JP2007268598A - Heat-resistant material for low melting point metal casting apparatus, and manufacturing method therefor - Google Patents

Heat-resistant material for low melting point metal casting apparatus, and manufacturing method therefor Download PDF

Info

Publication number
JP2007268598A
JP2007268598A JP2006100491A JP2006100491A JP2007268598A JP 2007268598 A JP2007268598 A JP 2007268598A JP 2006100491 A JP2006100491 A JP 2006100491A JP 2006100491 A JP2006100491 A JP 2006100491A JP 2007268598 A JP2007268598 A JP 2007268598A
Authority
JP
Japan
Prior art keywords
heat
point metal
resistant material
metal casting
casting apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006100491A
Other languages
Japanese (ja)
Inventor
Akishi Sakamoto
晃史 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2006100491A priority Critical patent/JP2007268598A/en
Publication of JP2007268598A publication Critical patent/JP2007268598A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-resistant material for low melting point metal casting apparatus excellent in durability to molten metal having strong erosiveness, such as magnesium or alloy containing magnesium, produced with a simple method. <P>SOLUTION: A method for producing the heat resistant material for low melting point metal casting apparatus, is provided, with which after impregnating a treating liquid composed by melting a fluoride into a porous heat-resistant formed material, the treated material is dried. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、アルミニウム、マグネシウム、亜鉛、スズ、鉛、あるいはこれらの合金等のように概ね融点が800℃以下である比較的低融点の金属を鋳造する鋳造装置において、これら低融点金属の溶湯と接触する部位に使用される耐熱材料、並びにその製造方法に関する。   The present invention relates to a casting apparatus for casting a relatively low melting point metal having a melting point of approximately 800 ° C. or lower, such as aluminum, magnesium, zinc, tin, lead, or an alloy thereof. The present invention relates to a heat-resistant material used for a contact portion, and a manufacturing method thereof.

鋳造装置において、上述のような金属の溶湯の移送や給湯、保持等を行う注湯ボックスや樋、保持炉等の内張り材、あるいはフロートやスパウト、ホット・トップリング、トランジションプレート等の付属部材として、種々の耐熱材料を加工したものが使用されるが、中でも耐熱性が良好で、軽量でありながらも強度が高く、更に加工性に優れることなどから、けい酸カルシウム質を炭素繊維で補強した耐熱材料が広く利用されている(例えば、特許文献1及び特許文献2参照)。   In casting equipment, as a lining material such as a pouring box, slag, and holding furnace for transferring, supplying and holding molten metal as described above, or as an accessory for floats, spouts, hot top rings, transition plates, etc. Processed from various heat-resistant materials are used. Among them, calcium silicate is reinforced with carbon fiber because of its good heat resistance, light weight, high strength, and excellent workability. Heat resistant materials are widely used (see, for example, Patent Document 1 and Patent Document 2).

特公昭63−53145号公報Japanese Examined Patent Publication No. 63-53145 特公平3−3632号公報Japanese Patent Publication No.3-3363

一方で、デジタルカメラやデジタルビデオカメラ、携帯電話、ノート型コンピュータ等のモバイル機器、あるいは自動車等の高重量物においても、軽量化のために、フレームや筐体をマグネシウム合金で形成する傾向にある。しかし、マグネシウムやマグネシウムを含む合金は活性が非常に高く、これらの溶湯と接触する材料を浸食する作用が極めて強い。そのため、従来のけい酸カルシウム質、またはアルミナ・シリカ系等からなる部品は数回使用しただけで、場合によっては1回の使用で交換しなけばならないという問題があった。   On the other hand, in mobile devices such as digital cameras, digital video cameras, mobile phones, notebook computers, and heavy objects such as automobiles, frames and housings tend to be made of magnesium alloy for weight reduction. . However, magnesium and magnesium-containing alloys have very high activity and have an extremely strong action of eroding materials that come into contact with these molten metals. Therefore, there has been a problem that the conventional parts made of calcium silicate or alumina / silica are used several times, and in some cases must be replaced after one use.

耐食性を高めるために、耐熱性コーティング材を塗布することも試みられているが、窒化ホウ素質をはじめとして既存の耐熱性コーティング材はマグネシウムやマグネシウムを含む合金の溶湯に対して耐食性を改善する効果が少なく、また、溶湯の移動によりコーティング部に応力が掛かるとともに基材との熱膨張率の差に起因して、コーティング部が剥離して効果が全く無くなるという問題もあった。   In order to improve corrosion resistance, it is also attempted to apply a heat-resistant coating material, but existing heat-resistant coating materials such as boron nitride are effective in improving corrosion resistance against molten metal of magnesium and magnesium-containing alloys. In addition, there is a problem that stress is applied to the coating portion due to the movement of the molten metal, and the coating portion is peeled off due to the difference in thermal expansion coefficient from the base material and the effect is completely lost.

本発明は、このような従来の問題点に着目してなされたもので、マグネシウムやマグネシウムを含む合金のように浸食性の強い溶湯に対する耐久性に優れる低融点金属鋳造装置用耐熱材料を簡便な方法により提供することを目的とする。   The present invention has been made paying attention to such conventional problems, and a heat-resistant material for a low-melting-point metal casting apparatus that is excellent in durability against a highly erodible molten metal such as magnesium or an alloy containing magnesium can be simply obtained. It is intended to be provided by a method.

上記の目的を達成するために、本発明は以下の低融点金属鋳造装置用耐熱材料及びその製造方法を提供する。
(1)多孔質の耐熱性成形体に、フッ化物を溶解してなる処理液を含浸させた後、乾燥することを特徴とする低融点金属鋳造装置用耐熱材料の製造方法。
(2)多孔質の耐熱性成形体の気孔率が5〜95%であることを特徴とする上記(1)記載の低融点金属鋳造装置用耐熱材料の製造方法。
(3)フッ化物を、フッ素分として、低融点金属鋳造装置用耐熱材料全量に対し0.01質量%以上保持させることを特徴とする上記(1)または(2)記載の低融点金属鋳造装置用耐熱材料の製造方法。
(4)多孔質の耐熱性成形体がけい酸カルシウムを含むことを特徴とする上記(1)〜(3)の何れか1項に記載の低融点金属鋳造装置用耐熱材料の製造方法。
(5)けい酸カルシウムがワラストナイト(CaSiO)、トバモライト(5CaO・6SiO・5HO)及びゾノトライト(6CaO・6SiO・HO)から選ばれる少なくとも1種を10〜100質量%含有することを特徴とする上記(4)記載の低融点金属鋳造装置用耐熱材料の製造方法。
(6)フッ化物がフッ化ナトリウム(NaF)、フッ化カリウム(KF)及びけいフッ化ナトリウム(NaSiF)から選ばれる少なくとも1種であることを特徴とする上記(1)〜(5)の何れか1項に記載の低融点金属鋳造装置用耐熱材料の製造方法。
(7)多孔質の耐熱性成形体は、予め所望の形状に加工されていることを特徴とする上記(1)〜(6)の何れか1項に記載の低融点金属鋳造装置用耐熱材料の製造方法。
(8)多孔質の耐熱性成形体の空孔内に、フッ化物が保持されていることを特徴とする低融点金属鋳造装置用耐熱材料。
(9)フッ化物の保持量が、フッ素分として、低融点金属鋳造装置用耐熱材料全量に対し0.01質量%以上であることを特徴とする上記(8)記載の低融点金属鋳造装置用耐熱材料。
(10)マグネシウムまたはマグネシウムを含む合金の溶湯と接触する部位に使用されることを特徴とする上記(8)または(9)記載の低融点金属鋳造装置用耐熱材料。
尚、本発明においてマグネシウムを含む合金とは、アルミニウムや亜鉛、スズ、鉛等のマグネシウム以外の低融点金属とマグネシウムとの合金全般を意味し、マグネシウムの含有率は問わないが、現実的には合金全量の0.1質量%〜99.9質量%の範囲でマグネシウムを含むものである。
In order to achieve the above object, the present invention provides the following heat-resistant material for a low-melting-point metal casting apparatus and a method for producing the same.
(1) A method for producing a heat-resistant material for a low-melting-point metal casting apparatus, wherein a porous heat-resistant molded article is impregnated with a treatment liquid obtained by dissolving fluoride and then dried.
(2) The method for producing a heat-resistant material for a low-melting-point metal casting apparatus as described in (1) above, wherein the porosity of the porous heat-resistant molded article is 5 to 95%.
(3) The low-melting-point metal casting apparatus according to (1) or (2), wherein the fluoride is retained as a fluorine content in an amount of 0.01% by mass or more based on the total amount of the heat-resistant material for the low-melting-point metal casting apparatus. For manufacturing heat-resistant materials.
(4) The method for producing a heat-resistant material for a low-melting-point metal casting apparatus according to any one of the above (1) to (3), wherein the porous heat-resistant molded article contains calcium silicate.
(5) The calcium silicate is 10 to 100% by mass of at least one selected from wollastonite (CaSiO 3 ), tobermorite (5CaO · 6SiO 2 · 5H 2 O) and zonotlite (6CaO · 6SiO 2 · H 2 O). A method for producing a heat-resistant material for a low-melting-point metal casting apparatus as described in (4) above, comprising:
(6) The above (1) to (5), wherein the fluoride is at least one selected from sodium fluoride (NaF), potassium fluoride (KF), and sodium fluorofluoride (Na 2 SiF 6 ). The manufacturing method of the heat-resistant material for low melting-point metal casting apparatuses of any one of.
(7) The heat-resistant material for a low-melting-point metal casting apparatus according to any one of (1) to (6), wherein the porous heat-resistant molded body is processed in a desired shape in advance. Manufacturing method.
(8) A heat-resistant material for a low-melting-point metal casting apparatus, characterized in that fluoride is held in the pores of a porous heat-resistant molded body.
(9) The amount of fluoride retained is 0.01% by mass or more based on the total amount of heat-resistant material for a low-melting-point metal casting apparatus as a fluorine content. Heat resistant material.
(10) The heat-resistant material for a low-melting-point metal casting apparatus according to (8) or (9), wherein the heat-resistant material is used for a portion that comes into contact with magnesium or a molten alloy containing magnesium.
In the present invention, the magnesium-containing alloy means an alloy of magnesium and a low melting point metal other than magnesium, such as aluminum, zinc, tin, and lead. Magnesium is contained in the range of 0.1 mass% to 99.9 mass% of the total amount of the alloy.

本発明によれば、塗布または含浸という簡便な方法により、マグネシウムやマグネシウムを含む合金のような浸食性が高い金属の溶湯に対して非常に優れた耐食性が付加された低融点金属鋳造装置用耐熱材料が得られる。そして、得られる低融点金属鋳造装置用耐熱材料は、例えば、鋳造装置の注湯ボックス等に使用した場合、部品の交換頻度が従来と比較して大幅に少なくて済み、材料自体のコストも従来品と比較してほぼ同等であるため、耐久時間と材料コストで、従来と比較してトータル的に非常に安価に鋳造が可能になる。   According to the present invention, heat resistance for a low-melting-point metal casting apparatus in which very excellent corrosion resistance is added to a highly erodible metal melt such as magnesium or an alloy containing magnesium by a simple method of coating or impregnation. A material is obtained. The resulting heat-resistant material for the low-melting-point metal casting apparatus, for example, when used in a pouring box of a casting apparatus, the part replacement frequency is much less than the conventional one, and the cost of the material itself is also conventional. Since it is almost the same as the product, it is possible to cast at a very low total cost compared to the conventional one in terms of durability time and material cost.

以下、本発明に関して詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明では、多孔質の耐熱性成形体に、フッ化物を溶解させた処理液を含浸させ、乾燥することで、耐熱性成形体の空孔内にフッ化物を保持させる。このフッ化物により、マグネシウムやマグネシウムを含む合金のような浸食性が高い金属の溶湯に対して非常に優れた耐食性が付与される。そのため、多孔質の耐熱性成形体は、耐熱性や強度を維持しつつ、フッ化物の保持量を多くするために、その気孔率が5〜95%であることが好ましい。また、多孔質の耐熱性成形体は、使用箇所に応じて次のように適宜選択されてもよい。例えば、取鍋内張り、保持炉内張り、樋のような比較的高い強度が要求される箇所では、気孔率5〜60%、例えば、フロート、スパウト、ホットトップリング、トランジションプレートのような強度と断熱性と両方を求められるような箇所では、気孔率50〜80%、例えば、タップコーンやクッション材のような強度よりも断熱性を要求されるような箇所では、気孔率70〜95%の耐熱性成形体が好適に使用される。気孔率5〜60%の耐熱性成形体としてはキャスタブル質耐火物、気孔率50〜80%の耐熱性成形体としてはけい酸カルシウム質断熱材、気孔率70〜95%の耐熱性成形体としては例えばボード状、ブランケット状、ペーパー状等の無機繊維質断熱材が挙げられる。   In the present invention, the porous heat-resistant molded body is impregnated with a treatment solution in which fluoride is dissolved, and dried to hold the fluoride in the pores of the heat-resistant molded body. This fluoride imparts excellent corrosion resistance to molten metal having high erosion properties such as magnesium and magnesium-containing alloys. For this reason, the porous heat-resistant molded article preferably has a porosity of 5 to 95% in order to increase the amount of fluoride retained while maintaining heat resistance and strength. In addition, the porous heat-resistant molded article may be appropriately selected as follows according to the use location. For example, in places where relatively high strength is required, such as ladle lining, holding furnace lining, and firewood, the porosity is 5 to 60%, for example, strength and heat insulation such as float, spout, hot top ring, transition plate In places where both the properties are required, porosity is 50 to 80%. For example, in places where heat insulation is required rather than strength such as tap cones and cushion materials, heat resistance is 70 to 95%. The molded article is preferably used. As a heat-resistant molded body having a porosity of 5 to 60%, a castable refractory, as a heat-resistant molded body having a porosity of 50 to 80%, as a calcium silicate heat insulating material, and as a heat-resistant molded body having a porosity of 70 to 95%. Examples include inorganic fibrous heat insulating materials such as a board shape, a blanket shape, and a paper shape.

多孔質の耐熱性成形体の種類には制限がなく、これまで低融点金属用の鋳造装置に用いられたり、市販されているものの中から多孔質のもの、好ましくは上記の気孔率のものを選んでそのまま使用してもよいが、中でも、断熱性能や比強度、加工性等に優れることからけい酸カルシウムを含むものが好ましい。けい酸カルシウムは、特に制限はないが、ワラストナイト(CaSiO)、トバモライト(5CaO・6SiO・5HO)及びゾノトライト(6CaO・6SiO・HO)から選ばれる少なくとも1種であることが好ましく、これらを10〜100質量%の割合で含有することが好ましい。 There are no restrictions on the type of porous heat-resistant molded body, and it has been used in casting apparatuses for low-melting-point metals so far, and porous ones that are commercially available, preferably those having the above porosity. They may be selected and used as they are, but among them, those containing calcium silicate are preferable because of excellent heat insulation performance, specific strength, workability and the like. Calcium silicate is not particularly limited, but is at least one selected from wollastonite (CaSiO 3 ), tobermorite (5CaO · 6SiO 2 · 5H 2 O) and zonotlite (6CaO · 6SiO 2 · H 2 O). It is preferable to contain these at a ratio of 10 to 100% by mass.

また、けい酸カルシウム単体であってもよいが、必要に応じて、従来から耐熱材料に配合されている公知の材料を添加してもよい。中でも、補強繊維の添加は好ましく、ガラス繊維や炭素繊維、セラミックス繊維等を0.1〜3質量%の割合で含有させることができる。尚、これら補強繊維の繊維径や繊維長は、繊維径3〜15μm、繊維長3〜10mmのものが補強効果に優れ、好ましい。   Moreover, although calcium silicate single-piece | unit may be sufficient, you may add the well-known material conventionally mix | blended with the heat-resistant material as needed. Among these, addition of reinforcing fibers is preferable, and glass fibers, carbon fibers, ceramic fibers, and the like can be contained in a proportion of 0.1 to 3% by mass. In addition, as for the fiber diameter and fiber length of these reinforcing fibers, those having a fiber diameter of 3 to 15 μm and a fiber length of 3 to 10 mm are excellent in the reinforcing effect and are preferable.

けい酸カルシウムを含む多孔質の成形体を得るには、公知の製造方法を用いることができ、例えば、抄造法や脱水プレス法が用いられればよい。具体的には、けい酸カルシウム原料や補強用繊維を含む水性スラリーを脱水成形して例えば板状の脱水成形物とし、脱水成形物を水熱処理してけい酸カルシウムを生成させればよい。尚、けい酸カルシウム原料は、石灰原料とけい酸原料との混合物であり、石灰、ゾノトライト、ワラストナイト、けい石等で構成される。また、水性スラリーには消泡剤や凝集剤を添加することが好ましく、それぞれスラリー中に固形物換算で0.01〜0.3質量%の割合で添加することができる。尚、消泡剤は、得られる低融点金属鋳造装置用耐熱材料に残留しない方が好ましく、そのため水溶性のものを用いて脱水成形時に水とともに排出することが好ましい。   In order to obtain a porous molded body containing calcium silicate, a known production method can be used. For example, a papermaking method or a dehydration press method may be used. Specifically, an aqueous slurry containing a calcium silicate raw material and reinforcing fibers may be dehydrated to form, for example, a plate-like dehydrated molded product, and the dehydrated molded product may be hydrothermally treated to generate calcium silicate. The calcium silicate raw material is a mixture of a lime raw material and a silicate raw material, and is composed of lime, zonotlite, wollastonite, silica, and the like. Moreover, it is preferable to add an antifoamer and a coagulant | flocculant to an aqueous slurry, and it can add in the ratio of 0.01-0.3 mass% in conversion of a solid in a slurry, respectively. In addition, it is preferable that the antifoaming agent does not remain in the heat-resistant material for the low-melting-point metal casting apparatus to be obtained. Therefore, it is preferable to use a water-soluble material and discharge it together with water during dehydration molding.

水熱処理は、脱水成形物をオートクレーブに入れ、水蒸気雰囲気下で加熱すればよい。この水熱処理はけい酸カルシウムの合成が完了するまで行う必要があり、けい酸カルシウム原料の組成、脱水成形物の大きさ、生成させるけい酸カルシウムの種類に応じて適宜設定されるが、水蒸気圧0.9〜1.8MPa、処理時間2〜20時間が適当である。   In the hydrothermal treatment, the dehydrated molded product may be placed in an autoclave and heated in a steam atmosphere. This hydrothermal treatment needs to be carried out until the synthesis of calcium silicate is completed, and is set as appropriate depending on the composition of the calcium silicate raw material, the size of the dehydrated molded product, and the type of calcium silicate to be produced. 0.9 to 1.8 MPa and a processing time of 2 to 20 hours are appropriate.

水熱処理後に乾燥して低融点金属鋳造装置用耐熱材料が得られ、そのまま使用に供することができるが、この状態でのけい酸カルシウムの結晶形態はワラストナイトとゾノトライトの混合であり、より耐食性を高めるためにゾノトライトの結晶水を脱水させる目的で焼成することが好ましい。焼成は、結晶水を脱水できれば制限がなく、例えば窒素雰囲気中で600〜800℃、2〜5時間行うのが適当である。焼成後のけい酸カルシウムの結晶形態はゾノトライトが脱水しているため、ワラストナイトが主成分となっている。   Drying after hydrothermal treatment yields a heat-resistant material for low-melting-point metal casting equipment, which can be used as it is, but the crystalline form of calcium silicate in this state is a mixture of wollastonite and zonotolite, making it more corrosion resistant In order to increase the crystallization, it is preferable to fire for the purpose of dehydrating water of crystallization of zonotlite. The firing is not limited as long as water of crystallization can be dehydrated. For example, the firing is suitably performed in a nitrogen atmosphere at 600 to 800 ° C. for 2 to 5 hours. The crystal form of calcium silicate after firing is mainly wollastonite because zonotlite is dehydrated.

尚、けい酸カルシウムを含む多孔質の成形体は、上記に限らず、市販品を使用することもできる。   In addition, the porous molded object containing a calcium silicate is not restricted to the above, A commercial item can also be used.

フッ化物は、溶媒に対して0.1質量%以上溶解すれば、特に制限はなく、例えば、けいフッ化水素酸(HSiF)、モノフルオロリン酸ナトリウム(NaPOF)、フッ化スズ(SnF)、フッ化アンモニウム(NHF)、フッ化ナトリウム(NaF)、フッ化カリウム(KF)、けいフッ化ナトリウム(NaSiF)、けいフッ化アンモニウム((NHSiF)等の無機フッ化物が挙げられる。本発明においては、特に安価であることから、フッ化ナトリウム(NaF)、フッ化カリウム(KF)及びけいフッ化ナトリウム(NaSiF)から選ばれる少なくとも1種を用いることが好ましい。 The fluoride is not particularly limited as long as it dissolves by 0.1% by mass or more with respect to the solvent. For example, hydrofluoric acid (H 2 SiF 6 ), sodium monofluorophosphate (Na 2 PO 3 F), Tin fluoride (SnF 2 ), ammonium fluoride (NH 4 F), sodium fluoride (NaF), potassium fluoride (KF), sodium fluorofluoride (Na 2 SiF 6 ), ammonium fluorofluoride ((NH 4 And inorganic fluorides such as 2 SiF 6 ). In the present invention, since it is particularly inexpensive, it is preferable to use at least one selected from sodium fluoride (NaF), potassium fluoride (KF), and sodium fluorofluoride (Na 2 SiF 6 ).

溶媒は、水の他に、エタノール、メタノール等のアルコールやトルエン等の有機溶媒が挙げられるが、扱いやすいといった観点からは水を用いることが好ましい。   Examples of the solvent include water, alcohols such as ethanol and methanol, and organic solvents such as toluene. From the viewpoint of easy handling, it is preferable to use water.

そして、上述したフッ化物を溶媒に溶解して所定の濃度とし、処理液を調製する。   Then, the above-described fluoride is dissolved in a solvent to a predetermined concentration to prepare a treatment liquid.

ところで、本発明の低融点金属鋳造装置用耐熱材料におけるフッ化物の保持量は、十分な耐食性を得るためには、フッ素分で0.1質量%以上であることが好ましく、0.01〜5質量%であることがより好ましく、更に好ましくは0.1〜2.5質量%、特に好ましくは0.1〜1.5質量%である。そのため、処理液におけるフッ化物の濃度をこのような保持量となるように適宜調整する。   By the way, in order to obtain sufficient corrosion resistance, the retained amount of fluoride in the heat-resistant material for a low-melting-point metal casting apparatus of the present invention is preferably 0.1% by mass or more in terms of fluorine content, and 0.01 to 5 More preferably, it is 0.1 mass%, More preferably, it is 0.1-2.5 mass%, Most preferably, it is 0.1-1.5 mass%. For this reason, the concentration of fluoride in the treatment liquid is appropriately adjusted so as to have such a holding amount.

上記の処理液を多孔質の耐熱性成形体に含浸させるには、塗布やスプレー噴射、浸漬等の公知の手段が何れも可能である。中でも、処理液を多孔質の耐熱性成形体のより深部まで十分に含浸させるためには浸漬法が効率的である。   In order to impregnate the porous heat-resistant molded article with the treatment liquid, any known means such as coating, spraying, or dipping can be used. Among them, the dipping method is efficient in order to sufficiently impregnate the treatment liquid into a deeper portion of the porous heat-resistant molded body.

処理液を含浸させた後、乾燥して処理液中の水分を蒸発させて空孔内にフッ化物を保持させることで、本発明の低融点金属鋳造装置用耐熱材料が得られる。本発明の低融点金属鋳造装置用耐熱材料は、フッ化物により優れた耐食性が付与されており、特にマグネシウムやマグネシウムを含む合金の溶湯と接触する部位に最適である。また、多孔質の耐熱性成形体としてけい酸カルシウムを用いた場合には、加工性に優れ、切削加工等により容易に所望形状に加工することができるようになる。そのため、マグネシウムやマグネシウムを含む合金を鋳造する装置の注湯ボックスや樋、保持炉等の内張り材、あるいはフロートやスパウト、ホット・トップリング、トランジションプレート等の付属部材として好適である。   After impregnating with the treatment liquid, drying is performed to evaporate water in the treatment liquid and retain the fluoride in the pores, whereby the heat-resistant material for a low melting point metal casting apparatus of the present invention is obtained. The heat-resistant material for a low-melting-point metal casting apparatus of the present invention is imparted with excellent corrosion resistance by fluoride, and is particularly suitable for a portion that comes into contact with magnesium or a molten alloy containing magnesium. Further, when calcium silicate is used as the porous heat-resistant molded article, it is excellent in workability and can be easily processed into a desired shape by cutting or the like. Therefore, it is suitable as a lining material such as a pouring box, a tub, a holding furnace or the like of an apparatus for casting magnesium or an alloy containing magnesium, or an accessory member such as a float, a spout, a hot top ring, or a transition plate.

上記において、耐熱性成形体は、予め所望の形状に成形されていてもよい。フッ化物を保持させた後に耐熱性成形体を切削加工してもよいが、予め所望の形状とした耐熱性成形体にフッ化物を保持させる方が、含浸作業において塗布面積が少なくて済み、浸漬容器も小さくてよく、それに伴い塗布量や含浸量も少なくなるという利点が得られる。   In the above, the heat resistant molded body may be previously molded into a desired shape. The heat-resistant molded body may be cut after holding the fluoride, but holding the fluoride in a heat-resistant molded body that has been previously formed in a smaller shape requires less coating area in the impregnation operation, soaking The container can be made small, and the advantage that the coating amount and the impregnation amount are reduced accordingly.

以下に実施例及び比較例を挙げて本発明について更に説明するが、本発明はこれにより制限されるものではない。   EXAMPLES The present invention will be further described below with reference to examples and comparative examples, but the present invention is not limited thereby.

(実施例1〜14、比較例1〜2)
表1及び表2に示す配合にて、フッ化物処理液を調製した。尚、用いたフッ化物のフッ素分比率及び水に対する溶解度は以下のとおりである。また、これらフッ化物は、和光純薬工業株式会社製の試薬を用いた。
(Examples 1-14, Comparative Examples 1-2)
Fluoride treatment liquids were prepared with the formulations shown in Tables 1 and 2. In addition, the fluorine content ratio of the used fluoride and the solubility with respect to water are as follows. Moreover, the reagent made from Wako Pure Chemical Industries Ltd. was used for these fluorides.

Figure 2007268598
Figure 2007268598

また、多孔質の耐熱性成形体として、ニチアス株式会社製「ルミボード LH−200S」(気孔率71%)またはニチアス株式会社製「ルミサル LD」(気孔率52%)を用意し、処理液に1時間浸漬した後、105℃で24時間乾燥して試験体を得た。尚、耐熱性成形体の気孔率はJIS R2614に準じて測定した。   Also, as a porous heat-resistant molded product, “Lumiboard LH-200S” (porosity 71%) manufactured by NICHIAS CORPORATION or “LUMISAL LD” (porosity 52%) manufactured by NICHIAS CO., LTD. Is prepared. After immersion for a period of time, the specimen was dried at 105 ° C. for 24 hours to obtain a test specimen. In addition, the porosity of the heat resistant molded body was measured according to JIS R2614.

各試験体について、処理前後の重量差からフッ化物の保持量を測定し、更にフッ素分を算出した。また、下記に示す浸食試験を行った。測定結果及び試験結果を同表に示す。
<浸食試験>
試験体から一辺が約70mmの正方形で、厚さが25mmの試験片を切り出し、図1に模式的に示すように、セッター上に配置された試験片のほぼ中心部にマグネシウム合金(AZ31)からなる直径8mmで高さ10mmの円柱を置き、円柱の上面に0.2MPaの荷重を加えた状態で、アルゴン雰囲気中で室温から2時間かけて800℃まで昇温してマグネシウム合金を溶融させ、その後、マグネシウム合金融液の液面上に同荷重を負荷した状態で、アルゴン雰囲気中、800℃にて1時間保持し、マグネシウム合金融液と試験片との接触状態を保った。1時間後、開圧してマグネシウム合金融液を試験片の表面から回収し、室温まで冷却した後、試験片の断面を観察してマグネシウム合金融液との接触により浸食された部分の面積を測定した。また、全く問題なしを「◎」、実用上特に問題なしを「○」、多少問題があるが実用上問題なしを「△」、実用上問題ありを「×」とし、同表に記した。
For each specimen, the amount of fluoride retained was measured from the weight difference before and after treatment, and the fluorine content was further calculated. Moreover, the following erosion test was conducted. The measurement results and test results are shown in the same table.
<Erosion test>
A test piece having a square of about 70 mm on one side and a thickness of 25 mm was cut out from the test body and, as schematically shown in FIG. 1, a magnesium alloy (AZ31) was formed at the center of the test piece arranged on the setter. A cylinder having a diameter of 8 mm and a height of 10 mm is placed, and with a 0.2 MPa load applied to the upper surface of the cylinder, the magnesium alloy is melted by raising the temperature from room temperature to 800 ° C. over 2 hours in an argon atmosphere. Then, in the state which loaded the same load on the liquid surface of the magnesium compound financial liquid, it hold | maintained at 800 degreeC in argon atmosphere for 1 hour, and the contact state of a magnesium compound financial liquid and a test piece was maintained. One hour later, the pressure is released and the magnesium combined liquid is collected from the surface of the test piece, cooled to room temperature, and then the cross section of the test piece is observed to measure the area of the portion eroded by contact with the magnesium combined financial liquid. did. In addition, “◎” indicates that there is no problem at all, “◯” indicates that there is no problem in practical use, “Δ” indicates that there is some problem but there is no problem in practical use, and “x” indicates that there is no problem in practical use.

Figure 2007268598
Figure 2007268598

Figure 2007268598
Figure 2007268598

実施例の各試験体は、フッ化物を保持してない比較例の試験体と比較して耐食性が向上している。特に、フッ素分として0.2質量%以上の保持量になると、浸食は殆ど見られず、優れた耐食性が付与されている。   Each test body of the examples has improved corrosion resistance compared to the test body of the comparative example that does not hold fluoride. In particular, when the retention amount is 0.2% by mass or more as the fluorine content, erosion is hardly observed and excellent corrosion resistance is imparted.

実施例において、浸食試験の試験方法を説明するための模式図である。In an Example, it is a schematic diagram for demonstrating the test method of an erosion test.

Claims (10)

多孔質の耐熱性成形体に、フッ化物を溶解してなる処理液を含浸させた後、乾燥することを特徴とする低融点金属鋳造装置用耐熱材料の製造方法。   A method for producing a heat-resistant material for a low-melting-point metal casting apparatus, comprising impregnating a porous heat-resistant molded body with a treatment liquid obtained by dissolving fluoride and then drying the liquid. 多孔質の耐熱性成形体の気孔率が5〜95%であることを特徴とする請求項1記載の低融点金属鋳造装置用耐熱材料の製造方法。   The method for producing a heat-resistant material for a low-melting-point metal casting apparatus according to claim 1, wherein the porosity of the porous heat-resistant molded article is 5 to 95%. フッ化物を、フッ素分として、低融点金属鋳造装置用耐熱材料全量に対し0.01質量%以上保持させることを特徴とする請求項1または2記載の低融点金属鋳造装置用耐熱材料の製造方法。   The method for producing a heat-resistant material for a low-melting-point metal casting apparatus according to claim 1 or 2, wherein the fluoride is retained in an amount of 0.01 mass% or more based on the total amount of the heat-resistant material for a low-melting-point metal casting apparatus as a fluorine content. . 多孔質の耐熱性成形体がけい酸カルシウムを含むことを特徴とする請求項1〜3の何れか1項に記載の低融点金属鋳造装置用耐熱材料の製造方法。   The method for producing a heat-resistant material for a low-melting-point metal casting apparatus according to any one of claims 1 to 3, wherein the porous heat-resistant molded article contains calcium silicate. けい酸カルシウムがワラストナイト(CaSiO)、トバモライト(5CaO・6SiO・5HO)及びゾノトライト(6CaO・6SiO・HO)から選ばれる少なくとも1種を10〜100質量%含有することを特徴とする請求項4記載の低融点金属鋳造装置用耐熱材料の製造方法。 The calcium silicate contains 10 to 100% by mass of at least one selected from wollastonite (CaSiO 3 ), tobermorite (5CaO · 6SiO 2 · 5H 2 O) and xonotlite (6CaO · 6SiO 2 · H 2 O). The method for producing a heat-resistant material for a low-melting-point metal casting apparatus according to claim 4. フッ化物がフッ化ナトリウム(NaF)、フッ化カリウム(KF)及びけいフッ化ナトリウム(NaSiF)から選ばれる少なくとも1種であることを特徴とする請求項1〜5の何れか1項に記載の低融点金属鋳造装置用耐熱材料の製造方法。 6. The fluoride according to claim 1, wherein the fluoride is at least one selected from sodium fluoride (NaF), potassium fluoride (KF), and sodium fluorofluoride (Na 2 SiF 6 ). The manufacturing method of the heat-resistant material for low melting-point metal casting apparatuses as described in any one of. 多孔質の耐熱性成形体は、予め所望の形状に加工されていることを特徴とする請求項1〜6の何れか1項に記載の低融点金属鋳造装置用耐熱材料の製造方法。   The method for producing a heat-resistant material for a low-melting-point metal casting apparatus according to any one of claims 1 to 6, wherein the porous heat-resistant molded body is processed into a desired shape in advance. 多孔質の耐熱性成形体の空孔内に、フッ化物が保持されていることを特徴とする低融点金属鋳造装置用耐熱材料。   A heat-resistant material for a low-melting-point metal casting apparatus, characterized in that fluoride is held in pores of a porous heat-resistant molded body. フッ化物の保持量が、フッ素分として、低融点金属鋳造装置用耐熱材料全量に対し0.01質量%以上であることを特徴とする請求項8記載の低融点金属鋳造装置用耐熱材料。   9. The heat-resistant material for a low-melting-point metal casting apparatus according to claim 8, wherein the retained amount of fluoride is 0.01% by mass or more based on the total amount of the heat-resistant material for a low-melting-point metal casting apparatus as a fluorine content. マグネシウムまたはマグネシウムを含む合金の溶湯と接触する部位に使用されることを特徴とする請求項8または9記載の低融点金属鋳造装置用耐熱材料。   The heat-resistant material for a low-melting-point metal casting apparatus according to claim 8 or 9, wherein the heat-resistant material is used for a portion that comes into contact with magnesium or a molten alloy of magnesium.
JP2006100491A 2006-03-31 2006-03-31 Heat-resistant material for low melting point metal casting apparatus, and manufacturing method therefor Pending JP2007268598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006100491A JP2007268598A (en) 2006-03-31 2006-03-31 Heat-resistant material for low melting point metal casting apparatus, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006100491A JP2007268598A (en) 2006-03-31 2006-03-31 Heat-resistant material for low melting point metal casting apparatus, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2007268598A true JP2007268598A (en) 2007-10-18

Family

ID=38671935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006100491A Pending JP2007268598A (en) 2006-03-31 2006-03-31 Heat-resistant material for low melting point metal casting apparatus, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2007268598A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194597A (en) * 2009-02-26 2010-09-09 A & A Material Corp Calcium silicate heat-resistant material for casting device for magnesium or magnesium alloy, and method for manufacturing the same material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194597A (en) * 2009-02-26 2010-09-09 A & A Material Corp Calcium silicate heat-resistant material for casting device for magnesium or magnesium alloy, and method for manufacturing the same material

Similar Documents

Publication Publication Date Title
JP5420815B2 (en) Heat resistant material for low melting point metal casting equipment
CN102040386B (en) Torpedo can spouting material and spouting method thereof
CN110563451B (en) Ceramic ladle castable and preparation method thereof
JP2007269605A (en) Molten siliceous refractory and method for manufacturing the same
RU2521005C1 (en) Composition for manufacturing heat resistant composites
JP5561999B2 (en) Refractory molded body for metal casting, method for producing refractory molded body for metal casting, amorphous refractory composition for metal casting, and molten metal holding member for metal casting
CN103525968A (en) Cover material covering nodularizer in graphite spheroidizing of cast iron
JPS62265151A (en) Forming material
KR20140139576A (en) Molten steel container
JP2011032119A (en) COATING MATERIAL WITH FeO RESISTANCE
JP5110539B2 (en) FeO resistant coating material
JP2007268598A (en) Heat-resistant material for low melting point metal casting apparatus, and manufacturing method therefor
JP4868913B2 (en) Heat resistant coating material and member for low melting point metal casting equipment
JP2008297163A (en) Monolithic refractory and method for manufacturing refractory
JP5639243B2 (en) Heat resistant material for low melting point metal casting equipment
JP4878887B2 (en) Components for low melting metal casting equipment
RU2411297C2 (en) Procedure for refinement of aluminium from impurities and furnace for implementation of procedure
JPH0412064A (en) Surface treated graphite for monolithic refractory and monolithic refractory for pretreating hot metal
JP2008247720A (en) Monolithic refractory forming material and monolithic refractory formed body
JP3016124B2 (en) Molten container and aluminum holding furnace
JP2010236782A (en) Method of constructing refractory material lining layer
CN106111952A (en) A kind of mould steel ingot casting powder
JP2010215445A (en) Refractory brick
JP2019196300A (en) Heat insulation material and manufacturing method therefor, and composition
JP5507094B2 (en) Method for producing calcium silicate heat-resistant material for casting apparatus of magnesium or magnesium alloy

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129