JP2007269504A - Method of controlling characteristics of sintered member - Google Patents

Method of controlling characteristics of sintered member Download PDF

Info

Publication number
JP2007269504A
JP2007269504A JP2006093729A JP2006093729A JP2007269504A JP 2007269504 A JP2007269504 A JP 2007269504A JP 2006093729 A JP2006093729 A JP 2006093729A JP 2006093729 A JP2006093729 A JP 2006093729A JP 2007269504 A JP2007269504 A JP 2007269504A
Authority
JP
Japan
Prior art keywords
powder
molded body
raw material
adjusting agent
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006093729A
Other languages
Japanese (ja)
Other versions
JP4803367B2 (en
Inventor
Tomohisa Azuma
智久 東
Masakazu Hirose
正和 廣瀬
Masaru Abe
賢 阿部
Yoshiaki Ota
義明 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006093729A priority Critical patent/JP4803367B2/en
Publication of JP2007269504A publication Critical patent/JP2007269504A/en
Application granted granted Critical
Publication of JP4803367B2 publication Critical patent/JP4803367B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of controlling characteristics by which the demand characteristics of a sintered members are attained by adjusting to a composition required as the sintered member even when the shift of the composition occurs in a stage of a formed body. <P>SOLUTION: The method of controlling the characteristic of the sintered member is provided with a step for analyzing the composition of raw material powder in the formed body constituted of the raw material powder and a step for firing the formed body while bringing a characteristic adjuster containing at least one kind of an ingredient contained in the raw material powder contact with the formed body. The characteristic adjuster can be powder containing at least one kind of the ingredient contained in the raw material powder. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、焼結部材の特性調整方法に関し、特に成形体を作製後において、焼成後の焼結部材の特性を調整する方法に関するものである。   The present invention relates to a method for adjusting the characteristics of a sintered member, and more particularly to a method for adjusting the characteristics of a sintered member after firing after forming a molded body.

従来より、発振周波数を得る共振子として、圧電体共振子を用いた圧電共振部品(レゾネータ)が知られている。圧電体共振子2は、図1に示すように、分極された圧電セラミックス基板21の表・裏の主面に、1対の振動電極22、23を形成し、その一対の振動電極22、23付近に振動が閉じ込められるよう構成されている。この圧電体共振子2を用いたレゾネータ1は、図2に示すように、基板3とキャップ5とを備えている。基板3は補強機能をもち、例えばステアタイト(MgO・SiO)、アルミナ(Al)等のセラミックスで構成され、通常、0.05〜0.7mm程度の板厚を有している。基板3の表裏面には端子電極31、32が形成されている。また、基板3は誘電体単板セラミックス、積層セラミックスなどを用いて誘電体機能と補強機能を併せ持つように構成してもよい。誘電体単板セラミックスの例としてはチタン酸バリウムを主成分とする化合物などがある。また、積層セラミックスの例としては内部電極を有する低温焼結セラミックスなどがあり、例えばAlやCaZrOにガラス成分を添加したものとCuやAgなどの導電ペーストを1000℃以下で同時焼成することで得ることができる。 Conventionally, as a resonator for obtaining an oscillation frequency, a piezoelectric resonant component (resonator) using a piezoelectric resonator is known. As shown in FIG. 1, the piezoelectric resonator 2 has a pair of vibrating electrodes 22 and 23 formed on the front and back main surfaces of a polarized piezoelectric ceramic substrate 21, and the pair of vibrating electrodes 22 and 23. It is configured so that vibration is confined in the vicinity. A resonator 1 using the piezoelectric resonator 2 includes a substrate 3 and a cap 5 as shown in FIG. The substrate 3 has a reinforcing function, and is made of ceramics such as steatite (MgO.SiO 2 ) and alumina (Al 2 O 3 ), and usually has a thickness of about 0.05 to 0.7 mm. . Terminal electrodes 31 and 32 are formed on the front and back surfaces of the substrate 3. The substrate 3 may be configured to have both a dielectric function and a reinforcing function using dielectric single plate ceramics, laminated ceramics, or the like. Examples of the dielectric single plate ceramic include a compound mainly composed of barium titanate. Examples of laminated ceramics include low-temperature sintered ceramics with internal electrodes. For example, Al 2 O 3 or CaZrO 3 added with glass components and Cu and Ag conductive pastes are simultaneously fired at 1000 ° C. or lower. You can get it.

端子電極31、32の上には、導電性樹脂や半田のような導電性と接着性の機能を併せ持つ導電固定子4によって圧電体共振子2が接着固定される。圧電体共振子2と基板3との間は、導電固定子4の厚みによって一定の振動空間が確保される。
キャップ5は、圧電体共振子2を覆うように基板3上に例えば接着剤によって接着されている。キャップ5も、基板3と同様にステアタイト(MgO・SiO)、アルミナ(Al)等のセラミックスで構成することもできるが、合金のような金属で構成してもよい。また、キャップ5の板厚も、基板3と同程度である。
以上のようなレゾネータ1は、例えば、特開平8−237066号公報(特許文献1)に開示されている。
On the terminal electrodes 31 and 32, the piezoelectric resonator 2 is bonded and fixed by a conductive stator 4 having both conductive and adhesive functions such as conductive resin and solder. A constant vibration space is secured between the piezoelectric resonator 2 and the substrate 3 by the thickness of the conductive stator 4.
The cap 5 is bonded to the substrate 3 with an adhesive, for example, so as to cover the piezoelectric resonator 2. The cap 5 can also be made of ceramics such as steatite (MgO.SiO 2 ) and alumina (Al 2 O 3 ), like the substrate 3, but may be made of a metal such as an alloy. The plate thickness of the cap 5 is also approximately the same as that of the substrate 3.
The resonator 1 as described above is disclosed, for example, in JP-A-8-237066 (Patent Document 1).

特開平8−237066号公報JP-A-8-237066

圧電体共振子2は、通常、室温付近において正方晶系又は菱面体晶系のPZT(PbZrO−PbTiO固溶体)系やPT(PbTiO)系などのペロブスカイト構造を有する圧電磁器から構成されている。この圧電磁器は、所定の圧電磁器粉末にバインダを混合して所定形状の成形体を作製し、この成形体を焼成することにより得ることができる。圧電磁器粉末は、複数種の出発原料粉末を混合し、仮焼した後に粉砕して得られる。出発原料粉末は、圧電体共振子2として得たい特性に併せてその組成が調整、配合される。 The piezoelectric resonator 2 is usually composed of a piezoelectric ceramic having a perovskite structure such as a tetragonal or rhombohedral PZT (PbZrO 3 —PbTiO 3 solid solution) system or a PT (PbTiO 3 ) system near room temperature. Yes. This piezoelectric ceramic can be obtained by mixing a predetermined piezoelectric ceramic powder with a binder to produce a molded body having a predetermined shape and firing the molded body. The piezoelectric ceramic powder is obtained by mixing a plurality of kinds of starting material powders, calcining them and then pulverizing them. The composition of the starting material powder is adjusted and blended in accordance with the characteristics desired to be obtained as the piezoelectric resonator 2.

ところが、成形体を焼成して得られた圧電磁器が要求する特性を満足しないことがある。特に、要求される特性の範囲が厳しくなってきている昨今では、圧電磁器の特性が要求特性から外れることがある。
そこで本発明では、成形体の段階で組成ずれが生じている場合であっても、焼結部材として所望される組成に補整し、焼結部材の要求特性を得ることのできる焼結部材の特性調整方法を提供することを目的とする。
However, the characteristics required by the piezoelectric ceramic obtained by firing the molded body may not be satisfied. In particular, in recent years when the range of required characteristics has become strict, the characteristics of piezoelectric ceramics may deviate from the required characteristics.
Therefore, in the present invention, even if a composition deviation occurs at the stage of the molded body, the characteristics of the sintered member that can be adjusted to the desired composition as the sintered member and obtain the required characteristics of the sintered member. The purpose is to provide an adjustment method.

本発明者等は焼成後の圧電磁器が要求特性を満足しない理由を調査した。その結果、出発原料粉末の段階で組成を調整しても、その後の成形体を得るまでの間で組成がずれてしまうために、焼成後の圧電磁器が要求特性を満足しないことを知見した。そこで本発明者等は、組成ずれを補整する方法について検討したところ、組成ずれが生じた成形体を焼成する際に、組成ずれが生じた元素を含む組成物を成形体に接触させておくことが有効であることを知見した。焼成過程で当該元素が成形体(焼結体)中に拡散することにより、成形体に生じていた組成ずれを補整して、焼結体における組成ずれを抑制又は防止するものである。   The present inventors investigated the reason why the piezoelectric ceramic after firing does not satisfy the required characteristics. As a result, it was found that even if the composition was adjusted at the starting raw material powder stage, the composition was shifted until a subsequent molded body was obtained, so that the fired piezoelectric ceramic did not satisfy the required characteristics. Therefore, the present inventors examined a method for correcting the compositional deviation, and when firing the molded body in which the compositional deviation occurred, the composition containing the element in which the compositional deviation occurred was brought into contact with the molded body. Was found to be effective. When the element diffuses into the compact (sintered body) during the firing process, the compositional deviation occurring in the compact is compensated to suppress or prevent the compositional deviation in the sintered compact.

以上の知見に基づく本発明は、原料粉末から構成される成形体における当該原料粉末の組成分析を行う工程と、組成分析の結果に基づいて、原料粉末に含まれる成分の少なくとも1種を含む特性調整剤を成形体に接触させた状態で成形体を焼成する工程と、を備えたことを特徴とする焼結部材の特性調整方法である。
本発明の焼結部材の特性調整方法は、成形体を焼成する工程において、焼結部材において所望される組成よりも少ないと判断された場合、当該成分を含む特性調整剤を成形体に接触させた状態で成形体を焼成すればよい。
また本発明の焼結部材の特性調整方法において、特性調整剤は、原料粉末に含まれる成分の少なくとも1種を含む粉末とすることが有利である。焼成過程における元素の拡散を行うためには粉末状の特性調整剤であることが好ましい。この特性調整剤は、バインダとの混合物としてのペーストとして成形体に塗布することが好ましい。ペーストを用いると、特性調整剤を成形体に接触させる量を制御するのが容易である。
The present invention based on the above knowledge includes a step of performing a composition analysis of the raw material powder in a molded body composed of the raw material powder, and a characteristic including at least one component included in the raw material powder based on the result of the composition analysis. And a step of firing the molded body in a state where the adjusting agent is in contact with the molded body.
In the method for adjusting the characteristics of the sintered member of the present invention, in the step of firing the molded body, when it is determined that the composition is less than the desired composition in the sintered member, the characteristic adjusting agent containing the component is brought into contact with the molded body. What is necessary is just to bake a molded object in the state.
Moreover, in the characteristic adjustment method of the sintered member of the present invention, it is advantageous that the characteristic adjusting agent is a powder containing at least one component included in the raw material powder. In order to diffuse the element in the firing process, a powdery property adjusting agent is preferable. This property adjusting agent is preferably applied to the molded body as a paste as a mixture with a binder. When the paste is used, it is easy to control the amount of the property adjusting agent brought into contact with the molded body.

本発明の焼結部材の特性調整方法が適用される材質は問われないが、ペロブスカイト型構造を有するチタン酸ジルコン酸鉛を主成分とする圧電磁器を対象とし、その場合、ZrO粉末を特性調整剤とすることができる。 Although characteristic adjusting method of the sintered member of the present invention is not questioned the material to be applied directed to a piezoelectric ceramic mainly composed of lead zirconate titanate having a perovskite structure, in which case, characteristics ZrO 2 powder It can be a regulator.

本発明によれば、成形体の段階で所望組成に対して組成がずれている場合であっても、組成ずれを補整し、焼結部材の特性を要求特性に調整することができる。
ここで、原料粉末の組成ずれを補整するためには、原料粉末に対して組成ずれを補整するための粉末を添加することもできる。しかし、この場合には、組成ずれを判定する間に成形体を作製することができなくなり、製造の連続性を阻害する。また、組成ずれ補整用の粉末を添加した後に、これら粉末を混合するといった処理を再度行う必要があり、工程上の無駄が生じる。
これに対して本発明は、組成ずれが生じた成形体であっても、特性を調整することができるため、組成ずれを補整するための粉末を添加する場合に比べて製造の連続性を阻害する程度が低く、かつ上記のような工程上の無駄が生じることはない。
According to the present invention, even when the composition is shifted from the desired composition at the stage of the molded body, the composition shift can be compensated and the characteristics of the sintered member can be adjusted to the required characteristics.
Here, in order to correct the composition deviation of the raw material powder, a powder for correcting the composition deviation can be added to the raw material powder. However, in this case, it becomes impossible to produce a molded body while determining the composition deviation, which hinders the continuity of production. In addition, after adding the powder for correcting the composition deviation, it is necessary to repeat the process of mixing these powders, resulting in a waste of process.
On the other hand, since the present invention can adjust the characteristics even of a molded body having a composition deviation, it inhibits the continuity of production compared to the case of adding a powder for correcting the composition deviation. Therefore, the process is not wasted as described above.

本発明は、原料粉末から構成される成形体における原料粉末の組成分析を行う工程と、組成分析の結果に基づいて、原料粉末に含まれる成分の少なくとも1種を含む特性調整剤を成形体に接触させた状態で成形体を焼成する工程と、を備える。
成形体を構成する原料粉末は種々の形態を包含する。
例えば、複数種の金属(合金を含む)粉末を原料粉末として成形体が構成される場合、単一又は複数種の化合物粉末を原料粉末として成形体が構成される場合がある。金属粉末と化合物粉末とを原料粉末として成形体が構成される場合をも本願発明は包含する。
化合物粉末が成形体を構成する原料粉末の場合、この化合物粉末は、出発原料を所謂仮焼して得た仮焼き体を粉砕して得られたものであってもよい。後述する圧電磁器の場合、成形体を構成する原料粉末は出発原料を仮焼して得た仮焼き体を粉砕して得られたものである。
The present invention provides a molded article with a property adjusting agent containing at least one of the components contained in the raw material powder based on the results of the composition analysis of the raw material powder in the molded body composed of the raw material powder and the result of the composition analysis. And firing the molded body in a contacted state.
The raw material powder constituting the compact includes various forms.
For example, when a molded body is composed of a plurality of types of metal (including alloys) powders as raw material powder, the molded body may be configured of a single or a plurality of types of compound powders as raw material powders. The invention of the present application also includes the case where the molded body is constituted by using metal powder and compound powder as raw material powder.
When the compound powder is a raw material powder constituting a molded body, the compound powder may be obtained by pulverizing a calcined body obtained by so-called calcining the starting material. In the case of a piezoelectric ceramic described later, the raw material powder constituting the compact is obtained by pulverizing a calcined body obtained by calcining the starting material.

以上の原料粉末について組成分析を行う。なお、組成分析の方法を本発明は限定するものではなく、公知の如何なる分析法をも用いることができ、分析対象に応じて適宜選択すればよい。組成分析を行った結果と、焼結後に狙っていた組成とを比較する。例えば、焼結部材が元素A、元素B及び元素Cから構成され、元素A、元素B及び元素Cの狙いが、元素A=x%、元素B=y%、元素C=z%とする。これに対して組成分析の結果が、元素A=x%、元素B=(y−y)%、元素C=z%であるものとすると、元素Bについて組成ずれが生じていることになる。したがって、当該原料粉末からなる成形体を焼結すると、焼結体にもまた組成ずれが生じ、所望する特性が得られないことになる。なお、組成ずれについては、ずれがあっても許容される範囲もあり、焼結後の狙い組成と原料粉末の組成分析の結果が一致していなくても、組成ずれが発生しているとみなさなくてもよい場合があることは言うまでもない。 Composition analysis is performed on the above raw material powder. In addition, the method of composition analysis is not limited in the present invention, and any known analysis method can be used, and may be appropriately selected according to the analysis target. The result of the composition analysis is compared with the target composition after sintering. For example, the sintered member is composed of element A, element B, and element C, and the aim of element A, element B, and element C is element A = x%, element B = y%, and element C = z%. On the other hand, if the result of the composition analysis is that the element A = x%, the element B = (y−y 1 )%, and the element C = z%, a composition shift occurs with respect to the element B. . Therefore, when a molded body made of the raw material powder is sintered, composition deviation occurs also in the sintered body, and desired characteristics cannot be obtained. Regarding compositional deviation, even if there is a deviation, there is a permissible range, and even if the target composition after sintering and the result of composition analysis of the raw material powder do not match, it is considered that compositional deviation has occurred. Needless to say, there may be no need.

上記の焼結部材の場合、元素Bについて、y%だけ狙い組成から不足している。この場合、当該組成分析の結果として、y%分に相当する元素Bを含む特性調整剤を用意する。この特性調整剤は、通常、粉末の形態を有しており、原料粉末から構成される成形体に特性調整剤を接触させた状態で焼成する。成形体に接触させる特性調整剤は、粉末そのものを成形体上に塗し(まぶし)てもよいし、特性調整剤をバインダと混合してペーストとして成形体に塗布してもよい。特性調整剤をペーストに含む場合、ペーストに含まれる特性調整剤の量を特定しておき、上記のように元素Bをy%補整する場合には、それに相当する量のペーストを成形体に塗布する。なお、予め、元素Bにおける組成ずれに対応して塗布すべきペーストの量を実験的に把握しておく必要がある。これは元素Bに限らず、元素A、元素Cについても同様である。 In the case of the above sintered member, element B is deficient from the target composition by y 1 %. In this case, as a result of the composition analysis, a property adjusting agent containing element B corresponding to y 1 % is prepared. This property adjusting agent usually has a powder form, and is fired in a state where the property adjusting agent is in contact with a formed body made of the raw material powder. As the property adjusting agent to be brought into contact with the molded product, the powder itself may be applied (sprayed) on the molded product, or the property adjusting agent may be mixed with a binder and applied as a paste to the molded product. When the property adjusting agent is contained in the paste, the amount of the property adjusting agent contained in the paste is specified, and when the element B is corrected by y 1 % as described above, an equivalent amount of paste is added to the molded body. Apply. In addition, it is necessary to experimentally grasp in advance the amount of paste to be applied corresponding to the composition shift in element B. This applies not only to element B but also to element A and element C.

特性調整剤を成形体に接触させたならば、成形体を焼成する。本発明は焼成の条件を問うものでなく、最終的に得たい焼結体又は原料粉末の組成に応じた条件で焼成を行えばよい。例えば、大気中の焼成、還元性又は酸化性に調整された雰囲気での焼成等、種々の雰囲気での焼成に本発明を適用することができる。これは、焼成における加熱温度、昇温又は降温の速度についても同様で、本発明に制限を与えるものではない。
成形体がバインダを含む場合には、成形体から脱バインダを行った後に焼成を行う。特性調整剤がペーストの場合には、ペーストからの脱バインダを同時に行うことができる。この脱バインダは、焼成の昇温過程を利用して行うことができる。
When the property modifier is brought into contact with the molded body, the molded body is fired. The present invention does not ask the firing conditions, and the firing may be performed under conditions according to the composition of the sintered body or raw material powder to be finally obtained. For example, the present invention can be applied to firing in various atmospheres such as firing in the air, firing in an atmosphere adjusted to be reducible or oxidizing. This also applies to the heating temperature, the rate of temperature increase or the temperature decrease in firing, and does not limit the present invention.
When the molded body includes a binder, firing is performed after removing the binder from the molded body. When the property adjusting agent is a paste, the binder can be removed from the paste at the same time. This binder removal can be performed by utilizing a heating process of baking.

以上、本発明の実施の形態を概念的に説明したが、次いで、圧電磁器の製造方法を例にして、本発明をより具体的に説明する。
例えば、本発明は以下の組成式を有しペロブスカイト型構造を有するPZTを主成分とする圧電磁器に適用することができる。この圧電磁器は、例えば、Al、SiO、MnCO及びCrの1種又は2種以上を上記主成分に対する副成分として含むことができる。
Although the embodiments of the present invention have been conceptually described above, the present invention will be described more specifically by taking a method of manufacturing a piezoelectric ceramic as an example.
For example, the present invention can be applied to a piezoelectric ceramic mainly composed of PZT having the following composition formula and having a perovskite structure. This piezoelectric ceramic can contain, for example, one or more of Al 2 O 3 , SiO 2 , MnCO 3 and Cr 2 O 3 as subcomponents with respect to the main component.

Pbα[(Mn1/3Nb2/3TiZr]O
組成式中、0.97≦α≦1.01、
0.04≦x≦0.16、
0.48≦y≦0.58、
0.32≦z≦0.41である。
なお、組成式中、α、x、y及びzはそれぞれモル比を表す。
Pb α [(Mn 1/3 Nb 2/3 ) x Ti y Zr z ] O 3
In the composition formula, 0.97 ≦ α ≦ 1.01,
0.04 ≦ x ≦ 0.16,
0.48 ≦ y ≦ 0.58,
0.32 ≦ z ≦ 0.41.
In the composition formula, α, x, y, and z each represent a molar ratio.

以上の圧電磁器を得るための主成分の出発原料として、酸化物又は加熱により酸化物となる化合物の粉末を用いる。具体的にはPbO粉末、TiO粉末、ZrO粉末、MnCO粉末、Nb粉末等を用いることができる。原料粉末は最終的に得たい組成に該当するように、それぞれ秤量する。出発原料としては、酸化物でなく、炭酸塩あるいはシュウ酸塩のように焼成により酸化物となるものを用いてもよい。これらの原料粉末は、通常、平均粒子径0.1〜3μm程度のものが用いられる。圧電磁器が副成分を含む場合には、秤量された主成分の各原料粉末の総重量に対して、副成分の原料粉末を所定量添加する。 As a starting material of the main component for obtaining the above piezoelectric ceramic, an oxide or a powder of a compound that becomes an oxide by heating is used. Specifically, PbO powder, TiO 2 powder, ZrO 2 powder, MnCO 3 powder, Nb 2 O 5 powder, or the like can be used. Each raw material powder is weighed so as to correspond to the composition to be finally obtained. As a starting material, not an oxide but a material that becomes an oxide by firing, such as carbonate or oxalate, may be used. As these raw material powders, those having an average particle diameter of about 0.1 to 3 μm are usually used. When the piezoelectric ceramic contains subcomponents, a predetermined amount of subcomponent raw material powder is added to the total weight of each main component powder weighed.

続いて、主成分及び副成分の出発原料を例えばボールミルを用いて湿式粉砕・混合して、原料混合物とする。
なお、副成分の出発原料は、後述する仮焼成の前に添加してもよいが、仮焼成後に添加するようにしてもよい。但し、仮焼成前に添加した方がより均質な圧電磁器を作製することができるので好ましい。仮焼成後に添加する場合には、副成分の出発原料には酸化物を用いることが好ましい。
Subsequently, the starting materials of the main component and the subcomponent are wet pulverized and mixed using, for example, a ball mill to obtain a raw material mixture.
In addition, although the starting material of a subcomponent may be added before temporary baking mentioned later, you may make it add after temporary baking. However, it is preferable to add it before calcination because a more uniform piezoelectric ceramic can be produced. When added after calcination, it is preferable to use an oxide as a starting material for the auxiliary component.

次いで、原料混合物を乾燥し、例えば、700〜950℃の温度で0.5〜6時間にわたり仮焼成する。この仮焼成は、大気中で行っても良く、また大気中よりも酸素分圧の高い雰囲気又は純酸素雰囲気で行ってもよい。仮焼成したのち、例えば、この仮焼物をボールミルにて湿式粉砕・混合し、主成分及び必要に応じた副成分を含む仮焼成粉とする。この仮焼成粉は、本発明における、成形体を構成する原料粉末に相当する。   Next, the raw material mixture is dried and, for example, calcined at a temperature of 700 to 950 ° C. for 0.5 to 6 hours. This pre-baking may be performed in the air, or may be performed in an atmosphere having a higher oxygen partial pressure or in a pure oxygen atmosphere than in the air. After calcining, for example, the calcined product is wet pulverized and mixed in a ball mill to obtain a calcined powder containing a main component and optional subcomponents. This temporarily fired powder corresponds to the raw material powder constituting the compact in the present invention.

次に、仮焼成粉について組成分析を行う。この組成分析は、蛍光X線分析等により行うことができる。
ここで、例えば焼成後の狙い組成が、下記の組成とすると、組成分析の結果(下記の分析組成)と下記狙い組成とを比較する。そうすると、仮焼成粉がZrについて組成ずれが生じていることが判明する。この組成ずれが、許容範囲内であれば問題ないが、許容範囲外であれば特性調整剤を使用する。この場合、Zrについての特性調整剤を使用する。
狙い組成:Pb0.99[(Mn1/3Nb2/30.10Ti0.53Zr0.37]O
分析組成:Pb0.99[(Mn1/3Nb2/30.10Ti0.53Zr0.32]O
Next, a composition analysis is performed on the temporarily fired powder. This composition analysis can be performed by fluorescent X-ray analysis or the like.
Here, for example, if the target composition after firing is the following composition, the result of composition analysis (the following analytical composition) is compared with the following target composition. As a result, it is found that the pre-fired powder has a composition shift with respect to Zr. If this compositional deviation is within the allowable range, there is no problem, but if it is outside the allowable range, a property adjusting agent is used. In this case, a property modifier for Zr is used.
Target composition: Pb 0.99 [(Mn 1/3 Nb 2/3 ) 0.10 Ti 0.53 Zr 0.37 ] O 3
Analytical composition: Pb 0.99 [(Mn 1/3 Nb 2/3 ) 0.10 Ti 0.53 Zr 0.32 ] O 3

上記組成式の圧電磁器の場合、特性調整剤は、Pb、Mn、Nb、Ti及びZrの各元素について予め用意される。特性調整剤は、PbについてはPbO粉末、MnについてはMnCO粉末、NbについてはNb粉、TiについてはTiO粉末及びZrについてはZrO粉末を用いることができる。これら特性調整剤は、各元素に関する出発原料粉末でもある。ただし、特性調整剤は、実際に使用された出発原料粉末に限らず、炭酸塩あるいはシュウ酸塩のように焼成により当該酸化物となるものを用いてもよいし、例えばZrについては焼成の過程でZrOとなる金属Zrを用いることを許容する。粉末を特性調整剤とする場合、その粒径は平均で1〜100μmとすることが好ましい。粒径が小さすぎると反応が進みすぎて制御しづらくなり、逆に粒径が大きすぎると反応にむらができる可能性が高いからである。 In the case of the piezoelectric ceramic of the above composition formula, the characteristic adjusting agent is prepared in advance for each element of Pb, Mn, Nb, Ti and Zr. As the property adjusting agent, PbO powder for Pb, MnCO 3 powder for Mn, Nb 2 O 5 powder for Nb, TiO 2 powder for Ti, and ZrO 2 powder for Zr can be used. These property modifiers are also starting material powders for each element. However, the property adjusting agent is not limited to the actually used starting material powder, but may be one that becomes the oxide by firing, such as carbonate or oxalate. For example, for Zr, the process of firing It is allowed to use metal Zr which becomes ZrO 2 . When using powder as a characteristic modifier, the particle size is preferably 1 to 100 μm on average. This is because if the particle size is too small, the reaction proceeds too much and it becomes difficult to control, and conversely if the particle size is too large, there is a high possibility that the reaction will be uneven.

特性調整剤をペーストとして使用する場合、このペーストは予め用意されている。ペーストは粉末状の特性調整剤にバインダを加えて作製されている。具体的には以下の通りである。例えばボールミル等を用いて、湿式粉砕により特性調整剤を含むスラリを得る。このとき、スラリの溶媒として、水もしくはエタノールなどのアルコール、又は水とエタノールとの混合溶媒を用いることができる。次いで、得られたスラリを有機ビヒクル中に分散させる。有機ビヒクルとは、バインダを有機溶剤中に溶解したものであり、有機ビヒクルに用いられるバインダは、特に限定されず、エチルセルロース、ポリビニルブチラール、アクリル等の通常の各種バインダから適宜選択すればよい。また、このとき用いられる有機溶剤も特に限定されず、テルピネオール、ブチルカルビトール、アセトン、トルエン、MEK(メチルエチルケトン)、ターピネオール等の有機溶剤から適宜選択すればよい。このペーストは、Pb、Mn、Nb、Ti及びZrの各元素について用意されている。   When using the property adjusting agent as a paste, this paste is prepared in advance. The paste is prepared by adding a binder to a powdery property adjusting agent. Specifically, it is as follows. For example, a slurry containing the property adjusting agent is obtained by wet pulverization using a ball mill or the like. At this time, water or an alcohol such as ethanol or a mixed solvent of water and ethanol can be used as a solvent for the slurry. The resulting slurry is then dispersed in an organic vehicle. The organic vehicle is obtained by dissolving a binder in an organic solvent, and the binder used in the organic vehicle is not particularly limited, and may be appropriately selected from usual various binders such as ethyl cellulose, polyvinyl butyral, and acrylic. The organic solvent used at this time is not particularly limited, and may be appropriately selected from organic solvents such as terpineol, butyl carbitol, acetone, toluene, MEK (methyl ethyl ketone), and terpineol. This paste is prepared for each element of Pb, Mn, Nb, Ti and Zr.

一方で、仮焼成粉は、後の成形工程を円滑に実行するために顆粒に造粒される。この際、粉砕粉末に適当なバインダ、例えばポリビニルアルコール(PVA)を少量添加し、かつこれらを十分に混合し、その後に例えばメッシュを通過させて整粒することにより造粒粉末を得る。次いで、造粒粉末を200〜300MPaの圧力で加圧成形し、所望の形状の成形体を得る。   On the other hand, the calcined powder is granulated into granules in order to smoothly execute the subsequent molding process. At this time, a small amount of a suitable binder such as polyvinyl alcohol (PVA) is added to the pulverized powder, and these are mixed well, and then granulated by passing, for example, a mesh to obtain a granulated powder. Next, the granulated powder is pressure-molded at a pressure of 200 to 300 MPa to obtain a molded body having a desired shape.

成形体作製後、ペースト状の特性調整剤を成形体に塗布する。ペーストを成形体に塗布する量は、組成ずれに応じて適宜決定すればよい。
特性調整剤を含むペーストを塗布後、脱バインダ処理を行う。
脱バインダ処理は、脱バインダ処理の温度が300℃未満では脱バインダを円滑に行うことができず、650℃を超えても温度に見合う脱バインダの効果を得ることができずエネルギの浪費になるので、300〜650℃の温度範囲で行うことが好ましい。また、脱バインダ処理の時間は、温度及び雰囲気によって定める必要があるが、0.5〜50時間の範囲で選定することができる。さらに、脱バインダ処理は、焼成と別個に独立して行うことができるし、焼成と連続的に行うことができる。焼成と連続的に行う場合には、焼成の昇温過程で脱バインダ処理を実行すればよい。
After forming the molded body, a paste-like property adjusting agent is applied to the molded body. What is necessary is just to determine the quantity which apply | coats a paste to a molded object suitably according to a composition shift | offset | difference.
After applying the paste containing the property adjusting agent, a binder removal process is performed.
The binder removal process cannot be performed smoothly when the temperature of the binder removal process is less than 300 ° C., and even if the temperature exceeds 650 ° C., the effect of the binder removal corresponding to the temperature cannot be obtained, resulting in wasted energy. Therefore, it is preferable to carry out in the temperature range of 300-650 degreeC. The binder removal time needs to be determined depending on the temperature and atmosphere, but can be selected in the range of 0.5 to 50 hours. Further, the binder removal treatment can be performed independently of the firing and can be performed continuously with the firing. In the case where the firing is continuously performed, the binder removal process may be performed in the firing temperature increasing process.

脱バインダ処理の後に、焼成を行う。具体的には、1100〜1250℃の範囲内で所定時間成形体を加熱保持し焼結体を得る。このときの雰囲気はN又は大気とすればよい。加熱保持時間は0.5〜4時間の範囲で適宜選択すればよい。 Baking is performed after the binder removal treatment. Specifically, the compact is heated and held for a predetermined time within a range of 1100 to 1250 ° C. to obtain a sintered body. The atmosphere at this time may be N 2 or air. The heating and holding time may be appropriately selected within the range of 0.5 to 4 hours.

焼結体に分極処理用の電極を形成した後、分極処理を行う。分極処理は、50〜300℃の温度で、1.0〜2.0Ec(Ecは抗電界)の電界を焼結体に対して0.5〜30分間印加する。
分極処理温度が50℃未満になると、Ecが高くなるため分極電圧が高くなり、分極が困難になる。一方、分極処理温度が300℃を超えると、絶縁オイルの絶縁性が著しく低下するため分極が困難となる。よって、分極処理温度は50〜300℃とする。好ましい分極処理温度は60〜250℃、より好ましい分極処理温度は80〜200℃である。
また、印加する電界が1.0Ecを下回ると分極が進行しない。一方、印加する電界が2.0Ecを超えると実電圧が高くなって焼結体がブレークしやすくなる。よって、分極処理の際に印加する電界は1.0〜2.0Ecとする。好ましい印加電界は1.1〜1.8Ec、より好ましい印加電界は1.2〜1.6Ecである。
After the electrode for polarization treatment is formed on the sintered body, the polarization treatment is performed. In the polarization treatment, an electric field of 1.0 to 2.0 Ec (Ec is a coercive electric field) is applied to the sintered body at a temperature of 50 to 300 ° C. for 0.5 to 30 minutes.
When the polarization treatment temperature is less than 50 ° C., Ec increases, so that the polarization voltage increases and polarization becomes difficult. On the other hand, when the polarization treatment temperature exceeds 300 ° C., the insulation of the insulating oil is remarkably lowered, so that polarization becomes difficult. Therefore, the polarization treatment temperature is 50 to 300 ° C. A preferable polarization treatment temperature is 60 to 250 ° C, and a more preferable polarization treatment temperature is 80 to 200 ° C.
Moreover, if the electric field to be applied is less than 1.0 Ec, polarization does not proceed. On the other hand, when the applied electric field exceeds 2.0 Ec, the actual voltage increases and the sintered body is likely to break. Therefore, the electric field applied during the polarization process is 1.0 to 2.0 Ec. A preferable applied electric field is 1.1 to 1.8 Ec, and a more preferable applied electric field is 1.2 to 1.6 Ec.

分極処理時間が0.5分未満となると、分極が不十分となって十分な特性を得ることができない。一方、分極処理時間が30分を超えると分極処理に要する時間が長くなり生産効率が劣る。よって、分極処理時間は0.5〜30分とする。好ましい分極処理時間は0.7〜20分、より好ましい分極処理時間は0.9〜15分である。
分極処理は、上述した温度に加熱された絶縁オイル、例えばシリコンオイル浴中で行う。なお、分極方向は所望の振動モードに応じて決定する。つまり、厚みすべりモードの場合には、主面に平行な方向に分極を行い、厚み縦モードの場合には主面に垂直な方向に分極を行えばよい。
圧電磁器は、所望の厚さまで研磨された後、振動電極が形成される。次いで、ダイシングソー等で所望の形状に切断された後、圧電共振子として機能することとなる。
When the polarization treatment time is less than 0.5 minutes, the polarization is insufficient and sufficient characteristics cannot be obtained. On the other hand, when the polarization treatment time exceeds 30 minutes, the time required for the polarization treatment becomes long and the production efficiency is inferior. Therefore, the polarization treatment time is 0.5 to 30 minutes. A preferable polarization treatment time is 0.7 to 20 minutes, and a more preferable polarization treatment time is 0.9 to 15 minutes.
The polarization treatment is performed in an insulating oil heated to the above-described temperature, for example, a silicon oil bath. The polarization direction is determined according to a desired vibration mode. That is, in the thickness shear mode, polarization is performed in a direction parallel to the main surface, and in the thickness longitudinal mode, polarization is performed in a direction perpendicular to the main surface.
The piezoelectric ceramic is polished to a desired thickness, and then a vibrating electrode is formed. Next, after being cut into a desired shape by a dicing saw or the like, it functions as a piezoelectric resonator.

なお、特許文献2、特許文献3には、圧電磁器の焼成において、成形体間に酸化物粒子を介在させる焼成方法を開示している。しかし、特許文献2、特許文献3のいずれにも圧電磁器の特性を調整しようという点について開示、示唆していない。   Patent Documents 2 and 3 disclose a firing method in which oxide particles are interposed between molded bodies in firing of a piezoelectric ceramic. However, neither Patent Document 2 nor Patent Document 3 discloses or suggests the point of adjusting the characteristics of the piezoelectric ceramic.

特開2000−7444号公報JP 2000-7444 A 特開2003−327477号公報JP 2003-327477 A

以上の例では、ペースト状の特性調整剤について説明したが、他の形態の特性調整剤を用いることができる。例えば、板状の特性調整剤を用いることができる。板状の特性調整剤としては、原料粉末に含まれる成分の少なくとも1種を含む成形体又は焼結体とすることができる。
また、以上では、Pb、Mn、Nb、Ti及びZrの各元素について各々特性調整剤を用意する例を示したが、本発明はこれに限定されない。例えば、上述した圧電磁器の出発原料を粉砕・混合して混合物を例えば1000℃程度で焙焼して得た焙焼粉末を特性調整剤として用いることができる。この場合、調整したい元素について、圧電磁器よりも配合量を多くすることができる。
さらに、以上では焼結部材として圧電磁器について説明したが、磁性体、誘電体等の焼結部材について本発明を適用することができる。さらに、調整する特性は任意であり、当該焼結部材に要求される特性の調整に広く適用することができる。
In the above example, the paste-like property adjusting agent has been described, but other forms of the property adjusting agent can be used. For example, a plate-like property adjusting agent can be used. The plate-like property adjusting agent may be a molded body or a sintered body containing at least one component included in the raw material powder.
Moreover, although the example which prepares a characteristic regulator for each element of Pb, Mn, Nb, Ti, and Zr was shown above, the present invention is not limited to this. For example, a roasted powder obtained by pulverizing and mixing the above starting materials for the piezoelectric ceramic and roasting the mixture at, for example, about 1000 ° C. can be used as the property adjusting agent. In this case, the compounding amount of the element to be adjusted can be increased as compared with the piezoelectric ceramic.
Furthermore, although the piezoelectric ceramic has been described as a sintered member in the above, the present invention can be applied to sintered members such as magnetic bodies and dielectric bodies. Furthermore, the characteristics to be adjusted are arbitrary and can be widely applied to the adjustment of characteristics required for the sintered member.

出発原料として、酸化鉛(PbO)粉末、酸化チタン(TiO)粉末、酸化ジルコニウム(ZrO)粉末、炭酸マンガン(MnCO)粉末、酸化ニオブ(Nb)粉末を準備した。この原料粉末を、モル比でPb0.99[(Mn1/3Nb2/30.10Ti0.53Zr0.37]Oとなるように秤量した後、各々ボールミルを用いて湿式混合を10時間行ってスラリを作製した。 As starting materials, lead oxide (PbO) powder, titanium oxide (TiO 2 ) powder, zirconium oxide (ZrO 2 ) powder, manganese carbonate (MnCO 3 ) powder, and niobium oxide (Nb 2 O 5 ) powder were prepared. This raw material powder was weighed so that the molar ratio would be Pb 0.99 [(Mn 1/3 Nb 2/3 ) 0.10 Ti 0.53 Zr 0.37 ] O 3, and then each ball mill was used. Wet mixing was performed for 10 hours to prepare a slurry.

得られたスラリを十分に乾燥してプレス成形した後に、大気中、800℃で2時間保持する仮焼を行った。仮焼体が平均粒径0.7μmになるまでボールミルにより微粉砕した後、微粉砕粉末を乾燥させた。乾燥させた微粉砕粉末に、バインダとしてPVA(ポリビニルアルコール)を適量加えて造粒した。造粒粉を縦20mm×横20mmのキャビティを有する金型に約3g投入し、1軸プレス成形機を用いて245MPaの圧力で成形して成形体を得た。   The obtained slurry was sufficiently dried and press-molded, and then calcined in the air at 800 ° C. for 2 hours. After finely pulverizing with a ball mill until the calcined body had an average particle size of 0.7 μm, the finely pulverized powder was dried. An appropriate amount of PVA (polyvinyl alcohol) as a binder was added to the dried finely pulverized powder and granulated. About 3 g of the granulated powder was put into a mold having a cavity with a length of 20 mm and a width of 20 mm and molded at a pressure of 245 MPa using a uniaxial press molding machine to obtain a molded body.

1600℃で焙焼された、平均粒径40μmの酸化ジルコニウム(ZrO)粉末を得られた成形体に塗した。また、この酸化ジルコニウム(ZrO)粉末を30wt%又は50wt%含むペースト(バインダ:PVA)を得られた成形体に塗布した。その後、成形体に対して脱バインダ処理を行った後、大気中、1150〜1250℃で2時間保持する本焼成を行って焼結体を得た。なお、酸化ジルコニウム(ZrO)粉末を塗すことなく、また、酸化ジルコニウム(ZrO)粉末を含むペーストを塗布することのない成形体についても同様に焼結体を得た。 Zirconium oxide (ZrO 2 ) powder having an average particle size of 40 μm, which was roasted at 1600 ° C., was applied to the obtained molded body. Further, zirconium oxide (ZrO 2) powder 30 wt%, or 50 wt% including paste (binder: PVA) was applied to the molded body obtained a. Then, after performing a binder removal process with respect to a molded object, the main baking which hold | maintains at 1150-1250 degreeC in air | atmosphere for 2 hours was performed, and the sintered compact was obtained. Incidentally, zirconium oxide (ZrO 2) without to apply a powder, and to obtain a sintered body in the same manner also without applying a paste containing a zirconium oxide (ZrO 2) powder compact.

得られた各焼結体の両面をラップ盤で平面加工して厚さ0.5mmにした後に、15mm×7mmに切断加工し、その両端部(7.0mm方向)に分極用の仮電極を形成した。その後、温度150℃のシリコンオイル槽中で3kV/mmの電界を20分間印加する分極処理を行った。なお、分極方向は板体に平行な方向とし、振動モードを厚みすべりモードとした。その後、仮電極を除去した。なお、仮電極除去後の試料のサイズは15mm×7mm×0.5mmである。再度ラップ盤でおよそ厚さ0.3mmまで研磨を行い、切出しにより、縦×横×厚さ=3.5mm×0.6mm×0.3mmの試験片を切出した。   After flattening both sides of each obtained sintered body with a lapping machine to a thickness of 0.5 mm, cutting to 15 mm × 7 mm, and provisional electrodes for polarization are formed at both ends (7.0 mm direction) Formed. Thereafter, a polarization treatment was performed by applying an electric field of 3 kV / mm for 20 minutes in a silicon oil bath at a temperature of 150 ° C. The polarization direction was a direction parallel to the plate, and the vibration mode was a thickness-shear mode. Thereafter, the temporary electrode was removed. The sample size after removal of the temporary electrode is 15 mm × 7 mm × 0.5 mm. Polishing was again performed to a thickness of about 0.3 mm with a lapping machine, and a test piece of length × width × thickness = 3.5 mm × 0.6 mm × 0.3 mm was cut out by cutting.

この試験片を20℃の恒温槽に入れ、十分に温度が安定したときの発振周波数F(20℃)を周波数カウンタ(アジレントテクノロジー社製53181A)で測定した。20℃における発振周波数F(20℃)を測定した試料を、125℃の恒温槽に入れ、十分に温度が安定したときの発振周波数F(125℃)を測定した。その測定結果より、発振周波数の変化率δF(125℃)を以下の式(1)より算出した。以上の測定結果を図3に示す。なお、δF(125℃)は、必ずしも0%であることが好ましいとは限らず、所定の値に制御したい場合がある。 This test piece was placed in a constant temperature bath of 20 ° C., and the oscillation frequency F 0 (20 ° C.) when the temperature was sufficiently stabilized was measured with a frequency counter (53181A manufactured by Agilent Technologies). A sample for which the oscillation frequency F 0 at 20 ° C. (20 ° C.) was measured was placed in a 125 ° C. thermostat, and the oscillation frequency F 0 (125 ° C.) when the temperature was sufficiently stabilized was measured. From the measurement results, the change rate δF 0 (125 ° C.) of the oscillation frequency was calculated from the following equation (1). The above measurement results are shown in FIG. Note that δF 0 (125 ° C.) is not necessarily preferably 0%, and may be desired to be controlled to a predetermined value.

Figure 2007269504
Figure 2007269504

図3に示すように、特性調整剤であるZrOの量によって、発振周波数の温度特性δF(125℃)が変動する。したがって、特性調整剤を適宜調整することにより、圧電磁器の特性を調整することができることがわかった。なお、図3中の「付着量」は、ペーストを塗布した場合は塗布したペーストの重量を、ZrO粉末を塗した場合は塗したZrO粉末の重量を示している。以下も同様である。 As shown in FIG. 3, the temperature characteristic δF 0 (125 ° C.) of the oscillation frequency varies depending on the amount of ZrO 2 that is a characteristic adjusting agent. Therefore, it was found that the characteristics of the piezoelectric ceramic can be adjusted by appropriately adjusting the characteristic adjusting agent. In FIG. 3, the “adhesion amount” indicates the weight of the applied paste when the paste is applied, and the weight of the applied ZrO 2 powder when the ZrO 2 powder is applied. The same applies to the following.

得られた焼結体について組成分析を行い、Zr/Ti比(モル比)を求めた。その結果を図4に示すが、特性調整剤としてのZrOの量が多くなると焼結体中のZr/Ti比が大きくなる。この組成の変動に伴って圧電磁器の特性が変動することを確認した。 A composition analysis was performed on the obtained sintered body to obtain a Zr / Ti ratio (molar ratio). The result is shown in FIG. 4, and the Zr / Ti ratio in the sintered body increases as the amount of ZrO 2 as a property adjusting agent increases. It was confirmed that the characteristics of the piezoelectric ceramic fluctuated with the variation of the composition.

以上の例の場合、最終的に得たい圧電磁器の組成、特にZr/Ti比(モル比)が0.736であり、得たい発振周波数の温度特性δF(125℃)が0.17%と仮定する。この場合には、1600℃で焙焼された酸化ジルコニウム(ZrO)粉末を50wt%含む上記ペーストを、上記成形体に対して0.01g塗布した状態で脱バインダ、焼結を行うことにより、所望特性の圧電磁器を得ることができる。 In the case of the above example, the composition of the piezoelectric ceramic to be finally obtained, particularly the Zr / Ti ratio (molar ratio) is 0.736, and the temperature characteristic δF 0 (125 ° C.) of the oscillation frequency to be obtained is 0.17%. Assume that In this case, by performing binder removal and sintering in a state where 0.01 g of the paste containing 50 wt% of zirconium oxide (ZrO 2 ) powder roasted at 1600 ° C. is applied to the molded body, A piezoelectric ceramic having desired characteristics can be obtained.

次に、焙焼温度が800℃、1000℃のZrO粉末(平均粒径:40μm)を用意し、上記と同様の特性調整剤ペーストを作製し、上記成形体に塗布(塗布量0.0024g)した後に焼成を行った。得られた焼結体について上記と同様にしてZr/Ti比(モル比)、δF(125℃)を求めた。その結果を図5、図6に示すが、焙焼温度が低いほどZr/Ti比(モル比)が高く、δF(125℃)を高い値に調整できる。これは、焙焼温度が低いほどZrO粉末の化学的安定性が低いために反応性が高く、逆に、焙焼温度が高いほどZrO粉末の化学的安定性が高いために反応性が低くなっていることに起因するものと解される。このことは、圧電磁器の特性を調整するに際して、成形体に対する特性調整剤の量の他に、ZrO粉末の場合であれば、その焙焼温度の異なるZrO粉末を用いることができることを示唆している。 Next, ZrO 2 powder (average particle size: 40 μm) having a roasting temperature of 800 ° C. and 1000 ° C. is prepared, and the same property adjusting agent paste as described above is prepared and applied to the molded body (coating amount 0.0024 g). ) And firing was performed. The obtained sintered body in the same manner as described above Zr / Ti ratio (molar ratio) was determined .delta.F 0 to (125 ° C.). The results are shown in FIGS. 5 and 6. As the roasting temperature is lower, the Zr / Ti ratio (molar ratio) is higher, and δF 0 (125 ° C.) can be adjusted to a higher value. This is because the lower the roasting temperature, the lower the chemical stability of the ZrO 2 powder, and thus the higher the reactivity, and the higher the roasting temperature, the higher the chemical stability of the ZrO 2 powder, the more reactive. It is understood that it is caused by the low. This suggests that when adjusting the characteristics of the piezoelectric ceramic, ZrO 2 powders having different roasting temperatures can be used in the case of ZrO 2 powders in addition to the amount of the property adjusting agent for the molded body. is doing.

特性調整剤として、以下のものを使用した以外は実施例1と同様にして焼結体のPbO量(モル)、δF(125℃)を求めた。その結果を図7、図8に示す。
特性調整剤は、実施例1の出発原料(酸化鉛(PbO)粉末、酸化チタン(TiO)粉末、酸化ジルコニウム(ZrO)粉末、炭酸マンガン(MnCO)粉末、酸化ニオブ(Nb)粉末)を、モル比でPb1.02[(Mn1/3Nb2/30.10Ti0.53Zr0.37]Oとなるように秤量した後、各々ボールミルを用いて湿式混合を10時間行ってスラリを作製し、このスラリを十分に乾燥してプレス成形した後に、大気中、1000℃で焙焼して、平均粒径40μmの粉末状特性調整剤を得た。この粉末を50wt%含むペースト(バインダ:PVA)を作製した。
The PbO amount (mole) and δF 0 (125 ° C.) of the sintered body were determined in the same manner as in Example 1 except that the following was used as a property adjusting agent. The results are shown in FIGS.
The property adjusting agent is the starting material of Example 1 (lead oxide (PbO) powder, titanium oxide (TiO 2 ) powder, zirconium oxide (ZrO 2 ) powder, manganese carbonate (MnCO 3 ) powder, niobium oxide (Nb 2 O 5). ) Powder) was weighed to a molar ratio of Pb 1.02 [(Mn 1/3 Nb 2/3 ) 0.10 Ti 0.53 Zr 0.37 ] O 3, and each was then used with a ball mill. A slurry was prepared by wet mixing for 10 hours. The slurry was sufficiently dried and press-molded, and then baked at 1000 ° C. in the atmosphere to obtain a powdery property modifier with an average particle size of 40 μm. A paste (binder: PVA) containing 50 wt% of this powder was produced.

図7、図8に示すように、圧電磁器における出発原料の配合組成と同一の配合組成を有する特性調整剤を用いることによって、圧電磁器としての組成、ひいては発振周波数の温度特性δF(125℃)を調整することができる。 As shown in FIGS. 7 and 8, by using a characteristic adjusting agent having the same composition as the composition of the starting material in the piezoelectric ceramic, the temperature characteristic δF 0 (125 ° C.) ) Can be adjusted.

圧電体共振子の構成を示す斜視図である。It is a perspective view which shows the structure of a piezoelectric body resonator. レゾネータの構成を示す断面図である。It is sectional drawing which shows the structure of a resonator. 実施例1における、塗布又は塗した特性調整剤の量と発振周波数の温度特性δF(125℃)の関係を示すグラフである。4 is a graph showing the relationship between the amount of a property adjusting agent applied or applied and the temperature characteristic δF 0 (125 ° C.) of the oscillation frequency in Example 1. 実施例1における、塗布又は塗した特性調整剤の量とZr/Ti比(モル比)の関係を示すグラフである。4 is a graph showing the relationship between the amount of a property adjusting agent applied or applied and the Zr / Ti ratio (molar ratio) in Example 1. 実施例1における、ZrO粉末の焙焼温度とZr/Ti比(モル比)の関係を示すグラフである。 2 is a graph showing the relationship between the roasting temperature of ZrO 2 powder and the Zr / Ti ratio (molar ratio) in Example 1. 実施例1における、ZrO粉末の焙焼温度と発振周波数の温度特性δF(125℃)の関係を示すグラフである。4 is a graph showing the relationship between the roasting temperature of ZrO 2 powder and the temperature characteristic δF 0 (125 ° C.) of the oscillation frequency in Example 1. 実施例2における、塗布又は塗した特性調整剤の量とPbO(モル)の関係を示すグラフである。It is a graph which shows the relationship between the quantity of the characteristic adjustment agent apply | coated or apply | coated in Example 2, and PbO (mol). 実施例2における、塗布又は塗した特性調整剤の量と発振周波数の温度特性δF(125℃)の関係を示すグラフである。6 is a graph showing the relationship between the amount of a property adjusting agent applied or applied and the temperature characteristic δF 0 (125 ° C.) of the oscillation frequency in Example 2.

符号の説明Explanation of symbols

1…レゾネータ、2…圧電体共振子、22、23…振動電極、3…基板、31、32…端子電極、4…導電固定子、5…キャップ   DESCRIPTION OF SYMBOLS 1 ... Resonator, 2 ... Piezoelectric resonator, 22, 23 ... Vibration electrode, 3 ... Board | substrate, 31, 32 ... Terminal electrode, 4 ... Conductive stator, 5 ... Cap

Claims (5)

原料粉末から構成される成形体における前記原料粉末の組成分析を行う工程と、
前記組成分析の結果に基づいて、前記原料粉末に含まれる成分の少なくとも1種を含む特性調整剤を前記成形体に接触させた状態で前記成形体を焼成する工程と、
を備えたことを特徴とする焼結部材の特性調整方法。
A step of performing composition analysis of the raw material powder in a molded body composed of the raw material powder;
Based on the result of the composition analysis, the step of firing the molded body in a state in which the molded body is brought into contact with a property adjusting agent containing at least one component included in the raw material powder;
The characteristic adjustment method of the sintered member characterized by having provided.
前記焼結部材において所望される組成よりも少ない成分を含む前記特性調整剤を前記成形体に接触させた状態で前記成形体を焼成することを特徴とする請求項1に記載の焼結部材の特性調整方法。   2. The sintered member according to claim 1, wherein the molded body is fired in a state in which the property adjusting agent containing a component less than a desired composition in the sintered member is in contact with the molded body. Characteristics adjustment method. 前記特性調整剤は、前記原料粉末に含まれる成分の少なくとも1種を含む粉末であることを特徴とする請求項1又は2に記載の焼結部材の特性調整方法。   The method for adjusting the properties of a sintered member according to claim 1 or 2, wherein the property adjusting agent is a powder containing at least one of the components contained in the raw material powder. 前記特性調整剤は、バインダとの混合物としてのペーストとして前記成形体に塗布されことを特徴とする請求項1〜3のいずれかに記載の焼結部材の特性調整方法。   The method for adjusting characteristics of a sintered member according to any one of claims 1 to 3, wherein the property adjusting agent is applied to the molded body as a paste as a mixture with a binder. 前記焼結部材は、ペロブスカイト型構造を有するチタン酸ジルコン酸鉛を主成分とする圧電磁器であり、
前記特性調整剤は、ZrO粉末であることを特徴とする請求項1〜4のいずれかに記載の焼結部材の特性調整方法。
The sintered member is a piezoelectric ceramic mainly composed of lead zirconate titanate having a perovskite structure,
The method for adjusting characteristics of a sintered member according to any one of claims 1 to 4, wherein the characteristic adjusting agent is ZrO 2 powder.
JP2006093729A 2006-03-30 2006-03-30 Method for adjusting characteristics of sintered parts Expired - Fee Related JP4803367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006093729A JP4803367B2 (en) 2006-03-30 2006-03-30 Method for adjusting characteristics of sintered parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006093729A JP4803367B2 (en) 2006-03-30 2006-03-30 Method for adjusting characteristics of sintered parts

Publications (2)

Publication Number Publication Date
JP2007269504A true JP2007269504A (en) 2007-10-18
JP4803367B2 JP4803367B2 (en) 2011-10-26

Family

ID=38672686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006093729A Expired - Fee Related JP4803367B2 (en) 2006-03-30 2006-03-30 Method for adjusting characteristics of sintered parts

Country Status (1)

Country Link
JP (1) JP4803367B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275165A (en) * 1985-05-27 1986-12-05 株式会社村田製作所 Manufacture of light permeable ceramics
JPS62138354A (en) * 1985-12-12 1987-06-22 電気化学工業株式会社 Manufacture of readily sinterable lead-containing oxide powder
JPH05226715A (en) * 1992-02-18 1993-09-03 Matsushita Electric Ind Co Ltd Semiconductor device
JPH05270909A (en) * 1992-03-24 1993-10-19 Sumitomo Metal Ind Ltd Production of semiconductor porcelain composition
JPH1117242A (en) * 1997-06-19 1999-01-22 Nissan Motor Co Ltd Method of manufacturing burned ceramic board
JP2000191377A (en) * 1998-12-25 2000-07-11 Fuji Elelctrochem Co Ltd Tool material for firing
WO2005092817A1 (en) * 2004-03-26 2005-10-06 Tdk Corporation Piezoelectric ceramic composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275165A (en) * 1985-05-27 1986-12-05 株式会社村田製作所 Manufacture of light permeable ceramics
JPS62138354A (en) * 1985-12-12 1987-06-22 電気化学工業株式会社 Manufacture of readily sinterable lead-containing oxide powder
JPH05226715A (en) * 1992-02-18 1993-09-03 Matsushita Electric Ind Co Ltd Semiconductor device
JPH05270909A (en) * 1992-03-24 1993-10-19 Sumitomo Metal Ind Ltd Production of semiconductor porcelain composition
JPH1117242A (en) * 1997-06-19 1999-01-22 Nissan Motor Co Ltd Method of manufacturing burned ceramic board
JP2000191377A (en) * 1998-12-25 2000-07-11 Fuji Elelctrochem Co Ltd Tool material for firing
WO2005092817A1 (en) * 2004-03-26 2005-10-06 Tdk Corporation Piezoelectric ceramic composition

Also Published As

Publication number Publication date
JP4803367B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
EP2104152B1 (en) Piezoelectric ceramic and piezoelectric element employing it
JP2004115293A (en) Piezoelectric ceramic
JPWO2005092817A1 (en) Piezoelectric ceramic composition
JP4338091B2 (en) Resonator
JP5273140B2 (en) Piezoelectric ceramic and piezoelectric ceramic composition
JP4748291B2 (en) Laminate displacement element
JP2003221276A (en) Piezoelectric ceramic and method for producing the same
JPWO2006018930A1 (en) Piezoelectric ceramic composition and piezoelectric element
JP4404217B2 (en) Piezoelectric element
JP4169203B2 (en) Piezoelectric ceramic composition
WO2006035794A1 (en) Method for producing piezoelectric porcelain, method for producing piezoelectric element and piezoelectric element
JP5662197B2 (en) Piezoelectric / electrostrictive sintered body and piezoelectric / electrostrictive element
JP2005119944A (en) Method of manufacturing piezoelectric ceramic composition
JP5774824B2 (en) Piezoelectric / electrostrictive porcelain composition
JP4390082B2 (en) Piezoelectric ceramic composition and multilayer piezoelectric element
JP4803367B2 (en) Method for adjusting characteristics of sintered parts
JP2007230839A (en) Piezoelectric ceramic composition, multilayer piezoelectric element and method of manufacturing the same
JP2003238248A (en) Piezoelectric porcelain composition and piezoelectric device
JP5196124B2 (en) Piezoelectric ceramic composition and multilayer piezoelectric element
JP2009242188A (en) Piezoelectric ceramic composition, piezoelectric element and resonator
JP2007001841A (en) Piezoelectric ceramic composition
JP4442467B2 (en) Piezoelectric ceramic composition
JP2007258597A (en) Method for polarizing piezoelectric element
JP2009114049A (en) Piezoelectric/electrostrictive ceramic composition and piezoelectric/electrostrictive element
JP4497301B2 (en) Resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees