JP2001185195A - Producing method of hydrogen for fuel cell - Google Patents

Producing method of hydrogen for fuel cell

Info

Publication number
JP2001185195A
JP2001185195A JP37362799A JP37362799A JP2001185195A JP 2001185195 A JP2001185195 A JP 2001185195A JP 37362799 A JP37362799 A JP 37362799A JP 37362799 A JP37362799 A JP 37362799A JP 2001185195 A JP2001185195 A JP 2001185195A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
methanol
copper
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP37362799A
Other languages
Japanese (ja)
Other versions
JP4763870B2 (en
Inventor
Yasushi Hiramatsu
靖史 平松
Koki Takamura
光喜 高村
Masayuki Katagiri
誠之 片桐
Mikio Yoneoka
幹男 米岡
Shoji Isobe
昭司 磯部
Takahiro Naka
貴弘 中
Hideaki Sumi
英明 隅
Masataka Furuyama
雅孝 古山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Mitsubishi Gas Chemical Co Inc
Original Assignee
Honda Motor Co Ltd
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Mitsubishi Gas Chemical Co Inc filed Critical Honda Motor Co Ltd
Priority to JP37362799A priority Critical patent/JP4763870B2/en
Publication of JP2001185195A publication Critical patent/JP2001185195A/en
Application granted granted Critical
Publication of JP4763870B2 publication Critical patent/JP4763870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a producing method of hydrogen for a fuel cell, in which the temperature of a catalyst in made uniform is a methanol reforming reactor vessel of self heat supply type a long and stable use of a catalyst is possible, and a reformed gas mainly composed of hydrogen is produced efficiently. SOLUTION: In production of the reformed gas mainly composed of hydrogen by letting water vapor and air react with methanol under the existence of the catalyst, the catalyst having copper-zinc as the main components is carried on a metal or alloy carrier whose heat conductivity at 300 K is 20 W/m.K or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池用水素の
製造方法の改良に関する。さらに詳しくは、本発明は、
自己熱供給型のメタノール改質反応器で触媒温度を均一
化し、水素を主体とする改質ガスを効率よく発生させる
燃料電池用水素の製造方法に関するものである。
The present invention relates to an improvement in a method for producing hydrogen for a fuel cell. More specifically, the present invention provides
The present invention relates to a method for producing hydrogen for a fuel cell, in which a catalyst temperature is made uniform by a self-heating supply type methanol reforming reactor and a reformed gas mainly composed of hydrogen is efficiently generated.

【0002】[0002]

【従来の技術】近年、化石燃料に代わるエネルギー源と
して、水素が注目されている。水素は燃やすと水ができ
るだけで、地球温暖化の原因となる二酸化炭素や有害な
窒素酸化物などが排出されないので、将来のクリーンエ
ネルギーとして期待されている。メタノールは、触媒の
存在下で比較的容易に水素を主体とするガスに改質され
ることが従来から良く知られている。特にメタノールを
水蒸気と反応させることにより、分離の困難な一酸化炭
素をほとんど含まないガスに改質されることから、今後
増大が予想される水素の簡便な供給源として注目を集め
ている。
2. Description of the Related Art In recent years, attention has been paid to hydrogen as an energy source replacing fossil fuels. Hydrogen can only produce water when burned, and does not emit carbon dioxide or harmful nitrogen oxides that cause global warming. Therefore, hydrogen is expected as clean energy in the future. It is well known that methanol is relatively easily reformed into a gas mainly composed of hydrogen in the presence of a catalyst. In particular, by reacting methanol with water vapor, the gas is reformed into a gas containing almost no carbon monoxide, which is difficult to separate, and thus attracts attention as a simple supply source of hydrogen which is expected to increase in the future.

【0003】一方、地球温暖化の主因とされる二酸化炭
素の排出を抑えると共に、大気汚染をもたらす窒素酸化
物を排出しない発電システムとして、現在燃料電池の開
発研究が積極的に行われている。この燃料電池は、水素
と酸素を電気化学的に反応させることにより、化学エネ
ルギーを電気エネルギーに変換するものであって、エネ
ルギーの利用効率が高く、そして電解質の種類に応じて
リン酸型,溶融炭酸塩型,固体酸化物型,固体高分子型
などのタイプがある。燃料としては、天然ガスやメタノ
ールなどの炭化水素系物質を用い、装置内で改質して水
素を製造するのが一般的である。
On the other hand, as a power generation system that suppresses emission of carbon dioxide, which is a main cause of global warming, and does not emit nitrogen oxides that cause air pollution, research and development of fuel cells is currently being actively conducted. This fuel cell converts chemical energy into electric energy by electrochemically reacting hydrogen and oxygen. It has high energy utilization efficiency, and has a phosphoric acid type and a molten type depending on the type of electrolyte. There are types such as carbonate type, solid oxide type and solid polymer type. As a fuel, it is common to use a hydrocarbon-based substance such as natural gas or methanol and reform it in an apparatus to produce hydrogen.

【0004】このような燃料電池は、環境対応技術とし
て注目され、例えば自動車や船舶などの移動体用電源を
始め、工場やビル,集合住宅などの自家発電,医療機器
を扱う病院などの無停電電源などとしての利用が期待さ
れている。特に、自動車分野においては、メタノール改
質燃料電池自動車の開発が積極的になされている。そし
て、自動車に搭載される燃料電池は、小型で簡単な構造
のものが要求されることから、反応器に空気を導入して
メタノールの水蒸気改質に必要な反応熱を、燃焼熱によ
り供給する自己熱供給型反応器の開発が進められてい
る。
[0004] Such a fuel cell is attracting attention as an environmentally friendly technology. For example, it can be used as a power source for vehicles such as automobiles and ships, as well as for private power generation in factories, buildings, apartment houses, etc., and uninterruptible power supplies in hospitals handling medical equipment. It is expected to be used as a power source. In particular, in the automotive field, the development of methanol reformed fuel cell vehicles has been actively pursued. Since a fuel cell mounted on an automobile is required to have a small and simple structure, air is introduced into the reactor to supply reaction heat necessary for steam reforming of methanol by combustion heat. Development of a self-heating supply reactor is underway.

【0005】この自己熱供給型反応器は、メタノールの
水蒸気改質反応とメタノールの燃焼反応が同時に起こ
り、水蒸気改質反応における反応熱をメタノールの燃焼
反応により速やかに補充するため、高い伝熱特性が要求
される。そのような要求を満たすために、例えば特開平
6−31165号公報には、パッケージ型の反応器で触
媒を固定して伝熱性を高めるために金属やセラミックよ
りなる芯の表面に触媒成分を含有する層を形成してなる
水蒸気改質用薄膜状触媒が開示されている。しかしなが
ら、メタノールの水蒸気改質反応と燃焼反応が同時に起
こる自己熱供給型反応器では、水蒸気改質反応よりも燃
焼反応の反応速度が速いために、特に高いSV(空間速
度)における反応器の入口部で内部温度が急激に上昇し
て均一な温度分布を得ることが困難である。メタノール
改質反応には銅−亜鉛系触媒等が多く用いられている
が、温度が上昇すると活性が急激に低下し易く、触媒を
長期間使用することが困難となる。
[0005] In this self-heat supply type reactor, the steam reforming reaction of methanol and the combustion reaction of methanol occur simultaneously, and the heat of reaction in the steam reforming reaction is promptly replenished by the combustion reaction of methanol. Is required. In order to satisfy such demands, for example, JP-A-6-31165 discloses that a catalyst component is contained on the surface of a core made of metal or ceramic in order to fix a catalyst in a package type reactor and enhance heat transfer. There is disclosed a thin film catalyst for steam reforming having a layer formed thereon. However, in a self-heat supply type reactor in which a steam reforming reaction and a combustion reaction of methanol occur simultaneously, the reaction rate of the combustion reaction is faster than that of the steam reforming reaction. Therefore, the inlet of the reactor particularly at a high SV (space velocity). It is difficult to obtain a uniform temperature distribution because the internal temperature rises sharply in the part. For the methanol reforming reaction, a copper-zinc catalyst or the like is often used, but when the temperature rises, the activity is apt to sharply decrease, making it difficult to use the catalyst for a long period of time.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
状況下で、燃料電池用水素を製造するにあたり、自己熱
供給型のメタノール改質反応器で触媒温度を均一化し、
触媒を長期間安定して使用でき、水素を主体とする改質
ガスを効率よく発生させ、燃料電池用水素を製造方法を
提供することを目的とするものである。
SUMMARY OF THE INVENTION In the present invention, when producing hydrogen for a fuel cell under such circumstances, the catalyst temperature is made uniform in a self-heating supply type methanol reforming reactor.
It is an object of the present invention to provide a method for producing hydrogen for a fuel cell, in which a catalyst can be used stably for a long period of time, and a reformed gas mainly composed of hydrogen is efficiently generated.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために鋭意研究を重ねた結果、熱伝導率の高
い支持体に触媒成分を担持させることにより触媒層の温
度分布が改善され、触媒を長期間安定して使用できるよ
うになることを見出した。本発明は、かかる知見に基づ
いて完成したものである。すなわち、本発明は、触媒の
存在下、メタノールに水蒸気及び空気を反応させて水素
を主体とする改質ガスを製造するに当たり、上記触媒と
して、銅−亜鉛を主成分とする触媒成分を300Kにお
ける熱伝導率が20W/m・K以上の金属又は合金の支
持体上に担持したものを用いることを特徴とする燃料電
池用水素の製造方法を提供するものである。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, the temperature distribution of the catalyst layer has been reduced by supporting the catalyst component on a support having high thermal conductivity. It has been found that the catalyst has been improved and the catalyst can be used stably for a long period of time. The present invention has been completed based on such findings. That is, in the present invention, in producing a reformed gas mainly composed of hydrogen by reacting steam and air with methanol in the presence of a catalyst, a catalyst component containing copper-zinc as a main component at 300K is used as the above-mentioned catalyst. An object of the present invention is to provide a method for producing hydrogen for a fuel cell, comprising using a metal or an alloy having a thermal conductivity of 20 W / m · K or more supported on a support.

【0008】[0008]

【発明の実施の形態】本発明の燃料電池用水素の製造方
法は、メタノールに水蒸気と空気を反応させて、水素を
主体とする改質ガスを製造する方法であって、メタノー
ル改質用触媒として、銅−亜鉛を主成分とする触媒成分
を300Kにおける熱伝導率が20W/m・K以上の金
属又は合金の支持体上に担持したものを使用する。前記
金属はCu,Ag,Au及びAlの中から選ばれた少な
くとも一種であることが好ましく、前記合金は黄銅、ア
ルミ青銅、リン青銅、白銅および砲金などが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing hydrogen for a fuel cell according to the present invention is a method for producing a reformed gas mainly comprising hydrogen by reacting methanol with steam and air. A catalyst component having copper-zinc as a main component and having a thermal conductivity at 300 K of 20 W / m · K or more supported on a metal or alloy support is used. The metal is preferably at least one selected from Cu, Ag, Au and Al, and the alloy is preferably brass, aluminum bronze, phosphor bronze, white copper, gunmetal, or the like.

【0009】前記銅−亜鉛を主成分とする触媒成分の製
造方法は特に限定されない。触媒活性の改良と強度向上
等のために、アルミニウム、ホウ素、ケイ素等の化合物
を加えた組成物を用いることができ、さらに必要に応じ
てMg、Zr、La、Mn、Cr、Pd、Pt、P等の
化合物を加えても良い。
The method for producing the catalyst component containing copper-zinc as a main component is not particularly limited. In order to improve the catalytic activity and the strength, etc., a composition containing a compound such as aluminum, boron, and silicon can be used. Further, if necessary, Mg, Zr, La, Mn, Cr, Pd, Pt, A compound such as P may be added.

【0010】これらの組成物の調製方法として、銅およ
び亜鉛のスラリーは、銅および亜鉛を含む水溶液から、
例えば炭酸アルカリ沈澱剤により沈澱させる方法、銅沈
澱スラリーに酸化亜鉛スラリーを添加して炭酸ガスによ
り炭酸塩に変換する方法等がある。アルミニウム化合物
を加える場合には、アルミニウムを含む水溶液から、水
酸化アルカリや炭酸アルカリ等により調製することがで
きる。銅および亜鉛のスラリーとアルミナ前駆体の混合
方法は、両者を均一に混合するためスラリー状で行うこ
とが好ましい。またホウ素やケイ素化合物は、銅源、亜
鉛源、アルミニウム源等へ添加することができ、ケイ素
化合物は後述する混練工程で添加してもよく、適宜選択
できる。
[0010] As a method of preparing these compositions, a slurry of copper and zinc is prepared from an aqueous solution containing copper and zinc.
For example, there are a method of precipitating with an alkali carbonate precipitating agent, a method of adding a zinc oxide slurry to a copper precipitation slurry, and converting the slurry to a carbonate with carbon dioxide gas. When an aluminum compound is added, it can be prepared from an aqueous solution containing aluminum with alkali hydroxide or alkali carbonate. The method of mixing the copper and zinc slurry and the alumina precursor is preferably carried out in a slurry state in order to uniformly mix both. Further, boron or a silicon compound can be added to a copper source, a zinc source, an aluminum source, or the like, and the silicon compound may be added in a kneading step described later, and can be appropriately selected.

【0011】前記メタノール改質用触媒の組成は、銅:
亜鉛の原子比で0.2〜12:1、好ましくは0.3〜
7:1である。前記メタノール改質用触媒が銅、亜鉛及
びアルミニウムからなる場合には、各原子規準の成分含
有量は、銅35〜80重量%、亜鉛15〜50重量%、
好ましくは20〜40重量%、アルミニウム1〜20重
量%、好ましくは4〜16重量%である。前記メタノー
ル改質用触媒が銅、亜鉛、アルミニウム及びホウ素から
なる場合には、各原子規準の成分含有量は、銅30〜8
0重量%、好ましくは40〜70重量%、亜鉛15〜5
0重量%、好ましくは20〜40重量%、アルミニウム
1〜20重量%、好ましくは4〜16重量%、ホウ素
0.3〜5重量%、好ましくは0.5〜3重量%であ
る。前記メタノール改質用触媒が銅、亜鉛、アルミニウ
ム、ホウ素及びケイ素からなる場合には、各原子規準の
成分含有量は、銅35〜80重量%、好ましくは40〜
70重量%、亜鉛15〜50重量%、好ましくは20〜
40重量%、アルミニウム1〜20重量%、好ましくは
4〜16重量%、ホウ素0.3〜5重量%、好ましくは
0.5〜3重量%、ケイ素0.1〜3.5重量%、好ま
しくは0.5〜3重量%である。
The composition of the methanol reforming catalyst is copper:
The atomic ratio of zinc is 0.2 to 12: 1, preferably 0.3 to
7: 1. When the methanol reforming catalyst is made of copper, zinc and aluminum, the content of each atomic standard component is 35 to 80% by weight of copper, 15 to 50% by weight of zinc,
Preferably it is 20 to 40% by weight, aluminum is 1 to 20% by weight, preferably 4 to 16% by weight. When the methanol reforming catalyst is composed of copper, zinc, aluminum and boron, the content of each atomic standard component is copper 30 to 8
0% by weight, preferably 40-70% by weight, zinc 15-5%
0 wt%, preferably 20-40 wt%, aluminum 1-20 wt%, preferably 4-16 wt%, boron 0.3-5 wt%, preferably 0.5-3 wt%. When the methanol reforming catalyst is made of copper, zinc, aluminum, boron and silicon, the content of each atomic standard component is 35 to 80% by weight of copper, preferably 40 to 80% by weight.
70% by weight, 15 to 50% by weight of zinc, preferably 20 to
40% by weight, aluminum 1 to 20% by weight, preferably 4 to 16% by weight, boron 0.3 to 5% by weight, preferably 0.5 to 3% by weight, silicon 0.1 to 3.5% by weight, preferably Is 0.5 to 3% by weight.

【0012】前記メタノール改質用触媒の銅源として
は、硝酸銅、硫酸銅、酢酸銅等の水溶性の塩類等が使用
できるが、特に安価な硫酸銅が有利である。亜鉛源とし
ては、硝酸亜鉛、硫酸亜鉛、酢酸亜鉛等の水溶性塩類や
安価な酸化亜鉛が使用できる。アルミニウム源として
は、硝酸アルミニウム、硫酸アルミニウム、酢酸アルミ
ニウム等の水溶性塩類が使用できる。ホウ素源として
は、ホウ酸やホウ砂等が使用できる。ケイ素源として
は、酸化物、ケイ素酸化物前駆体が使用でき、特にケイ
酸ソーダ複分解物やケイソウ土が有利である。また、必
要に応じて、Mg、Zr、La、Mn、Cr、Pt、P
d、Pなどの酸化物の前駆体、例えば、炭酸塩やリンの
酸素酸塩などを添加することができる。
As a copper source for the methanol reforming catalyst, water-soluble salts such as copper nitrate, copper sulfate, and copper acetate can be used. In particular, inexpensive copper sulfate is advantageous. As the zinc source, water-soluble salts such as zinc nitrate, zinc sulfate, and zinc acetate, and inexpensive zinc oxide can be used. As the aluminum source, water-soluble salts such as aluminum nitrate, aluminum sulfate, and aluminum acetate can be used. Boric acid, borax and the like can be used as the boron source. As the silicon source, an oxide or a silicon oxide precursor can be used, and particularly, a sodium silicate double-decomposed product or diatomaceous earth is advantageous. Further, if necessary, Mg, Zr, La, Mn, Cr, Pt, P
Precursors of oxides such as d and P, such as carbonates and oxyacid salts of phosphorus, can be added.

【0013】上記各成分の金属塩水溶液に対して使用さ
れる沈澱剤としては、アルカリ金属やアンモニウムの炭
酸塩が用いられ、水酸化アルカリと炭酸ガスの組み合わ
せも使用できる。これらの沈澱剤の使用量は、金属塩に
対する等量の1〜2倍、好ましくは1.1〜1.6倍で
ある。沈澱調製時の温度は20〜90℃、好ましくは3
5〜80℃である。この際の水溶性金属塩や沈澱剤の濃
度は、0.2〜3モル/リットル、好ましくは0.5〜
2モル/リットルの範囲が好ましい。銅および亜鉛の沈
澱スラリーとアルミナ前駆体の混合方法として、アルミ
ナ前駆体の存在下で銅、亜鉛を沈澱させる方法、あるい
は銅、亜鉛、アルミニウム源の3成分混合水溶液を用い
て同時に沈澱させる方法等がある。
As a precipitant used for the aqueous metal salt solution of each of the above-mentioned components, an alkali metal or ammonium carbonate is used, and a combination of alkali hydroxide and carbon dioxide can also be used. The amount of these precipitants used is 1 to 2 times, preferably 1.1 to 1.6 times the equivalent amount to the metal salt. The temperature during preparation of the precipitate is 20 to 90 ° C, preferably 3 to 90 ° C.
5 to 80 ° C. At this time, the concentration of the water-soluble metal salt or the precipitant is 0.2 to 3 mol / L, preferably 0.5 to 3 mol / L.
A range of 2 mol / l is preferred. As a method of mixing the copper and zinc precipitation slurry with the alumina precursor, a method of precipitating copper and zinc in the presence of the alumina precursor, a method of simultaneously precipitating using a three-component aqueous solution of a copper, zinc, and aluminum source, and the like There is.

【0014】触媒成分を支持する支持体の形状は特に制
限されず、ハニカム状、箔状、シート状、繊維状、布状
等のいずれでも良い。触媒成分の担持量も特に制限され
ないが、一般に触媒成分1〜30重量%、支持体成分7
0〜99重量%の比率である。
The shape of the support for supporting the catalyst component is not particularly limited, and may be any of a honeycomb shape, a foil shape, a sheet shape, a fiber shape, a cloth shape and the like. The amount of the catalyst component to be carried is not particularly limited, but generally 1 to 30% by weight of the catalyst component,
It is a ratio of 0 to 99% by weight.

【0015】触媒成分の担持方法としては以下のような
方法を用いることができる。 (1)真空蒸着法:高真空中で、触媒成分を高温に加熱
して蒸発させ、該蒸気を支持体に衝突させ、冷却、凝固
させる。 (2)スパッタ法:数十eV以上の運動エネルギーを持
つイオンビームを、固体触媒成分の表面に照射し、膜を
形成する。 (3)化学的方法:触媒成分を支持体に供給し、化学反
応により所望の触媒成分層を形成する。 (4)浸漬塗布法:支持体を担体成分の溶液に浸漬し、
過剰分を吹き飛ばし、乾燥する工程を繰り返して乾燥後
の触媒成分担持量を所定量とする。
The following method can be used as a method for supporting the catalyst component. (1) Vacuum evaporation method: The catalyst component is heated to a high temperature and evaporated in a high vacuum, and the vapor is collided with a support, cooled and solidified. (2) Sputtering method: The surface of the solid catalyst component is irradiated with an ion beam having a kinetic energy of several tens eV or more to form a film. (3) Chemical method: a catalyst component is supplied to a support, and a desired catalyst component layer is formed by a chemical reaction. (4) dip coating method: dipping a support in a solution of a carrier component,
The process of blowing off the excess and drying is repeated to make the amount of the catalyst component carried after drying a predetermined amount.

【0016】本発明では上記方法により支持体に担持し
た触媒を用い自己熱供給型反応器によりメタノールを水
蒸気および空気と反応させて水素を主成分とする改質ガ
スを製造する。メタノールと水蒸気及び空気を反応させ
る際の反応条件としては、メタノールに対する水蒸気の
モル比を、通常1〜10モル、好ましくは1〜5モルと
し、メタノールに対する空気のモル比を、通常0.3〜
5.0モル、好ましくは0.5〜3.0モルとする。反
応温度は、通常150〜600℃、好ましくは200〜
500℃で、反応圧力は、常圧〜0.5MPaである。
単位触媒体積当たりの液空間速度(LHSV)は、メタ
ノールLHSVで0.1〜50h-1、好ましくは0.5
〜40h-1である。
In the present invention, a reformed gas containing hydrogen as a main component is produced by reacting methanol with steam and air in a self-heat supply type reactor using a catalyst supported on a support by the above method. The reaction conditions for reacting methanol with water vapor and air are as follows: the molar ratio of water vapor to methanol is usually 1 to 10 mol, preferably 1 to 5 mol, and the molar ratio of air to methanol is usually 0.3 to 10 mol.
5.0 mol, preferably 0.5 to 3.0 mol. The reaction temperature is usually 150 to 600 ° C, preferably 200 to 600 ° C.
At 500 ° C., the reaction pressure is from normal pressure to 0.5 MPa.
The liquid hourly space velocity (LHSV) per unit catalyst volume is 0.1 to 50 h -1 , preferably 0.5 to 0.5 in methanol LHSV.
4040 h −1 .

【0017】[0017]

【実施例】次に、本発明を実施例により、さらに詳細に
説明するが、本発明は、これらの例によってなんら限定
されるものではない。なお、以下の実施例及び比較例に
おいて、次式による反応器出口ガス組成からのメタノー
ル反応率により触媒性能の評価を行った。 メタノール反応率(%)=([CO]+[CO2])/([CO]+[CO2]+
[CH3OH])×100
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In the following Examples and Comparative Examples, the catalyst performance was evaluated based on the methanol conversion from the gas composition at the outlet of the reactor according to the following equation. Methanol conversion (%) = ([CO] + [CO 2 ]) / ([CO] + [CO 2 ] +
[CH 3 OH]) × 100

【0018】製造例1 炭酸ナトリウム(無水)177gを1000ミリリット
ルのイオン交換水と共に5リットルの丸底フラスコに入
れ溶解し、40℃とした。ここに硫酸銅(5水塩)31
5g、ホウ酸19.7gをイオン交換水800ミリリッ
トルに溶解し、40℃に調節した溶液を注下し、続いて
酸化亜鉛77.0gをイオン交換水300ミリリットル
に分散したスラリーを加え、直ちに二酸化炭素を6リッ
トル/hの割合で吹き込んだ。1時間後80℃に昇温
し、30分間保持した。二酸化炭素の吹き込みは2時間
で停止した。次いで60℃まで冷却したのち、ここに硫
酸アルミニウム51.4gを150ミリリットルのイオ
ン交換水に溶解した溶液と、水酸化ナトリウム21.9
gを160ミリリットルのイオン交換水に溶解した溶液
とから調製したスラリーを加え20分間攪拌した。この
ように調製した混合スラリーを濾過し、0.05モル%
の水酸化ナトリウム水溶液12リットルとイオン交換水
3リットルで洗浄した。続いて80℃で乾燥し、その
後、360℃で2時間焼成し、Cu-Zn-Al触媒を得た。得
られたCu-Zn-Al触媒をハニカムに担持する方法は、Cu-Z
n-Al触媒を湿式粉砕し、アルミナゾルを混合し、スラリ
ーとした後、400セル/平方インチのハニカムの浸
漬、過剰分の吹き飛ばし、乾燥の工程を繰り返し、乾燥
後の触媒担持量が所定量になるようにした。
Production Example 1 177 g of sodium carbonate (anhydrous) was put into a 5 liter round bottom flask together with 1000 ml of ion-exchanged water and dissolved at 40 ° C. Here, copper sulfate (pentahydrate) 31
5 g and 19.7 g of boric acid were dissolved in 800 ml of ion-exchanged water, a solution adjusted to 40 ° C. was poured, and a slurry in which 77.0 g of zinc oxide was dispersed in 300 ml of ion-exchanged water was added. Carbon was blown in at a rate of 6 l / h. After 1 hour, the temperature was raised to 80 ° C. and maintained for 30 minutes. The blowing of carbon dioxide was stopped in 2 hours. Next, after cooling to 60 ° C., a solution of 51.4 g of aluminum sulfate dissolved in 150 ml of ion-exchanged water and 21.9 g of sodium hydroxide were added thereto.
g was dissolved in 160 ml of ion-exchanged water, and the resulting mixture was stirred for 20 minutes. The mixed slurry thus prepared was filtered, and 0.05 mol%
Was washed with 12 liters of aqueous sodium hydroxide solution and 3 liters of ion-exchanged water. Subsequently, it was dried at 80 ° C., and then calcined at 360 ° C. for 2 hours to obtain a Cu—Zn—Al catalyst. The method of supporting the obtained Cu-Zn-Al catalyst on the honeycomb is Cu-Zn
The n-Al catalyst is wet-pulverized, mixed with an alumina sol to form a slurry, and then immersed in a honeycomb of 400 cells / square inch, blown off an excessive amount, and dried to repeat the process. I made it.

【0019】実施例1 製造例1に記載の方法により1インチ径で高さ20mm
のCu製ハニカム(体積10.13ミリリットル)にCu-Z
n-Al触媒を0.2g担持した。活性評価する前に180
℃にて還元処理を施した。尚、Cuの熱伝導率は、39
8W/m・Kである。水/メタノール比2.0のメタノー
ル水溶液を蒸発器に導入し、蒸発器出口後に空気を混合
し200℃の混合ガスとして、触媒層に入るように導入
ラインの温度調節を行った。メタノール改質反応はメタ
ノールLHSVを10h-1の条件で、初期の触媒層の入
口温度が所定温度になるように空気量で制御し、反応を
50時間継続した。反応後のガス組成はガスクロマトグ
ラフィーにより分析し、メタノールの反応率で評価し
た。反応時間によるメタノール反応率の変化を図1に、
触媒層温度差の変化を図2に示す。
Example 1 According to the method described in Production Example 1, the diameter was 1 inch and the height was 20 mm.
Cu-Z on Cu honeycomb (volume: 10.13 ml)
0.2 g of n-Al catalyst was supported. 180 before activity evaluation
Reduction treatment was performed at ℃. The thermal conductivity of Cu is 39
8 W / m · K. A methanol aqueous solution having a water / methanol ratio of 2.0 was introduced into the evaporator, and air was mixed at the outlet of the evaporator to form a mixed gas at 200 ° C., and the temperature of the introduction line was adjusted so as to enter the catalyst layer. In the methanol reforming reaction, the methanol LHSV was controlled at 10 h -1 and the amount of air was controlled so that the initial inlet temperature of the catalyst layer became a predetermined temperature, and the reaction was continued for 50 hours. The gas composition after the reaction was analyzed by gas chromatography and evaluated by the reaction rate of methanol. FIG. 1 shows the change in the methanol conversion rate with the reaction time.
FIG. 2 shows the change in the catalyst layer temperature difference.

【0020】実施例2 製造例1に記載の方法により1インチ径で高さ20mm
のAl製ハニカム(体積10.13ミリリットル)にCu-Z
n-Al触媒を200g/リットル担持し、実施例1と同じ
条件で反応を行った。反応時間によるメタノール反応率
の変化を図1に、触媒層温度差の変化を図2に示す。
尚、Alの熱伝導率は、237W/m・Kである。
Example 2 According to the method described in Production Example 1, the diameter was 1 inch and the height was 20 mm.
Al-honeycomb (volume 10.13 ml) with Cu-Z
The reaction was carried out under the same conditions as in Example 1 while supporting 200 g / l of the n-Al catalyst. FIG. 1 shows a change in the methanol reaction rate depending on the reaction time, and FIG. 2 shows a change in the catalyst layer temperature difference.
The thermal conductivity of Al is 237 W / m · K.

【0021】比較例1 製造例1に記載の方法により1インチ径で高さ20mm
のコージェライト製ハニカム(体積10.13ミリリッ
トル)にCu-Zn-Al触媒を200g/リットル担持し、実
施例1と同じ条件で反応を行った。反応時間によるメタ
ノール反応率の変化を図1に、触媒層温度差の変化を図
2に示す。尚、コージェライトの熱伝導率は、約1W/
m・Kである。
Comparative Example 1 According to the method described in Production Example 1, the diameter was 1 inch and the height was 20 mm.
A 200 g / L Cu-Zn-Al catalyst was supported on a cordierite honeycomb (volume: 10.13 ml), and the reaction was carried out under the same conditions as in Example 1. FIG. 1 shows a change in the methanol reaction rate depending on the reaction time, and FIG. 2 shows a change in the catalyst layer temperature difference. The thermal conductivity of cordierite is about 1 W /
m · K.

【0022】比較例2 製造例1に記載の方法により1インチ径で高さ20mm
のステンレス製ハニカム(体積10.13ミリリット
ル)にCu-Zn-Al触媒を200g/リットル担持し、実施
例1と同じ条件で反応を行った。反応時間によるメタノ
ール反応率の変化を図1に、触媒層温度差の変化を図2
に示す。尚、ステンレスの熱伝導率は、16W/m・K
である。
Comparative Example 2 According to the method described in Production Example 1, the diameter was 1 inch and the height was 20 mm.
The Cu-Zn-Al catalyst was supported at 200 g / liter on a stainless steel honeycomb (volume: 10.13 ml), and the reaction was carried out under the same conditions as in Example 1. FIG. 1 shows the change in the methanol reaction rate depending on the reaction time, and FIG. 2 shows the change in the catalyst layer temperature difference.
Shown in The thermal conductivity of stainless steel is 16 W / m · K
It is.

【0023】[0023]

【発明の効果】本発明の方法によれば、自己熱供給型の
メタノール改質反応器で触媒温度を均一化し、触媒を長
期間安定して使用でき、水素を主体とする改質ガスを効
率よく発生させ、燃料電池用水素を工業的に有利に製造
することができる。また、実施例の図面からも明らなよ
うに、本発明により300Kにおける熱伝導率が20W
/m・K以上の支持体に担持した触媒を用いた場合には
触媒層温度差が小さくなり、メタノール反応率が著しく
向上する。
According to the method of the present invention, the catalyst temperature is made uniform in the self-heating supply type methanol reforming reactor, the catalyst can be used stably for a long time, and the reformed gas mainly composed of hydrogen can be efficiently used. Hydrogen for a fuel cell can be produced industrially and advantageously. Further, as is apparent from the drawings of the examples, the thermal conductivity at 300K is 20 W according to the present invention.
In the case of using a catalyst supported on a support of not less than / m · K, the temperature difference of the catalyst layer is reduced, and the methanol conversion is significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例及び比較例において、反応時
間によるメタノール反応率の変化を示す図である。
FIG. 1 is a diagram showing a change in a methanol reaction rate depending on a reaction time in Examples and Comparative Examples of the present invention.

【図2】 本発明の実施例及び比較例において、反応時
間による触媒層温度差の変化を示す図である。
FIG. 2 is a graph showing a change in a catalyst layer temperature difference depending on a reaction time in Examples and Comparative Examples of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高村 光喜 新潟県新潟市太夫浜字新割182番地 三菱 瓦斯化学株式会社新潟研究所内 (72)発明者 片桐 誠之 新潟県新潟市太夫浜字新割182番地 三菱 瓦斯化学株式会社新潟研究所内 (72)発明者 米岡 幹男 新潟県新潟市太夫浜字新割182番地 三菱 瓦斯化学株式会社新潟研究所内 (72)発明者 磯部 昭司 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 中 貴弘 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 隅 英明 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 古山 雅孝 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 4G040 EA02 EA06 EA07 EC03 EC07 4G069 AA03 BB02A BC16A BC16B BC31A BC31B BC32A BC32B BC33A BC33B BC35A BC35B CC25 CC32 EC30 5H027 AA02 BA01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Mitsuyoshi Takamura 182 Niigata, Niigata City, Niigata Prefecture Niigata Research Laboratory Mitsubishi Gas Chemical Co., Ltd. (72) Inventor Masayuki Katagiri 182 Niigata, Niigata City, Niigata Address: Niigata Research Laboratory, Mitsubishi Gas Chemical Co., Ltd. (72) Mikio Yoneoka, 182, Niigata, Niigata City, Niigata Prefecture Niigata Research Laboratories: Niigata Research Laboratory, Mitsubishi Gas Chemical Co., Ltd. No. 1 Inside Honda R & D Co., Ltd. (72) Inventor Takahiro Naka 1-4-1 Chuo, Wako-shi, Saitama Pref. Inside Honda R & D Co., Ltd. (72) Hideaki Sumi 1-4-4 Chuo, Wako-City, Saitama Pref. No. 1 Inside Honda R & D Co., Ltd. (72) Inventor Masataka Koyama 1-4-1 Chuo, Wako-shi, Saitama The internal F-term (reference) 4G040 EA02 EA06 EA07 EC03 EC07 4G069 AA03 BB02A BC16A BC16B BC31A BC31B BC32A BC32B BC33A BC33B BC35A BC35B CC25 CC32 EC30 5H027 AA02 BA01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 触媒の存在下、メタノールに水蒸気及び
空気を反応させて水素を主体とする改質ガスを製造する
に当たり、上記触媒として、銅−亜鉛を主成分とする触
媒成分を300Kにおける熱伝導率が20W/m・K以
上の金属又は合金の支持体上に担持したものを用いるこ
とを特徴とする燃料電池用水素の製造方法。
In producing a reformed gas mainly composed of hydrogen by reacting water vapor and air with methanol in the presence of a catalyst, a catalyst component mainly composed of copper-zinc is used as a catalyst at 300K. A method for producing hydrogen for a fuel cell, comprising using a metal or an alloy having a conductivity of 20 W / m · K or more supported on a support.
【請求項2】 前記支持体が、Cu,Ag,Au及びA
lの中から選ばれた少なくとも一種の金属または合金で
あることを特徴とする請求項1に記載の燃料電池用水素
の製造方法。
2. The method according to claim 1, wherein the support comprises Cu, Ag, Au and A.
2. The method for producing hydrogen for a fuel cell according to claim 1, wherein the method is at least one metal or alloy selected from the group consisting of:
JP37362799A 1999-12-28 1999-12-28 Production method of hydrogen for fuel cell Expired - Fee Related JP4763870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37362799A JP4763870B2 (en) 1999-12-28 1999-12-28 Production method of hydrogen for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37362799A JP4763870B2 (en) 1999-12-28 1999-12-28 Production method of hydrogen for fuel cell

Publications (2)

Publication Number Publication Date
JP2001185195A true JP2001185195A (en) 2001-07-06
JP4763870B2 JP4763870B2 (en) 2011-08-31

Family

ID=18502489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37362799A Expired - Fee Related JP4763870B2 (en) 1999-12-28 1999-12-28 Production method of hydrogen for fuel cell

Country Status (1)

Country Link
JP (1) JP4763870B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005087803A (en) * 2003-09-12 2005-04-07 Casio Comput Co Ltd Reactor
JP2007268453A (en) * 2006-03-31 2007-10-18 Kobe Steel Ltd Catalyst for reforming methanol with steam and method for preparing the same
JP2007268459A (en) * 2006-03-31 2007-10-18 Kobe Steel Ltd Catalyst for reforming methanol with steam and method for preparing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101817569B1 (en) * 2015-06-26 2018-01-11 한국에너지기술연구원 A heat-exchange reactor producing hydrogen from carbon compound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141402A (en) * 1988-11-22 1990-05-30 Mitsubishi Heavy Ind Ltd Method for reforming methanol
JPH03119094A (en) * 1989-10-02 1991-05-21 Mitsubishi Petrochem Eng Co Ltd Reformed gas-producing equipment by electroless plating and method therefor
JPH10284108A (en) * 1997-03-31 1998-10-23 Toyota Motor Corp Solid electrolyte, and fuel cell, hydrogen pump, oxygen concentration sensor, and steam concentration sensor using the electrolyte
JPH1192102A (en) * 1997-07-23 1999-04-06 Toyota Motor Corp Reforming device of fuel
JP2000154001A (en) * 1998-11-16 2000-06-06 Mitsubishi Electric Corp Catalyst thin film sheet laminated type refromer for methanol and diethyl ether

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141402A (en) * 1988-11-22 1990-05-30 Mitsubishi Heavy Ind Ltd Method for reforming methanol
JPH03119094A (en) * 1989-10-02 1991-05-21 Mitsubishi Petrochem Eng Co Ltd Reformed gas-producing equipment by electroless plating and method therefor
JPH10284108A (en) * 1997-03-31 1998-10-23 Toyota Motor Corp Solid electrolyte, and fuel cell, hydrogen pump, oxygen concentration sensor, and steam concentration sensor using the electrolyte
JPH1192102A (en) * 1997-07-23 1999-04-06 Toyota Motor Corp Reforming device of fuel
JP2000154001A (en) * 1998-11-16 2000-06-06 Mitsubishi Electric Corp Catalyst thin film sheet laminated type refromer for methanol and diethyl ether

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005087803A (en) * 2003-09-12 2005-04-07 Casio Comput Co Ltd Reactor
JP2007268453A (en) * 2006-03-31 2007-10-18 Kobe Steel Ltd Catalyst for reforming methanol with steam and method for preparing the same
JP2007268459A (en) * 2006-03-31 2007-10-18 Kobe Steel Ltd Catalyst for reforming methanol with steam and method for preparing the same

Also Published As

Publication number Publication date
JP4763870B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
EP2949625B1 (en) Ammonia synthesis method
JP5279227B2 (en) Catalyst for fuel reforming reaction and method for producing hydrogen using the same
KR101280200B1 (en) Reforming catalyst for hydrocarbon, method for producing hydrogen using such reforming catalyst, and fuel cell system
EP1232790A1 (en) Catalyst for exothermic or endothermic reaction, catalyst for water-gas-shift reaction and catalyst for selective oxidation of carbon monoxide, and plate-fin heat exchange type reformer
JP2001046872A (en) Methanol reforming catalyst, its production thereof and methanol reforming method
CN106672899B (en) Use RhNiFe/CeO2@C3N4The method of nanocatalyst Compounds with Hydrazine Hydrate Catalyzed dehydrogenation
TWI281416B (en) Catalyst for steam reforming of methanol and method for producing hydrogen therewith
US20090214417A1 (en) Preparation of cobalt-boron alloy catalysts useful for generating hydrogen from borohydrides
JP4202072B2 (en) Method for preparing hydrogen production catalyst
AU679868B2 (en) Photocatalyst, method for preparing the same, and production of hydrogen using the same
CN106744677A (en) Use RhNiCo/CeO2@C3N4The method of nanocatalyst Compounds with Hydrazine Hydrate Catalyzed dehydrogenation
CN108246332A (en) A kind of non-noble metal supported catalyst of two dimension and its preparation method and application
US6916458B2 (en) Process for producing hydrogen-containing gas
JP2001185195A (en) Producing method of hydrogen for fuel cell
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
EP1312412A2 (en) Process for producing hydrogen-containing gas
JP5105709B2 (en) Water gas shift reaction catalyst
JP2001185190A (en) Producing method of hydrogen for fuel cell
KR20070084220A (en) Reforming catalyst for oxygen-containing hydrocarbon, method for producing hydrogen or synthesis gas using same, and fuel cell system
JP4328941B2 (en) Method for producing hydrogen-containing gas
CN101157444B (en) Use of metal supported copper catalysts for reforming alcohols
JP4250971B2 (en) Inorganic material and shift catalyst using the same
JP4092538B2 (en) Method for producing hydrogen-containing gas
CN1672788A (en) Catalyst for autothermal reformation of methanol to prepare hydrogen and its prepn process and application
JP4106519B2 (en) Method for producing hydrogen-containing gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees