1b is not limited. If it is 1 volume part, it is preferable that the filling amount of the 1st non-crystalline solid acid catalyst which comprises the catalyst layer 1a is 0.5-3 volume part. When the filling amount of the first amorphous solid acid catalyst is out of the range of 0.5 to 3 parts by volume, the yield of the middle distillate tends to be lower than that in the range.

一方、触媒層1bを構成するゼオライト系触媒の充填量を1容積部とすると、触媒層1cを構成する第3の非結晶性固体酸触媒の充填量は、0.5〜2.0容積部であることが好ましい。第3の非結晶性固体酸触媒の充填量が0.5未満であると、中間留分の収率が高くなるがその低温流動性が不十分となる傾向があり、他方、2容積部を超えると、中間留分の低温流動性が向上するがその収率が低くなる傾向がある。   On the other hand, when the filling amount of the zeolitic catalyst constituting the catalyst layer 1b is 1 part by volume, the filling amount of the third amorphous solid acid catalyst constituting the catalyst layer 1c is 0.5 to 2.0 parts by volume. It is preferable that When the filling amount of the third non-crystalline solid acid catalyst is less than 0.5, the yield of the middle distillate tends to be high, but the low-temperature fluidity tends to be insufficient. If it exceeds, the low-temperature fluidity of the middle distillate is improved, but the yield tends to be low.

水素供給ラインL1を介して反応塔10に導入されるワックスとしては、例えば炭素数が15〜100、好ましくは炭素数が20〜60のノルマルパラフィンを30質量%以上含んだ石油系又は合成系ワックスが挙げられる。石油系ワックスとしてはスラックワックス、マイクロワックスなどを、合成系ワックスとしてはFT合成で製造されるいわゆるFTワックスを挙げることができる。環境負荷低減の観点から、ワックスとしてFTワックスが特に好適である。   The wax introduced into the reaction tower 10 via the hydrogen supply line L1 is, for example, a petroleum or synthetic wax containing 30% by mass or more of normal paraffin having 15 to 100 carbon atoms, preferably 20 to 60 carbon atoms. Is mentioned. Examples of petroleum wax include slack wax and micro wax, and examples of synthetic wax include so-called FT wax produced by FT synthesis. From the viewpoint of reducing environmental burden, FT wax is particularly suitable as the wax.

反応塔10における水素化分解の処理条件は特に制限されないが、反応温度は好ましくは250〜370℃、より好ましくは280〜330℃である。反応温度が250℃未満であると水素化分解が十分に進行しない傾向にある。他方、反応温度が370℃を超えると、水素化分解の中間留分の収率が低下し、また、分解生成物が着色する傾向にある。   Although the hydrocracking treatment conditions in the reaction tower 10 are not particularly limited, the reaction temperature is preferably 250 to 370 ° C, more preferably 280 to 330 ° C. If the reaction temperature is less than 250 ° C., hydrocracking tends not to proceed sufficiently. On the other hand, when the reaction temperature exceeds 370 ° C., the yield of the middle distillate of hydrocracking decreases, and the cracked product tends to be colored.

また、反応塔10における液空間速度は、好ましくは0.1〜10.0h−1、より好ましくは0.2〜3.0h−1である。液空間速度が0.1h−1未満であると、中間留分の収率が低下する傾向にある。他方、液空間速度が10.0h−1を超えると水素化分解が十分に進行しない傾向にある。 The liquid space velocity in the reaction tower 10 is preferably 0.1 to 10.0 h −1 , more preferably 0.2 to 3.0 h −1 . If the liquid space velocity is less than 0.1 h −1 , the yield of middle distillate tends to decrease. On the other hand, when the liquid space velocity exceeds 10.0 h −1 , hydrogenolysis tends not to proceed sufficiently.

また、反応塔10における反応圧力は特に制限されないが、水素分圧は、好ましくは0.5〜10.0MPa、より好ましくは2.0〜7.0MPaである。さらに、反応塔10における水素/油比は、好ましくは150〜1200NL/L、より好ましくは200〜700NL/Lである。   The reaction pressure in the reaction tower 10 is not particularly limited, but the hydrogen partial pressure is preferably 0.5 to 10.0 MPa, more preferably 2.0 to 7.0 MPa. Furthermore, the hydrogen / oil ratio in the reaction tower 10 is preferably 150 to 1200 NL / L, more preferably 200 to 700 NL / L.

ラインL3で移送される分解生成物には、通常、ナフサ(沸点145℃未満の留分)、中間留分(沸点145〜360℃の留分)及び潤滑油留分(沸点360℃を超える留分)が含まれ、これらの留分を分留することにより各種用途に応じた基材を得ることができる。   The cracked products transferred in line L3 are usually naphtha (fractions with a boiling point of less than 145 ° C.), middle fractions (fractions with a boiling point of 145 to 360 ° C.) and lubricating oil fractions (fractions having a boiling point of more than 360 ° C. The base material according to various uses can be obtained by fractionating these fractions.

低温始動性ないしは低温運転性の観点から、液体燃料基材として使用される中間留分の流動点が低いことが好ましい。特に、軽油留分(沸点260〜360℃の留分)の流動点は好ましくは−10℃以下、より好ましくは−15℃以下、さらにより好ましくは−20℃以下、さらにより一層好ましくは−25℃以下である。なお、ここでいう流動点とは、JIS K 2269−1987「原油及び石油製品の流動点並びに石油製品曇り点試験方法」に準拠して測定される流動点を意味する。   From the viewpoint of low temperature startability or low temperature drivability, the pour point of the middle distillate used as the liquid fuel substrate is preferably low. In particular, the pour point of the light oil fraction (fraction having a boiling point of 260 to 360 ° C.) is preferably −10 ° C. or less, more preferably −15 ° C. or less, still more preferably −20 ° C. or less, and even more preferably −25. It is below ℃. The pour point here means a pour point measured in accordance with JIS K 2269-1987 “Pour point of crude oil and petroleum products and cloud point test method of petroleum products”.

分解生成物から分留した潤滑油留分は流動点が十分に低くない場合には、所望の流動点を有する潤滑油基油を得るために脱ろうする。脱ろうは溶剤脱ろう法又は接触脱ろう法などの通常の方法で行うことができる。このうち、溶剤脱ろう法は一般にMEK、トルエンの混合溶剤が用いられるが、ベンゼン、アセトン、MIBK等の溶剤を用いてもよい。溶剤を用いた脱ろうは、溶剤/油比1〜6倍、ろ過温度−5〜−45℃、好ましくは−10〜−40℃の条件で行うことが好ましい。なお、ここで除去されるろう分は、スラックワックスとして、再び反応塔10に導入することができる。   If the lubricating oil fraction fractionated from the cracked product is not sufficiently low, it is dewaxed to obtain a lubricating base oil having the desired pour point. Dewaxing can be performed by a conventional method such as a solvent dewaxing method or a catalytic dewaxing method. Among these, the solvent dewaxing method generally uses a mixed solvent of MEK and toluene, but may use a solvent such as benzene, acetone, MIBK or the like. Dewaxing using a solvent is preferably performed under conditions of a solvent / oil ratio of 1 to 6 times and a filtration temperature of -5 to -45 ° C, preferably -10 to -40 ° C. The wax removed here can be reintroduced into the reaction tower 10 as slack wax.

以下、実施例及び比較例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example at all.

<非結晶性固体酸触媒の調製>
(触媒A−1)
アルミナの含有率14質量%、細孔容積0.68ml/g、平均粒子径5μmのアモルファスシリカアルミナ60質量部に対し、バインダーとしてベーマイト(アルミナ)40質量部を添加した。アモルファスシリカアルミナ及びベーマイトからなる混合物をよく混練した後、φ1.6mm、長さ約2mmの円柱状の担体を成型し、これを焼成(焼成温度:500℃、保持時間:3時間)することより非結晶性固体酸を得た。この非結晶性固体酸にジクロロテトラアンミン白金(II)の水溶液を含浸し、非結晶性固体酸に対して0.5質量%の白金を担持した。これを乾燥、焼成(焼成温度:500℃、保持時間:1時間)することで触媒A−1を得た。
<Preparation of non-crystalline solid acid catalyst>
(Catalyst A-1)
40 parts by mass of boehmite (alumina) was added as a binder to 60 parts by mass of amorphous silica alumina having an alumina content of 14% by mass, a pore volume of 0.68 ml / g, and an average particle diameter of 5 μm. By thoroughly kneading a mixture of amorphous silica alumina and boehmite, forming a cylindrical carrier having a diameter of 1.6 mm and a length of about 2 mm, and firing it (firing temperature: 500 ° C., holding time: 3 hours) An amorphous solid acid was obtained. This amorphous solid acid was impregnated with an aqueous solution of dichlorotetraammineplatinum (II), and 0.5 mass% of platinum was supported on the amorphous solid acid. The catalyst A-1 was obtained by drying and baking this (calcination temperature: 500 degreeC, holding time: 1 hour).

(触媒A−2)
アルミナの含有率41質量%、五酸化リン56質量%及びシリカ3質量%からなるアルミノフォスフェート(SAPO−11)50質量部に対し、バインダーとしてベーマイト50質量部を添加した。アルミノフォスフェート及びベーマイトからなる混合物をよく混練した後、φ1.6mm、長さ約2mmの円柱状に成型し、これを焼成(焼成温度:500℃、保持時間:3時間)することより非結晶性固体酸を得た。この非結晶性固体酸にジクロロテトラアンミン白金(II)の水溶液を含浸し、非結晶性固体酸に対して0.5質量%の白金を担持した。これを乾燥、焼成(焼成温度:500℃、保持時間:1時間)することで触媒A−2を得た。
(Catalyst A-2)
Boehmite (50 parts by mass) was added as a binder to 50 parts by mass of aluminophosphate (SAPO-11) composed of 41% by mass of alumina, 56% by mass of phosphorus pentoxide and 3% by mass of silica. A mixture of aluminophosphate and boehmite is kneaded well, then molded into a cylindrical shape with a diameter of 1.6 mm and a length of about 2 mm, and then fired (firing temperature: 500 ° C., holding time: 3 hours) to be amorphous. Acid solid acid was obtained. This amorphous solid acid was impregnated with an aqueous solution of dichlorotetraammineplatinum (II), and 0.5 mass% of platinum was supported on the amorphous solid acid. The catalyst A-2 was obtained by drying and baking this (calcination temperature: 500 degreeC, holding time: 1 hour).

<ゼオライト系触媒の調製>
(触媒Z−1)
シリカ/アルミナのモル比38、平均粒子径0.8μmのUSYゼオライト3質量部に対し、バインダーとしてベーマイト97質量部を添加した。USYゼオライト及びベーマイトからなる混合物をよく混練した後、φ1.6mm、長さ約2mmの円柱状に成型し、これを焼成(焼成温度:500℃、保持時間:3時間)することよりゼオライトを含有する担体を得た。この担体にジクロロテトラアンミン白金(II)の水溶液を含浸し、担体に対して0.6質量%の白金を担持した。これを乾燥、焼成(焼成温度:500℃、保持時間:1時間)することで触媒Z−1を得た。
<Preparation of zeolite catalyst>
(Catalyst Z-1)
97 parts by mass of boehmite was added as a binder to 3 parts by mass of USY zeolite having a silica / alumina molar ratio of 38 and an average particle diameter of 0.8 μm. A mixture consisting of USY zeolite and boehmite is well kneaded, then molded into a cylindrical shape with a diameter of 1.6 mm and a length of about 2 mm, and this is calcined (calcination temperature: 500 ° C., holding time: 3 hours). The carrier to be obtained was obtained. The carrier was impregnated with an aqueous solution of dichlorotetraammine platinum (II), and 0.6% by mass of platinum was supported on the carrier. This was dried and calcined (calcining temperature: 500 ° C., holding time: 1 hour) to obtain catalyst Z-1.

(実施例1)
<ワックスの水素化分解>
次に、図1に示した固定床反応装置の触媒層1aとして触媒A−1を100ml、触媒層1bとして触媒Z−1を100ml、触媒層1cとして触媒A−1を100mlそれぞれ充填し、ワックスの水素化分解を行った。なお、ワックスの水素化分解の実施に先立って、触媒反応部1内を水素の存在下、温度340℃にて2時間保持することによって各触媒の還元処理を行った。
Example 1
<Hydrogen hydrocracking>
Next, 100 ml of catalyst A-1 is filled as catalyst layer 1a of the fixed bed reactor shown in FIG. 1, 100 ml of catalyst Z-1 is filled as catalyst layer 1b, and 100 ml of catalyst A-1 is filled as catalyst layer 1c. Was hydrocracked. Prior to the hydrocracking of the wax, each catalyst was reduced by holding the inside of the catalyst reaction section 1 in the presence of hydrogen at a temperature of 340 ° C. for 2 hours.

原料ワックスは沸点360℃を超えるFTワックスであり、この原料ワックスを反応塔10の頂部から200ml/hの速度で供給した。また、原料ワックスに対して水素/油比590NL/Lにて水素を塔頂より供給した。反応塔10の圧力は入り口圧4MPaで一定になるように背圧弁にて調整した。また、反応塔10における水素化分解温度は、ワックスの分解率が80質量%となるように調節したところ、312℃であった。ここで、ワックスの分解率とは、下記式(1)で定義される分解率を意味する。下記式(1)中、「分解生成物の合計質量」とは、水素化分解によって得られた生成油及び生成ガスの合計の質量であり、また、「沸点360℃未満の留分の質量」とは、分解生成物に含まれる沸点360℃未満の留分の質量である。

Figure 2007269902
The raw material wax was an FT wax having a boiling point exceeding 360 ° C., and this raw material wax was supplied from the top of the reaction tower 10 at a rate of 200 ml / h. Moreover, hydrogen was supplied from the top of the raw material wax at a hydrogen / oil ratio of 590 NL / L. The pressure in the reaction tower 10 was adjusted with a back pressure valve so as to be constant at an inlet pressure of 4 MPa. The hydrocracking temperature in the reaction tower 10 was 312 ° C. when adjusted so that the cracking rate of the wax was 80% by mass. Here, the decomposition rate of wax means a decomposition rate defined by the following formula (1). In the following formula (1), “the total mass of the cracked product” is the total mass of the product oil and product gas obtained by hydrocracking, and “the mass of the fraction having a boiling point of less than 360 ° C.” Is the mass of a fraction having a boiling point of less than 360 ° C. contained in the decomposition product.
Figure 2007269902

次に、得られた分解生成物を常圧蒸留することにより灯油留分(沸点145〜260℃の留分)、軽油留分(沸点260〜360℃の留分)及び潤滑油留分(沸点360℃を超える留分)のそれぞれに分留し、原料ワックスの質量を基準として各留分の収率を求めた。表1には、灯油留分及び軽油留分の収率を合計した中間留分(沸点145〜360℃の留分)の収率及びJIS K 2269−1987に準拠して測定した軽油留分の流動点の測定結果を示す。   Next, a kerosene fraction (boiling point: 145 to 260 ° C.), a light oil fraction (boiling point: 260 to 360 ° C.) and a lubricating oil fraction (boiling point) are obtained by atmospheric distillation of the obtained decomposition product. Fractions exceeding 360 ° C.), and the yield of each fraction was determined based on the mass of the raw material wax. Table 1 shows the yield of the middle distillate (the fraction having a boiling point of 145 to 360 ° C.) obtained by summing the yields of the kerosene fraction and the light oil fraction, and the light oil fraction measured in accordance with JIS K 2269-1987. The measurement result of the pour point is shown.

また、潤滑油留分を溶剤脱ろうすることによって潤滑油基材を製造した。溶剤としてメチルエチルケトン−トルエン混合溶剤を用い、溶剤/油比4倍、ろ過温度−20℃の条件で行った。原料ワックスの質量を基準として潤滑油基材の収率を表1に示す。   Also, a lubricating oil base was produced by solvent dewaxing of the lubricating oil fraction. A methyl ethyl ketone-toluene mixed solvent was used as a solvent, and the conditions were a solvent / oil ratio of 4 times and a filtration temperature of -20 ° C. Table 1 shows the yield of the lubricant base material based on the mass of the raw material wax.

(実施例2)
触媒層1cとして触媒A−1の代わりに触媒A−2を100ml充填したことの他は、実施例1と同様にして、ワックスの水素化分解、溶剤脱ろう及び各種測定を行った。反応塔10における水素化分解温度は、ワックスの分解率が80質量%となるように調節したところ、310℃であった。測定結果を表1に示す。
(Example 2)
Wax hydrocracking, solvent dewaxing, and various measurements were performed in the same manner as in Example 1 except that 100 ml of catalyst A-2 was used instead of catalyst A-1 as catalyst layer 1c. The hydrocracking temperature in the reaction tower 10 was 310 ° C. when the wax cracking rate was adjusted to 80% by mass. The measurement results are shown in Table 1.

(比較例1)
触媒層1bとして触媒Z−1を100ml充填し、触媒層1a及び触媒層1cを設けなったことの他は、実施例1と同様にして、ワックスの水素化分解、溶剤脱ろう及び各種測定を行った。反応塔10における水素化分解温度は、ワックスの分解率が80質量%となるように調節したところ、317℃であった。測定結果を表1に示す。
(Comparative Example 1)
The catalyst hydrocracking, solvent dewaxing and various measurements were carried out in the same manner as in Example 1 except that 100 ml of catalyst Z-1 was filled as the catalyst layer 1b and the catalyst layer 1a and catalyst layer 1c were provided. went. The hydrocracking temperature in the reaction tower 10 was 317 ° C. when the wax cracking rate was adjusted to 80 mass%. The measurement results are shown in Table 1.

(比較例2)
触媒層1aとして触媒A−1を100ml、触媒層1bとして触媒Z−1を100ml充填し、触媒層1cを設けなかったことの他は、実施例1と同様にして、ワックスの水素化分解、溶剤脱ろう及び各種測定を行った。反応塔10における水素化分解温度は、ワックスの分解率が80質量%となるように調節したところ、314℃であった。測定結果を表1に示す。
(Comparative Example 2)
Hydrocracking of wax in the same manner as in Example 1 except that 100 ml of catalyst A-1 as catalyst layer 1a and 100 ml of catalyst Z-1 as catalyst layer 1b were filled and catalyst layer 1c was not provided. Solvent dewaxing and various measurements were performed. The hydrocracking temperature in the reaction tower 10 was 314 ° C. when the wax cracking rate was adjusted to 80 mass%. The measurement results are shown in Table 1.

(比較例3)
触媒層1bとして触媒Z−1を100ml、触媒層1cとして触媒A−1を100ml充填し、触媒層1aを設けなったことの他は、実施例1と同様にして、ワックスの水素化分解、溶剤脱ろう及び各種測定を行った。反応塔10における水素化分解温度は、ワックスの分解率が80質量%となるように調節したところ、315℃であった。測定結果を表1に示す。

Figure 2007269902
(Comparative Example 3)
Hydrocracking of wax in the same manner as in Example 1 except that 100 ml of catalyst Z-1 as catalyst layer 1b and 100 ml of catalyst A-1 as catalyst layer 1c were filled and catalyst layer 1a was provided. Solvent dewaxing and various measurements were performed. The hydrocracking temperature in the reaction tower 10 was 315 ° C. when the wax cracking rate was adjusted to 80% by mass. The measurement results are shown in Table 1.
Figure 2007269902

以上のように、非結晶性固体酸触媒、ゼオライト系触媒及び非結晶性固体酸触媒がこの順序で配置された三層構造からなる触媒反応部で水素化分解を行うことで、中間留分の収率及び潤滑油基材の収率の両方を高水準に達成できると共に、低温流動性に優れた軽油留分が得られることがわかる。   As described above, by performing hydrocracking in the catalytic reaction section having a three-layer structure in which an amorphous solid acid catalyst, a zeolite-based catalyst, and an amorphous solid acid catalyst are arranged in this order, It can be seen that both the yield and the yield of the lubricant base material can be achieved at a high level, and a light oil fraction excellent in low-temperature fluidity can be obtained.

本発明で用いられる固定床反応装置の一例を示す説明図である。It is explanatory drawing which shows an example of the fixed bed reaction apparatus used by this invention.

符号の説明Explanation of symbols

1…触媒反応部、1a…触媒層(第1の触媒層)、1b…触媒層(第2の触媒層)、1c…触媒層(第3の触媒層)、10…反応塔(固定床反応装置)。
DESCRIPTION OF SYMBOLS 1 ... Catalyst reaction part, 1a ... Catalyst layer (1st catalyst layer), 1b ... Catalyst layer (2nd catalyst layer), 1c ... Catalyst layer (3rd catalyst layer), 10 ... Reaction tower (fixed bed reaction) apparatus).

Claims (5)

第1の非結晶性固体酸を含有する第1の触媒層、ゼオライトを含有する第2の触媒層、及び第2の非結晶性固体酸を含有する第3の触媒層がこの順序で配置された触媒反応部を備える固定床反応装置において、水素の存在下、ワックスを、前記触媒反応部の前記第1の触媒層から前記第3の触媒層に向けて流通させることを特徴とするワックスの水素化分解方法。   The first catalyst layer containing the first amorphous solid acid, the second catalyst layer containing the zeolite, and the third catalyst layer containing the second amorphous solid acid are arranged in this order. In the fixed bed reactor comprising the catalytic reaction section, the wax is circulated from the first catalyst layer of the catalytic reaction section toward the third catalyst layer in the presence of hydrogen. Hydrocracking method. 前記第2の触媒層がUSYゼオライトを含有することを特徴とする、請求項1に記載のワックスの水素化分解方法。   2. The wax hydrocracking method according to claim 1, wherein the second catalyst layer contains USY zeolite. 前記第1及び第3の触媒層がそれぞれシリカアルミナ、シリカジルコニア及びシリコアルミノフォスフェートから選ばれる1種以上を含有することを特徴とする、請求項1又は2に記載のワックスの水素化分解方法。   The method for hydrocracking wax according to claim 1 or 2, wherein the first and third catalyst layers each contain one or more selected from silica alumina, silica zirconia, and silicoaluminophosphate. . 前記第1及び第3の触媒層がそれぞれ前記第1又は第2の非結晶性固体酸に担持された白金及びパラジウムから選ばれる1種以上の金属を含有し、前記第2の触媒層が前記ゼオライトに担持された白金及びパラジウムから選ばれる1種以上の金属を含有することを特徴とする、請求項1〜3のいずれか一項に記載のワックスの水素化分解方法。   The first and third catalyst layers each contain one or more metals selected from platinum and palladium supported on the first or second amorphous solid acid, and the second catalyst layer includes The method for hydrocracking a wax according to any one of claims 1 to 3, comprising at least one metal selected from platinum and palladium supported on zeolite. 前記ワックスは、フィッシャー・トロプシュ合成により得られるものであることを特徴とする、請求項1〜4のいずれか一項に記載のワックスの水素化分解方法。
The wax hydrocracking method according to any one of claims 1 to 4, wherein the wax is obtained by Fischer-Tropsch synthesis.
JP2006095256A 2006-03-30 2006-03-30 Method for hydrocracking wax Expired - Fee Related JP4769110B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006095256A JP4769110B2 (en) 2006-03-30 2006-03-30 Method for hydrocracking wax
PCT/JP2007/054921 WO2007114000A1 (en) 2006-03-30 2007-03-13 Method of hydrocracking wax
RU2008142949/04A RU2428458C2 (en) 2006-03-30 2007-03-13 Paraffin hydrocracking method
CN200780011021.1A CN101410489B (en) 2006-03-30 2007-03-13 Method of hydrocracking wax
MYPI20083716A MY146666A (en) 2006-03-30 2007-03-13 Method for hydrocracking wax
AU2007231959A AU2007231959B2 (en) 2006-03-30 2007-03-13 Method of hydrocracking wax

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006095256A JP4769110B2 (en) 2006-03-30 2006-03-30 Method for hydrocracking wax

Publications (2)

Publication Number Publication Date
JP2007269902A true JP2007269902A (en) 2007-10-18
JP4769110B2 JP4769110B2 (en) 2011-09-07

Family

ID=38563272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006095256A Expired - Fee Related JP4769110B2 (en) 2006-03-30 2006-03-30 Method for hydrocracking wax

Country Status (6)

Country Link
JP (1) JP4769110B2 (en)
CN (1) CN101410489B (en)
AU (1) AU2007231959B2 (en)
MY (1) MY146666A (en)
RU (1) RU2428458C2 (en)
WO (1) WO2007114000A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179864A (en) * 1993-10-25 1995-07-18 Inst Fr Petrole Process for forming oil having high viscosity index and highviscosity from heavy petroleum fraction and for improved formation of middle distillate
WO2004028688A1 (en) * 2002-09-24 2004-04-08 Nippon Oil Corporation Hydrocracking catalyst and process for production of liquid hydrocarbons

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1404406A (en) * 1973-02-08 1975-08-28 British Petroleum Co Production of lubricating oils
US4764266A (en) * 1987-02-26 1988-08-16 Mobil Oil Corporation Integrated hydroprocessing scheme for production of premium quality distillates and lubricants
WO1990009363A1 (en) * 1989-02-17 1990-08-23 Chevron Research And Technology Company Isomerization of waxy lube oils and petroleum waxes using a silicoaluminophosphate molecular sieve catalyst
CA2173599C (en) * 1993-10-08 2004-07-20 Johannes Wilhelmus Maria Sonnemans Hydrocracking and hydrodewaxing process
GB2311789B (en) * 1996-04-01 1998-11-04 Fina Research Process for converting wax-containing hydrocarbon feedstocks into high-grade middle distillate products
US6652735B2 (en) * 2001-04-26 2003-11-25 Exxonmobil Research And Engineering Company Process for isomerization dewaxing of hydrocarbon streams

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179864A (en) * 1993-10-25 1995-07-18 Inst Fr Petrole Process for forming oil having high viscosity index and highviscosity from heavy petroleum fraction and for improved formation of middle distillate
WO2004028688A1 (en) * 2002-09-24 2004-04-08 Nippon Oil Corporation Hydrocracking catalyst and process for production of liquid hydrocarbons

Also Published As

Publication number Publication date
RU2008142949A (en) 2010-05-10
CN101410489A (en) 2009-04-15
MY146666A (en) 2012-09-14
CN101410489B (en) 2014-06-04
RU2428458C2 (en) 2011-09-10
WO2007114000A1 (en) 2007-10-11
JP4769110B2 (en) 2011-09-07
AU2007231959B2 (en) 2011-10-13
AU2007231959A1 (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4908022B2 (en) Method for producing hydrocarbon oil and hydrocarbon oil
JP4519406B2 (en) Method for producing fuel from Fischer-Tropsch process
JP5690634B2 (en) Hydrorefining catalyst and method for producing hydrocarbon oil
US20150114882A1 (en) Method for dewaxing hydrocarbon oil and method for producing lubricating-oil base oil
JP5349736B2 (en) Method for hydrocracking wax
JP6240501B2 (en) Method for producing lubricating base oil
JP2011068728A (en) Production method for hydrocarbon oil and lubricant base oil
JP4769085B2 (en) Method for hydrotreating wax
JP5303110B2 (en) Method for producing liquid fuel
AU2007216008B2 (en) Process for hydrogenation of synthetic oil and process for production of fuel base
JP2007270061A (en) Method for producing liquid fuel base
JP4769110B2 (en) Method for hydrocracking wax
JP4791167B2 (en) Hydrorefining method
JP4861838B2 (en) Method for producing liquid fuel
JP4778816B2 (en) Hydrotreating method
JP4711849B2 (en) Manufacturing method of fuel substrate
RU2443756C2 (en) Liquid fuel obtaining methods
JP4852314B2 (en) Hydrotreating method
JP4773232B2 (en) Method for hydrocracking wax
WO2007113991A1 (en) Method for hydrocracking wax and method for producing fuel base material
JP2007270060A (en) Method for hydrogenating wax
JP2007269897A (en) Method for hydrocracking wax
JP2008101214A (en) Method for producing environmentally friendly light oil
JP2012211344A (en) Method of hydrocracking wax

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110516

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees