JP2007268459A - Catalyst for reforming methanol with steam and method for preparing the same - Google Patents

Catalyst for reforming methanol with steam and method for preparing the same Download PDF

Info

Publication number
JP2007268459A
JP2007268459A JP2006098660A JP2006098660A JP2007268459A JP 2007268459 A JP2007268459 A JP 2007268459A JP 2006098660 A JP2006098660 A JP 2006098660A JP 2006098660 A JP2006098660 A JP 2006098660A JP 2007268459 A JP2007268459 A JP 2007268459A
Authority
JP
Japan
Prior art keywords
copper
catalyst
zinc
steam reforming
methanol steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006098660A
Other languages
Japanese (ja)
Other versions
JP4705503B2 (en
Inventor
Masaaki Matsubara
正明 松原
Seiichi Yamamoto
誠一 山本
Takeshi Yamashita
岳史 山下
Akitoshi Fujisawa
彰利 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006098660A priority Critical patent/JP4705503B2/en
Publication of JP2007268459A publication Critical patent/JP2007268459A/en
Application granted granted Critical
Publication of JP4705503B2 publication Critical patent/JP4705503B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for reforming methanol with steam comprised of a catalyst component comprising copper and zinc formed by a simple method on the surface of a copper substrate which is readily moldable and excellent in heat conductivity. <P>SOLUTION: The catalyst 1 for reforming methanol with steam comprises copper and zinc exposed on the surface of a copper plate, a copper cylinder, or a copper pipe prepared by first forming a plating layer of zinc on one of the copper articles and subsequently subjecting the plated article to a calcination treatment, and further can readily be micromolded into various structures such as a recessed channel, a laminated board, a wave shape, a honeycomb or grid shape, and a double tube structure and is compact. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、メタノール水蒸気改質触媒およびその製造方法に関し、特に銅基材表面に銅−亜鉛系触媒層を形成したメタノール水蒸気改質触媒に関するものである。   The present invention relates to a methanol steam reforming catalyst and a method for producing the same, and more particularly to a methanol steam reforming catalyst in which a copper-zinc catalyst layer is formed on the surface of a copper substrate.

通常、触媒反応は、容器に粒状の触媒を充填して行われることが多いが、近年、より効率の良い触媒反応装置としてマイクロリアクタが注目されている。この触媒反応用のマイクロリアクタは、反応場である微小な(1mm程度以下)流路の壁面に触媒を担持させたものである。
このマイクロリアクタは、流路幅が微小であるため、単位体積当たりの伝熱面積が大きく、精密な反応温度の制御が可能、理想的な押し出し流れに近く反応時間が厳密に制御できるなどの特徴がある。この特徴により、マイクロリアクタは、高い反応転化率が得られ、また副反応が抑制されるため目的の反応だけを促進することができる、つまり反応選択率を向上させることができる。
また、マイクロリアクタは、微小な流路を集積した構造であるため、従来の触媒反応容器と比較して、装置の大幅なコンパクト化が可能である。
Usually, the catalytic reaction is often performed by filling a granular catalyst in a container, but in recent years, a microreactor has attracted attention as a more efficient catalytic reaction apparatus. This microreactor for catalytic reaction is one in which a catalyst is supported on the wall surface of a minute (about 1 mm or less) flow path as a reaction field.
This microreactor has features such as a small flow path width, large heat transfer area per unit volume, precise control of reaction temperature, close to ideal extrusion flow, and precise control of reaction time. is there. With this feature, the microreactor can obtain a high reaction conversion rate and suppress side reactions, so that only the desired reaction can be promoted, that is, the reaction selectivity can be improved.
In addition, since the microreactor has a structure in which minute flow paths are integrated, the apparatus can be greatly downsized as compared with a conventional catalytic reaction vessel.

一方、近年、次世代のクリーン燃料として水素が注目されている。水素は天然ガス、ガソリン等種々の原料から製造できるが、メタノールの水蒸気改質で水素を製造する方法は、安全性が高く、また、比較的低温(200〜300℃)の反応であるため、中低温排熱の利用が可能であるという利点を有する。
メタノール水蒸気改質反応は吸熱反応であり、温度が厳密に制御可能なマイクロリアクタを利用することで、反応効率を向上させることができるため、メタノール水蒸気改質反応は、マイクロリアクタのメリットが活かせる反応である。
メタノール水蒸気改質の触媒は銅−亜鉛系触媒である。従って、メタノール水蒸気改質反応により水素を製造するためのマイクロリアクタを実現するためには、微小な流路表面に触媒成分である亜鉛と銅を被着させることが必要である。
On the other hand, in recent years, hydrogen has attracted attention as a next-generation clean fuel. Hydrogen can be produced from various raw materials such as natural gas and gasoline, but the method of producing hydrogen by steam reforming of methanol is highly safe and is a reaction at a relatively low temperature (200 to 300 ° C.). There is an advantage that it is possible to use mid- and low-temperature exhaust heat.
The methanol steam reforming reaction is an endothermic reaction, and the reaction efficiency can be improved by using a microreactor whose temperature can be strictly controlled. Therefore, the methanol steam reforming reaction is a reaction that can take advantage of the microreactor. is there.
The catalyst for methanol steam reforming is a copper-zinc catalyst. Therefore, in order to realize a microreactor for producing hydrogen by a methanol steam reforming reaction, it is necessary to deposit zinc and copper as catalyst components on the surface of a minute channel.

微小な流路表面に銅−亜鉛系触媒層を形成させる方法として、例えば、特許文献1では、アルミニウム基材を陽極酸化処理(アルマイト処理)して多孔質化した後、亜鉛溶液と銅溶液中で銅と亜鉛を担持し、焼成することにより、アルミニウム基材表面に銅−亜鉛系触媒層を形成させる方法が提案されている。
また、特許文献2には、ニッケル−亜鉛系触媒層をアルミニウム基材表面に無電解めっきにより形成させる方法が提案されている。
As a method for forming a copper-zinc based catalyst layer on the surface of a minute flow path, for example, in Patent Document 1, after an aluminum base material is anodized (anodized) to make it porous, then in a zinc solution and a copper solution A method of forming a copper-zinc based catalyst layer on the surface of an aluminum substrate by supporting and firing copper and zinc is proposed.
Patent Document 2 proposes a method of forming a nickel-zinc based catalyst layer on the surface of an aluminum substrate by electroless plating.

特開2001−302203号公報JP 2001-302203 A 特開平3−119094号公報Japanese Patent Laid-Open No. 3-119094

しかしながら、特許文献1の方法が適用できる材料はアルミニウムのみであり、また、微細流路の形状によっては流路内面を陽極酸化することが困難であるという問題があった。また、特許文献2の方法で銅−亜鉛系触媒層をアルミニウム表面に形成させるためには、ニッケルを銅に置き換える必要があるが、銅無電解めっき浴中では、亜鉛被膜が溶解してしまうため、亜鉛めっきの上から銅無電解めっきをすることはできなかった。     However, the material to which the method of Patent Document 1 can be applied is only aluminum, and depending on the shape of the fine channel, there is a problem that it is difficult to anodize the inner surface of the channel. In addition, in order to form the copper-zinc based catalyst layer on the aluminum surface by the method of Patent Document 2, it is necessary to replace nickel with copper, but the zinc coating dissolves in the copper electroless plating bath. The copper electroless plating could not be performed on the zinc plating.

本発明は、このような事情に鑑みてなされたものであり、加工性・熱伝導性のよい銅基材の表面に、銅−亜鉛系触媒層を形成したメタノール水蒸気改質触媒とその製造方法を提供することを課題とする。   The present invention has been made in view of such circumstances, and a methanol steam reforming catalyst in which a copper-zinc based catalyst layer is formed on the surface of a copper base material having good workability and thermal conductivity, and a method for producing the same. It is an issue to provide.

前記課題を解決するために、請求項1に記載のメタノール水蒸気改質触媒は、銅板の片面または両面に亜鉛のめっき層を形成し、焼成処理により前記銅および前記亜鉛を表面に露出させたことを特徴としている。   In order to solve the above-mentioned problem, the methanol steam reforming catalyst according to claim 1, wherein a zinc plating layer is formed on one side or both sides of a copper plate, and the copper and the zinc are exposed to the surface by a firing treatment. It is characterized by.

この構成により、銅板と、亜鉛めっき層との簡単な構成で、加工性・熱伝導性および反応効率のよい触媒が提供できる。   With this configuration, it is possible to provide a catalyst with good processability, thermal conductivity, and reaction efficiency with a simple configuration of a copper plate and a galvanized layer.

請求項2に記載のメタノール水蒸気改質触媒は、前記銅板が、さらに、ガスケットと交互に積層され、メタノールが流通する少なくとも1つの空間層を設けて、反応容器に装着可能に固定されたことを特徴としている。また、請求項3に記載のメタノール水蒸気改質触媒は、前記銅板が、波型の銅板であることを特徴としている。   The methanol steam reforming catalyst according to claim 2, wherein the copper plate is further laminated alternately with gaskets, and provided with at least one space layer through which methanol flows, and is fixed so as to be attachable to the reaction vessel. It is a feature. The methanol steam reforming catalyst according to claim 3 is characterized in that the copper plate is a corrugated copper plate.

この構成により、銅板の特性を活かして、よりコンパクトで、温度制御が可能な触媒として提供でき、また反応容器に装着容易な形状とすることができる。   With this configuration, the characteristics of the copper plate can be utilized to provide a more compact and temperature-controllable catalyst, and the shape can be easily mounted on the reaction vessel.

請求項4に記載の発明は、ハニカム状または格子状銅筒の内壁に亜鉛のめっき層を形成し、焼成処理により前記銅および前記亜鉛を表面に露出させたことを特徴としている。   The invention according to claim 4 is characterized in that a zinc plating layer is formed on the inner wall of a honeycomb-like or lattice-like copper cylinder, and the copper and the zinc are exposed on the surface by a firing treatment.

この構成により、銅筒と、亜鉛めっき層との簡単な構成で、加工性・熱伝導性および反応効率のよい触媒が提供でき、また、銅筒の特性を活かして、よりコンパクトで、温度制御が可能な触媒として提供でき、また反応容器に装着容易な形状とすることができる。   With this configuration, it is possible to provide a catalyst with good processability, thermal conductivity, and reaction efficiency with a simple configuration of a copper cylinder and a galvanized layer, and more compact and temperature control utilizing the characteristics of the copper cylinder. Can be provided as a possible catalyst, and can be formed into a shape that can be easily attached to the reaction vessel.

請求項5に記載の発明は、銅管の内面、外面または両面に亜鉛めっき層を形成し、焼成処理により前記銅および前記亜鉛を表面に露出させたことを特徴としている。また、請求項6に記載のメタノール水蒸気改質触媒は、前記金属管が、さらに、径の異なる多重管として形成され、メタノールが流通する少なくとも一つの空間を設けたことを特徴としている。   The invention described in claim 5 is characterized in that a galvanized layer is formed on the inner surface, outer surface or both surfaces of a copper tube, and the copper and the zinc are exposed on the surface by a baking treatment. The methanol steam reforming catalyst according to claim 6 is characterized in that the metal pipe is further formed as a multiple pipe having different diameters and provided with at least one space through which methanol flows.

この構成により、銅管と、亜鉛めっき層との簡単な構成で、加工性・熱伝導性および反応効率のよい触媒が提供でき、また、銅管の特性を活かして、よりコンパクトで、温度制御が可能な触媒として提供でき、また他の排熱を利用する熱交換型反応容器とすることもできる。   With this configuration, it is possible to provide a catalyst with good processability, thermal conductivity, and reaction efficiency with a simple configuration of a copper tube and a galvanized layer, and more compact and temperature control utilizing the characteristics of the copper tube. It is also possible to provide a heat exchange type reaction vessel that uses other exhaust heat.

請求項7に記載のメタノール水蒸気改質触媒は、前記銅板、前記銅筒または前記銅管の表面に、同一方向に複数の凹状または波状の溝を設けたことを特徴としている。
この構成により、触媒の接触面積をさらに大きくできるので、よりコンパクトで、温度制御が可能な触媒として提供できる。
The methanol steam reforming catalyst according to claim 7 is characterized in that a plurality of concave or wavy grooves are provided in the same direction on the surface of the copper plate, the copper tube or the copper tube.
With this configuration, since the contact area of the catalyst can be further increased, the catalyst can be provided as a more compact and temperature-controllable catalyst.

請求項8に記載のメタノール水蒸気改質触媒の製造方法は、銅表面に亜鉛のめっき層を形成し、焼成処理により前記銅および前記亜鉛を表面に露出させたことを特徴としている。   The method for producing a methanol steam reforming catalyst according to claim 8 is characterized in that a zinc plating layer is formed on a copper surface, and the copper and the zinc are exposed on the surface by a baking treatment.

この構成により、銅表面に亜鉛をめっきして焼成処理する簡単な工程で、加工性・熱伝導性および反応効率のよい触媒が製造できる。   With this configuration, a catalyst with good processability, thermal conductivity, and reaction efficiency can be manufactured by a simple process of plating zinc on the copper surface and firing.

本発明に係るメタノール水蒸気改質触媒は、加工性・熱伝導性のよい銅基材の表面に、銅−亜鉛系触媒層を形成させることができるため、よりコンパクトで、温度制御が可能となり、また銅基材の特性を活かして、微細流路加工が容易な触媒とすることができる。
また本発明に係るメタノール水蒸気改質触媒の製造方法は、銅自体が触媒成分として働くため、材料に無駄がなく、簡単な工程で触媒層を形成させることができる。
The methanol steam reforming catalyst according to the present invention is capable of forming a copper-zinc based catalyst layer on the surface of a copper base material having good processability and thermal conductivity, so it is more compact and temperature control is possible. Further, by utilizing the characteristics of the copper base material, a catalyst that can be easily processed into a fine channel can be obtained.
In the method for producing a methanol steam reforming catalyst according to the present invention, since copper itself works as a catalyst component, the material is not wasted and a catalyst layer can be formed by a simple process.

以下、本発明を実施するための最良の形態について説明する。
本発明に係るメタノール水蒸気改質触媒は、メタノールと水(水蒸気)を触媒反応させて水素を得るものである。この水素は燃料電池に供給されて電気となり、自動車やパソコン・携帯電話、そして家庭用等のクリーンなエネルギー源として注目されている。そのため、本メタノール水蒸気改質触媒においても、高反応効率(高水素転化率)は無論のこと、小型化、軽量化、加工性、そして高伝熱性なども求められ、マイクロリアクタ(超小型反応容器)の主要構成部品としても重要な位置づけとなっている。
Hereinafter, the best mode for carrying out the present invention will be described.
The methanol steam reforming catalyst according to the present invention is a catalyst for reacting methanol with water (steam) to obtain hydrogen. This hydrogen is supplied to fuel cells to become electricity, and is attracting attention as a clean energy source for automobiles, personal computers, mobile phones, and homes. For this reason, this methanol steam reforming catalyst not only has high reaction efficiency (high hydrogen conversion), but also requires miniaturization, weight reduction, processability, and high heat transfer. It is also positioned as an important component of

また、本発明に係るメタノール水蒸気改質触媒は、熱伝導性が高く、微細加工が容易な銅基材に、亜鉛のめっき層を形成した後、焼成処理を行うことにより、銅基材表面に銅および亜鉛を露出させて銅−亜鉛系触媒層を形成させるものである。   In addition, the methanol steam reforming catalyst according to the present invention is formed on a copper base material surface by performing a baking treatment after forming a zinc plating layer on a copper base material having high thermal conductivity and easy microfabrication. Copper and zinc are exposed to form a copper-zinc based catalyst layer.

(銅基材の構造)
まず、図面を用いて本実施形態に係る銅基材の構造と、メタノール水蒸気改質触媒(以下、改質触媒とも言う)の形状の例について説明する。
図1(a)はメタノール水蒸気改質触媒1の平面図、図1(b)は、(a)のA−A断面とした断面図である。図1に示すように、銅板2の片面に、同一方向に複数の凹溝を設けてメタノールと水蒸気の流路とし、その表面に亜鉛めっきと焼成処理による銅−亜鉛系触媒層を形成し(図示なし)、メタノール水蒸気改質触媒1とした。ここで、銅板2は一辺の長さ100mmの正方形で、厚さは3mmである。流路は、幅0.5mm、深さ2mmの溝を90本設けた(図1では流路の一部を表示)。この程度の大きさの溝であれば、溝加工、めっき層形成、焼成処理および流路での改質反応効率のいずれにおいても問題はない。
(Copper base structure)
First, the structure of the copper base material according to the present embodiment and an example of the shape of a methanol steam reforming catalyst (hereinafter also referred to as a reforming catalyst) will be described with reference to the drawings.
FIG. 1A is a plan view of the methanol steam reforming catalyst 1, and FIG. 1B is a cross-sectional view taken along the line AA of FIG. As shown in FIG. 1, a plurality of concave grooves are provided on one side of a copper plate 2 in the same direction to form a methanol and water vapor channel, and a copper-zinc catalyst layer is formed on the surface by galvanizing and firing treatment ( Methanol steam reforming catalyst 1 was obtained. Here, the copper plate 2 is a square with a side length of 100 mm and a thickness of 3 mm. The channel was provided with 90 grooves having a width of 0.5 mm and a depth of 2 mm (FIG. 1 shows a part of the channel). If the groove has such a size, there is no problem in any of the groove processing, plating layer formation, firing treatment, and reforming reaction efficiency in the flow path.

図2は、改質触媒1を装着する平行四辺形の反応ケースを真上から見た図である。図2(a)は、反応ケースのフタ3であり、メタノールと水蒸気からなるガスのガス入口5と、生成ガス(水素)のガス出口6の2つの貫通孔が設けられている。このフタ3の下側の面は、流路の一部を構成するので、前記と同様の亜鉛めっきと焼成処理により触媒層を形成している。図2(b)は反応ケース4の本体であり、深さ3mmの窪みを設けて、改質触媒1(銅板2)を収納し、かつ、ガスがガス入口5からガス出口6へ流通できる空間を形成している。なおフタ3および反応ケース4の形状は、平行四辺形以外でも構わない。
図2(c)は、反応ケース4の窪みに、改質触媒1(銅板2)を収納した図を示している。
FIG. 2 is a view of a parallelogram reaction case in which the reforming catalyst 1 is mounted as seen from directly above. FIG. 2A shows a reaction case lid 3, which is provided with two through holes, a gas inlet 5 for a gas composed of methanol and water vapor, and a gas outlet 6 for a product gas (hydrogen). Since the lower surface of the lid 3 constitutes a part of the flow path, the catalyst layer is formed by the same zinc plating and baking treatment as described above. FIG. 2 (b) shows the main body of the reaction case 4, which is provided with a recess having a depth of 3 mm to accommodate the reforming catalyst 1 (copper plate 2) and allow gas to flow from the gas inlet 5 to the gas outlet 6. Is forming. The shapes of the lid 3 and the reaction case 4 may be other than the parallelogram.
FIG. 2 (c) shows a view in which the reforming catalyst 1 (copper plate 2) is accommodated in the recess of the reaction case 4.

図3は、前記した反応ケース4に改質触媒1を収納したものを、フタ3とともにボルト締め7で固定した反応容器の断面図であり、コンパクトなマイクロリアクタとしての一形態を示している。   FIG. 3 is a cross-sectional view of a reaction vessel in which the reforming catalyst 1 is housed in the reaction case 4 and fixed with bolts 7 together with the lid 3, and shows one form of a compact microreactor.

図4は、銅板2の加工の変形例であり、図4(a)はV字波状の溝、図4(b)は、U字波状の溝を示した図である。このように銅板の加工容易性を活かして、表面積を大きくし、且つ伝熱性の良い構造の変形例が可能である。   FIG. 4 is a modified example of the processing of the copper plate 2, and FIG. 4A shows a V-shaped groove, and FIG. 4B shows a U-shaped groove. In this way, a modification of the structure having a large surface area and good heat conductivity is possible by taking advantage of the processability of the copper plate.

また、複数の改質触媒1(銅板2)を組み合わせた例を図5に示す。
図5(a)は、4枚の銅板2と、3対のガスケット11とを交互に積層し、3層の空間層10(ガス流路)を形成して、ボルト締め7で固定し、メタノール水蒸気改質触媒1の触媒エレメントとした図である。このとき、中間の2枚の銅板2は、その両面に触媒層を形成し、一番上と下の銅板2は、内側(片面)のみに触媒層を形成する。このように構成された触媒エレメントを、燃料電池の反応容器(図示なし)に着脱自在となるように装着すれば、触媒の活性が落ちたときに、その交換が容易である。
Moreover, the example which combined the some reforming catalyst 1 (copper plate 2) is shown in FIG.
In FIG. 5A, four copper plates 2 and three pairs of gaskets 11 are alternately laminated to form a three-layer space layer 10 (gas flow path), which is fixed with bolts 7 and methanol. 1 is a view showing a catalytic element of a steam reforming catalyst 1. FIG. At this time, the two intermediate copper plates 2 form catalyst layers on both sides thereof, and the uppermost and lower copper plates 2 form catalyst layers only on the inner side (one side). If the thus configured catalyst element is detachably attached to a reaction vessel (not shown) of the fuel cell, it can be easily replaced when the activity of the catalyst falls.

同様に、図5(b)は、波型の銅板2を用いた例として、3枚の平らな銅板2と、2枚の波型の銅板2とを交互に配置して、多数のガス流路を形成した触媒エレメントである。この変形例として、銅板2の積層数を増やしたり、渦巻き状に巻いて円筒形の触媒エレメントとすることも可能である。また波型の形状は、図5(b)に示す丸型以外にも、例えば台形、V字状、または凹凸状の波型であってもよい。   Similarly, FIG. 5B shows an example in which the corrugated copper plate 2 is used, in which three flat copper plates 2 and two corrugated copper plates 2 are alternately arranged, and a large number of gas flows. It is the catalyst element which formed the path. As a modified example, it is possible to increase the number of laminated copper plates 2 or to form a cylindrical catalyst element by spirally winding the copper plate 2. In addition to the round shape shown in FIG. 5B, the wave shape may be, for example, a trapezoidal shape, a V shape, or an uneven wave shape.

次に、図6は、銅筒8に複数の貫通孔12を設けて、その内壁に触媒層を形成したメタノール水蒸気改質触媒1である。この複数の貫通孔12は、ハニカム状か、格子状のものがよい。かかる形状のものであっても、めっき浴でのめっき層形成や、電気炉での焼成処理には、問題はない。   Next, FIG. 6 shows the methanol steam reforming catalyst 1 in which a plurality of through holes 12 are provided in the copper cylinder 8 and a catalyst layer is formed on the inner wall thereof. The plurality of through holes 12 preferably have a honeycomb shape or a lattice shape. Even if it is the thing of this shape, there is no problem in the plating layer formation in a plating bath, and the baking process in an electric furnace.

図7は、銅管9の表面に触媒層を形成して、二重管構造のメタノール水蒸気改質触媒1とした例である。ここでは、2つの空間10(流路)が設けられており、両方を改質反応のための流路としてもよいし、または一方を、廃熱を持つ流体の流路としてもよい。例えば溶融塩型燃料電池のように、高温で発電する場合に、その高温・中温の廃熱を持つ蒸気を、図7の内側の空間10(流路)に流通させ、外側の空間10(流路)では、その内壁と外壁に形成された改質触媒で改質反応を行わせることができる。前記したように改質反応は吸熱反応であるため、このように廃熱との熱交換を好適に行うことにより、効率のよい温度制御(反応制御)が可能となる。   FIG. 7 shows an example in which a catalyst layer is formed on the surface of the copper tube 9 to form a methanol steam reforming catalyst 1 having a double tube structure. Here, two spaces 10 (flow paths) are provided, and both may be used as the flow paths for the reforming reaction, or one of them may be a flow path for fluid having waste heat. For example, when power is generated at a high temperature, such as a molten salt fuel cell, the steam having the waste heat of high / medium temperature is circulated through the inner space 10 (flow path) in FIG. In the road), the reforming reaction can be performed by the reforming catalyst formed on the inner wall and the outer wall. Since the reforming reaction is an endothermic reaction as described above, efficient temperature control (reaction control) is possible by appropriately performing heat exchange with waste heat in this way.

(亜鉛めっきと焼成処理)
次に、亜鉛めっきと焼成処理について説明する。
最初に、銅基材のアルカリ脱脂、酸処理などの前処理を行ってから、亜鉛めっきを行う。亜鉛めっきの方法としては、電気めっき、溶融めっきなど、一般的なめっき方法を用いることができる。
亜鉛めっきの厚さは0.1〜50μmが好ましい。0.1μm以下では亜鉛の触媒としての機能が十分ではなく、50μm以上では、焼成処理時の銅の表面への移動が十分ではなくなる。より好ましくは、0.5〜20μmである。
(Zinc plating and firing treatment)
Next, galvanization and baking treatment will be described.
First, after pretreatment such as alkali degreasing and acid treatment of the copper base material, galvanization is performed. As a method of galvanization, a general plating method such as electroplating or hot dipping can be used.
The thickness of the galvanizing is preferably 0.1 to 50 μm. If it is 0.1 μm or less, the function of zinc as a catalyst is not sufficient, and if it is 50 μm or more, the movement of copper to the surface during firing is not sufficient. More preferably, it is 0.5-20 micrometers.

本実施形態では、銅基材表面に亜鉛被膜を形成させるため、最表面は亜鉛被膜で覆われており銅が最表面には出ていない状態である。そのため、亜鉛めっき処理後に焼成処理を行う。この焼成処理により銅が表面に移行し、表面に銅と亜鉛が露出した良好な状態の銅−亜鉛系触媒層となる。焼成温度は、200〜700℃程度とすればよい。200℃より低温では亜鉛の表面への移行が十分ではなく、700℃より高温では触媒成分が剥離する恐れがある。   In this embodiment, since a zinc coating is formed on the surface of the copper substrate, the outermost surface is covered with the zinc coating and copper is not exposed on the outermost surface. Therefore, a baking process is performed after a galvanization process. By this firing treatment, copper is transferred to the surface, and a copper-zinc based catalyst layer in a good state with copper and zinc exposed on the surface is obtained. The firing temperature may be about 200 to 700 ° C. If the temperature is lower than 200 ° C., the migration of zinc to the surface is not sufficient, and if the temperature is higher than 700 ° C., the catalyst component may be peeled off.

焼成処理を行った後は、銅と亜鉛が表面に露出した状態にあるが、これらは主に金属酸化物の形態になっており、そのままでは触媒の活性が低いため、本実施形態の改質触媒1は、反応容器に装着して改質反応の運転を行う前に、還元処理により金属酸化物の一部または全部を還元して触媒を活性化させることが好ましい。   After performing the firing treatment, copper and zinc are in a state of being exposed on the surface, but these are mainly in the form of metal oxides, and since the activity of the catalyst is low as it is, the modification of this embodiment Before the catalyst 1 is mounted in the reaction vessel and the reforming operation is performed, the catalyst is preferably activated by reducing part or all of the metal oxide by reduction treatment.

図8は、本実施形態に係るメタノール水蒸気改質触媒1の製造と運転までの工程の例を示したフローチャートである。
前記したように、まず銅基材を、反応容器の形状や寸法に合せた加工、または凹溝形成のための加工を行い(ステップS81)、アルカリ脱脂、酸処理など、めっき層形成のための前処理を行う(ステップS82)。次に、その銅基材表面に、亜鉛のめっき層を形成させる(ステップS83)。そして焼成処理を行って、亜鉛と銅の両方の元素を銅基材の表面に露出させる(ステップS84)。
FIG. 8 is a flowchart showing an example of steps up to the manufacture and operation of the methanol steam reforming catalyst 1 according to this embodiment.
As described above, the copper base material is first processed according to the shape and dimensions of the reaction vessel, or processed for forming a groove (step S81), and is used for forming a plating layer such as alkali degreasing and acid treatment. Pre-processing is performed (step S82). Next, a zinc plating layer is formed on the surface of the copper base material (step S83). And a baking process is performed and both elements of zinc and copper are exposed to the surface of a copper base material (step S84).

得られた改質触媒1は、反応ケース4に収納したり、触媒エレメントとして反応容器(マイクロリアクタ)に装着する(ステップS85)。そして還元ガスを用いて改質触媒1の還元処理を行えば(ステップS86)、メタノール水蒸気改質反応の運転が可能となる(ステップS87)。   The obtained reforming catalyst 1 is accommodated in the reaction case 4 or attached to a reaction vessel (microreactor) as a catalyst element (step S85). Then, if the reducing catalyst is used to reduce the reforming catalyst 1 (step S86), the methanol steam reforming reaction can be operated (step S87).

以上のように、本実施形態のメタノール水蒸気改質触媒1は、加工性、伝熱性に優れた銅基材の表面に、銅−亜鉛系触媒層を形成させるため、材料に無駄がなく簡単な工程で、微細加工が容易な触媒とすることができる。   As described above, the methanol steam reforming catalyst 1 of the present embodiment forms a copper-zinc based catalyst layer on the surface of a copper base material excellent in workability and heat conductivity, so that the material is not wasteful and simple. In the process, the catalyst can be easily processed finely.

図1に示す銅板2(縦100mm×横100mm×厚さ3mmの純銅板に、幅0.5mm、深さ2mmの流路を機械加工で90本作成したもの)の表面に以下の条件で銅−亜鉛系触媒層を形成させた。   Copper on the surface of the copper plate 2 shown in FIG. 1 (90 mm long, 100 mm wide x 3 mm thick pure copper plate having a width of 0.5 mm and a depth of 2 mm created by machining) under the following conditions: -A zinc-based catalyst layer was formed.

<触媒形成方法>
アルカリ脱脂、酸処理により、銅板2表面を洗浄した。
以下の条件で銅基材表面に亜鉛電気めっきを行い、被膜厚さ10μmの亜鉛被膜を形成させた。
・硫酸亜鉛:375g/L
・硫酸ナトリウム:70g/L
・硫酸マグネシウム:60g/L
・pH:3.5
・電流密度:30A/dm2
・温度:60℃
<Catalyst formation method>
The surface of the copper plate 2 was washed by alkali degreasing and acid treatment.
Zinc electroplating was performed on the surface of the copper base material under the following conditions to form a zinc film having a thickness of 10 μm.
・ Zinc sulfate: 375 g / L
・ Sodium sulfate: 70 g / L
・ Magnesium sulfate: 60 g / L
-PH: 3.5
・ Current density: 30A / dm2
・ Temperature: 60 ℃

次に、水洗後、処理品を自然乾燥し、電気炉にて400℃、空気下で2時間の焼成処理を行い、メタノール水蒸気改質触媒1を作成した。   Next, after washing with water, the treated product was naturally dried and subjected to a firing treatment in an electric furnace at 400 ° C. for 2 hours in the air to prepare a methanol steam reforming catalyst 1.

この改質触媒1の焼成処理の前と後の切断試料を作成し、SEM観察および元素分析した結果を、図9に示す。図9(a)が焼成処理前、図9(b)が焼成処理後である。
SEM観察は、試料の切断面を、日立製作所製S−4000電界放射型走査顕微鏡(FE−SEM)を用いて700倍で観察を行った(それぞれ上側の画像)。
また、元素分析は、試料の切断面を、堀場製作所製EMAX−5770Wエネルギー分散型X線分析装置(EDX)を用いて、加速電圧20kV、測定時間100secで行った(それぞれ下側の画像)。各元素(酸素O、銅Cu、亜鉛Zn)について半定量分析を行い、カラーマッピングで各元素の濃度を色別に表示して、図9(b)の焼成処理後の試料では、銅、亜鉛ともに試料表面に露出されていることが確認できた。
FIG. 9 shows the results obtained by preparing cut samples before and after the calcination treatment of the reforming catalyst 1, and SEM observation and elemental analysis. FIG. 9A is before the baking treatment, and FIG. 9B is after the baking treatment.
In the SEM observation, the cut surface of the sample was observed at 700 times using an S-4000 field emission scanning microscope (FE-SEM) manufactured by Hitachi, Ltd. (each upper image).
Elemental analysis was performed on the cut surface of the sample using an EMAX-5770W energy dispersive X-ray analyzer (EDX) manufactured by HORIBA, Ltd. at an acceleration voltage of 20 kV and a measurement time of 100 sec (each lower image). Semi-quantitative analysis is performed for each element (oxygen O, copper Cu, zinc Zn), the concentration of each element is displayed by color mapping by color, and in the sample after the firing treatment in FIG. It was confirmed that the sample was exposed on the surface.

このようにして得られたメタノール水蒸気改質触媒1を図3に示すような反応ケース4に収納して、フタ3をし、周りをボルト締め7で固定した後、250℃のオイルバスに入れた。250℃に予熱したガス(水素5%+アルゴン95%)をガス入口5より供給し、4時間流通させて触媒の還元処理を行った。   The methanol steam reforming catalyst 1 thus obtained is housed in a reaction case 4 as shown in FIG. 3, the lid 3 is covered, the periphery is fixed with bolts 7, and then placed in an oil bath at 250 ° C. It was. A gas preheated to 250 ° C. (hydrogen 5% + argon 95%) was supplied from the gas inlet 5 and circulated for 4 hours to reduce the catalyst.

<メタノール水蒸気改質実験>
還元処理後、ガス入口5より250℃に予熱したメタノールガス(20.0ミリモル/分)と水蒸気(40.0ミリモル/分)を流通させ、ガス出口6の水素濃度をガスクロマトグラフィーで測定し、水素ガス量を求めた。
<Methanol steam reforming experiment>
After the reduction treatment, methanol gas (20.0 mmol / min) and water vapor (40.0 mmol / min) preheated to 250 ° C. from the gas inlet 5 are circulated, and the hydrogen concentration at the gas outlet 6 is measured by gas chromatography. The amount of hydrogen gas was determined.

メタノールの水蒸気改質による水素生成反応は、次の反応式で表される。
CHOH + HO → 3H + CO
従って、メタノールが100%水素に転化されれば、1モルのメタノールから3モルの水素が生成する。よって、この反応の水素転化率は次式で表される。
水素転化率(%)= 100 × H /(3 × M)
H:生成した水素のモル数、M:使用したメタノールのモル数
The hydrogen generation reaction by steam reforming of methanol is represented by the following reaction formula.
CH 3 OH + H 2 O → 3H 2 + CO 2
Thus, if methanol is converted to 100% hydrogen, 3 moles of hydrogen are produced from 1 mole of methanol. Therefore, the hydrogen conversion rate of this reaction is expressed by the following equation.
Hydrogen conversion rate (%) = 100 × H / (3 × M)
H: moles of hydrogen produced, M: moles of methanol used

本実施例で、ガス出口6の水素ガス量は58.2ミリモル/分であったので、水素転化率は97.0%であり、高い水素転化率のメタノール水蒸気改質触媒1が得られた。   In this example, since the amount of hydrogen gas at the gas outlet 6 was 58.2 mmol / min, the hydrogen conversion rate was 97.0%, and the methanol steam reforming catalyst 1 having a high hydrogen conversion rate was obtained. .

(a)は、本発明の実施形態に係るメタノール水蒸気改質触媒(銅板)の平面図、(b)は(a)のA−A断面での断面図である。(A) is a top view of the methanol steam reforming catalyst (copper plate) which concerns on embodiment of this invention, (b) is sectional drawing in the AA cross section of (a). (a)、(b)、(c)は、本発明の実施形態に係る反応ケースの説明図である。(A), (b), (c) is explanatory drawing of the reaction case which concerns on embodiment of this invention. 本発明の実施形態に係るメタノール水蒸気改質触媒を収納した反応容器の断面図である。It is sectional drawing of the reaction container which accommodated the methanol steam reforming catalyst which concerns on embodiment of this invention. (a)、(b)は、本発明の実施形態に係るメタノール水蒸気改質触媒(銅板)の変形例を示す断面図である。(A), (b) is sectional drawing which shows the modification of the methanol steam reforming catalyst (copper plate) which concerns on embodiment of this invention. (a)、(b)は、本発明の実施形態に係るメタノール水蒸気改質触媒(複数の銅板)の概念図である。(A), (b) is a conceptual diagram of the methanol steam reforming catalyst (a plurality of copper plates) according to the embodiment of the present invention. 本発明の実施形態に係るメタノール水蒸気改質触媒(銅筒)の概念図である。It is a conceptual diagram of the methanol steam reforming catalyst (copper cylinder) which concerns on embodiment of this invention. 本発明の実施形態に係るメタノール水蒸気改質触媒(銅管)の概念図である。It is a conceptual diagram of the methanol steam reforming catalyst (copper pipe) which concerns on embodiment of this invention. 本発明の実施形態に係るメタノール水蒸気改質触媒の製造と運転までの工程の例を示したフローチャートである。It is the flowchart which showed the example of the process to manufacture and operation | movement of the methanol steam reforming catalyst which concerns on embodiment of this invention. (a)は、本発明の実施形態に係るメタノール水蒸気改質触媒の焼成処理前の切断面のSEM像と元素分析の結果を示す図、(b)は焼成処理後の図である。(A) is a figure which shows the result of the SEM image and elemental analysis of the cut surface before the baking process of the methanol steam reforming catalyst which concerns on embodiment of this invention, (b) is a figure after baking process.

符号の説明Explanation of symbols

1 メタノール水蒸気改質触媒(改質触媒)
2 銅板
3 フタ
4 反応ケース
5 ガス入口
6 ガス出口
7 ボルト締め
8 銅筒
9 銅管
10 空間層(空間)
11 ガスケット
1 Methanol steam reforming catalyst (reforming catalyst)
2 Copper plate 3 Lid 4 Reaction case 5 Gas inlet 6 Gas outlet 7 Bolt tightening 8 Copper tube 9 Copper tube 10 Space layer (space)
11 Gasket

Claims (8)

銅板の片面または両面に亜鉛のめっき層を形成し、焼成処理により前記銅および前記亜鉛を表面に露出させたことを特徴とするメタノール水蒸気改質触媒。   A methanol steam reforming catalyst, wherein a zinc plating layer is formed on one side or both sides of a copper plate, and the copper and the zinc are exposed on the surface by a baking treatment. 前記銅板は、さらに、ガスケットと交互に積層され、メタノールが流通する少なくとも1つの空間層を設けて、反応容器に装着可能に固定されたことを特徴とする請求項1に記載のメタノール水蒸気改質触媒。   2. The methanol steam reforming according to claim 1, wherein the copper plate is further laminated alternately with a gasket, and is provided with at least one space layer through which methanol flows, and is fixed so as to be attachable to a reaction vessel. catalyst. 前記銅板は、波型の銅板であることを特徴とする請求項1または請求項2に記載のメタノール水蒸気改質触媒。   The methanol steam reforming catalyst according to claim 1 or 2, wherein the copper plate is a corrugated copper plate. ハニカム状または格子状銅筒の内壁に亜鉛のめっき層を形成し、焼成処理により前記銅および前記亜鉛を表面に露出させたことを特徴とするメタノール水蒸気改質触媒。   A methanol steam reforming catalyst, wherein a zinc plating layer is formed on an inner wall of a honeycomb-like or lattice-like copper cylinder, and the copper and the zinc are exposed on the surface by a firing treatment. 銅管の内面、外面または両面に亜鉛のめっき層を形成し、焼成処理により前記銅および前記亜鉛を表面に露出させたことを特徴とするメタノール水蒸気改質触媒。   A methanol steam reforming catalyst, wherein a zinc plating layer is formed on an inner surface, an outer surface, or both surfaces of a copper tube, and the copper and the zinc are exposed to the surface by a baking treatment. 前記銅管は、さらに、径の異なる多重管として形成され、メタノールが流通する少なくとも一つの空間を設けたことを特徴とする請求項5に記載のメタノール水蒸気改質触媒。   6. The methanol steam reforming catalyst according to claim 5, wherein the copper pipe is further formed as a multiple pipe having different diameters, and provided with at least one space through which methanol flows. 前記銅板、前記銅筒または前記銅管の表面に、同一方向に複数の凹状または波状の溝を設けたことを特徴とする請求項1から請求項6のいずれか一項に記載のメタノール水蒸気改質触媒。   The methanol steam reforming according to any one of claims 1 to 6, wherein a plurality of concave or corrugated grooves are provided in the same direction on the surface of the copper plate, the copper cylinder or the copper tube. Quality catalyst. 銅表面に亜鉛のめっき層を形成し、焼成処理により前記銅および前記亜鉛を表面に露出させたことを特徴とするメタノール水蒸気改質触媒の製造方法。   A method for producing a methanol steam reforming catalyst, wherein a zinc plating layer is formed on a copper surface, and the copper and the zinc are exposed on the surface by a baking treatment.
JP2006098660A 2006-03-31 2006-03-31 Methanol steam reforming catalyst and method for producing the same Expired - Fee Related JP4705503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006098660A JP4705503B2 (en) 2006-03-31 2006-03-31 Methanol steam reforming catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006098660A JP4705503B2 (en) 2006-03-31 2006-03-31 Methanol steam reforming catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007268459A true JP2007268459A (en) 2007-10-18
JP4705503B2 JP4705503B2 (en) 2011-06-22

Family

ID=38671807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006098660A Expired - Fee Related JP4705503B2 (en) 2006-03-31 2006-03-31 Methanol steam reforming catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP4705503B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233483A (en) * 2008-03-25 2009-10-15 Kakei Gakuen Active slug reactor
JP2017144403A (en) * 2016-02-18 2017-08-24 国立研究開発法人産業技術総合研究所 Plate-type reactor
CN110143575A (en) * 2019-04-22 2019-08-20 浙江大学 A kind of ripple substrate-porous metals self-heating type preparing hydrogen by reforming methanol reactor
JP2022172407A (en) * 2018-04-27 2022-11-15 国立研究開発法人産業技術総合研究所 stacked reactor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349101A (en) * 1991-05-27 1992-12-03 Mitsubishi Heavy Ind Ltd Method reformer
JPH05337741A (en) * 1992-12-18 1993-12-21 Fujikura Ltd Manufacture of electrode wire for wire electrodischarge machining
JPH1043589A (en) * 1996-08-07 1998-02-17 Mitsui Mining & Smelting Co Ltd Catalyst and its production
JPH11138020A (en) * 1997-11-05 1999-05-25 Toyota Motor Corp Honeycomb-like catalyst carrier and production thereof
JP2001185195A (en) * 1999-12-28 2001-07-06 Mitsubishi Gas Chem Co Inc Producing method of hydrogen for fuel cell
JP2005097089A (en) * 2003-09-05 2005-04-14 Dainippon Printing Co Ltd Microreactor for producing hydrogen and method for manufacturing the same
JP2006517506A (en) * 2002-10-18 2006-07-27 モンサント テクノロジー エルエルシー Use of metal-supported copper catalysts for alcohol reforming
JP2007268453A (en) * 2006-03-31 2007-10-18 Kobe Steel Ltd Catalyst for reforming methanol with steam and method for preparing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349101A (en) * 1991-05-27 1992-12-03 Mitsubishi Heavy Ind Ltd Method reformer
JPH05337741A (en) * 1992-12-18 1993-12-21 Fujikura Ltd Manufacture of electrode wire for wire electrodischarge machining
JPH1043589A (en) * 1996-08-07 1998-02-17 Mitsui Mining & Smelting Co Ltd Catalyst and its production
JPH11138020A (en) * 1997-11-05 1999-05-25 Toyota Motor Corp Honeycomb-like catalyst carrier and production thereof
JP2001185195A (en) * 1999-12-28 2001-07-06 Mitsubishi Gas Chem Co Inc Producing method of hydrogen for fuel cell
JP2006517506A (en) * 2002-10-18 2006-07-27 モンサント テクノロジー エルエルシー Use of metal-supported copper catalysts for alcohol reforming
JP2005097089A (en) * 2003-09-05 2005-04-14 Dainippon Printing Co Ltd Microreactor for producing hydrogen and method for manufacturing the same
JP2007268453A (en) * 2006-03-31 2007-10-18 Kobe Steel Ltd Catalyst for reforming methanol with steam and method for preparing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233483A (en) * 2008-03-25 2009-10-15 Kakei Gakuen Active slug reactor
JP2017144403A (en) * 2016-02-18 2017-08-24 国立研究開発法人産業技術総合研究所 Plate-type reactor
JP2022172407A (en) * 2018-04-27 2022-11-15 国立研究開発法人産業技術総合研究所 stacked reactor
JP7319737B2 (en) 2018-04-27 2023-08-02 国立研究開発法人産業技術総合研究所 stacked reactor
CN110143575A (en) * 2019-04-22 2019-08-20 浙江大学 A kind of ripple substrate-porous metals self-heating type preparing hydrogen by reforming methanol reactor
CN110143575B (en) * 2019-04-22 2021-01-15 浙江大学 Corrugated substrate-porous metal self-heating methanol reforming hydrogen production reactor

Also Published As

Publication number Publication date
JP4705503B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
Chen et al. Synthetic strategies to nanostructured photocatalysts for CO 2 reduction to solar fuels and chemicals
US7833402B2 (en) Porous catalyst structure and its manufacturing method
US9108858B2 (en) Nanofilaments of catalytic materials for chemical process improvements
JP5142399B2 (en) Process for manufacturing microreactors
US8142626B2 (en) Electrolyzer and electrodes
Laguna et al. Catalysts on metallic surfaces: Monoliths and microreactors
JP4705503B2 (en) Methanol steam reforming catalyst and method for producing the same
US20140158526A1 (en) Cathode catalyst, cathode material using the same, and reactor using the same
CN103328693A (en) Porous metal having high corrosion resistance and process for producing same
JP2018024895A (en) Catalyst, electrode catalyst, and manufacturing method of electrode catalyst
EP2700119A1 (en) Process for surface conditioning of a plate or sheet of stainless steel and application of a layer onto the surface, interconnect plate made by the process and use of the interconnect plate in fuel cell stacks
Reddy et al. Steam reforming of methanol over structured catalysts prepared by electroless deposition of Cu and Zn on anodically oxidized alumina
Ho et al. Structured catalysts-based on open-cell metallic foams for energy and environmental applications
CN101314140B (en) Porous catalyst structure and its preparation
JP5038648B2 (en) Methanol steam reforming catalyst and method for producing the same
JP2012214879A (en) Porous metal body coated with anodized film and method for producing the same
CN107636203B (en) Method for producing a metal coating having macropores, substrate coated with such a coating and use of such a substrate
CN102465295A (en) Preparation method for loading TiO2 photocatalysis film on surface of magnesium alloy coating
KR100462286B1 (en) Water Gas Shift Catalyst with Ceramic on Metal Morphology and Method for Manufacturing the Same
JP7180678B2 (en) Porous metal body, steam reformer using the same, and method for manufacturing porous metal body
Fukuhara et al. Catalytic properties of nickel catalysts, for methanol decomposition, on aluminum plate prepared by electroless plating
JP2005126286A (en) Membrane reactor for hydrogen production
JP5880909B2 (en) Method for producing metal catalyst carrier and method for producing metal catalyst body
US20190233954A1 (en) Continuous Flow Reactor and Hybrid Electro-catalyst for High Selectivity Production of C2H4 from CO2 and Water via Electrolysis
KR20100009470A (en) Carrier structure using inorganic membrane, and method for manufacturing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110311

LAPS Cancellation because of no payment of annual fees