JP2007267001A - Dispersion pre-equally dividing optical transmitter - Google Patents

Dispersion pre-equally dividing optical transmitter Download PDF

Info

Publication number
JP2007267001A
JP2007267001A JP2006089203A JP2006089203A JP2007267001A JP 2007267001 A JP2007267001 A JP 2007267001A JP 2006089203 A JP2006089203 A JP 2006089203A JP 2006089203 A JP2006089203 A JP 2006089203A JP 2007267001 A JP2007267001 A JP 2007267001A
Authority
JP
Japan
Prior art keywords
optical
data
inverse function
dispersion
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006089203A
Other languages
Japanese (ja)
Other versions
JP4708241B2 (en
Inventor
Takashi Sugihara
隆嗣 杉原
Takashi Mizuochi
隆司 水落
Katsuhiro Shimizu
克宏 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006089203A priority Critical patent/JP4708241B2/en
Publication of JP2007267001A publication Critical patent/JP2007267001A/en
Application granted granted Critical
Publication of JP4708241B2 publication Critical patent/JP4708241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dispersion pre-equally dividing optical transmitter for reducing an insertion loss by making the output optical signal strength of each optical modulation unit almost equal, while two optical modulation units of an I-channel and a Q-channel in a nest type optical modulation device are driven always with almost equal magnitudes. <P>SOLUTION: A transmission data sequence arithmetic processing device for generating two sequence data, an optical phase adjustment unit 21 for driving an optical modulation unit 20a by using an I-channel out of two sequence data and driving an optical modulation unit 20b by using a Q-channel, giving an orthogonal relation to two modulation optical signals, and an optical phase modulation device for transmitting an optical signal, which has been subjected to dispersion pre-equally dividing optical, are provided. The transmission data sequence arithmetic processing device includes at least a dispersion inverse function arithmetic means 10 for subjecting the entered transmission sequence original data to the inverse function processing of wavelength dispersion and the inverse function processing of an optical modulation device transfer function, and a coordinate inverse arithmetic means for subjecting the complex data obtained from the dispersion inverse function arithmetic means 10 to the coordination rotation of a prescribed angle. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、ネスト型光変調器のI−チャンネル・Q−チャンネルの2つの光変調部を常に概略同振幅で駆動し、各光変調部の出力光信号強度を概略同程度とすることで、挿入損失を低減する分散予等化光送信器に関するものである。   The present invention always drives the two optical modulators of the I-channel and Q-channel of the nested optical modulator with approximately the same amplitude, and makes the output optical signal intensity of each optical modulator approximately equal. The present invention relates to a dispersion pre-equalized optical transmitter that reduces insertion loss.

長距離光通信システムにおいて、システムの低コスト化ならびに伝送レート上昇によるシステムアップグレートを容易に行うためには伝送路の有する波長分散をより効率的に補償する技術が重要となる。たとえば、分散補償ファイバおよびその損失補償に使用する光増幅器を削減することでシステムの低コスト化を図ることが可能である。また、伝送レートや変調フォーマットに応じて波長分散耐力は異なるが、いずれの伝送方式においても分散補償ファイバを使用しない、もしくは少数の種別の分散補償ファイバのみ使用することで、伝送レートや変調フォーマットによらない伝送路構成をとることが可能となり、結果として既存システムのアップグレードや複数変調方式混在のシステム実現が容易となる。   In a long-distance optical communication system, a technique for more efficiently compensating for the chromatic dispersion of a transmission line is important in order to reduce the cost of the system and easily perform system upgrade by increasing the transmission rate. For example, it is possible to reduce the cost of the system by reducing the dispersion compensating fiber and the optical amplifier used for the loss compensation. In addition, although the chromatic dispersion tolerance varies depending on the transmission rate and modulation format, the transmission rate and modulation format can be reduced by using no dispersion compensation fiber or using only a few types of dispersion compensation fiber in any transmission system. It is possible to adopt a transmission path configuration that does not depend on the result, and as a result, it is easy to upgrade an existing system and to realize a system in which a plurality of modulation methods are mixed.

以上の効果を得るための1つの方策として、分散予等化量が小さい場合(例えば、10Gb/s光信号に対して〜2000ps/nm程度)には、伝送路の波長分散に応じて送信側で位相変調を元にしたプリチャープをかける方法がある(例えば、特許文献1及び特許文献2参照)。しかし、プリチャープを用いた分散予等化の方式では、分散予等化の量が小さいため、上述のシステムコスト低減、アップグレードの容易さを劇的に促すものではない。ここで、10Gb/sに対して20000〜40000ps/nmといった非常に大きな分散予等化を行う方式として、伝送路の有する波長分散に対して、絶対値は同じで符号が逆の波長分散の効果をあらかじめ付加した光信号を送信する分散予等化送信の方式が活発に研究され始めている(例えば、非特許文献1及び非特許文献2参照)。   As one measure for obtaining the above effect, when the amount of dispersion pre-equalization is small (for example, about ˜2000 ps / nm for a 10 Gb / s optical signal), the transmission side depends on the chromatic dispersion of the transmission path. There is a method of applying pre-chirp based on phase modulation (see, for example, Patent Document 1 and Patent Document 2). However, in the distributed pre-equalization method using pre-chirp, since the amount of distributed pre-equalization is small, the above-mentioned system cost reduction and ease of upgrade are not dramatically promoted. Here, as a method of performing very large dispersion pre-equalization such as 20000 to 40,000 ps / nm for 10 Gb / s, the effect of chromatic dispersion having the same absolute value but the opposite sign with respect to the chromatic dispersion of the transmission line. Distributed pre-equalization transmission schemes for transmitting optical signals to which are added in advance have been actively studied (see, for example, Non-Patent Document 1 and Non-Patent Document 2).

従来の分散予等化光送信器について図面を参照しながら説明する。図5は、従来の分散予等化光送信器の送信データ系列演算処理器の構成を示すブロック図である。また、図6(a)は、従来の分散予等化光送信器の光変調器の構成を示すブロック図である。なお、図6(b)は、光電界の直交関係を示す。   A conventional dispersion pre-equalized optical transmitter will be described with reference to the drawings. FIG. 5 is a block diagram showing a configuration of a transmission data sequence arithmetic processor of a conventional distributed pre-equalization optical transmitter. FIG. 6A is a block diagram showing a configuration of an optical modulator of a conventional dispersion pre-equalization optical transmitter. FIG. 6B shows an orthogonal relationship between the optical electric fields.

従来の分散予等化光送信器は、図5に示す送信データ系列演算処理器と、図6(a)に示す光変調器とが設けられている。   The conventional dispersion pre-equalization optical transmitter is provided with a transmission data sequence arithmetic processor shown in FIG. 5 and an optical modulator shown in FIG.

図5において、従来の分散予等化光送信器の送信データ系列演算処理器は、分散逆関数演算手段10と、変調器逆関数演算手段12a、12bと、D/Aコンバータ13a、13bと、増幅器14a、14bとが設けられている。   In FIG. 5, a transmission data sequence arithmetic processing unit of a conventional dispersion pre-equalization optical transmitter includes a dispersion inverse function calculation unit 10, modulator inverse function calculation units 12a and 12b, D / A converters 13a and 13b, Amplifiers 14a and 14b are provided.

また、図6(a)において、従来の分散予等化光送信器の光変調器は、MZ(Mach-Zehnder)型光変調部20a、20bと、光位相調整部21と、直流バイアス制御手段22a、22b、22cと、光分波手段23と、光合波手段24とが設けられている。   In FIG. 6A, the optical modulator of the conventional dispersion pre-equalization optical transmitter includes MZ (Mach-Zehnder) type optical modulation units 20a and 20b, an optical phase adjustment unit 21, and a DC bias control means. 22a, 22b, 22c, optical demultiplexing means 23, and optical multiplexing means 24 are provided.

従来例では、図5に示すように、送信系列元データに対して、伝送路の波長分散の逆関数演算と光変調器伝達関数の逆関数演算を分散逆関数演算手段10で行い、得られる2系列のデータ(I−チャンネル、Q−チャンネル)を用いてI/Q光変調器を駆動することで、分散予等化を行った光信号を送出する。   In the conventional example, as shown in FIG. 5, an inverse function calculation of the chromatic dispersion of the transmission line and an inverse function calculation of the transfer function of the optical modulator are performed on the transmission sequence original data by the dispersion inverse function calculation means 10. By driving the I / Q optical modulator using two series of data (I-channel, Q-channel), an optical signal subjected to dispersion pre-equalization is transmitted.

この際、伝送路の波長分散の逆関数演算としては、伝送路の波長分散と絶対値は同じで符号が逆の波長分散の伝達関数と送信データ系列の掛け合わせ、もしくは同伝達関数から求まるインパルス応答と送信データ系列との畳み込みによって複素データ列を得る方法が一般的である。また、一般的に、電気・光変換の応答特性は線形ではないため、理想的な光信号を生成するためには通常、電気・光変換の応答特性を補正する演算を行う変調器逆関数演算手段12a、12bが追加されている。さらに、上記の各演算をディジタル演算処理によって実施する場合、D/Aコンバータ13a、13bと増幅器14a、14bを通して光変調器の駆動用アナログ信号を得る。   At this time, as the inverse function calculation of the chromatic dispersion of the transmission line, the chromatic dispersion of the transmission line has the same absolute value and the sign is reversed, and the transmission function is multiplied by the transmission function of the chromatic dispersion or the impulse obtained from the same transfer function. A general method is to obtain a complex data sequence by convolution of a response and a transmission data sequence. In general, the response characteristics of electrical / optical conversion are not linear, so in order to generate an ideal optical signal, the inverse function of the modulator is usually used to correct the response characteristics of electrical / optical conversion. Means 12a and 12b are added. Further, when each of the above operations is performed by digital arithmetic processing, an analog signal for driving the optical modulator is obtained through the D / A converters 13a and 13b and the amplifiers 14a and 14b.

光のI/Q変調は、例えば図6に示す構成のネスト型光変調器で、各MZ型光変調部20a、20bをそれぞれI−チャンネル、Q−チャンネルで駆動することで行う。DQPSK(Differential Quadrature Phase Shift Keying)変調に使用するネスト型光変調器は、光位相調整部21でπ/2位相シフトを行うことで、I/Qの2系列のデータから、I−チャンネルでの変調光信号とQ−チャンネルでの変調光信号が直交関係にある複素光電界を生成することが可能であるため、分散予等化送信用の光変調器としても使用可能である(例えば、特許文献3参照)。   Optical I / Q modulation is performed, for example, by driving each MZ type optical modulator 20a, 20b with an I-channel and a Q-channel with a nested optical modulator configured as shown in FIG. The nest type optical modulator used for DQPSK (Differential Quadrature Phase Shift Keying) modulation performs π / 2 phase shift by the optical phase adjustment unit 21, and thus, from I / Q two series data, I-channel Since it is possible to generate a complex optical electric field in which the modulated optical signal and the modulated optical signal in the Q-channel are orthogonal, it can be used as an optical modulator for dispersion pre-equalization transmission (for example, patent Reference 3).

ところで、図5において、送信データ系列としてゼロチャープNRZ(Non-Return-to-Zero)光信号を送信する場合を仮定すると、複素光電界としての実部、虚部の関係は、例えば予等化量がゼロの場合で駆動信号の虚部成分=0となる。ここで、ネスト型光変調器での直交するI−チャネル・Q−チャネルに上記複素データをそのまま割り当てると、図6(b)に示すように、I−チャンネル=データ、Q−チャンネル=0という変調を行うことになる。これは、ネスト型光変調器の一方の光変調部は消光の状態のまま使用することとなり、ネスト型光変調器の挿入損失が3dB増加する場合があることを意味する。   By the way, in FIG. 5, assuming that a zero-chirp NRZ (Non-Return-to-Zero) optical signal is transmitted as a transmission data sequence, the relationship between the real part and the imaginary part as a complex optical field is, for example, a pre-equalization amount Is zero, the imaginary part component of the drive signal = 0. Here, if the complex data is directly assigned to the orthogonal I-channel and Q-channel in the nested optical modulator, as shown in FIG. 6B, I-channel = data and Q-channel = 0. Modulation will be performed. This means that one of the optical modulators of the nested optical modulator is used in a quenched state, and the insertion loss of the nested optical modulator may increase by 3 dB.

特開平06−303205号公報Japanese Patent Laid-Open No. 06-303205 特開平05−110516号公報JP 05-110516 A 特表2004−516743号公報JP-T-2004-516743 D. McGhan, et. al., “5120-km RZ-DPSK Transmission Over G.652 Fiber at 10Gb/s Without Optical Dispersion Compensation” IEEE Photon. Technol. Lett., vol. 18, no. 2, 400, 2006.D. McGhan, et. al. “5120-km RZ-DPSK Transmission Over G.652 Fiber at 10 Gb / s Without Optical Dispersion Compensation” IEEE Photon. Technol. Lett. , Vol. 18, no. 2, 400, 2006. K. Roberts, et. al., “Electronic Precompensation of Optical Nonlinearity” IEEE Photon. Technol. Lett., vol. 18, no. 2, 403, 2006.K. Roberts, et. al. “Electronic Precompensation of Optical Nonlinearity” IEEE Photon. Technol. Lett. , Vol. 18, no. 2, 403, 2006.

前述のように、分散予等化を行うための光変調器として、I/Q変調用のネスト型光変調器を使用し、伝送路の波長分散の逆関数演算を行った結果の実部、虚部をそれぞれI−チャンネル・Q−チャンネルに割り当てて複素光電界を生成する場合には、変調フォーマットや予等化の分散量によって3dBの過剰損失が発生する場合があるという問題点があった。   As described above, using a nested optical modulator for I / Q modulation as an optical modulator for dispersion pre-equalization, the real part of the result of performing an inverse function calculation of the chromatic dispersion of the transmission line, When the complex optical electric field is generated by assigning the imaginary part to the I-channel and the Q-channel, respectively, there is a problem that an excess loss of 3 dB may occur depending on the modulation format and the dispersion amount of pre-equalization. .

この発明は、上述のような課題を解決するためになされたもので、その目的は、ネスト型光変調器のI−チャンネル・Q−チャンネルの2つの光変調部を常に概略同振幅で駆動し、各光変調部の出力光信号強度を概略同程度とすることで、挿入損失を低減することができる分散予等化光送信器を得るものである。   The present invention has been made to solve the above-described problems, and its purpose is to always drive the two optical modulators of the nested optical modulator of I-channel and Q-channel with approximately the same amplitude. Thus, a dispersion pre-equalized optical transmitter capable of reducing the insertion loss is obtained by setting the output optical signal intensities of the respective optical modulation units to approximately the same level.

この発明に係る分散予等化光送信器は、Iチャンネル及びQチャンネルの2系列のデータを生成する送信データ系列演算処理器と、前記2系列のデータのうちIチャンネルのデータを用いて第1の光変調部を駆動するとともに、Qチャンネルのデータを用いて第2の光変調部を駆動し、前記第1及び第2の光変調部からの2つの変調光信号に光位相調整部が直交関係を持たせ、分散予等化を行った光信号を送出する光変調器とを備える分散予等化光送信器であって、前記送信データ系列演算処理器は、入力された送信系列元データに対して伝送路の波長分散の逆関数演算及び光変調器伝達関数の逆関数演算を行う分散逆関数演算手段と、前記分散逆関数演算手段から得られる複素データに対して所定の角度の座標回転を行う座標変換演算手段とを少なくとも含み、前記座標変換演算手段からの座標変換されたデータに基づき、Iチャンネル及びQチャンネルの2系列のデータを生成するものである。   The dispersion pre-equalization optical transmitter according to the present invention uses a transmission data sequence arithmetic processor for generating two series of data of I channel and Q channel, and first I channel data using the I channel data of the two series of data. And the second optical modulator using the Q-channel data, and the optical phase adjuster is orthogonal to the two modulated optical signals from the first and second optical modulators. A distributed pre-equalized optical transmitter having an optical modulator that transmits an optical signal that has been subjected to dispersion pre-equalization, wherein the transmission data sequence arithmetic processing unit is configured to input input transmission sequence original data Dispersion inverse function computing means for performing inverse function computation of the chromatic dispersion of the transmission line and inverse function of the optical modulator transfer function, and coordinates of a predetermined angle with respect to the complex data obtained from the dispersion inverse function computing means Coordinate transformation calculation means for rotation Hints at least, based on the coordinate data converted from the coordinate conversion calculation means, and generates the data of the two series of I and Q channels.

この発明に係る分散予等化光送信器は、ネスト型光変調器のI−チャンネル・Q−チャンネルの2つの光変調部を常に概略同振幅で駆動し、各光変調部の出力光信号強度を概略同程度とすることで、挿入損失を低減することができるという効果を奏する。   The dispersion pre-equalization optical transmitter according to the present invention always drives the two optical modulators of the nested optical modulator of I-channel and Q-channel with substantially the same amplitude, and outputs the optical signal intensity of each optical modulator. By making the values approximately the same, there is an effect that the insertion loss can be reduced.

実施の形態1.
この発明の実施の形態1に係る分散予等化光送信器について図1及び図2を参照しながら説明する。図1は、この発明の実施の形態1に係る分散予等化光送信器の送信データ系列演算処理器の構成を示すブロック図である。また、図2(a)は、この発明の実施の形態1に係る分散予等化光送信器の光変調器の構成を示すブロック図である。なお、以降では、各図中、同一符号は同一又は相当部分を示す。
Embodiment 1 FIG.
A dispersion pre-equalized optical transmitter according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 is a block diagram showing a configuration of a transmission data sequence arithmetic processor of a distributed pre-equalization optical transmitter according to Embodiment 1 of the present invention. FIG. 2A is a block diagram showing the configuration of the optical modulator of the dispersion pre-equalization optical transmitter according to Embodiment 1 of the present invention. In the following, in each figure, the same reference numerals indicate the same or corresponding parts.

この実施の形態1に係る分散予等化光送信器は、図1に示す送信データ系列演算処理器と、図2(a)に示す光変調器とが設けられている。   The dispersion pre-equalized optical transmitter according to the first embodiment is provided with a transmission data sequence arithmetic processor shown in FIG. 1 and an optical modulator shown in FIG.

図1において、この実施の形態1に係る分散予等化光送信器の送信データ系列演算処理器は、分散逆関数演算手段10と、座標変換演算手段11と、変調器逆関数演算手段12a、12bと、D/Aコンバータ13a、13bと、増幅器14a、14bとが設けられている。   In FIG. 1, a transmission data sequence arithmetic processing unit of the dispersion pre-equalization optical transmitter according to the first embodiment includes a dispersion inverse function calculating means 10, a coordinate transformation calculating means 11, a modulator inverse function calculating means 12a, 12b, D / A converters 13a and 13b, and amplifiers 14a and 14b are provided.

また、図2(a)において、この実施の形態1に係る分散予等化光送信器の光変調器は、MZ(Mach-Zehnder)型光変調部20a、20bと、光位相調整部21と、直流バイアス制御手段22a、22b、22cと、光分波手段23と、光合波手段24とが設けられている。   2A, the optical modulator of the dispersion pre-equalization optical transmitter according to the first embodiment includes MZ (Mach-Zehnder) type optical modulation units 20a and 20b, an optical phase adjustment unit 21, and the like. DC bias control means 22a, 22b, 22c, optical demultiplexing means 23, and optical multiplexing means 24 are provided.

つぎに、この実施の形態1に係る分散予等化光送信器の動作について図面を参照しながら説明する。   Next, the operation of the dispersion pre-equalized optical transmitter according to the first embodiment will be described with reference to the drawings.

まず、送信系列元データに対して、伝送路の波長分散の逆関数演算と光変調器伝達関数の逆関数演算を分散逆関数演算手段10で行う。伝送路の波長分散の逆関数演算としては、伝送路の波長分散と絶対値は同じで符号が逆の波長分散の伝達関数と送信系列元データの掛け合わせ、もしくは同伝達関数から求まるインパルス応答と送信系列元データとの畳み込みによって複素データ列を得る方法が一般的であり、これらの演算はディジタル演算処理もしくはアナログFIRフィルタで容易に実現可能である。   First, an inverse function calculation of the chromatic dispersion of the transmission line and an inverse function calculation of the optical modulator transfer function are performed by the dispersion inverse function calculation means 10 on the transmission sequence original data. As the inverse function calculation of the chromatic dispersion of the transmission line, the chromatic dispersion of the transmission line and the absolute value are the same, but the sign of the chromatic dispersion is multiplied by the transmission sequence source data or the impulse response obtained from the same transfer function. A method of obtaining a complex data string by convolution with transmission sequence original data is generally used, and these operations can be easily realized by digital arithmetic processing or an analog FIR filter.

次に、波長分散の逆関数演算後に得られる複素データに対して、座標変換演算を座標変換演算手段11で行う。例えば、座標変換演算手段11の入力信号をDin=(Dr(t)、Di(t))とし、座標変換演算として角度θの座標回転を行った場合、出力信号Doutは、下記の式(1)ように表すことができる。   Next, the coordinate conversion calculation means 11 performs coordinate conversion calculation on complex data obtained after calculating the inverse function of chromatic dispersion. For example, when the input signal of the coordinate transformation calculation means 11 is Din = (Dr (t), Di (t)) and the coordinate rotation of the angle θ is performed as the coordinate transformation calculation, the output signal Dout is expressed by the following formula (1 ) Can be expressed as:

Dout=[Dr(t)・cos(θ)+Di(t)・sin(θ),−Dr(t)・sin(θ)+Di(t)・cos(θ)] 式(1)   Dout = [Dr (t) · cos (θ) + Di (t) · sin (θ), −Dr (t) · sin (θ) + Di (t) · cos (θ)] Equation (1)

なお、Dr(t)は実部、Di(t)は虚部を表す。また、式(1)の右辺の前半部分{Dr(t)・cos(θ)+Di(t)・sin(θ)}がI’−チャンネルに対応し、右辺の後半部分{−Dr(t)・sin(θ)+Di(t)・cos(θ)}がQ’−チャンネルに対応している。   Dr (t) represents a real part and Di (t) represents an imaginary part. In addition, the first half {Dr (t) · cos (θ) + Di (t) · sin (θ)} on the right side of Expression (1) corresponds to the I′− channel, and the second half {−Dr (t) on the right side. Sin (θ) + Di (t) · cos (θ)} corresponds to the Q′− channel.

次に、座標変換後のデータは、光変調器の応答特性の逆関数によって補正を変調器逆関数演算手段12a、12bで行う。さらに、上記各演算をディジタル演算処理によって行った場合には、後段にD/Aコンバータ13a、13bと増幅器14a、14bを配して、2系列の光変調器駆動データ(I’−チャンネル、Q’−チャンネル)を得る。なお、変調器逆関数演算手段12a、12bは、分散逆関数演算手段10又は座標変換演算手段11の後段に設けられ、光変調器の電気光変換の応答特性の逆関数でデータ系列の信号振幅を補正する。   Next, the data after the coordinate conversion is corrected by the modulator inverse function calculation means 12a and 12b by the inverse function of the response characteristic of the optical modulator. Further, when each of the above calculations is performed by digital calculation processing, D / A converters 13a and 13b and amplifiers 14a and 14b are arranged in the subsequent stage to provide two series of optical modulator drive data (I′-channel, Q '-Channel). The modulator inverse function calculating means 12a and 12b are provided in the subsequent stage of the dispersion inverse function calculating means 10 or the coordinate transformation calculating means 11, and are the inverse function of the response characteristics of the electro-optic conversion of the optical modulator and the signal amplitude of the data series. Correct.

次に、図2(a)及び(b)を用いて、送信データ系列演算処理器によって得られたデータと変調光信号の関係を説明する。   Next, the relationship between the data obtained by the transmission data sequence arithmetic processor and the modulated optical signal will be described with reference to FIGS. 2 (a) and 2 (b).

本実施の形態1と従来例の違いは、MZ型光変調部20a、20bの駆動を、座標変換演算を施したI’−チャンネル、Q’−チャンネルで行うところである。   The difference between the first embodiment and the conventional example is that the driving of the MZ type optical modulators 20a and 20b is performed in the I'-channel and the Q'-channel that have undergone the coordinate conversion calculation.

例えば、座標変換演算として、π/4の座標回転を行った場合には、式(1)での出力信号Doutは、下記の式(2)ように表すことができる。   For example, when coordinate rotation of π / 4 is performed as the coordinate conversion calculation, the output signal Dout in the equation (1) can be expressed as the following equation (2).

Dout=[Dr(t)/√2+Di(t)/√2,−Dr(t)/√2+Di(t)/√2] 式(2)   Dout = [Dr (t) / √2 + Di (t) / √2, −Dr (t) / √2 + Di (t) / √2] Equation (2)

例えDi(t)=0の状態であっても、Doutとして概略等振幅の2系列のデータを得ることができることがわかる。また、分散予等化量を大きくしていき、Dr(t)、Di(t)の割合が変わった場合でも、I’−チャンネル、Q’−チャネルの変化は同じであるため、分散予等化量によらずI’−チャンネル、Q’−チャンネルの振幅を概略一定に保てる。その結果、図2(b)で示すとおり、予等化分散量によらず概略等振幅で各MZ型光変調部20a、20bを駆動できるため、各MZ型光変調部20a、20bを完全に消光した状態で使用する必要がなく、座標変換を行わない場合に比べて、最大3dBの挿入損失の改善が図れる。なお、この場合においても、複素電界の関係は、座標変換しない場合の(I−チャネル、Q−チャネル)の関係に比べて、π/4座標回転した系の(I’−チャネル、Q’−チャネル)として直交関係は保たれたままであり、光信号の複素電界としての性質が変わらないことは自明である。   It can be seen that even if Di (t) = 0, two series of data with approximately equal amplitude can be obtained as Dout. Further, even when the amount of dispersion pre-equalization is increased and the ratio of Dr (t) and Di (t) is changed, the change in the I′-channel and the Q′-channel is the same. The amplitudes of the I′-channel and the Q′-channel can be kept substantially constant regardless of the conversion amount. As a result, as shown in FIG. 2 (b), each MZ type light modulation unit 20a, 20b can be driven with a substantially equal amplitude regardless of the pre-equalization dispersion amount. There is no need to use it in the extinguished state, and the insertion loss can be improved up to 3 dB compared to the case where coordinate conversion is not performed. Also in this case, the relationship of the complex electric field is the (I′-channel, Q′−) of the system rotated by π / 4 coordinate as compared with the (I-channel, Q-channel) relationship without coordinate conversion. It is self-evident that the orthogonal relationship is maintained as the channel) and the property of the optical signal as a complex electric field does not change.

したがって、図1及び図2の構成をとることで、送信する光信号の直交関係を維持したまま、ネスト型光変調器での挿入損失を最大3dB改善できる。   Therefore, the configuration shown in FIGS. 1 and 2 can improve the insertion loss of the nested optical modulator by a maximum of 3 dB while maintaining the orthogonal relationship of the transmitted optical signals.

すなわち、この実施の形態1に係る分散予等化光送信器は、Iチャンネル及びQチャンネルの2系列のデータを生成する送信データ系列演算処理器と、前記2系列のデータのうちIチャンネルのデータを用いてMZ型光変調部20a(第1の光変調部)を駆動するとともに、Qチャンネルのデータを用いてMZ型光変調部20b(第2の光変調部)を駆動し、MZ型光変調部20a、20bからの2つの変調光信号に光位相調整部21が直交関係を持たせ、分散予等化を行った光信号を送出する光変調器とを設け、前記送信データ系列演算処理器は、入力された送信系列元データに対して伝送路の波長分散の逆関数演算及び光変調器伝達関数の逆関数演算を行う分散逆関数演算手段10と、分散逆関数演算手段10から得られる複素データに対して所定の角度の座標回転を行う座標変換演算手段11とを少なくとも含み、座標変換演算手段11からの座標変換されたデータに基づき、Iチャンネル及びQチャンネルの2系列のデータを生成するものである。前記送信データ系列演算処理器は、分散逆関数演算手段10又は座標変換演算手段11の後段に設けられ、前記光変調器の電気光変換の応答特性の逆関数でデータ系列の信号振幅を補正する変調器逆関数演算手段12a、12bをさらに含むものである。   That is, the dispersion pre-equalization optical transmitter according to the first embodiment includes a transmission data sequence arithmetic processor for generating two series of data of I channel and Q channel, and I channel data among the two series of data. Is used to drive the MZ light modulator 20a (first light modulator), and the MZ light modulator 20b (second light modulator) is driven using the Q channel data. An optical modulator for transmitting an optical signal that has been subjected to dispersion pre-equalization so that the optical phase adjustment unit 21 has an orthogonal relationship with the two modulated optical signals from the modulation units 20a and 20b, and the transmission data sequence calculation process The unit obtains from the dispersion inverse function computing means 10 for performing the inverse function computation of the chromatic dispersion of the transmission line and the inverse function computation of the optical modulator transfer function with respect to the input transmission sequence original data, and the dispersion inverse function computing means 10. Complex data And at least a coordinate transformation calculation means 11 that performs coordinate rotation of a predetermined angle, and generates two series of data of I channel and Q channel based on the coordinate transformed data from the coordinate transformation calculation means 11. is there. The transmission data series arithmetic processing unit is provided after the inverse dispersion function calculating means 10 or the coordinate transformation calculating means 11, and corrects the signal amplitude of the data series with the inverse function of the electro-optical conversion response characteristic of the optical modulator. Modulator inverse function calculation means 12a and 12b are further included.

実施の形態2.
この発明の実施の形態2に係る分散予等化光送信器について図3を参照しながら説明する。図3は、この発明の実施の形態2に係る分散予等化光送信器の送信データ系列演算処理器の構成を示すブロック図である。なお、光変調器の構成は、上記実施の形態1と同様である。
Embodiment 2. FIG.
A dispersion pre-equalized optical transmitter according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 3 is a block diagram showing a configuration of a transmission data sequence arithmetic processor of the distributed pre-equalization optical transmitter according to Embodiment 2 of the present invention. The configuration of the optical modulator is the same as that in the first embodiment.

図3において、この実施の形態2に係る分散予等化光送信器の送信データ系列演算処理器は、分岐手段31が追加され、分散逆関数演算手段10が実部演算手段32と虚部演算手段33とから構成されている。その他、図1と同機能を有する構成要素は図1と同一符号を付している。   In FIG. 3, the transmission data sequence arithmetic processing unit of the dispersion pre-equalization optical transmitter according to the second embodiment has a branching unit 31 added thereto, and the distributed inverse function calculating unit 10 has a real part calculating unit 32 and an imaginary part calculating unit. And means 33. In addition, the component which has the same function as FIG. 1 attaches | subjects the same code | symbol as FIG.

つぎに、この実施の形態2に係る分散予等化光送信器の動作について図面を参照しながら説明する。   Next, the operation of the dispersion pre-equalized optical transmitter according to the second embodiment will be described with reference to the drawings.

図3は、OOK(On-Off Keying)変調もしくはDPSK(Differential Phase Shift Keying)変調全般に本発明を適用する場合の構成であり、上記の実施の形態1に比べて、上述したように分岐手段31が追加されている。   FIG. 3 shows a configuration in the case where the present invention is applied to OOK (On-Off Keying) modulation or DPSK (Differential Phase Shift Keying) modulation as a whole. As compared with the first embodiment, the branching means is as described above. 31 has been added.

図3においては、送信系列元データが入力された場合、分岐手段31で同一の2データに分岐した後、それぞれに対して分散逆関数演算の実部のみの演算を実部演算手段32で、虚部のみの演算を虚部演算手段33で行う。   In FIG. 3, when transmission sequence original data is input, after branching to the same two data by the branching means 31, only the real part of the distributed inverse function calculation is calculated by the real part calculating means 32 for each. The calculation of only the imaginary part is performed by the imaginary part calculating means 33.

次に、得られた実部、虚部のデータから座標変換演算手段11a、11bにより、新たな直交する2データ(I’−チャネル、Q’−チャネルに相当)を生成する。それ以後のデータは、上記の実施の形態1と同様である。   Next, two new orthogonal data (corresponding to I'-channel and Q'-channel) are generated from the obtained real part and imaginary part data by the coordinate transformation calculation means 11a and 11b. The subsequent data is the same as in the first embodiment.

なお、DPSK変調やDuo−binary変調など別途データのエンコードが必要な場合は、図3の送信系列元データとしてエンコード済みのデータを入力するものとする。また、図3では、入力される送信系列元データは1つであるが、分岐手段31を省いて入力を2つの同じデータ系列としてもよい。   Note that, when separate data encoding is required, such as DPSK modulation or Duo-binary modulation, encoded data is input as transmission sequence source data in FIG. In FIG. 3, only one transmission sequence source data is input. However, the branching means 31 may be omitted and the input may be two identical data sequences.

また、変調フォーマットによって増幅器の出力振幅、変調器逆関数演算のパラメータ、直流バイアス制御のパラメータを調整および最適化してよいことはいうまでもない。   It goes without saying that the output amplitude of the amplifier, the modulator inverse function calculation parameter, and the DC bias control parameter may be adjusted and optimized according to the modulation format.

本実施の形態2を用いることで、OOK、DPSK変調などの変調フォーマットでネスト型光変調器を用いて分散予等化光送信器を構成する場合に、ネスト型光変調器での挿入損失を最大3dB低減することが可能である。   By using the second embodiment, when a dispersion pre-equalized optical transmitter is configured using a nested optical modulator in a modulation format such as OOK or DPSK modulation, insertion loss in the nested optical modulator is reduced. It is possible to reduce the maximum by 3 dB.

すなわち、この実施の形態2に係る分散予等化光送信器は、Iチャンネル及びQチャンネルの2系列のデータを生成する送信データ系列演算処理器と、前記2系列のデータのうちIチャンネルのデータを用いてMZ型光変調部20a(第1の光変調部)を駆動するとともに、Qチャンネルのデータを用いてMZ型光変調部20b(第2の光変調部)を駆動し、MZ型光変調部20a、20bからの2つの変調光信号に光位相調整部21が直交関係を持たせ、分散予等化を行った光信号を送出する光変調器とを設け、前記送信データ系列演算処理器は、入力された送信系列元データを、同一の2つの送信系列元データに分岐し、それぞれを分散逆関数演算手段10を構成する実部演算手段32、虚部演算手段33に出力する分岐手段31と、同じ2つの送信系列元データの一方に対して伝送路の波長分散の逆関数演算及び光変調器伝達関数の逆関数演算の実部のみの演算を行う実部演算手段32と、同じ2つの送信系列元データの他方に対して伝送路の波長分散の逆関数演算及び光変調器伝達関数の逆関数演算の虚部のみの演算を行う虚部演算手段33と、実部演算手段32、虚部演算手段33から得られる複素データに対して所定の角度の座標回転を行う座標変換演算手段11a、11bとを少なくとも含み、座標変換演算手段11a、11bからの座標変換されたデータに基づき、Iチャンネル及びQチャンネルの2系列のデータを生成するものである。前記送信データ系列演算処理器は、分散逆関数演算手段10又は座標変換演算手段11a、11bの後段に設けられ、前記光変調器の電気光変換の応答特性の逆関数でデータ系列の信号振幅を補正する変調器逆関数演算手段12a、12bをさらに含むものである。   That is, the dispersion pre-equalization optical transmitter according to the second embodiment includes a transmission data sequence arithmetic processing unit that generates two series of data of I channel and Q channel, and I channel data among the two series of data. Is used to drive the MZ light modulator 20a (first light modulator), and the MZ light modulator 20b (second light modulator) is driven using the Q channel data. An optical modulator for transmitting an optical signal that has been subjected to dispersion pre-equalization so that the optical phase adjustment unit 21 has an orthogonal relationship with the two modulated optical signals from the modulation units 20a and 20b, and the transmission data sequence calculation process The branch branches the input transmission sequence original data into the same two transmission sequence original data, and outputs them to the real part calculation means 32 and the imaginary part calculation means 33 constituting the distributed inverse function calculation means 10, respectively. Means 31 and the same Real part computing means 32 for performing only the real part of the inverse function calculation of the chromatic dispersion of the transmission line and the inverse function of the optical modulator transfer function for one of the two transmission series source data, and the same two transmission series An imaginary part computing means 33 that performs computation of only the imaginary part of the inverse function computation of the chromatic dispersion of the transmission line and the inverse function of the optical modulator transfer function, the real part computing means 32, and the imaginary part computation. Coordinate conversion calculation means 11a and 11b that perform coordinate rotation of a predetermined angle with respect to the complex data obtained from the means 33, and based on the coordinate-converted data from the coordinate conversion calculation means 11a and 11b, Two series of Q channel data are generated. The transmission data series arithmetic processing unit is provided in the subsequent stage of the dispersion inverse function calculating means 10 or the coordinate transformation calculating means 11a and 11b, and the signal amplitude of the data series is determined by the inverse function of the response characteristic of electro-optical conversion of the optical modulator. Modulator inverse function calculation means 12a and 12b for correction are further included.

実施の形態3.
この発明の実施の形態3に係る分散予等化光送信器について図4を参照しながら説明する。図4は、この発明の実施の形態3に係る分散予等化光送信器の送信データ系列演算処理器の構成を示すブロック図である。なお、光変調器の構成は、上記実施の形態1と同様である。
Embodiment 3 FIG.
A dispersion pre-equalized optical transmitter according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 4 is a block diagram showing a configuration of a transmission data sequence arithmetic processor of the distributed pre-equalization optical transmitter according to Embodiment 3 of the present invention. The configuration of the optical modulator is the same as that in the first embodiment.

図4において、この実施の形態3に係る分散予等化光送信器の送信データ系列演算処理器は、加算手段41(41a、41b)が追加され、分散逆関数演算手段10aが実部演算手段32aと虚部演算手段33aとから構成され、また、分散逆関数演算手段10bが実部演算手段32bと虚部演算手段33bとから構成されている。その他、図1、図3と同機能を有する構成要素は図1、図3と同一符号を付している。   In FIG. 4, the transmission data sequence arithmetic processing unit of the distributed pre-equalization optical transmitter according to the third embodiment is added with an adding means 41 (41a, 41b), and the distributed inverse function calculating means 10a is a real part calculating means. 32a and an imaginary part computing means 33a, and a distributed inverse function computing means 10b comprises a real part computing means 32b and an imaginary part computing means 33b. In addition, the component which has the same function as FIG. 1, FIG. 3 attaches | subjects the same code | symbol as FIG. 1, FIG.

図4は、DQPSK(Differential Quadrature Phase Shift Keying)変調のように送信系列元データとして異なる2つのデータを入力した場合でも動作するよう、上記の実施の形態2で示される基本ブロックが並列に並べられた構成となっており、各ブロックが加算手段41a、41bによって接続されている。   In FIG. 4, the basic blocks shown in the second embodiment are arranged in parallel so as to operate even when two different data are input as transmission sequence source data as in DQPSK (Differential Quadrature Phase Shift Keying) modulation. Each block is connected by adding means 41a and 41b.

図4では、まず、送信系列元データ1と送信系列元データ2のそれぞれに対して、分散逆関数演算手段10a、10bで分散逆関数演算を行い、座標変換演算手段11a、11b、11c、11dで座標変換演算を行い、(I’−チャネル、Q’−チャネル)に相当するデータを2系列生成する。   In FIG. 4, first, distributed inverse function calculation means 10a and 10b are applied to transmission sequence original data 1 and transmission sequence original data 2, respectively, and coordinate transformation calculation means 11a, 11b, 11c, and 11d are performed. Then, coordinate transformation calculation is performed to generate two series of data corresponding to (I′-channel, Q′-channel).

次に、それぞれの系列のI’−チャネル成分同士、Q’−チャネル成分同士を加算手段41a、41bで加算して、最終的に光変調器を駆動するI’−チャネル、Q’−チャネル信号を得る。   Next, I'-channel components and Q'-channel signals that finally drive the optical modulator are added by adding means 41a and 41b with each other's I'-channel components and Q'-channel components. Get.

なお、DQPSK変調では別途データのエンコードが必要であり、図4の送信系列元データ1、送信系列元データ2としてエンコード済みの2つのデータを入力するものとする。   Note that DQPSK modulation requires separate data encoding, and two encoded data are input as transmission sequence source data 1 and transmission sequence source data 2 in FIG.

また、図4の送信系列元データ1、送信系列元データ2を同一のデータとすることで、上記実施の形態2で示したOOK変調やDPSK変調にも対応することが可能である。   Further, by making the transmission sequence source data 1 and the transmission sequence source data 2 in FIG. 4 the same data, it is possible to cope with the OOK modulation and the DPSK modulation shown in the second embodiment.

さらに、変調フォーマットによって増幅器の出力振幅、変調器逆関数演算のパラメータ、直流バイアス制御のパラメータを調整および最適化してよいことは前述と同様である。   Furthermore, the amplifier output amplitude, modulator inverse function calculation parameters, and DC bias control parameters may be adjusted and optimized according to the modulation format, as described above.

また、座標変換時の座標回転演算の角度は、特にπ/4にこだわる必要はなく、変調フォーマットと分散予等化量がゼロの場合の出力光信号の直交成分比に応じて変化させてもよいことはいうまでもない。   Further, the angle of coordinate rotation calculation at the time of coordinate conversion does not need to be particularly π / 4, and may be changed according to the orthogonal component ratio of the output optical signal when the modulation format and the dispersion pre-equalization amount are zero. Needless to say, it is good.

本実施の形態3を用いることで、最大2つの異なるデータを直交多重するDQPSKに代表される変調フォーマットにも対応可能であり、分散予等化光送信に際して光変調フォーマットによらずネスト型光変調器の挿入損失を低減することが可能となる。   By using the third embodiment, it is possible to cope with a modulation format represented by DQPSK that orthogonally multiplexes up to two different data, and in the case of dispersion pre-equalization optical transmission, a nested optical modulation is used regardless of the optical modulation format. It is possible to reduce the insertion loss of the device.

すなわち、この実施の形態3に係る分散予等化光送信器は、Iチャンネル及びQチャンネルの2系列のデータを生成する送信データ系列演算処理器と、前記2系列のデータのうちIチャンネルのデータを用いてMZ型光変調部20a(第1の光変調部)を駆動するとともに、Qチャンネルのデータを用いてMZ型光変調部20b(第2の光変調部)を駆動し、MZ型光変調部20a、20bからの2つの変調光信号に光位相調整部21が直交関係を持たせ、分散予等化を行った光信号を送出する光変調器とを設け、前記送信データ系列演算処理器は、入力された送信系列元データ1を、同一の2つの送信系列元データに分岐し、それぞれを分散逆関数演算手段10a(第1の分散逆関数演算手段)を構成する実部演算手段32a、虚部演算手段33aに出力する分岐手段31aと、入力された送信系列元データ2を、同一の2つの送信系列元データに分岐し、それぞれを分散逆関数演算手段10b(第2の分散逆関数演算手段)を構成する実部演算手段32b、虚部演算手段33bに出力する分岐手段31bと、同じ2つの送信系列元データ1の一方に対して伝送路の波長分散の逆関数演算及び光変調器伝達関数の逆関数演算の実部のみの演算を行う実部演算手段32aと、同じ2つの送信系列元データ1の他方に対して伝送路の波長分散の逆関数演算及び光変調器伝達関数の逆関数演算の虚部のみの演算を行う虚部演算手段33aと、実部演算手段32a、虚部演算手段33aから得られる複素データに対して所定の角度の座標回転を行う座標変換演算手段11a、11b(第1の座標変換演算手段)と、同じ2つの送信系列元データ2の一方に対して伝送路の波長分散の逆関数演算及び光変調器伝達関数の逆関数演算の実部のみの演算を行う実部演算手段32bと、同じ2つの送信系列元データ2の他方に対して伝送路の波長分散の逆関数演算及び光変調器伝達関数の逆関数演算の虚部のみの演算を行う虚部演算手段33bと、実部演算手段32b、虚部演算手段33bから得られる複素データに対して所定の角度の座標回転を行う座標変換演算手段11c、11d(第2の座標変換演算手段)と、座標変換演算手段11a、11c(第1及び第2の座標変換演算手段)からのIチャネル成分同士を加算する加算手段41a(第1の加算手段)と、座標変換演算手段11b、11d(第1及び第2の座標変換演算手段)からのQチャネル成分同士を加算する加算手段41b(第2の加算手段)とを少なくとも含み、加算手段41a、41bからのデータに基づき、Iチャンネル及びQチャンネルの2系列のデータを生成するものである。前記送信データ系列演算処理器は、分散逆関数演算手段10a、10b又は座標変換演算手段11a〜11dの後段に設けられ、前記光変調器の電気光変換の応答特性の逆関数でデータ系列の信号振幅を補正する変調器逆関数演算手段12a、12bをさらに含むものである。   That is, the dispersion pre-equalization optical transmitter according to the third embodiment includes a transmission data sequence arithmetic processor that generates two series of data of I channel and Q channel, and I channel data among the two series of data. Is used to drive the MZ light modulator 20a (first light modulator), and the MZ light modulator 20b (second light modulator) is driven using the Q channel data. An optical modulator for transmitting an optical signal that has been subjected to dispersion pre-equalization so that the optical phase adjustment unit 21 has an orthogonal relationship with the two modulated optical signals from the modulation units 20a and 20b, and the transmission data sequence calculation process The device branches the input transmission sequence original data 1 into the same two transmission sequence original data, each of which constitutes a distributed inverse function calculation means 10a (first distributed inverse function calculation means). 32a, imaginary part operator The branching means 31a that outputs to 33a and the input transmission sequence original data 2 are branched into the same two transmission sequence original data, and each of them is distributed inverse function calculating means 10b (second distributed inverse function calculating means). The real part calculating means 32b and the branching means 31b that output to the imaginary part calculating means 33b and the inverse function calculation of the chromatic dispersion of the transmission line and the optical modulator transfer function for one of the same two transmission sequence source data 1 Real part calculation means 32a for calculating only the real part of the inverse function calculation, inverse function calculation of the wavelength dispersion of the transmission line and inverse function calculation of the optical modulator transfer function for the other of the same two transmission sequence original data 1 Imaginary part computing means 33a for computing only the imaginary part, and coordinate transformation computing means 11a, 11b (for performing coordinate rotation of a predetermined angle on complex data obtained from the real part computing means 32a and the imaginary part computing means 33a) First Coordinate transformation calculation means) and real part calculation for performing only the real part of the inverse function calculation of the chromatic dispersion of the transmission line and the inverse function of the optical modulator transfer function for one of the same two transmission sequence source data 2 Means 32b, and imaginary part computing means 33b for computing only the imaginary part of the inverse function computation of the chromatic dispersion of the transmission line and the inverse function of the optical modulator transfer function with respect to the other of the same two transmission sequence original data 2; , Coordinate transformation computing means 11c, 11d (second coordinate transformation computing means) for performing coordinate rotation of a predetermined angle with respect to the complex data obtained from the real part computing means 32b and the imaginary part computing means 33b, and coordinate transformation computing means 11a and 11c (first and second coordinate transformation calculation means) adder means 41a (first addition means) for adding together I channel components, and coordinate transformation calculation means 11b and 11d (first and second coordinate conversion means) Coordinate transformation calculation means) Addition means 41b (second addition means) for adding the Q channel components from each other, and generates two series of data of I channel and Q channel based on data from the addition means 41a and 41b. is there. The transmission data series arithmetic processing unit is provided in a subsequent stage of the dispersion inverse function calculating means 10a, 10b or the coordinate transformation calculating means 11a to 11d, and the data series signal is an inverse function of the electro-optical conversion response characteristic of the optical modulator. Modulator inverse function calculation means 12a and 12b for correcting the amplitude are further included.

この発明の実施の形態1に係る分散予等化光送信器の送信データ系列演算処理器の構成を示すブロック図である。It is a block diagram which shows the structure of the transmission data series arithmetic processor of the dispersion | distribution pre-equalization optical transmitter based on Embodiment 1 of this invention. この発明の実施の形態1に係る分散予等化光送信器の光変調器の構成を示すブロック図である。It is a block diagram which shows the structure of the optical modulator of the dispersion | distribution pre-equalization optical transmitter based on Embodiment 1 of this invention. この発明の実施の形態2に係る分散予等化光送信器の送信データ系列演算処理器の構成を示すブロック図である。It is a block diagram which shows the structure of the transmission data series arithmetic processor of the dispersion | distribution pre-equalization optical transmitter based on Embodiment 2 of this invention. この発明の実施の形態3に係る分散予等化光送信器の送信データ系列演算処理器の構成を示すブロック図である。It is a block diagram which shows the structure of the transmission data series arithmetic processor of the dispersion | distribution pre-equalization optical transmitter based on Embodiment 3 of this invention. 従来の分散予等化光送信器の送信データ系列演算処理器の構成を示すブロック図である。It is a block diagram which shows the structure of the transmission data series arithmetic processor of the conventional dispersion | distribution pre-equalization optical transmitter. 従来の分散予等化光送信器の光変調器の構成を示すブロック図である。It is a block diagram which shows the structure of the optical modulator of the conventional dispersion | distribution pre-equalization optical transmitter.

符号の説明Explanation of symbols

10、10a、10b 分散逆関数演算手段、11、11a、11b、11c、11d 座標変換演算手段、12a、12b 変調器逆関数演算手段、13a、13b D/Aコンバータ、14a、14b 増幅器、20a、20b MZ型光変調部、21 光位相調整部、22a、22b、22c 直流バイアス制御手段、23 光分波手段、24 光合波手段、31、31a、31b 分岐手段、32、32a、32b 実部演算手段、33、33a、33b 虚部演算手段、41、41a、41b 加算手段。
10, 10a, 10b Dispersion inverse function computing means 11, 11a, 11b, 11c, 11d Coordinate transformation computing means, 12a, 12b Modulator inverse function computing means, 13a, 13b D / A converter, 14a, 14b Amplifier, 20a, 20b MZ type optical modulation unit, 21 optical phase adjustment unit, 22a, 22b, 22c DC bias control unit, 23 optical demultiplexing unit, 24 optical multiplexing unit, 31, 31a, 31b branching unit, 32, 32a, 32b real part calculation Means, 33, 33a, 33b Imaginary part arithmetic means, 41, 41a, 41b Addition means.

Claims (14)

Iチャンネル及びQチャンネルの2系列のデータを生成する送信データ系列演算処理器と、
前記2系列のデータのうちIチャンネルのデータを用いて第1の光変調部を駆動するとともに、Qチャンネルのデータを用いて第2の光変調部を駆動し、前記第1及び第2の光変調部からの2つの変調光信号に光位相調整部が直交関係を持たせ、分散予等化を行った光信号を送出する光変調器とを備える分散予等化光送信器であって、
前記送信データ系列演算処理器は、
入力された送信系列元データに対して伝送路の波長分散の逆関数演算及び光変調器伝達関数の逆関数演算を行う分散逆関数演算手段と、
前記分散逆関数演算手段から得られる複素データに対して所定の角度の座標回転を行う座標変換演算手段とを少なくとも含み、
前記座標変換演算手段からの座標変換されたデータに基づき、Iチャンネル及びQチャンネルの2系列のデータを生成する
ことを特徴とする分散予等化光送信器。
A transmission data sequence arithmetic processor for generating two series of data of I channel and Q channel;
The first optical modulation unit is driven using I-channel data of the two series of data, and the second optical modulation unit is driven using Q-channel data. A dispersion pre-equalization optical transmitter comprising: an optical modulator that transmits an optical signal that has been subjected to dispersion pre-equalization, in which an optical phase adjustment unit has an orthogonal relationship with two modulated optical signals from the modulation unit;
The transmission data series arithmetic processor is:
Dispersion inverse function computing means for performing inverse function computation of the wavelength dispersion of the transmission path and inverse function computation of the optical modulator transfer function with respect to the input transmission sequence original data,
Coordinate conversion calculation means for performing coordinate rotation of a predetermined angle with respect to the complex data obtained from the variance inverse function calculation means,
A dispersion pre-equalized optical transmitter characterized in that two series of data of I channel and Q channel are generated based on the coordinate transformed data from the coordinate transformation computing means.
前記分散逆関数演算手段は、
入力された同じ2つの送信系列元データの一方に対して逆関数演算の実部のみの演算を行う実部演算手段と、
入力された同じ2つの送信系列元データの他方に対して逆関数演算の虚部のみの演算を行う虚部演算手段とを含む
ことを特徴とする請求項1記載の分散予等化光送信器。
The distributed inverse function calculation means includes:
Real part computing means for computing only the real part of the inverse function computation on one of the same two transmission sequence original data inputted;
2. The distributed pre-equalization optical transmitter according to claim 1, further comprising: an imaginary part computing unit that performs computation of only the imaginary part of the inverse function computation on the other of the same input two transmission series original data. .
前記送信データ系列演算処理器は、
前記入力された送信系列元データを、同一の2つの送信系列元データに分岐し、それぞれを前記実部演算手段、前記虚部演算手段に出力する分岐手段をさらに含む
ことを特徴とする請求項2記載の分散予等化光送信器。
The transmission data series arithmetic processor is:
The branch further includes branching means for branching the input transmission sequence source data into the same two transmission sequence source data and outputting them to the real part computing means and the imaginary part computing means, respectively. 2. The distributed pre-equalized optical transmitter according to 2.
前記座標変換演算手段は、π/4の座標回転を行う
ことを特徴とする請求項1、2又は3記載の分散予等化光送信器。
The dispersion pre-equalized optical transmitter according to claim 1, 2 or 3, wherein the coordinate transformation calculation means performs coordinate rotation of π / 4.
前記分散逆関数演算手段は、伝送路の波長分散の伝達関数の実部及び虚部の逆関数と前記送信系列元データとの畳み込み演算によって逆関数演算を行う
ことを特徴とする請求項1から請求項4までのいずれかに記載の分散予等化光送信器。
The inverse dispersion function calculation means performs an inverse function calculation by a convolution calculation of an inverse function of a real part and an imaginary part of a transfer function of wavelength dispersion of a transmission line and the transmission sequence original data. The dispersion pre-equalization optical transmitter according to claim 4.
前記送信データ系列演算処理器は、
前記分散逆関数演算手段又は前記座標変換演算手段の後段に設けられ、前記光変調器の電気光変換の応答特性の逆関数でデータ系列の信号振幅を補正する変調器逆関数演算手段をさらに含む
ことを特徴とする請求項1から請求項5までのいずれかに記載の分散予等化光送信器。
The transmission data series arithmetic processor is:
Further provided is a modulator inverse function calculation means provided at a subsequent stage of the dispersion inverse function calculation means or the coordinate conversion calculation means and for correcting the signal amplitude of the data series with an inverse function of the response characteristic of electro-optical conversion of the optical modulator. The dispersion pre-equalized optical transmitter according to any one of claims 1 to 5, characterized in that:
Iチャンネル及びQチャンネルの2系列のデータを生成する送信データ系列演算処理器と、
前記2系列のデータのうちIチャンネルのデータを用いて第1の光変調部を駆動するとともに、Qチャンネルのデータを用いて第2の光変調部を駆動し、前記第1及び第2の光変調部からの2つの変調光信号に光位相調整部が直交関係を持たせ、分散予等化を行った光信号を送出する光変調器とを備える分散予等化光送信器であって、
前記送信データ系列演算処理器は、
入力された第1の送信系列元データに対して伝送路の波長分散の逆関数演算及び光変調器伝達関数の逆関数演算を行う第1の分散逆関数演算手段と、
前記第1の分散逆関数演算手段から得られる複素データに対して所定の角度の座標回転を行う第1の座標変換演算手段と、
入力された第2の送信系列元データに対して伝送路の波長分散の逆関数演算及び光変調器伝達関数の逆関数演算を行う第2の分散逆関数演算手段と、
前記第2の分散逆関数演算手段から得られる複素データに対して所定の角度の座標回転を行う第2の座標変換演算手段と、
前記第1及び第2の座標変換演算手段からのIチャネル成分同士を加算する第1の加算手段と、
前記第1及び第2の座標変換演算手段からのQチャネル成分同士を加算する第2の加算手段とを少なくとも含み、
前記第1及び第2の加算手段からのデータに基づき、Iチャンネル及びQチャンネルの2系列のデータを生成する
ことを特徴とする分散予等化光送信器。
A transmission data sequence arithmetic processor for generating two series of data of I channel and Q channel;
The first optical modulation unit is driven using I-channel data of the two series of data, and the second optical modulation unit is driven using Q-channel data. A dispersion pre-equalization optical transmitter comprising: an optical modulator that transmits an optical signal that has been subjected to dispersion pre-equalization, in which an optical phase adjustment unit has an orthogonal relationship with two modulated optical signals from the modulation unit;
The transmission data series arithmetic processor is:
First dispersion inverse function computing means for performing inverse function computation of the chromatic dispersion of the transmission line and inverse function computation of the optical modulator transfer function with respect to the input first transmission sequence original data;
First coordinate transformation calculation means for performing coordinate rotation of a predetermined angle with respect to the complex data obtained from the first distributed inverse function calculation means;
A second dispersion inverse function computing means for performing an inverse function computation of the chromatic dispersion of the transmission line and an inverse function computation of the optical modulator transfer function with respect to the input second transmission sequence original data;
Second coordinate transformation calculation means for performing coordinate rotation of a predetermined angle on the complex data obtained from the second distributed inverse function calculation means;
First addition means for adding I channel components from the first and second coordinate transformation calculation means;
And at least second addition means for adding the Q channel components from the first and second coordinate transformation calculation means,
A dispersion pre-equalized optical transmitter characterized in that two series of data of I channel and Q channel are generated based on data from the first and second adding means.
前記第1及び第2の送信系列元データは、DQPSK変調用のプリコードが施された、異なるデータ系列である
ことを特徴とする請求項7記載の分散予等化光送信器。
8. The distributed pre-equalized optical transmitter according to claim 7, wherein the first and second transmission sequence original data are different data sequences to which precoding for DQPSK modulation is applied.
前記第1及び第2の送信系列元データは、同じデータ系列である
ことを特徴とする請求項7記載の分散予等化光送信器。
The distributed pre-equalized optical transmitter according to claim 7, wherein the first and second transmission sequence original data are the same data sequence.
前記第1及び第2の座標変換演算手段は、π/4の座標回転を行う
ことを特徴とする請求項7、8又は9記載の分散予等化光送信器。
The dispersion pre-equalized optical transmitter according to claim 7, 8 or 9, wherein the first and second coordinate transformation calculation means perform coordinate rotation of π / 4.
前記第1の分散逆関数演算手段は、伝送路の波長分散の伝達関数の実部及び虚部の逆関数と前記第1の送信系列元データとの畳み込み演算によって逆関数演算を行うとともに、
前記第2の分散逆関数演算手段は、伝送路の波長分散の伝達関数の実部及び虚部の逆関数と前記第2の送信系列元データとの畳み込み演算によって逆関数演算を行う
ことを特徴とする請求項7から請求項10までのいずれかに記載の分散予等化光送信器。
The first dispersion inverse function calculation means performs an inverse function calculation by a convolution calculation of the inverse function of the real part and the imaginary part of the transmission function of the chromatic dispersion of the transmission line and the first transmission sequence original data,
The second dispersion inverse function calculation means performs an inverse function calculation by a convolution calculation of the inverse function of the real part and the imaginary part of the transfer function of the chromatic dispersion of the transmission line and the second transmission sequence original data. The dispersion pre-equalized optical transmitter according to any one of claims 7 to 10.
前記送信データ系列演算処理器は、
前記第1の分散逆関数演算手段又は前記第1の座標変換演算手段の後段に設けられ、前記光変調器の電気光変換の応答特性の逆関数でデータ系列の信号振幅を補正する第1の変調器逆関数演算手段と、
前記第2の分散逆関数演算手段又は前記第2の座標変換演算手段の後段に設けられ、前記光変調器の電気光変換の応答特性の逆関数でデータ系列の信号振幅を補正する第2の変調器逆関数演算手段とをさらに含む
ことを特徴とする請求項7から請求項11までのいずれかに記載の分散予等化光送信器。
The transmission data series arithmetic processor is:
The first dispersion inverse function calculating means or the first coordinate transformation calculating means is provided after the first, and corrects the signal amplitude of the data series with the inverse function of the electro-optical conversion response characteristic of the optical modulator. Modulator inverse function computing means;
A second dispersion inverse function computing means or a second coordinate transformation computing means, which is provided at a subsequent stage, and corrects the signal amplitude of the data series by an inverse function of the response characteristic of electro-optic conversion of the optical modulator. The dispersion pre-equalized optical transmitter according to any one of claims 7 to 11, further comprising a modulator inverse function calculation unit.
前記光位相調整部は、π/2位相シフトを行うことにより、前記Iチャンネル及びQチャンネルの2系列のデータから、Iチャンネルでの変調光信号とQチャンネルでの変調光信号が直交関係にある複素光電界を生成する
ことを特徴とする請求項1から請求項12までのいずれかに記載の分散予等化光送信器。
The optical phase adjustment unit performs a π / 2 phase shift so that the modulated optical signal in the I channel and the modulated optical signal in the Q channel are orthogonal to each other from the two series of data of the I channel and the Q channel. The dispersion pre-equalized optical transmitter according to any one of claims 1 to 12, wherein a complex optical electric field is generated.
前記第1及び第2の光変調部は、Mach−Zehnder型光変調部である
ことを特徴とする請求項1から請求項13までのいずれかに記載の分散予等化光送信器。
The dispersion pre-equalized optical transmitter according to any one of claims 1 to 13, wherein the first and second optical modulation units are Mach-Zehnder type optical modulation units.
JP2006089203A 2006-03-28 2006-03-28 Distributed pre-equalization optical transmitter Active JP4708241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006089203A JP4708241B2 (en) 2006-03-28 2006-03-28 Distributed pre-equalization optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006089203A JP4708241B2 (en) 2006-03-28 2006-03-28 Distributed pre-equalization optical transmitter

Publications (2)

Publication Number Publication Date
JP2007267001A true JP2007267001A (en) 2007-10-11
JP4708241B2 JP4708241B2 (en) 2011-06-22

Family

ID=38639546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006089203A Active JP4708241B2 (en) 2006-03-28 2006-03-28 Distributed pre-equalization optical transmitter

Country Status (1)

Country Link
JP (1) JP4708241B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124893A (en) * 2006-11-14 2008-05-29 Mitsubishi Electric Corp Variance pre-equalization optical transmitter and optical communication system
JP2008141670A (en) * 2006-12-05 2008-06-19 Fujitsu Ltd Dqpsk modulation apparatus, optical transmission device and dqpsk modulation method
JP2009267934A (en) * 2008-04-28 2009-11-12 Mitsubishi Electric Corp Optical transmitter
JP2011211516A (en) * 2010-03-30 2011-10-20 Hitachi Ltd Optical transmission apparatus, optical transmission method, and optical transmission and reception system
WO2013008871A1 (en) 2011-07-11 2013-01-17 日本電気株式会社 Transmission apparatus, transmission method, and transmission system
US8396374B2 (en) 2008-03-31 2013-03-12 Mitsubishi Electric Corporation Digital signal processing optical transmission apparatus
WO2013058276A1 (en) * 2011-10-20 2013-04-25 三菱電機株式会社 Pre-equalized optical transmitter and pre-equalized optical transmission method
US8463138B2 (en) 2009-07-17 2013-06-11 Mitsubishi Electric Corporation Multi-value optical transmitter
JP5682633B2 (en) * 2011-01-31 2015-03-11 富士通株式会社 Optical transmitter and optical signal transmission method
JPWO2014162649A1 (en) * 2013-04-04 2017-02-16 日本電気株式会社 Digital optical transmitter, optical communication system using the same, and digital optical transmission method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5585092B2 (en) * 2009-10-22 2014-09-10 ソニー株式会社 Wireless transmission system, wireless communication device
JP5672684B2 (en) 2009-09-29 2015-02-18 ソニー株式会社 Wireless transmission system, wireless communication device, and wireless transmission method
JP5672683B2 (en) * 2009-09-29 2015-02-18 ソニー株式会社 Wireless transmission system, wireless communication device
US8831073B2 (en) 2009-08-31 2014-09-09 Sony Corporation Wireless transmission system, wireless communication device, and wireless communication method
RU2012106505A (en) 2009-08-31 2013-08-27 Сони Корпорейшн SIGNAL TRANSMISSION DEVICE, ELECTRONIC DEVICE AND SIGNAL TRANSMISSION METHOD

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110516A (en) * 1991-10-21 1993-04-30 Nec Corp Optical repeater transmission system and optical repeater circuit
JP2004516743A (en) * 2000-12-21 2004-06-03 ブッカム・テクノロジー・ピーエルシー Improvements in or related to optical communications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110516A (en) * 1991-10-21 1993-04-30 Nec Corp Optical repeater transmission system and optical repeater circuit
JP2004516743A (en) * 2000-12-21 2004-06-03 ブッカム・テクノロジー・ピーエルシー Improvements in or related to optical communications

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6010058278, J. McNicol et al., ""Electrical domain compensation of optical dispersion"", Optical Fiber Communication Conference, 2005. Technical Digest. OFC/NFOEC, 200509, Vol. 4, OThJ3 *
JPN6010058279, R. Killey, ""Dispersion and nonlinearity compensation using electronic predistortion techniques"", The IEE Seminar on Optical Fibre Communications and Electronic Signal Processing, 2005, 20051215 *
JPN6010058280, D. McGhan et al., ""5120−km RZ−DPSK transmission over G.652 fiber at 10 Gb/s without optical dispersion compensation"", IEEE Photonics Technology Letters, 20060115, Vol. 18, No. 2, p. 400 − 402 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124893A (en) * 2006-11-14 2008-05-29 Mitsubishi Electric Corp Variance pre-equalization optical transmitter and optical communication system
JP2008141670A (en) * 2006-12-05 2008-06-19 Fujitsu Ltd Dqpsk modulation apparatus, optical transmission device and dqpsk modulation method
US8396374B2 (en) 2008-03-31 2013-03-12 Mitsubishi Electric Corporation Digital signal processing optical transmission apparatus
JP2009267934A (en) * 2008-04-28 2009-11-12 Mitsubishi Electric Corp Optical transmitter
US8463138B2 (en) 2009-07-17 2013-06-11 Mitsubishi Electric Corporation Multi-value optical transmitter
JP2011211516A (en) * 2010-03-30 2011-10-20 Hitachi Ltd Optical transmission apparatus, optical transmission method, and optical transmission and reception system
US9356689B2 (en) 2011-01-31 2016-05-31 Fujitsu Limited Optical transmitter and optical signal transmission method
JP5682633B2 (en) * 2011-01-31 2015-03-11 富士通株式会社 Optical transmitter and optical signal transmission method
US9312959B2 (en) 2011-07-11 2016-04-12 Nec Corporation Transmission device, transmission method, and communication system
WO2013008871A1 (en) 2011-07-11 2013-01-17 日本電気株式会社 Transmission apparatus, transmission method, and transmission system
JPWO2013008871A1 (en) * 2011-07-11 2015-02-23 日本電気株式会社 Transmission device, transmission method, and communication system
WO2013058276A1 (en) * 2011-10-20 2013-04-25 三菱電機株式会社 Pre-equalized optical transmitter and pre-equalized optical transmission method
US9118422B2 (en) 2011-10-20 2015-08-25 Mitsubishi Electric Corporation Pre-equalized optical transmitter and pre-equalized optical transmission method
JP5680215B2 (en) * 2011-10-20 2015-03-04 三菱電機株式会社 Pre-equalized optical transmitter and pre-equalized optical transmission method
JPWO2014162649A1 (en) * 2013-04-04 2017-02-16 日本電気株式会社 Digital optical transmitter, optical communication system using the same, and digital optical transmission method

Also Published As

Publication number Publication date
JP4708241B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP4708241B2 (en) Distributed pre-equalization optical transmitter
JP6234777B2 (en) Optical multilevel transmitter and optical transponder
JP6358024B2 (en) Optical transmitter and method for correcting waveform distortion
JP5128332B2 (en) Optical pre-equalization transmitter and optical pre-equalization transmission system
JP5182290B2 (en) Optical modulator and optical communication system
JP5215857B2 (en) Light modulator
EP2983312B1 (en) Digital optical transmitter, optical communication system using same, and digital optical transmission method
JP4842100B2 (en) Distributed pre-equalized optical transmitter and optical communication system
US20060072924A1 (en) Duo-binary optical transmitter tolerant to chromatic dispersion
CN107852390A (en) A kind of modulator, modulating system and the method for realizing high order modulation
JP5289428B2 (en) Digital signal processing optical transmitter
JP4850767B2 (en) Distributed pre-equalization optical transmitter
JP2008216824A (en) Light intensity modulating device and method thereof, and optical transmission system using the same
JP6032274B2 (en) Optical transmitter, optical transmission / reception system, and drive circuit
JP2014146915A (en) Digital optical transmitter, optical communication system, and digital optical transmission method
WO2015129193A1 (en) Optical transmitter and optical transmission method
JP5116573B2 (en) Distributed pre-equalization optical transmitter
JP5303951B2 (en) Optical modulator and optical modulation method
JP5304938B2 (en) Optical modulator and optical modulation method
JP2015008355A (en) Optical transmitter and optical receiver
JP6032275B2 (en) Optical transmitter, optical transmission / reception system, and drive circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110316

R150 Certificate of patent or registration of utility model

Ref document number: 4708241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250