JP2007268614A - Method and apparatus for coating parting agent - Google Patents

Method and apparatus for coating parting agent Download PDF

Info

Publication number
JP2007268614A
JP2007268614A JP2007057461A JP2007057461A JP2007268614A JP 2007268614 A JP2007268614 A JP 2007268614A JP 2007057461 A JP2007057461 A JP 2007057461A JP 2007057461 A JP2007057461 A JP 2007057461A JP 2007268614 A JP2007268614 A JP 2007268614A
Authority
JP
Japan
Prior art keywords
release agent
mold
temperature
injection
coating method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007057461A
Other languages
Japanese (ja)
Other versions
JP4946522B2 (en
Inventor
Takeshi Hiroyasu
武 廣安
Akihiko Ikeda
明彦 池田
Yuji Yoshida
裕次 吉田
Noriyuki Shiaku
紀之 塩飽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007057461A priority Critical patent/JP4946522B2/en
Publication of JP2007268614A publication Critical patent/JP2007268614A/en
Application granted granted Critical
Publication of JP4946522B2 publication Critical patent/JP4946522B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve releasing property by suitably performing the cool to a die with the coating of parting agent. <P>SOLUTION: While a lower die 1 and an upper die 3 for forge-forming processing are opened after form-processing, parting agent spraying nozzles 5 are arranged at intervals, and the parting agents are sprayed from respective spraying holes 9a-9e and 11a-11e toward respective portions 1a-1e and 3a-3e corresponding to the lower die 1 and the upper die 3. At that time, according to the detected temperature of a thermo-sensor 13 arranged in each portion 1a-1e and 3a-3e in the lower die 1 and the upper die 3, the spraying conditions, such as the spraying time and the spraying pressure of the parting agent, and the arrangement of the parting spray-nozzles 5, are changed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鍛造物を鍛造する金型に離型剤を塗布する離型剤塗布方法および離型剤塗布装置に関する。   The present invention relates to a release agent coating method and a release agent coating apparatus for applying a release agent to a mold for forging a forged product.

一般に、熱間鍛造や温間鍛造成形加工においては、鍛造加工前のワークを高温に加熱していることから、金型の温度が上昇するが、この際金型からの鍛造物の離型性や潤滑性が低下するのを防止するとともに、金型の冷却を行うために、金型表面に離型剤を塗布することが行われている。例えば、下記特許文献1に記載のものは、金型温度を測定し、この測定温度に基づいて、離型剤の噴射時間や噴射温度を制御している。
特開平4−294837号公報
In general, in hot forging and warm forging, the temperature of the mold rises because the workpiece before forging is heated to a high temperature. At this time, the releasability of the forging from the mold In addition, in order to prevent the lubricity from being lowered and to cool the mold, a mold release agent is applied to the mold surface. For example, the thing of the following patent document 1 measures mold temperature, and controls the injection time and injection temperature of a mold release agent based on this measured temperature.
JP-A-4-294837

ところで、例えば自動車用エンジンに使用されるクランクシャフトやコネクティングロッドを鍛造成形加工する際に、一対の金型の凹部相互間にセットしたワークを加圧して所定形状のクランクシャフトやコネクティングロッドを成形するが、この際、金型の凹部の底面付近に比較して、凹部の開口部付近は、ワークが加圧変形されつつ金型に対して擦られることから、摩擦抵抗が大きく高温となる。   By the way, for example, when forging a crankshaft or a connecting rod used in an automobile engine, a workpiece set between the recesses of a pair of molds is pressed to form a crankshaft or a connecting rod having a predetermined shape. However, at this time, compared with the vicinity of the bottom surface of the concave portion of the mold, the vicinity of the opening of the concave portion is rubbed against the mold while the work is being pressure-deformed, and thus the frictional resistance is large and the temperature is high.

このように、鍛造成形加工を行う際には、金型の部位毎に温度が異なることがあり、したがって、前述した従来の離型剤塗布装置のように、単に金型全体の温度に基づいて、離型剤の噴射時間や噴射温度を、金型全体に対して均一に制御したのでは、温度の高い部位と低い部位との双方に対し、最適な状態で離型剤を塗布することができず、部位毎に過冷却や冷却不足が発生して金型の冷却が適正になされず、潤滑・離型性が悪化するものとなる。   Thus, when performing forging molding processing, the temperature may be different for each part of the mold, and therefore, simply based on the temperature of the entire mold as in the conventional release agent coating apparatus described above. If the injection time and the injection temperature of the release agent are uniformly controlled over the entire mold, the release agent can be applied in an optimal state to both the high temperature portion and the low temperature portion. In other words, overcooling or insufficient cooling occurs for each part, and the mold is not properly cooled, resulting in deterioration of lubrication and mold release properties.

そこで、本発明は、離型剤塗布よる金型に対する冷却を適正に行い、潤滑・離型性を高めることを目的としている。   Accordingly, an object of the present invention is to appropriately cool the mold by applying a release agent to improve lubrication and mold release properties.

本発明は、鍛造物を鍛造する金型に離型剤を塗布する離型剤塗布方法において、前記離型剤の塗布条件を前記金型の部位毎に変化させて、前記離型剤を前記金型に塗布することを最も主要な特徴とする。   The present invention provides a release agent coating method in which a release agent is applied to a mold for forging a forged product, the application conditions of the release agent are changed for each part of the mold, and the release agent is The main feature is that it is applied to the mold.

本発明によれば、離型剤の塗布条件を金型の部位毎に変化させているので、金型の部位毎の過冷却や冷却不足を防止して、金型に対する冷却を適正に行うことができ、鍛造物の金型からの潤滑・離型性を高めることができる。   According to the present invention, since the application conditions of the mold release agent are changed for each part of the mold, overcooling and insufficient cooling for each part of the mold are prevented, and the mold is properly cooled. It is possible to improve the lubrication and release properties of the forged product from the mold.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施形態を示す離型剤塗布装置の正面断面図である。この離型剤塗布装置は、鍛造物を鍛造する金型としての下型1と上型3との間で、後述する図2〜図4で示すような鍛造成形加工を行う際に、鍛造成形加工後の鍛造物を金型から取り出した状態で、温度上昇した下型1および上型3の互いの対向面に、離型剤噴射手段としての離型剤噴射ノズル5から離型剤を噴射して塗布し、これら下型1および上型3を冷却して、次回の鍛造成形加工後の鍛造物の離型性を向上させる。   FIG. 1 is a front cross-sectional view of a release agent coating apparatus showing a first embodiment of the present invention. This mold release agent coating apparatus is forged when a forging process as shown in FIGS. 2 to 4 described later is performed between a lower mold 1 and an upper mold 3 as a mold for forging a forged product. In a state where the processed forged product is taken out from the mold, a release agent is injected from a release agent injection nozzle 5 as a release agent injection means onto the opposing surfaces of the lower die 1 and the upper die 3 whose temperature has been increased. Then, the lower die 1 and the upper die 3 are cooled to improve the releasability of the forged product after the next forging process.

図2〜図4は、自動車用エンジンに使用するコネクティングロッドとなる鍛造物29を鍛造成形加工する過程を示しており、図2は型開きした状態の金型の側面図、図3は図2における下型1の平面図、図4は、鍛造成形加工後の型締めした状態の、図2のA−A断面に相当する拡大した正面断面図である。なお、前記した図1は、図2〜図4の型形状とは異なっているが、図2のA−A断面、すなわち図4に対応しており、図4における図1に対応する部位については同一符号を付してある。   2 to 4 show a process of forging a forging 29 to be a connecting rod used in an automobile engine. FIG. 2 is a side view of the mold in an opened state, and FIG. FIG. 4 is an enlarged front cross-sectional view corresponding to the AA cross section of FIG. 2 in a state where the lower mold 1 is clamped after forging. 1 is different from the mold shape of FIGS. 2 to 4, but corresponds to the AA cross section of FIG. 2, that is, FIG. 4, and the part corresponding to FIG. 1 in FIG. 4. Are given the same reference numerals.

ここで、図2に示すように、下型1と上型3との相互に対向する凹部10,30の凹部10上に、高温に加熱したワークWをセットし、下型1と上型3とを互いに接近させて型締めを行うことで、図4に示すように、コネクティングロッドとなる鍛造物29を鍛造成形加工する。この際、鍛造物29の周囲全体にはバリBが発生するが、このバリBは後加工で除去する。   Here, as shown in FIG. 2, the workpiece W heated to a high temperature is set on the recesses 10 of the recesses 10, 30 facing each other between the lower mold 1 and the upper mold 3. As shown in FIG. 4, the forged product 29 to be a connecting rod is forged and formed by clamping the two close together. At this time, burrs B are generated in the entire periphery of the forged product 29, but these burrs B are removed by post-processing.

なお、図4における鍛造物29は、最終的な製品(コネクティングロッド)ではなく、例えばクランクシャフトの挿入孔などを、上記したバリBと同様にして後加工する。   Note that the forged product 29 in FIG. 4 is not a final product (connecting rod) but, for example, a crankshaft insertion hole or the like is post-processed in the same manner as the burr B described above.

このような鍛造成形加工においては、下型1および上型3の、特に上記したバリBが発生する部位1a,3aおよび1e,3e周辺のバリ押さえとなる平面部31,33や側面部35,37は、ワークWが鍛造されて変形する際に、下型1および上型3の各表面に擦られることになるので、大きな摩擦抵抗が発生し、他の部位に比較して高温となる。   In such a forging process, the flat portions 31 and 33 and the side portions 35 that serve as burrs for the lower die 1 and the upper die 3, particularly the portions 1a, 3a and 1e, 3e around the above-described burrs B, No. 37 is rubbed against each surface of the lower die 1 and the upper die 3 when the workpiece W is forged and deformed, so that a large frictional resistance is generated and the temperature is higher than that of other portions.

また、図1,図4において、コネクティングロッドのエセクション(大端部と小端部との間の部分)に対応する中央の部位1c,3cについては、その両側部の立ち上がり面39,41の上下長さが短いことから、ワークWが擦られるものの、摩擦抵抗はそれほど大きくなく、したがって上記した部位1a,3aおよび1e,3eほど高温となることはない。   1 and 4, the central portions 1c and 3c corresponding to the connecting rod esection (the portion between the large end portion and the small end portion) have the rising surfaces 39 and 41 on both sides thereof. Although the workpiece W is rubbed because the vertical length is short, the frictional resistance is not so high, and therefore the temperature is not as high as the above-described portions 1a, 3a and 1e, 3e.

一方、凹部10,30の底部10a,30aについては、その両側にワークWが擦られる側面部35,37と立ち上がり面39,41があるものの、底部10a,30a自体に対するワークWの摩擦抵抗が小さいので、上記した各部位1a,3aおよび1e,3eや部位1c,3cに比較して最も温度が低くなる。
このように鍛造成形加工後の各部位で温度差のある下型1および上型3に対して離型剤を噴射する離型剤噴射ノズル5は、ノズルボディ7の図1中で下部に、離型剤を下型1に向けて噴射する噴射口9a,9b,9c,9d,9eを、図1中で左右方向に沿ってそれぞれ備えるとともに、同上部に、離型剤を上型3に向けて噴射する噴射口11a,11b,11c,11d,11eを、図1中で左右方向に沿ってそれぞれ備えている。
On the other hand, the bottom portions 10a and 30a of the recesses 10 and 30 have side portions 35 and 37 and rising surfaces 39 and 41 to which the workpiece W is rubbed on both sides, but the friction resistance of the workpiece W against the bottom portions 10a and 30a itself is small. Therefore, the temperature is lowest as compared with the above-described parts 1a, 3a and 1e, 3e and parts 1c, 3c.
In this way, the release agent injection nozzle 5 for injecting the release agent to the lower mold 1 and the upper mold 3 having a temperature difference at each part after the forging is formed in the lower part of the nozzle body 7 in FIG. 1 are provided with injection ports 9a, 9b, 9c, 9d, and 9e for injecting the release agent toward the lower mold 1, respectively, along the horizontal direction in FIG. The injection ports 11a, 11b, 11c, 11d, and 11e for injecting toward each other are provided along the horizontal direction in FIG.

このうち、図1中で左右両端部の噴射口9a,9eおよび11a,11eは、下型1および上型3にて最も温度の高い部位1a,1eおよび3a,3eにそれぞれ指向している。   Among these, the injection ports 9a, 9e and 11a, 11e at the left and right ends in FIG. 1 are directed to the hottest portions 1a, 1e and 3a, 3e in the lower mold 1 and the upper mold 3, respectively.

また、上記した噴射口9a,9eおよび11a,11eにそれぞれ隣接する噴射口9b,9dおよび11b,11dは、下型1および上型3にて最も温度の低い部位1b,1dおよび3b,3dにそれぞれ指向している。   Further, the injection ports 9b, 9d, 11b, and 11d adjacent to the injection ports 9a, 9e, 11a, and 11e, respectively, are located at the lowest temperature portions 1b, 1d, 3b, and 3d in the lower mold 1 and the upper mold 3, respectively. Each is oriented.

さらに、中央の噴射口9cおよび11cは、下型1および上型3にて最も温度の高い部位1a,1eおよび3a,3eと、最も温度の低い部位1b,1dおよび3b,3dとの中間の温度となる部位1cおよび3cにそれぞれ指向している。   Further, the central injection ports 9c and 11c are located between the highest temperature parts 1a, 1e and 3a, 3e in the lower mold 1 and the upper mold 3 and the lowest temperature parts 1b, 1d and 3b, 3d. It is directed to the portions 1c and 3c that are to be temperatures.

そして、噴射口9a,9eおよび11a,11eからは、最も温度の高い部位1a,1eおよび3a,3eに対して強冷却を行う一方、噴射口9b,9dおよび噴射口11b,11dからは、最も温度の低い部位1b,1dおよび3b,3dに対して弱冷却を行い、さらに、中央の噴射口9cおよび11cからは、中間の温度となる部位1cおよび3cに対して中冷却を行う。   And, from the injection ports 9a, 9e and 11a, 11e, the parts 1a, 1e and 3a, 3e having the highest temperature are strongly cooled, while from the injection ports 9b, 9d and the injection ports 11b, 11d, Weak cooling is performed on the low temperature portions 1b, 1d and 3b, 3d, and intermediate cooling is performed on the intermediate portions 1c and 3c from the central injection ports 9c and 11c.

上記のようにして下型1および上型3に対する冷却程度(離型剤の塗布条件)を変化させるのは、例えば離型剤の噴射量を変化させればよく、噴射量の変化は噴射圧力や噴射時間を変化させることで達成する。すなわち、強冷却を行う場合には噴射圧力(時間)を高く(長く)し、弱冷却を行う場合には噴射圧力(時間)を低く(短く)する。   As described above, the degree of cooling (the release agent application condition) for the lower mold 1 and the upper mold 3 may be changed by, for example, changing the injection amount of the release agent. This is achieved by changing the injection time. That is, the injection pressure (time) is increased (longer) when strong cooling is performed, and the injection pressure (time) is decreased (shorter) when weak cooling is performed.

もちろん、事前の調査により、温度分布が特定されている場合は、あらかじめ部位毎に性能の異なる噴射口(離型剤のミスト粒度,噴射範囲など)を配置してもよい。ここで、ミスト粒度,噴射範囲は、噴射口の大きさ、形状や噴射圧力などを適宜変更することにより変えることができる。   Of course, when the temperature distribution is specified by the preliminary investigation, the injection port (the mist particle size of the release agent, the injection range, etc.) having different performance may be arranged in advance for each part. Here, the mist particle size and the injection range can be changed by appropriately changing the size, shape, injection pressure, and the like of the injection port.

この際、下型1および上型3のそれぞれの部位1a〜1eおよび3a〜3eには、温度検出手段としての温度センサ13を設置し、これら各温度センサ13の検出温度に基づいて、離型剤塗布器15が塗布剤の噴射圧力や噴射時間を調節する。各温度センサ13と離型剤塗布器15とは、下型1および上型3内に埋め込んだ配線19によって接続している
離型剤塗布器15は、ポンプやチェック弁などを有する離型剤供給部17を備えるとともに、各噴射口9a〜9eおよび11a〜11eに対し、それぞれ配管21によって個別に接続し、図示しない離型剤収容タンクに収容している離型剤の噴射圧力や噴射時間を、各噴射口9a〜9eおよび11a〜11e毎に調節する塗布条件制御手段としての塗布条件制御回路23を備えている。
At this time, the temperature sensors 13 as temperature detecting means are installed in the portions 1a to 1e and 3a to 3e of the lower mold 1 and the upper mold 3, respectively, and the mold release is performed based on the detected temperatures of these temperature sensors 13. The agent applicator 15 adjusts the spraying pressure and spraying time of the coating agent. Each temperature sensor 13 and the release agent applicator 15 are connected by a wiring 19 embedded in the lower mold 1 and the upper mold 3. The release agent applicator 15 has a pump, a check valve, and the like. While providing the supply part 17, it connects with each injection port 9a-9e and 11a-11e individually by the piping 21, respectively, and the injection pressure and injection time of the mold release agent which are accommodated in the mold release agent storage tank which is not illustrated Is provided with a coating condition control circuit 23 as a coating condition control means for adjusting each of the spray ports 9a to 9e and 11a to 11e.

次に作用を説明する。下型1と上型3との間で図2に示すワークWに対して図4のように鍛造成形加工した後、図1に示すように型開きした状態で、離型剤噴射ノズル5を下型1と上型3との間の中間位置に挿入する。この状態で、温度センサ13が検出する下型1および上型3のそれぞれの部位1a〜1eおよび3a〜3eの温度に基づいて、塗布条件制御回路23が、離型剤の噴射圧力や噴射時間を制御する。   Next, the operation will be described. After forging and forming the workpiece W shown in FIG. 2 between the lower mold 1 and the upper mold 3 as shown in FIG. 4, the mold release agent injection nozzle 5 is set in a state where the mold is opened as shown in FIG. Insert at an intermediate position between the lower mold 1 and the upper mold 3. In this state, the application condition control circuit 23 determines the injection pressure and the injection time of the release agent based on the temperatures of the portions 1a to 1e and 3a to 3e of the lower mold 1 and the upper mold 3 detected by the temperature sensor 13, respectively. To control.

ここでは、前述したように、下型1および上型3において、部位1a,1eおよび3a,3eが最も温度が高いので、噴射口9a,9eおよび11a,11eからの噴射量を多くすべく、噴射圧力を高くするか噴射時間を長くして強冷却を行う。この際、検出した温度によっては、噴射圧力を高くしかつ噴射時間を長くしてもよい。   Here, as described above, in the lower mold 1 and the upper mold 3, the portions 1a, 1e and 3a, 3e have the highest temperature. Therefore, in order to increase the injection amount from the injection ports 9a, 9e and 11a, 11e, Strong cooling is performed by increasing the injection pressure or extending the injection time. At this time, depending on the detected temperature, the injection pressure may be increased and the injection time may be extended.

また、部位1b,1dおよび3b,3dは最も温度が低いので、噴射口9b,9dおよび11b,11dからの噴射量を少なくすべく、噴射圧力を低くするか噴射時間を短くして弱冷却を行う。この際、検出した温度によっては、噴射圧力を低くしかつ噴射時間を短くしてもよい。   Further, since the temperatures of the parts 1b, 1d and 3b, 3d are the lowest, in order to reduce the injection amount from the injection ports 9b, 9d and 11b, 11d, the injection pressure is lowered or the injection time is shortened to perform weak cooling. Do. At this time, depending on the detected temperature, the injection pressure may be lowered and the injection time may be shortened.

さらに、中間の温度となる部位1cおよび3cに対しては、噴射量を中間の量とすべく、中間の噴射圧力または噴射時間として中冷却を行う。この際、検出した温度によっては、噴射圧力を中間の圧力としかつ噴射時間を中間の時間としてもよい。   Further, for the portions 1c and 3c having an intermediate temperature, intermediate cooling is performed as an intermediate injection pressure or injection time so that the injection amount is an intermediate amount. At this time, depending on the detected temperature, the injection pressure may be an intermediate pressure and the injection time may be an intermediate time.

これら噴射量の調整は、前述したように、性能の異なる噴射口(ミスト粒度,噴射範囲など)に交換することでも実現可能である。   As described above, the adjustment of the injection amount can also be realized by exchanging the injection ports (mist granularity, injection range, etc.) having different performances.

このように、本発明の第1の実施形態では、離型剤の塗布条件として、離型剤の噴射圧力,噴射時間および、噴射口の仕様のうち少なくともいずれか一つを、下型1および上型3における温度の異なる各部位毎に変化させ、温度に応じた噴射量を確保するようにしているので、下型1および上型3の各部位毎の過冷却や冷却不足を防止して、下型1および上型3に対する冷却を適正に行うことができ、鍛造物29の潤滑・離型性を高めることができる。   Thus, in the first embodiment of the present invention, as the application condition of the release agent, at least one of the injection pressure, the injection time, and the specification of the injection port of the release agent is used as the lower mold 1 and Since it changes for each part in which temperature differs in upper mold 3 and it secures the injection quantity according to temperature, it prevents overcooling and insufficient cooling for each part of lower mold 1 and upper mold 3 The lower mold 1 and the upper mold 3 can be properly cooled, and the lubrication / release properties of the forged product 29 can be improved.

また、下型1および上型3に対する冷却を適正に行うことで、冷却不足による、金型への離型剤の付着量の減少、離型剤の金型表面での焦げ付き、高温化による金型の軟化などを防止できるとともに、過冷却による、離型剤中の水分の不充分な蒸発による離型剤付着量の減少、下型1上の水たまりによる粗材欠肉の発生、急冷による金型破損などを防止することができる。   In addition, by appropriately cooling the lower mold 1 and the upper mold 3, the amount of the release agent attached to the mold is reduced due to insufficient cooling, the release agent is burnt on the mold surface, and the mold is heated due to high temperature. It can prevent mold softening, reduce the amount of release agent adhesion due to insufficient evaporation of moisture in the release agent due to overcooling, occurrence of missing rough material due to puddles on the lower mold 1, gold due to rapid cooling Mold breakage and the like can be prevented.

この際、下型1および上型3の各部位1a〜1eおよび3a〜3eに設置した各温度センサ13による温度測定部位に対応して、離型剤噴射ノズル5の噴射口9a〜9eおよび11a〜11eをそれぞれ配置しているので、下型1および上型3の各部位1a〜1eおよび3a〜3eのそれぞれの温度に対応した冷却を効率よく行うことができるとともに、温度センサ13による定量的な温度測定が可能になる。   At this time, the injection ports 9a to 9e and 11a of the release agent injection nozzle 5 corresponding to the temperature measurement parts by the temperature sensors 13 installed in the parts 1a to 1e and 3a to 3e of the lower mold 1 and the upper mold 3, respectively. ˜11e are arranged, respectively, so that cooling corresponding to the temperature of each of the parts 1a to 1e and 3a to 3e of the lower mold 1 and the upper mold 3 can be efficiently performed and quantitatively measured by the temperature sensor 13 Temperature measurement becomes possible.

図5は、本発明の第2の実施形態を示す離型剤塗布装置の正面断面図である。第2の実施形態は、前記図1に示した第1の実施形態における温度センサ13に代えて、非接触で温度測定する非接触型の温度検出手段としてのサーモビューア(サーモグラフィ)25を使用する。   FIG. 5 is a front cross-sectional view of a release agent coating apparatus showing a second embodiment of the present invention. In the second embodiment, a thermoviewer (thermography) 25 as a non-contact type temperature detecting means for measuring temperature in a non-contact manner is used in place of the temperature sensor 13 in the first embodiment shown in FIG. .

サーモビューア25は、下型1および上型3のそれぞれに左右一対設置し、下型1および上型3の前記した各部位1a〜1eおよび3a〜3eを含む金型表面から放射される赤外線の強度を検知し、これら各部位1a〜1eおよび3a〜3eの温度分布を図示しないモニタ画面に画像表示する。   The thermo-viewer 25 is installed in a pair on the left and right sides of the lower mold 1 and the upper mold 3, and infrared rays emitted from the mold surfaces including the respective parts 1a to 1e and 3a to 3e of the lower mold 1 and the upper mold 3 are provided. The intensity is detected, and the temperature distributions of these parts 1a to 1e and 3a to 3e are displayed as images on a monitor screen (not shown).

また、この実施形態では、下型1および上型3の図5中で右側端部における互いに対向する位置に、サーモビューア25で測定した各部位1a〜1eおよび3a〜3eの温度を補正する温度補正用温度検出手段としての補正用温度センサ27を設置している。この補正用温度センサ27およびサーモビューア25の検出信号は、離型剤塗布器15の塗布条件制御回路23に入力される。その他の構成は図1に示した第1の実施形態と同様である。   Moreover, in this embodiment, the temperature which correct | amends the temperature of each site | part 1a-1e and 3a-3e measured with the thermo viewer 25 in the position which mutually opposes in the right side edge part in FIG. 5 of the lower mold | type 1 and the upper mold | type 3. A correction temperature sensor 27 is installed as correction temperature detection means. The detection signals of the correction temperature sensor 27 and the thermo viewer 25 are input to the application condition control circuit 23 of the release agent applicator 15. Other configurations are the same as those of the first embodiment shown in FIG.

次に、第2の実施形態の作用を、図6に示す塗布条件制御回路23の制御動作を示すフローチャートに基づき説明する。まず、サーモビューア25により、下型1および上型3の各部位1a〜1eおよび3a〜3eの温度を測定するとともに、補正用温度センサ27によって下型1および上型3の温度を測定し、これら各測定温度を塗布条件制御回路23が取り込む(ステップ101)。   Next, the operation of the second embodiment will be described based on the flowchart showing the control operation of the coating condition control circuit 23 shown in FIG. First, the temperature of each part 1a-1e and 3a-3e of the lower mold 1 and the upper mold 3 is measured by the thermo viewer 25, and the temperature of the lower mold 1 and the upper mold 3 is measured by the correction temperature sensor 27. Each of these measured temperatures is taken in by the coating condition control circuit 23 (step 101).

そして、上記取り込んだ補正温度に基づいて、サーモビューア25が測定した下型1および上型3の各部位1a〜1eおよび3a〜3eの温度を補正する(ステップ103)。すなわち、塗布条件制御回路23は温度補正手段を含んでいる。これは、鍛造成形加工を連続して行い、1回の加工毎に離型剤を噴射すると、噴射後の下型1と上型3との間には、噴霧状の離型剤が飛散しており、この飛散している離型剤によってサーモビューア25が実際の温度とは異なる温度として測定し精度が低下してしまうので、上記飛散している離型剤の影響を考慮して温度補正を行うのである。   Then, based on the acquired correction temperature, the temperatures of the parts 1a to 1e and 3a to 3e of the lower mold 1 and the upper mold 3 measured by the thermo viewer 25 are corrected (step 103). That is, the coating condition control circuit 23 includes a temperature correction unit. This is because when a forging process is continuously performed and a mold release agent is injected for each process, a spray-type mold release agent is scattered between the lower mold 1 and the upper mold 3 after injection. Since the thermo-viewer 25 measures the temperature different from the actual temperature due to the released release agent, the accuracy is lowered. Therefore, the temperature correction is performed in consideration of the influence of the released release agent. Is done.

なお、この温度補正は、1回の鍛造成形加工毎に行ってもよいが、数回毎に行ってもよく、または一定時間毎に行うようにしてもよい。   The temperature correction may be performed every forging process, but may be performed every several times, or may be performed every fixed time.

次に、上記補正後の温度が、上型1および下型3の各部位1a〜1eおよび3a〜3e毎に、目標とする最適温度範囲内にあるかどうかを判定する(ステップ105)。図7は、上型1および下型3におけるある特定部位の、鍛造成形加工後の温度経過を示すもので、ここでは上記特定部位の温度が、t1とt2との間であれば最適温度範囲であって、通常の噴射圧力および噴射時間による離型剤の噴射を行う(ステップ107)。この場合、通常の噴射圧力および噴射時間により離型剤を噴射することで、次回の鍛造成形加工後の鍛造物の離型性を確保することができる。   Next, it is determined whether or not the corrected temperature is within the target optimum temperature range for each of the parts 1a to 1e and 3a to 3e of the upper mold 1 and the lower mold 3 (step 105). FIG. 7 shows the temperature course of a specific part in the upper die 1 and the lower mold 3 after the forging process. Here, if the temperature of the specific part is between t1 and t2, the optimum temperature range is shown. In this case, the release agent is injected with the normal injection pressure and the injection time (step 107). In this case, it is possible to ensure the releasability of the forged product after the next forging process by injecting the release agent with the normal injection pressure and the injection time.

上記ステップ105で、補正後の温度が、最適温度範囲を外れている場合には、上限の温度t2を超えているかどうかを判定し(ステップ109)、超えている場合には、離型剤の噴射時間を延長して最適温度とする際に、その延長時間が、一定時間毎に行う鍛造成形加工における離型剤噴射後の次の加工でのワーク投入が可能な規定時間内に収まるかどうかを判定する(ステップ111)。   If the corrected temperature is out of the optimum temperature range in step 105, it is determined whether or not the upper limit temperature t2 is exceeded (step 109). When extending the injection time to the optimum temperature, whether the extended time is within the specified time that allows the workpiece to be inserted in the next processing after the release agent injection in the forging process that is performed at regular intervals Is determined (step 111).

上記ステップ111での判定は、例えば、噴射時間を変更しない通常時間および噴射圧力を変更しない通常圧力での離型剤噴射から、次回加工でのワーク投入までの空き時間を、あらかじめ塗布条件制御回路23の図示しないメモリに格納しておき、この空き時間と上記延長時間とを比較して行う。   The determination in step 111 is, for example, an application condition control circuit that determines in advance the idle time from the release agent injection at the normal time without changing the injection time and the normal pressure without changing the injection pressure to the work input at the next processing. 23 is stored in a memory (not shown), and this free time is compared with the extended time.

ここで、上記延長時間が、一定時間毎に行う鍛造成形加工での離型剤噴射後の次のワーク投入が可能な規定時間内に収まる場合、すなわち上記した空き時間が上記延長時間より長い場合には、離型剤の噴射時間を長くするよう変更し(ステップ113)、この変更値を離型剤供給部17に駆動出力値として出力し、離型剤噴射ノズル5の各噴射口9a,9b,9c,9d,9eおよび噴射口11a,11b,11c,11d,11eから離型剤を噴射する(ステップ115)。   Here, when the extension time falls within a specified time during which the next workpiece can be introduced after injection of the release agent in the forging process performed at regular time intervals, that is, when the above-described idle time is longer than the extension time. Is changed so that the injection time of the release agent is lengthened (step 113), and the changed value is output to the release agent supply unit 17 as a drive output value, and each of the injection ports 9a, 9a, A release agent is injected from 9b, 9c, 9d, and 9e and the injection ports 11a, 11b, 11c, 11d, and 11e (step 115).

また、前記したステップ109で、補正温度が最適温度範囲の上限値t2を超えていない場合、つまり最適温度範囲の下限値t1未満の場合には、通常時に比較して噴射時間を短くするか、あるいは噴射圧力を低くした状態で離型剤の噴射を行う(ステップ116)。   If the corrected temperature does not exceed the upper limit value t2 of the optimum temperature range in step 109 described above, that is, less than the lower limit value t1 of the optimum temperature range, the injection time is shortened as compared with the normal time, Alternatively, the release agent is injected with the injection pressure lowered (step 116).

また、前記したステップ111で、上記した延長時間が噴射時間延長可能範囲を超える場合には、噴射時間を延長しても最適温度にすることができないので、離型剤の噴射圧力を高めるよう変更することになるが、その際変更する噴射圧力により、最適温度まで低下させることができるかどうか、つまり変更可能範囲であるかどうかを判定する(ステップ117)。   Also, in the above-described step 111, if the above-mentioned extended time exceeds the injection time extension possible range, the optimum temperature cannot be reached even if the injection time is extended, so the injection pressure of the release agent is increased. However, it is determined whether or not the temperature can be lowered to the optimum temperature by the injection pressure changed at that time, that is, whether or not it is within the changeable range (step 117).

ここで、離型剤の噴射圧力が変更可能範囲であれば、噴射圧力が高くなるよう変更し(ステップ119)、この変更値を離型剤供給部17に駆動出力値として出力し、離型剤噴射ノズル5の各噴射口9a,9b,9c,9d,9eおよび噴射口11a,11b,11c,11d,11eから離型剤を噴射する(ステップ115)。   Here, if the injection pressure of the release agent is within a changeable range, the injection pressure is changed so as to increase (step 119), and the changed value is output to the release agent supply unit 17 as a drive output value. A release agent is injected from each of the injection ports 9a, 9b, 9c, 9d, 9e and the injection ports 11a, 11b, 11c, 11d, 11e of the agent injection nozzle 5 (step 115).

逆に、離型剤の噴射圧力が変更可能範囲でない場合には、上型1および下型3が、離型剤をその塗布条件を変更して塗布しても、離型性の向上が確保できないほど高温であると判断し、高温警報を図示しないディスプレイやスピーカから出力する(ステップ121)。また、次回の生産時は、警報出力部位の噴射口を性能の高いものに交換することが可能となる。   On the contrary, when the spraying pressure of the release agent is not within the changeable range, even if the upper mold 1 and the lower mold 3 apply the release agent by changing its application condition, the improvement of the release property is ensured. It is determined that the temperature is so high as to be impossible, and a high temperature alarm is output from a display or speaker (not shown) (step 121). In the next production, it is possible to replace the injection port of the alarm output part with a high-performance one.

上記ステップ117での判定は、離型剤供給部17で可能となる最大噴射圧力で、測定した金型温度を最適温度範囲内まで低下させることができるかどうかを判定すればよい。   The determination in step 117 may be performed by determining whether or not the measured mold temperature can be lowered to the optimum temperature range with the maximum injection pressure that is possible in the release agent supply unit 17.

なお、上記したステップ111および113の噴射時間延長可能範囲の判定および噴射時間の変更と、同ステップ117および119の噴射圧力変更可能範囲の判定および噴射圧力変更とを、入れ替えてもよい。   Note that the determination of the injection time extension possible range and the change of the injection time in Steps 111 and 113 described above may be interchanged with the determination of the injection pressure changeable range and the injection pressure change in Steps 117 and 119.

また、上記した各実施形態では、離型剤の塗布条件として、離型剤の噴射時間と噴射圧力を設定しているが、これらに加え、離型剤の温度や離型剤の噴射方向などを適宜変更してもよく、さらにエアブローを追加するようにしてもよい。   Further, in each of the above-described embodiments, the release agent injection time and the injection pressure are set as the release agent application conditions. In addition to these, the release agent temperature, the release agent injection direction, and the like May be changed as appropriate, and air blow may be added.

また、上記した各実施形態では、下型1および上型3における、図2のA−A断面付近についてのみ説明しているが、これら以外の部位についても、温度変化が生じる部位には、ノズルボディ7の他の部位に設けている図示しない噴出口からの噴射時間,噴射圧力や噴射口の仕様を適宜変更する。   Further, in each of the above-described embodiments, only the vicinity of the AA cross section in FIG. 2 in the lower mold 1 and the upper mold 3 has been described. The injection time, the injection pressure, and the specifications of the injection ports from the injection ports (not shown) provided at other parts of the body 7 are appropriately changed.

図8は、本発明の第3の実施形態を示す離型剤塗布装置の正面断面図である。第3の実施形態は、前記図1に示した第1の実施形態における温度センサ13に代えて、非接触で温度測定する非接触型の温度検出手段としての放射温度計43を、離型剤噴射ノズル5に設けている。   FIG. 8 is a front sectional view of a release agent coating apparatus showing a third embodiment of the present invention. In the third embodiment, instead of the temperature sensor 13 in the first embodiment shown in FIG. 1, a radiation thermometer 43 as a non-contact type temperature detecting means for measuring the temperature in a non-contact manner is used as a release agent. It is provided in the injection nozzle 5.

ここでの放射温度計43は、金型表面から放射される赤外線の強度を検出して温度測定するもので、下型1および上型3における前記した各部位1a〜1eおよび3a〜3eに対応してノズルボディ7の噴射口9a〜9eおよび11a〜11eの近傍に設けている。この際、各放射温度計43は、対応する各部位1a〜1eおよび3a〜3eからの赤外線を効率よく検知できるように設置位置を定めている。その他の構成については、前記した第1の実施形態と同様である。   The radiation thermometer 43 here detects the intensity of infrared rays radiated from the mold surface and measures the temperature, and corresponds to the above-described parts 1a to 1e and 3a to 3e in the lower mold 1 and the upper mold 3. Thus, the nozzle body 7 is provided in the vicinity of the injection ports 9a to 9e and 11a to 11e. At this time, each radiation thermometer 43 determines an installation position so that infrared rays from the corresponding portions 1a to 1e and 3a to 3e can be detected efficiently. Other configurations are the same as those in the first embodiment.

なお、図8では、各放射温度計43と離型剤塗布器15とを接続する配線を省略している。   In FIG. 8, wiring for connecting each radiation thermometer 43 and the release agent applicator 15 is omitted.

第3の実施形態においても、下型1と上型3との間で図2に示すワークWに対して図4のように鍛造成形加工した後、図8に示すように型開き後ワークWを取り出した状態で、離型剤噴射ノズル5を下型1と上型3との間の中間位置に挿入する。   Also in the third embodiment, after forging and forming the workpiece W shown in FIG. 2 between the lower die 1 and the upper die 3 as shown in FIG. 4, the workpiece W after being opened as shown in FIG. The mold release agent injection nozzle 5 is inserted into an intermediate position between the lower mold 1 and the upper mold 3 in a state in which is removed.

この状態で、放射温度計43が検出する下型1および上型3のそれぞれの部位1a〜1eおよび3a〜3eの温度に基づいて、塗布条件制御回路23が、離型剤の噴射圧力や噴射時間を前記した第1の実施形態と同様にして制御する。この際、前記図6に示した第2の実施形態で示した制御方法を適用してもよい。   In this state, based on the temperatures of the lower mold 1 and the upper mold 3 detected by the radiation thermometer 43, the application condition control circuit 23 performs the injection pressure and injection of the release agent. The time is controlled in the same manner as in the first embodiment. At this time, the control method shown in the second embodiment shown in FIG. 6 may be applied.

このように、本発明の第3の実施形態においても、離型剤の塗布条件として、離型剤の噴射圧力,噴射時間および噴射口の仕様のうち少なくともいずれか一つを、下型1および上型3における温度の異なる各部位毎に変化させ、温度に応じた噴射量を確保するようにしているので、下型1および上型3の各部位毎の過冷却や冷却不足を防止して、下型1および上型3に対する冷却を適正に行うことができ、鍛造物29の潤滑・離型性を高めることができる。   Thus, also in the third embodiment of the present invention, as the application condition of the release agent, at least one of the release agent injection pressure, the injection time, and the specification of the injection port is set as the lower mold 1 and Since it changes for each part in which temperature differs in upper mold 3 and it secures the injection quantity according to temperature, it prevents overcooling and insufficient cooling for each part of lower mold 1 and upper mold 3 The lower mold 1 and the upper mold 3 can be properly cooled, and the lubrication / release properties of the forged product 29 can be improved.

その際、本実施形態および前記した第2の実施形態では、温度検出手段を下型1および上型3に取り付けるという煩雑な作業が不要となり、また下型1および上型3に取り付けることによる温度検出手段の故障対策に有効となる。   At this time, in this embodiment and the above-described second embodiment, the troublesome work of attaching the temperature detecting means to the lower mold 1 and the upper mold 3 becomes unnecessary, and the temperature due to the attachment to the lower mold 1 and the upper mold 3 is eliminated. This is effective as a countermeasure against failure of the detection means.

また、本実施形態では、図9に示すように、同図(b)での離型剤塗布工程の前後に、離型剤噴射ノズル5を用いてエアブローを行っている。この場合には、離型剤供給部17から噴射口9a〜9eおよび11a〜11eに至る各配管21の途中から分岐する図示しないエア通路を設け、この分岐部に切替弁を設ける構成とする。この切替弁を、エア通路の上流に設置するエア源からのエアが各噴射口9a〜9eおよび11a〜11eに流れるように切り替えることで、噴射口9a〜9eおよび11a〜11eからエアを噴射してエアブローを行う。   Moreover, in this embodiment, as shown in FIG. 9, air blow is performed using the release agent injection nozzle 5 before and after the release agent application step in FIG. In this case, an air passage (not shown) that branches from the middle of each pipe 21 from the release agent supply part 17 to the injection ports 9a to 9e and 11a to 11e is provided, and a switching valve is provided at this branch part. By switching this switching valve so that air from an air source installed upstream of the air passage flows to each of the injection ports 9a to 9e and 11a to 11e, air is injected from the injection ports 9a to 9e and 11a to 11e. Air blow.

なお、エアブローは、離型剤噴射ノズル5と兼用とせずに、専用のエアノズルを使用してもよい。また、このエアブローは前記した第1,第2の各実施形態において行ってもよい。   In addition, you may use a dedicated air nozzle for air blow, without using the mold release agent injection nozzle 5 together. Further, this air blow may be performed in each of the first and second embodiments.

そして、放射温度計43による温度測定は、連続して鍛造成形加工を行う際の各成形加工相互間における、図9(a)のエアブロー工程の前後A,Bや、図9(c)のエアブロー工程の前後C,Dなど、離型剤噴射ノズル5を上型1と下型3との間に挿入した状態であれば、どのタイミングでも可能である。   Then, the temperature measurement by the radiation thermometer 43 is performed before and after the air blowing process of FIG. 9A and between the air blowing processes of FIG. Any timing can be used as long as the release agent injection nozzle 5 is inserted between the upper mold 1 and the lower mold 3 before and after the process.

特に、エアブロー工程後であって離型剤塗布工程前である図9中のBのタイミングにて温度測定することで、前回の離型剤塗布時で飛散している金型間にある離型剤などのミストを吹き飛ばすことができるので、本実施形態のように非接触型の温度検出手段を使用する場合には、より高精度な温度測定が可能となる。   In particular, by measuring the temperature at the timing B in FIG. 9 after the air blowing process and before the release agent application process, the release between the molds scattered at the time of the previous release agent application Since a mist such as an agent can be blown off, when a non-contact type temperature detecting means is used as in this embodiment, temperature measurement with higher accuracy is possible.

なお、放射温度計43は、各噴射口9a〜9eおよび11a〜11e毎に設けずに、特に温度が高くなりやすい部位のみに対応して設けるようにしてもよい。   The radiation thermometer 43 may not be provided for each of the injection ports 9a to 9e and 11a to 11e, but may be provided only for a portion where the temperature tends to be particularly high.

本発明の第1の実施形態を示す離型剤塗布装置の正面断面図である。It is front sectional drawing of the mold release agent coating device which shows the 1st Embodiment of this invention. 図1の離型剤塗布装置に適用する鍛造成形用金型の型開きした状態の側面図である。FIG. 2 is a side view of a forging mold applied to the release agent coating apparatus of FIG. 図2の鍛造成形用金型の平面図である。FIG. 3 is a plan view of the forging mold shown in FIG. 2. 図2の鍛造成形用金型の鍛造成形後における、図2のA−A断面に相当する正面断面図である。FIG. 3 is a front cross-sectional view corresponding to the AA cross section of FIG. 2 after the forging of the forging mold of FIG. 2. 本発明の第2の実施形態を示す離型剤塗布装置の正面断面図である。It is front sectional drawing of the mold release agent coating device which shows the 2nd Embodiment of this invention. 第2の実施形態における塗布条件制御回路の制御動作を示すフローチャートである。It is a flowchart which shows the control operation of the coating condition control circuit in 2nd Embodiment. 鍛造成形用金型のある特定部位における、鍛造成形後の温度経過を示す説明図である。It is explanatory drawing which shows the temperature passage after forge molding in a certain site | part with a die for forging molding. 本発明の第3の実施形態を示す離型剤塗布装置の正面断面図である。It is front sectional drawing of the mold release agent coating device which shows the 3rd Embodiment of this invention. 第3の実施形態における温度測定タイミングを示す説明図である。It is explanatory drawing which shows the temperature measurement timing in 3rd Embodiment.

符号の説明Explanation of symbols

1 下型(金型)
1a,1e 下型の高温部位
1b,1d 下型の低温部位
1c 下型の中温部位
3 上型(金型)
3a,3e 上型の高温部位
3b,3d 上型の低温部位
3c 上型の中温部位
5 離型剤噴射ノズル(離型剤噴射手段)
13 温度センサ(温度検出手段)
25 サーモビューア(非接触型の温度検出手段)
25 補正用温度センサ(温度補正用温度検出手段)
29 鍛造物
9a〜9e,11a〜11e 噴射口
23 塗布条件制御回路(塗布条件制御手段,温度補正手段)
43 放射温度計(非接触型の温度検出手段)
1 Lower mold (mold)
1a, 1e High temperature part of lower mold 1b, 1d Low temperature part of lower mold 1c Medium temperature part of lower mold 3 Upper mold (mold)
3a, 3e High temperature part of upper mold 3b, 3d Low temperature part of upper mold 3c Medium temperature part of upper mold 5 Release agent injection nozzle (release agent injection means)
13 Temperature sensor (temperature detection means)
25 Thermo Viewer (Non-contact type temperature detection means)
25. Temperature sensor for correction (temperature detection means for temperature correction)
29 Forgings 9a to 9e, 11a to 11e Injection port 23 Application condition control circuit (application condition control means, temperature correction means)
43 Radiation thermometer (non-contact type temperature detection means)

Claims (18)

鍛造物を鍛造する金型に離型剤を塗布する離型剤塗布方法において、前記離型剤の塗布条件を前記金型の部位毎に変化させて、前記離型剤を前記金型に塗布することを特徴とする離型剤塗布方法。   In a mold release agent coating method for applying a mold release agent to a mold for forging a forged product, the mold release agent is applied to the mold by changing the application conditions of the mold release agent for each part of the mold. A release agent coating method characterized by comprising: 前記金型の部位毎に温度を測定し、この温度測定した部位毎に、前記離型剤をその塗布条件を変化させて塗布することを特徴とする請求項1に記載の離型剤塗布方法。   2. The mold release agent coating method according to claim 1, wherein a temperature is measured for each part of the mold, and the mold release agent is applied to each of the temperature-measured parts while changing the coating conditions. . 前記測定した温度が高い部位ほど、前記離型剤の塗布条件として前記離型剤の塗布量を多くすることを特徴とする請求項2に記載の離型剤塗布方法。   The mold release agent coating method according to claim 2, wherein as the measured temperature is higher, the application amount of the release agent is increased as the application condition of the release agent. 前記離型剤の塗布量を多くする際に、前記離型剤を噴射する離型剤噴射手段の噴射圧力,噴射時間,噴射範囲および、この離型剤噴射手段から噴射するミスト状の離型剤の粒度のうち少なくともいずれか一つを変化させることを特徴とする請求項3に記載の離型剤塗布方法。   When increasing the application amount of the release agent, the injection pressure, the injection time, the injection range of the release agent injection means for injecting the release agent, and the mist-like release injected from the release agent injection means The release agent coating method according to claim 3, wherein at least one of the particle sizes of the agent is changed. 前記金型の各部位の温度を、これら各部位に取り付けた温度検出手段によって測定することを特徴とする請求項2ないし4のいずれか1項に記載の離型剤塗布方法。   The mold release agent coating method according to any one of claims 2 to 4, wherein the temperature of each part of the mold is measured by temperature detection means attached to each part. 前記金型の各部位の温度を、非接触型の温度検出手段により測定することを特徴とする請求項2ないし4のいずれか1項に記載の離型剤塗布方法。   The mold release agent coating method according to any one of claims 2 to 4, wherein the temperature of each part of the mold is measured by a non-contact type temperature detecting means. 前記非接触型の温度検出手段は、前記金型の各部位の温度分布を画像表示するサーモビューアであることを特徴とする請求項6に記載の離型剤塗布方法。   7. The mold release agent coating method according to claim 6, wherein the non-contact type temperature detecting means is a thermo viewer that displays an image of a temperature distribution of each part of the mold. 前記非接触型の温度検出手段は、前記離型剤を噴射する離型剤噴射手段に取り付けた放射温度計であることを特徴とする請求項6に記載の離型剤塗布方法。   The release agent coating method according to claim 6, wherein the non-contact type temperature detection means is a radiation thermometer attached to the release agent injection means for injecting the release agent. 前記非接触型の温度検出手段で測定した前記金型の各部位の温度を、前記金型に設けた温度補正用温度検出手段の検出温度に基づき補正することを特徴とする請求項6ないし8のいずれか1項に記載の離型剤塗布方法。   9. The temperature of each part of the mold measured by the non-contact type temperature detecting means is corrected based on the temperature detected by the temperature correcting temperature detecting means provided in the mold. The mold release agent coating method of any one of these. 鍛造成形加工を連続して行う際に、鍛造成形加工後の鍛造物を前記金型より取り出してから、次のワークを前記金型に投入するまでの間に、前記離型剤の塗布作業が完了するように、前記離型剤の塗布条件を変化させることを特徴とする請求項1ないし9のいずれか1項に記載の離型剤塗布方法。   When the forging process is continuously performed, after the forging after the forging process is taken out from the mold, the application of the release agent is performed after the next workpiece is put into the mold. The mold release agent coating method according to claim 1, wherein application conditions of the mold release agent are changed so as to be completed. 前記金型周辺にエアブローした後に、前記温度検出手段によって温度測定することを特徴とする請求項6ないし9のいずれか1項に記載の離型剤塗布方法。   The mold release agent coating method according to any one of claims 6 to 9, wherein the temperature is measured by the temperature detection means after air is blown around the mold. 鍛造物を鍛造する金型に離型剤を塗布する離型剤塗布装置において、前記離型剤を前記金型に向けて噴射する離型剤噴射手段と、この離型剤噴射手段による前記離型剤の塗布条件を、前記金型の部位毎に変化させる塗布条件制御手段と、をそれぞれ有することを特徴とする離型剤塗布装置。   In a release agent coating apparatus for applying a release agent to a mold for forging a forged product, a release agent injection means for injecting the release agent toward the mold, and the release agent injection means. A mold release agent application apparatus, comprising: application condition control means for changing the application condition of the mold agent for each part of the mold. 前記金型の各部位の温度を検出する温度検出手段を設け、前記塗布条件制御手段は、この温度検出手段が検出する前記金型の各部位の温度に応じて、前記離型剤噴射手段による前記離型剤の塗布条件を変化させることを特徴とする請求項12に記載の離型剤塗布装置。   Temperature detection means for detecting the temperature of each part of the mold is provided, and the application condition control means is controlled by the release agent injection means according to the temperature of each part of the mold detected by the temperature detection means. The release agent coating apparatus according to claim 12, wherein application conditions of the release agent are changed. 前記温度検出手段を前記金型の各部位毎に設置し、この各部位に対応させて前記離型剤噴射手段を設けたことを特徴とする請求項13に記載の離型剤塗布装置。   14. The release agent coating apparatus according to claim 13, wherein the temperature detection means is installed for each part of the mold, and the release agent injection means is provided corresponding to each part. 前記温度検出手段は、前記金型の各部位を非接触で温度検出する非接触型の温度検出手段であり、前記金型の各部位に対応させて前記離型剤噴射手段を設けたことを特徴とする請求項13に記載の離型剤塗布装置。   The temperature detecting means is a non-contact type temperature detecting means for detecting the temperature of each part of the mold in a non-contact manner, and the release agent injection means is provided corresponding to each part of the mold. The mold release agent coating apparatus according to claim 13. 前記非接触型の温度検出手段は、前記金型の各部位の温度分布を画像表示するサーモビューアであることを特徴とする請求項15に記載の離型剤塗布装置。   16. The release agent coating apparatus according to claim 15, wherein the non-contact type temperature detecting means is a thermo viewer that displays an image of a temperature distribution of each part of the mold. 前記非接触型の温度検出手段は、前記離型剤を噴射する離型剤噴射手段に取り付けた放射温度計であることを特徴とする請求項15に記載の離型剤塗布装置。   16. The release agent coating apparatus according to claim 15, wherein the non-contact type temperature detection means is a radiation thermometer attached to the release agent injection means for injecting the release agent. 前記金型に温度補正用温度検出手段を設け、前記非接触型の温度検出手段で検出した前記金型の各部位の温度を、前記温度補正用温度検出手段の検出温度に基づき補正する温度補正手段を設けたことを特徴とする請求項15ないし17のいずれか1項に記載の離型剤塗布装置。   A temperature correction for providing temperature correction means for temperature correction in the mold, and correcting the temperature of each part of the mold detected by the non-contact type temperature detection means based on the temperature detected by the temperature correction temperature detection means The mold release agent coating apparatus according to any one of claims 15 to 17, further comprising means.
JP2007057461A 2006-03-07 2007-03-07 Release agent coating method and release agent coating apparatus Expired - Fee Related JP4946522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007057461A JP4946522B2 (en) 2006-03-07 2007-03-07 Release agent coating method and release agent coating apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006061425 2006-03-07
JP2006061425 2006-03-07
JP2007057461A JP4946522B2 (en) 2006-03-07 2007-03-07 Release agent coating method and release agent coating apparatus

Publications (2)

Publication Number Publication Date
JP2007268614A true JP2007268614A (en) 2007-10-18
JP4946522B2 JP4946522B2 (en) 2012-06-06

Family

ID=38671947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057461A Expired - Fee Related JP4946522B2 (en) 2006-03-07 2007-03-07 Release agent coating method and release agent coating apparatus

Country Status (1)

Country Link
JP (1) JP4946522B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011104600A (en) * 2009-11-12 2011-06-02 Suzuki Motor Corp Method and device for manufacturing semi-solidified slurry
WO2018051400A1 (en) * 2016-09-13 2018-03-22 マツダ株式会社 Release agent for hot-forging die, application method for same, and application device
JP2020186066A (en) * 2020-08-07 2020-11-19 北海製罐株式会社 Release agent application device for blow-molded multiple bottle made of polyester resin
JP2022533131A (en) * 2019-05-16 2022-07-21 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Spray head for cooling and lubricating the mold of the molding machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101866516B1 (en) * 2017-08-09 2018-06-12 주식회사 서경 Surface lubricant spray devices that are controlled by the amount of injected for each area

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053485A (en) * 2001-08-21 2003-02-26 Toshiba Mach Co Ltd Spraying device and spraying method
JP2004136334A (en) * 2002-10-18 2004-05-13 Dainippon Printing Co Ltd Vacuum hot pressing device
JP2004330284A (en) * 2003-05-12 2004-11-25 Honda Motor Co Ltd Mechanism for applying mold releasing agent of hot die forging press
JP2005188994A (en) * 2003-12-24 2005-07-14 Toyota Motor Corp Measuring method for thickness of liniment on die, and the control method for coverage of liniment on die

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053485A (en) * 2001-08-21 2003-02-26 Toshiba Mach Co Ltd Spraying device and spraying method
JP2004136334A (en) * 2002-10-18 2004-05-13 Dainippon Printing Co Ltd Vacuum hot pressing device
JP2004330284A (en) * 2003-05-12 2004-11-25 Honda Motor Co Ltd Mechanism for applying mold releasing agent of hot die forging press
JP2005188994A (en) * 2003-12-24 2005-07-14 Toyota Motor Corp Measuring method for thickness of liniment on die, and the control method for coverage of liniment on die

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011104600A (en) * 2009-11-12 2011-06-02 Suzuki Motor Corp Method and device for manufacturing semi-solidified slurry
WO2018051400A1 (en) * 2016-09-13 2018-03-22 マツダ株式会社 Release agent for hot-forging die, application method for same, and application device
CN108883460A (en) * 2016-09-13 2018-11-23 马自达汽车株式会社 Hot-forging die release agent, its coating method and apparatus for coating
JPWO2018051400A1 (en) * 2016-09-13 2019-01-10 マツダ株式会社 Release agent for hot forging dies, coating method and coating apparatus
US11242496B2 (en) 2016-09-13 2022-02-08 Mazda Motor Corporation Release agent for hot-forging die, application method for same, and application device
JP2022533131A (en) * 2019-05-16 2022-07-21 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Spray head for cooling and lubricating the mold of the molding machine
JP2020186066A (en) * 2020-08-07 2020-11-19 北海製罐株式会社 Release agent application device for blow-molded multiple bottle made of polyester resin
JP7105837B2 (en) 2020-08-07 2022-07-25 北海製罐株式会社 Liquid paraffin spray coating equipment

Also Published As

Publication number Publication date
JP4946522B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP4946522B2 (en) Release agent coating method and release agent coating apparatus
CN105263636B (en) Pressure setting and injection nozzle
US10814540B2 (en) Method for evenly distributing plastic melt in a hot runner system using strain gauges
US20210187811A1 (en) Method for Controlling a Rate or Force of a Clamp in a Molding System Using One or More Strain Gauges
CN105246612B (en) Method and apparatus for being manufactured component
CN108025343A (en) Coating is avoided to be bonded to the drop stamping apparatus and method of mould
JP4518012B2 (en) Mold cooling structure and cooling method
JP4944952B2 (en) Method and apparatus for cooling molded article after molding
KR100719760B1 (en) Apparatus and method for cooling die for hot press forming products with uniform hadness
KR101472378B1 (en) A temperature analysis module for mold
US20210379651A1 (en) Casting mold for die casting, and method for setting decompression path conductance thereof
CN107073538A (en) Extruder recipient and overcoat and method for extruder recipient
CN104588431A (en) Preparation method for aluminum alloy guide rail profile
CN106077416A (en) For forging method and the gained near-net shape single-piece piston blank of piston blank
US10493582B2 (en) Device and method for cooling workpieces
US20180264612A1 (en) Cooling ststem of machine tool body casting
JP4714752B2 (en) Spiral cooling of steel workpieces
ES2350665B1 (en) PROCEDURE AND DEVICE FOR DETECTION OF EMBUTITION DEFECTS.
KR101740638B1 (en) Cooling structure of injection sleeve for die casting
CN106103365A (en) The manufacture device of optical element
JP2006250714A (en) Method and apparatus for detecting necking of molded object after press molding
JP5182629B2 (en) Method for manufacturing metal tube by extrusion, mandrel and extrusion apparatus
JP2010048319A (en) Connection structure of shaft member and tube material
WO2013124983A1 (en) Water jacket core
JP2007001114A (en) Injection molding machine and injection molding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees