JP2007265796A - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
JP2007265796A
JP2007265796A JP2006089399A JP2006089399A JP2007265796A JP 2007265796 A JP2007265796 A JP 2007265796A JP 2006089399 A JP2006089399 A JP 2006089399A JP 2006089399 A JP2006089399 A JP 2006089399A JP 2007265796 A JP2007265796 A JP 2007265796A
Authority
JP
Japan
Prior art keywords
conductive substrate
semiconductor
semiconductor layer
electrode
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006089399A
Other languages
Japanese (ja)
Inventor
Takashi Sekiguchi
隆史 関口
Shingo Kanbe
伸吾 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006089399A priority Critical patent/JP2007265796A/en
Publication of JP2007265796A publication Critical patent/JP2007265796A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion element A capable of suppressing output drop of power generated by photoelectric conversion by reducing resistance loss. <P>SOLUTION: This photoelectric conversion element is provided with: a semiconductor electrode 1 composed of a first conductive substrate 11 and a semiconductor layer 12 arranged on one surface of the first conductive substrate 11 and having a dye supported thereto; a counter electrode 2 arranged on the semiconductor layer 12 side to face the semiconductor electrode 1 and formed with a second conductive substrate 21; an electrolyte layer 3 arranged between the semiconductor layer 12 with the dye supported thereto and the counter electrode 2; a sealing part 4 for sealing the electrolyte layer 3; and a collector 5 formed of a conductive material, arranged on at least either of the first conductive substrate 11 and the second conductive substrate 21, and electrically connected to at least either of the semiconductor electrode 1 and the counter electrode 2. At least either of the first conductive substrate 11 and the second conductive substrate 21 is translucent, and the collector 5 is arranged by surrounding the circumference of the sealing part 4 so as not to contact the semiconductor layer 12 with the dye supported thereto and the electrolyte layer 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は、色素増感型の光電変換素子に関するものである。   The present invention relates to a dye-sensitized photoelectric conversion element.

従来より、図4に示すような色素増感型の光電変換素子Aが知られている。すなわち、一方の主面上に透明導電体層7が設けられた基板6の透明導電体層7の上に色素を担持した半導体層12が設けられた半導体電極1と、他方の主面上に透明導電体層7が設けられた別の基板6の透明導電体層7の上にPtを堆積させて触媒能を付与した対極2と、双方の透明性導電体層7が向き合うように配置した状態において、半導体電極1と対極2との間に電解質層3を満たし、この電解質層3を封止部4で密封している。
特開2000−243465号公報 特開2002−324590号公報
Conventionally, a dye-sensitized photoelectric conversion element A as shown in FIG. 4 is known. That is, the semiconductor electrode 1 provided with the semiconductor layer 12 carrying the dye on the transparent conductor layer 7 of the substrate 6 provided with the transparent conductor layer 7 on one main surface, and the other main surface on the other main surface. The counter electrode 2 provided with catalytic ability by depositing Pt on the transparent conductor layer 7 of another substrate 6 provided with the transparent conductor layer 7 is disposed so that both the transparent conductor layers 7 face each other. In the state, the electrolyte layer 3 is filled between the semiconductor electrode 1 and the counter electrode 2, and the electrolyte layer 3 is sealed by the sealing portion 4.
JP 2000-243465 A JP 2002-324590 A

しかしながら、以上の光電変換素子Aが作り出した電力を外部に取り出す場合、透明導電体層7を集電用電極として電力を取り出す必要があるが、この集電用電極の抵抗損失により太陽電池の出力が低下するという問題があった。   However, when taking out the electric power produced by the photoelectric conversion element A to the outside, it is necessary to take out the electric power by using the transparent conductive layer 7 as a current collecting electrode. There was a problem that decreased.

そこで、これまで、半導体層の内部もしくは表面の少なくとも一方に集電用電極を設けた光電変換素子(たとえば、特許文献1参照)や、太陽電池を直列または並列に組み立てて太陽電池モデュールを作製する際に、太陽電池間の間隔を最小化して電力損失を最小化するために、太陽電池における一対の対向する導電性基板において、それぞれの導電性基板が重ならない部分に導電性接着剤を設けた太陽電池(たとえば、特許文献2参照)が提案されている。これらの光電変換素子や太陽電池は、抵抗損失を低減し、電力の出力低下の抑制に効果はあるものの、依然としてその抑制効果の向上が望まれている。   So far, a photovoltaic cell module is fabricated by assembling a photoelectric conversion element (see, for example, Patent Document 1) provided with a collecting electrode inside or on the surface of a semiconductor layer, or solar cells in series or in parallel. In order to minimize the power loss by minimizing the distance between the solar cells, a conductive adhesive is provided in a portion of the pair of opposing conductive substrates in the solar cell where the respective conductive substrates do not overlap. A solar cell (see, for example, Patent Document 2) has been proposed. Although these photoelectric conversion elements and solar cells are effective in reducing resistance loss and suppressing power output reduction, it is still desired to improve the suppression effect.

そこで、本願発明は、以上の通りの背景から、抵抗損失を低減し、光電変換によって作り出した電力の出力低下を抑えることができる光電変換素子を提供することを課題としている。   Then, this invention makes it a subject to provide the photoelectric conversion element which can reduce resistance loss and can suppress the output fall of the electric power produced by photoelectric conversion from the background as mentioned above.

本願発明は、上記の課題を解決するものとして、第1には、第一の導電性基板とこの第一の導電性基板の一方の面に配設されている色素が担持された半導体層とから構成される半導体電極と、この半導体電極と対向するように半導体層側に配置され、第二の導電性基板で構成される対極と、色素が担持された半導体層と対極との間に配置された電解質層と、この電解質層を密封する封止部と、導電性材料で形成され、第一の導電性基板および第二の導電性基板の少なくともいずれかに配設されて半導体電極と対極の少なくとも一方と電気的に接続されている集電体とを備えており、第一の導電性基板と第二の導電性基板のうち少なくとも一方は透光性であり、かつ、集電体は、色素が担持された半導体層および電解質層と接触しないように封止部の周囲を囲んで配設されていることを特徴とする。   In order to solve the above problems, the present invention firstly includes a first conductive substrate and a semiconductor layer carrying a dye disposed on one surface of the first conductive substrate. A semiconductor electrode composed of: a semiconductor electrode disposed on the semiconductor layer side so as to face the semiconductor electrode; and disposed between a counter electrode composed of a second conductive substrate and a semiconductor layer supporting the dye and the counter electrode Formed on the electrolyte layer, a sealing portion for sealing the electrolyte layer, and a conductive material, disposed on at least one of the first conductive substrate and the second conductive substrate, and a counter electrode with the semiconductor electrode And at least one of the first conductive substrate and the second conductive substrate is translucent, and the current collector is Do not contact the dye-supported semiconductor layer and electrolyte layer. Characterized in that it is arranged to surround the periphery of the part.

第2には、第一の導電性基板とこの第一の導電性基板の一方の面に配設されている色素が担持された半導体層とから構成される半導体電極と、この半導体電極と対向するように半導体層側に配置され、第二の導電性基板で構成される対極と、色素が担持された半導体層と対極との間に配置された電解質層と、この電解質層を密封する封止部と、導電性材料で形成され、第一の導電性基板および第二の導電性基板の少なくともいずれかに配設されて半導体電極と対極の少なくとも一方と電気的に接続されている集電体とを備えており、第一の導電性基板と第二の導電性基板のうち少なくとも一方は透光性であり、かつ、集電体は、色素が担持された半導体層および電解質層と接触しないように封止部内に埋め込まれて配設されていることを特徴とする。   Second, a semiconductor electrode composed of a first conductive substrate and a semiconductor layer carrying a dye disposed on one surface of the first conductive substrate, and facing the semiconductor electrode Thus, a counter electrode arranged on the semiconductor layer side and composed of the second conductive substrate, an electrolyte layer arranged between the semiconductor layer carrying the dye and the counter electrode, and a seal that seals the electrolyte layer A current collector formed of a conductive material and disposed on at least one of the first conductive substrate and the second conductive substrate and electrically connected to at least one of the semiconductor electrode and the counter electrode And at least one of the first conductive substrate and the second conductive substrate is translucent, and the current collector is in contact with the semiconductor layer and the electrolyte layer carrying the dye Not to be embedded in the sealing part To.

上記第1の発明によれば、第一の導電性基板とこの第一の導電性基板の一方の面に配設されている色素が担持された半導体層とから構成される半導体電極と、この半導体電極と対向するように半導体層側に配置され、第二の導電性基板で構成される対極と、色素が担持された半導体層と対極との間に配置された電解質層と、この電解質層を密封する封止部と、導電性材料で形成され、第一の導電性基板および第二の導電性基板の少なくともいずれかに配設されて半導体電極と対極の少なくとも一方と電気的に接続されている集電体とを備えており、第一の導電性基板と第二の導電性基板のうち少なくとも一方は透光性であり、かつ、集電体は、色素が担持された半導体層および電解質層と接触しないように封止部の周囲を囲んで配設されていることにより、半導体層と集電体との距離が短くなって、光電変換素子が発電した電力を外部に取り出す際の抵抗損失が低減し、電力の出力低下を抑えることができる。したがって、太陽電池として用いた場合には高い太陽電池出力を得ることが可能となる。   According to the first aspect of the present invention, a semiconductor electrode comprising a first conductive substrate and a semiconductor layer carrying a dye disposed on one surface of the first conductive substrate, A counter electrode disposed on the semiconductor layer side so as to face the semiconductor electrode and configured by the second conductive substrate, an electrolyte layer disposed between the semiconductor layer carrying the dye and the counter electrode, and the electrolyte layer A sealing portion that seals between the semiconductor electrode and at least one of the first conductive substrate and the second conductive substrate and electrically connected to at least one of the semiconductor electrode and the counter electrode. A current collector, at least one of the first conductive substrate and the second conductive substrate is translucent, and the current collector includes a semiconductor layer on which a dye is supported, It is arranged around the sealing part so as not to contact the electrolyte layer. It, the distance between the semiconductor layer and the current collector is shortened, the resistance loss when taking out the power photoelectric conversion element generates electricity to the outside is reduced, it is possible to suppress the reduction in the output of the power. Accordingly, when used as a solar cell, a high solar cell output can be obtained.

上記第2の発明によれば、第一の導電性基板とこの第一の導電性基板の一方の面に配設されている色素が担持された半導体層とから構成される半導体電極と、この半導体電極と対向するように半導体層側に配置され、第二の導電性基板で構成される対極と、色素が担持された半導体層と対極との間に配置された電解質層と、この電解質層を密封する封止部と、導電性材料で形成され、第一の導電性基板および第二の導電性基板の少なくともいずれかに配設されて半導体電極と対極の少なくとも一方と電気的に接続されている集電体とを備えており、第一の導電性基板と第二の導電性基板のうち少なくとも一方は透光性であり、かつ、集電体は、色素が担持された半導体層および電解質層と接触しないように封止部内に埋め込まれて配設されていることにより、第1の発明と同様に、半導体層と集電体との距離が短くなって、光電変換素子が発電した電力を外部に取り出す際の抵抗損失が低減し、電力の出力低下を抑えることができる。さらに、集電体が封止部内に埋め込まれているため、集電体を配設する場所を封止部の周囲に確保する必要がなくなり、結果として、半導体層の面積を大きくすることができ、半導体層で受光して光電変換に寄与する領域の占める割合を大きくすることができる。このため、高い太陽電池出力を得ることが可能となる。   According to the second aspect of the present invention, a semiconductor electrode comprising a first conductive substrate and a semiconductor layer carrying a dye disposed on one surface of the first conductive substrate, A counter electrode disposed on the semiconductor layer side so as to face the semiconductor electrode and configured by the second conductive substrate, an electrolyte layer disposed between the semiconductor layer carrying the dye and the counter electrode, and the electrolyte layer A sealing portion that seals between the semiconductor electrode and at least one of the first conductive substrate and the second conductive substrate and electrically connected to at least one of the semiconductor electrode and the counter electrode. A current collector, at least one of the first conductive substrate and the second conductive substrate is translucent, and the current collector includes a semiconductor layer on which a dye is supported, It is embedded in the sealing part so as not to come into contact with the electrolyte layer. As in the first invention, the distance between the semiconductor layer and the current collector is shortened, the resistance loss when taking out the electric power generated by the photoelectric conversion element is reduced, and the power output is reduced. Can be suppressed. Furthermore, since the current collector is embedded in the sealing portion, there is no need to secure a place for the current collector around the sealing portion, and as a result, the area of the semiconductor layer can be increased. The ratio of the region that receives light by the semiconductor layer and contributes to photoelectric conversion can be increased. For this reason, it becomes possible to obtain a high solar cell output.

本願発明は上記のとおりの特徴をもつものであるが、以下に図面に沿ってその実施の形態について説明する。   The invention of the present application has the features as described above. Embodiments will be described below with reference to the drawings.

図1は本願発明の光電変換素子の一例を模式的に示しており、(a)は光電変換素子の断面図、(b)は光電変換素子の平面図である。また、(c)は半導体電極の平面図、(d)は封止部の平面図、(e)は対極の平面図である。本願発明の光電変換素子Aは、半導体電極1と、この半導体電極1と対向する位置に配置された対極2と、電解質層3と、この電解質層3を密封する封止部4と、導電性材料で形成されている集電体5を備えている。半導体電極1は、第一の導電性基板11と色素が担持された半導体層12とで構成されており、色素が担持された半導体層12は、第一の導電性基板11の一方の面に配設されている。対極2は、第二の導電性基板21で構成され、半導体層12側の位置に配置されている。また、電解質層3は、色素が担持された半導体層12と対極2との間に配置されており、封止部4は、半導体電極1と対極2間において、この電解質層3を内包するように電解質層3の周囲に形成され、電解質層3が外部に漏れないように密封している。   FIG. 1 schematically shows an example of the photoelectric conversion element of the present invention, in which (a) is a cross-sectional view of the photoelectric conversion element, and (b) is a plan view of the photoelectric conversion element. (C) is a plan view of the semiconductor electrode, (d) is a plan view of the sealing portion, and (e) is a plan view of the counter electrode. The photoelectric conversion element A of the present invention includes a semiconductor electrode 1, a counter electrode 2 disposed at a position facing the semiconductor electrode 1, an electrolyte layer 3, a sealing portion 4 for sealing the electrolyte layer 3, and a conductive property. A current collector 5 made of a material is provided. The semiconductor electrode 1 is composed of a first conductive substrate 11 and a semiconductor layer 12 carrying a dye. The semiconductor layer 12 carrying a dye is formed on one surface of the first conductive substrate 11. It is arranged. The counter electrode 2 is composed of a second conductive substrate 21 and is disposed at a position on the semiconductor layer 12 side. The electrolyte layer 3 is disposed between the semiconductor layer 12 on which the dye is supported and the counter electrode 2, and the sealing portion 4 includes the electrolyte layer 3 between the semiconductor electrode 1 and the counter electrode 2. Formed around the electrolyte layer 3 and sealed so that the electrolyte layer 3 does not leak outside.

本願発明における集電体5は、図1のように第一の導電性基板11と第二の導電性基板21との両者に配設されていてもよいが、いずれか一方に配設されていてもよい。この集電体5は、色素が担持された半導体層12および電解質層3と接触しないように封止部4の周囲を囲んでおり、かつ、半導体電極1と対極2の少なくとも一方と電気接続させて配設されている。これによって、集電体5との接触による電解質層3の被毒あるいは半導体層12の変質に起因する太陽電池特性の低下を防いでいる。また、この集電体5は、従来、半導体電極1と対極2での集電時に存在していた抵抗損失の低減を図るものであるため、半導体電極1を構成している第一の導電性基板11および対極2を構成している第二の導電性基板21よりも導電性の高い材料であることが必要である。このような材料としては、たとえば、Au,Pt,Ag,Cu,Al,Ni,Zn,TiおよびCrからなる群から選ばれる少なくとも1種の金属、または上記群から選ばれる2種以上の金属からなる合金を例示することができる。また、以上の金属または合金の粒子とともに各種の樹脂を有機バインダーとしてペースト状にして用いてもよい。   The current collector 5 in the present invention may be disposed on both the first conductive substrate 11 and the second conductive substrate 21 as shown in FIG. 1, but is disposed on either one. May be. The current collector 5 surrounds the periphery of the sealing portion 4 so as not to contact the semiconductor layer 12 and the electrolyte layer 3 on which the dye is supported, and is electrically connected to at least one of the semiconductor electrode 1 and the counter electrode 2. Arranged. This prevents deterioration of the solar cell characteristics due to poisoning of the electrolyte layer 3 or alteration of the semiconductor layer 12 due to contact with the current collector 5. In addition, since the current collector 5 is intended to reduce resistance loss that has conventionally existed during current collection between the semiconductor electrode 1 and the counter electrode 2, the first conductive material constituting the semiconductor electrode 1 is used. The material needs to be higher in conductivity than the second conductive substrate 21 constituting the substrate 11 and the counter electrode 2. Examples of such materials include at least one metal selected from the group consisting of Au, Pt, Ag, Cu, Al, Ni, Zn, Ti, and Cr, or two or more metals selected from the above group. The alloy which becomes can be illustrated. Further, various resins may be used in the form of a paste as an organic binder together with the above metal or alloy particles.

また、形成する集電体5の幅や厚み等は、特に限定するものではないが、幅50〜300μm、厚み10〜50μm程度が好ましい。   Moreover, the width | variety, thickness, etc. of the collector 5 to form are although it does not specifically limit, About 50-300 micrometers in width and about 10-50 micrometers in thickness are preferable.

本願発明における第一の導電性基板11および第二の導電性基板21の少なくとも一方は透光性を有することが必要である。このような透光性を有する導電性基板としては、たとえば、ガラス板または透光性を有するプラスチックフィルムなどの基板上にフッ素ドープ酸化錫やインジウム錫酸化物などがコーティングされたものを挙げることができる。図1の例では、第一の導電性基板11および第二の導電性基板21はいずれもガラス板を基板として用い、透光性を有する導電性基板としている。透光性を有していない導電性基板としては、たとえば、Au,Pt,Ag,Cu,Al,Ni,Zn,TiおよびCrからなる群から選ばれる少なくとも1種の金属、または上記群から選ばれる2種以上の金属からなる合金から構成される基板を用いることが考慮される。   At least one of the first conductive substrate 11 and the second conductive substrate 21 in the present invention needs to have translucency. Examples of such a light-transmitting conductive substrate include a glass plate or a substrate such as a light-transmitting plastic film coated with fluorine-doped tin oxide or indium tin oxide. it can. In the example of FIG. 1, the first conductive substrate 11 and the second conductive substrate 21 both use a glass plate as a substrate and are light-transmitting conductive substrates. As the conductive substrate not having translucency, for example, at least one metal selected from the group consisting of Au, Pt, Ag, Cu, Al, Ni, Zn, Ti and Cr, or selected from the above group It is considered to use a substrate composed of an alloy composed of two or more kinds of metals.

色素が担持された半導体層12は、透光性を有する第一の導電性基板11または第二の導電性基板21を通して受光して光電変換を行っており、半導体層12の面積の大きさによって光電変換効果が変わる。本願発明では、第一の導電性基板11と第二の導電性基板21の少なくともいずれか一方に集電体5を配設して抵抗損失低減により太陽電池特性を向上させているため、その効果をより効果的に発現させるためには、半導体層12の面積を特定の大きさに設定することが考慮される。たとえば、半導体層12の面積としては、1cm〜11cmの範囲であることが好ましい。1cm未満の場合、第一の導電性基板11および第二の導電性基板21において、光電変換を行う面積に対して上記集電体5や封止部4など光電変換に寄与しない面積の割合が大きくなり、光電変換素子A設置に要する面積に対する発電量が小さくなって実用上の有益性が少なくなるので好ましくない。11cmを超える場合には、半導体層12の中央部分で発電した電気が集電体5にたどり着くまでの間の抵抗損失が大きく、集電体5による抵抗損失低減効果が十分に発揮されない場合があるので好ましくない。 The semiconductor layer 12 carrying the dye receives light through the light-transmitting first conductive substrate 11 or the second conductive substrate 21 and performs photoelectric conversion. Depending on the area size of the semiconductor layer 12 The photoelectric conversion effect changes. In the present invention, the current collector 5 is disposed on at least one of the first conductive substrate 11 and the second conductive substrate 21 to improve the solar cell characteristics by reducing the resistance loss. In order to express the above effectively, it is considered to set the area of the semiconductor layer 12 to a specific size. For example, the area of the semiconductor layer 12 is preferably in the range of 1cm 2 ~11cm 2. In the case of less than 1 cm 2 , in the first conductive substrate 11 and the second conductive substrate 21, the ratio of the area that does not contribute to photoelectric conversion, such as the current collector 5 and the sealing portion 4, to the area where photoelectric conversion is performed. Is large, and the amount of power generation relative to the area required for installing the photoelectric conversion element A is reduced, which is not preferable because the practical utility is reduced. If it exceeds 11 cm 2 , the resistance loss until the electricity generated at the central portion of the semiconductor layer 12 reaches the current collector 5 is large, and the resistance loss reduction effect by the current collector 5 may not be sufficiently exhibited. This is not preferable.

以上の色素が担持された半導体層12は、酸化物半導体微粒子で形成される層に光増感型色素が担持されているもので、酸化物半導体微粒子として、たとえば、酸化チタン、酸化亜鉛、酸化錫などが挙げられる。また、光増感型色素は、無機色素および有機色素のいずれかであってもよく、たとえば、無機色素としては、RuL2(H2O)2タイプのルテニウム−シス−ジアクア−ビピリジル錯体(ここで、Lは、4,4'−ジカルボキシル−2,2'−ビピリジン)、または、ルテニウム−トリス(RuL3)、ルテニウム−ビス(RuL2)、オスニウム−トリス(OsL3)、オスニウム−ビス(OsL2)タイプの遷移金属錯体、または亜鉛−テトラ(4−カルボキシフェニル)ポルフィリン、鉄−ヘキサシアニド錯体、フタロシアニンなど挙げられる。有機色素としては、9−フェニルキサンテン系色素、クマリン系色素、アクリジン系色素、トリフェニルメタン系色素、テトラフェニルメタン系色素、キノン系色素、アゾ系色素、インジゴ系色素、シアニン系色素、メロシアニン系色素、キサンテン系色素等などが挙げられる。なかでも、可視光域に広い吸収スペクトルを有する、ルテニウム−ビス(RuL2)誘導体が、特に好ましい。 The semiconductor layer 12 on which the above dye is supported is one in which a photosensitizing dye is supported on a layer formed of oxide semiconductor fine particles. Examples of the oxide semiconductor fine particles include titanium oxide, zinc oxide, and oxide. Tin etc. are mentioned. The photosensitizing dye may be either an inorganic dye or an organic dye. For example, as the inorganic dye, a RuL 2 (H 2 O) 2 type ruthenium-cis-diaqua-bipyridyl complex (here L is 4,4′-dicarboxyl-2,2′-bipyridine), or ruthenium-tris (RuL 3 ), ruthenium-bis (RuL 2 ), osnium-tris (OsL 3 ), osnium-bis (OsL 2 ) type transition metal complex, zinc-tetra (4-carboxyphenyl) porphyrin, iron-hexocyanide complex, phthalocyanine and the like. Organic dyes include 9-phenylxanthene dyes, coumarin dyes, acridine dyes, triphenylmethane dyes, tetraphenylmethane dyes, quinone dyes, azo dyes, indigo dyes, cyanine dyes, merocyanine dyes Examples thereof include dyes and xanthene dyes. Of these, a ruthenium-bis (RuL 2 ) derivative having a broad absorption spectrum in the visible light region is particularly preferable.

以上の半導体層12は、たとえば、酸化物半導体微粒子をスプレー法、ディップコーティング法、スクリーン印刷法、スピンコート法、電着法などの方法で透光性導電性基板11に塗布し、必要に応じて加熱・加圧処理して形成している。半導体層12への色素の担持は、たとえば、水、アルコール、アセトニトリル、トルエンなどの溶媒に色素を溶かした溶液に半導体層を浸漬して、吸着させる方法が考慮される。   For example, the semiconductor layer 12 is formed by applying oxide semiconductor fine particles to the translucent conductive substrate 11 by a method such as a spray method, a dip coating method, a screen printing method, a spin coating method, or an electrodeposition method. It is formed by heating and pressurizing. For example, a method of immersing the semiconductor layer in a solution in which the dye is dissolved in a solvent such as water, alcohol, acetonitrile, or toluene is adsorbed on the semiconductor layer 12.

本願発明における電解質層3は、従来より知られている電解液から構成されている。電解液は、たとえば、ヨウ素、臭素、塩素、またはこれらの化合物、キノン/ヒドロキノン、フマル酸/コハク酸などを水あるいは有機溶媒に溶解したものを用いることができる。   The electrolyte layer 3 in the present invention is composed of a conventionally known electrolytic solution. As the electrolytic solution, for example, iodine, bromine, chlorine, or a compound thereof, quinone / hydroquinone, fumaric acid / succinic acid or the like dissolved in water or an organic solvent can be used.

封止部4の材料としては、たとえば、熱可塑性樹脂や熱硬化性樹脂とすることができる。熱可塑性樹脂としては、アイオノマー、ポリオレフィン、フッ素樹脂などを例示することができ、熱硬化性樹脂としては、エポキシ樹脂やケイ素樹脂などを例示することができる。   As a material of the sealing part 4, it can be set as a thermoplastic resin or a thermosetting resin, for example. Examples of the thermoplastic resin include ionomers, polyolefins, and fluorine resins, and examples of the thermosetting resin include epoxy resins and silicon resins.

本願発明における対極を構成する第二の導電性基板21は、その表面に白金などの貴金属を担持させて触媒能を付与することが考慮される。   It is considered that the second conductive substrate 21 constituting the counter electrode in the present invention imparts catalytic ability by supporting a noble metal such as platinum on the surface thereof.

図2は、第二の導電性基板21としてチタン板211を用いた例を示しており、(a)は光電変換素子Aの断面図、(b)はその平面図、(c)〜(e)はそれぞれ半導体電極1、封止部4、対極2の平面図である。また、この例では、集電体5が第一の導電性基板11のみに配設されており、第二の導電性基板21には配設されていない。   2 shows an example in which a titanium plate 211 is used as the second conductive substrate 21, wherein (a) is a cross-sectional view of the photoelectric conversion element A, (b) is a plan view thereof, and (c) to (e). ) Are plan views of the semiconductor electrode 1, the sealing portion 4, and the counter electrode 2, respectively. In this example, the current collector 5 is disposed only on the first conductive substrate 11 and is not disposed on the second conductive substrate 21.

図3は、本願発明の光電変換素子Aの別の実施形態を模式的に示した断面図である。この実施形態では、集電体5は、色素が担持された半導体層12および電解質層3と接触しないように封止部4内に埋め込まれるようにして第一の導電性基板11に配設されている。これによって、集電体5を配設する場所を封止部4の周囲に確保する必要がなくなり、結果として、半導体層12の面積を大きくすることができ、半導体層12で受光して光電変換に寄与する領域の占める割合を大きくすることができる。このため、この光電変換素子Aを太陽電池として用いた場合には、より効果的に高い太陽電池出力を得る事が可能となる。なお、図3において21は図1と同様の透光性を有する導電性基板である。また、この例は、集電体5が第一の導電性基板11に配設されている例であるが、第二の導電性基板21のみに配設されていてもよいし、第一の導電性基板11と第二の導電性基板21の両者に配設されていてもよい。   FIG. 3 is a cross-sectional view schematically showing another embodiment of the photoelectric conversion element A of the present invention. In this embodiment, the current collector 5 is disposed on the first conductive substrate 11 so as to be embedded in the sealing portion 4 so as not to contact the semiconductor layer 12 and the electrolyte layer 3 on which the dye is supported. ing. As a result, it is not necessary to secure a place for the current collector 5 around the sealing portion 4, and as a result, the area of the semiconductor layer 12 can be increased, and light is received by the semiconductor layer 12 and subjected to photoelectric conversion. It is possible to increase the proportion of the area that contributes to. For this reason, when this photoelectric conversion element A is used as a solar cell, it becomes possible to obtain a higher solar cell output more effectively. In FIG. 3, reference numeral 21 denotes a conductive substrate having the same translucency as in FIG. Further, this example is an example in which the current collector 5 is disposed on the first conductive substrate 11, but may be disposed only on the second conductive substrate 21, or the first It may be disposed on both the conductive substrate 11 and the second conductive substrate 21.

以下に、実施例に基づき本願発明をより具体的に説明する。   Below, this invention is demonstrated more concretely based on an Example.

<実施例1>
実施例1では、図1と同様な構成の光電変換素子Aを作製した。
<Example 1>
In Example 1, a photoelectric conversion element A having the same configuration as that of FIG. 1 was produced.

まず、平均1次粒子径が20nmの高純度酸化チタン粉末をエチルセルロース中に分散させ、スクリーン印刷用の第1のペーストを作製した。一方、平均1次粒子径が20nmの高純度酸化チタン粉末と平均1次粒子径が400nmの高純度酸化チタン粉末とをエチルセルロース中に分散させ、スクリーン印刷用の第2のペーストを作製した。   First, high-purity titanium oxide powder having an average primary particle diameter of 20 nm was dispersed in ethyl cellulose to produce a first paste for screen printing. On the other hand, a high-purity titanium oxide powder having an average primary particle diameter of 20 nm and a high-purity titanium oxide powder having an average primary particle diameter of 400 nm were dispersed in ethyl cellulose to prepare a second paste for screen printing.

次に、第一の導電性基板11としての導電性ガラス基板(旭硝子製、一方の表面がフッ素ドープSnOにてコーティングされることにより導電性が付与されたガラス基板、表面抵抗10Ω/sq、厚さ1mm、1.6cm×3.6cm)上に、第1のペーストを1cm×3cm角に塗布、乾燥して、得られた乾燥物を500℃で30分間、空気中で焼成して、導電性ガラス基板上に厚さ10μmの多孔質酸化チタン膜を形成した。次に、多孔質酸化チタン膜上に第2のペーストを塗布、乾燥し、得られた乾燥物を500℃で30分間、空気中で焼成し、厚さ10μmの多孔質酸化チタン膜上にさらに厚さ4μmの酸化チタン膜を形成して、半導体層12(受光面積3cm)を得た。 Next, a conductive glass substrate (manufactured by Asahi Glass, a glass substrate provided with conductivity by coating one surface with fluorine-doped SnO 2 , a surface resistance of 10 Ω / sq, as the first conductive substrate 11 The first paste was applied to a 1 cm × 3 cm square on a thickness of 1 mm, 1.6 cm × 3.6 cm) and dried, and the obtained dried product was baked in air at 500 ° C. for 30 minutes, A porous titanium oxide film having a thickness of 10 μm was formed on a conductive glass substrate. Next, the second paste is applied on the porous titanium oxide film and dried, and the obtained dried product is baked in the air at 500 ° C. for 30 minutes, and further on the porous titanium oxide film having a thickness of 10 μm. A titanium oxide film having a thickness of 4 μm was formed to obtain a semiconductor layer 12 (light receiving area 3 cm 2 ).

次に、半導体層12を[Ru(4,4’−ジカルボキシル−2,2’−ビピリジン)−(NCS)]で表される色素を含む溶液に浸漬した後、上記溶液から取り出し、室温で24時間暗所にて静置して、半導体層12に色素を吸着させ、半導体電極1を作製した。なお、溶液にはアセトニトリルとt−ブタノールとを容積比50:50で混合して得た混合溶媒に、上記色素を濃度が3×10−4mol/dmとなるように溶解したものを用いた。 Next, after immersing the semiconductor layer 12 in a solution containing a dye represented by [Ru (4,4′-dicarboxyl-2,2′-bipyridine) 2- (NCS) 2 ], the semiconductor layer 12 is taken out from the solution. The semiconductor electrode 1 was produced by allowing the pigment to be adsorbed to the semiconductor layer 12 by allowing it to stand at room temperature in a dark place for 24 hours. As the solution, a solution obtained by dissolving the above dye in a mixed solvent obtained by mixing acetonitrile and t-butanol at a volume ratio of 50:50 so that the concentration becomes 3 × 10 −4 mol / dm 3 is used. It was.

一方で、第二の導電性基板21としての導電性ガラス基板(旭硝子製、一方の表面がフッ素ドープSnOにてコーティングされることにより導電性が付与されたガラス基板、表面抵抗10Ω/sq、厚さ1mm、1.6cm×3.6cm)に、5mmol/dmのHPtCl溶液(溶媒イソプロピルアルコール)を5×10−6l/cm塗布した後、450℃で15分間熱処理して、対極2を作製した。 On the other hand, a conductive glass substrate (made by Asahi Glass, a glass substrate provided with conductivity by coating one surface with fluorine-doped SnO 2 , a surface resistance of 10 Ω / sq, as the second conductive substrate 21 5 mmol / dm 3 of H 2 PtCl 6 solution (solvent isopropyl alcohol) was applied 5 × 10 −6 l / cm 2 to a thickness of 1 mm, 1.6 cm × 3.6 cm, and then heat-treated at 450 ° C. for 15 minutes. Thus, the counter electrode 2 was produced.

また、色素を担持した酸化チタン膜を設けた半導体電極1と対極2の周囲には銀粒子からなる導電性ペーストにより幅100μm、厚み20μmの集電体5を設けた。   In addition, a current collector 5 having a width of 100 μm and a thickness of 20 μm was provided around the semiconductor electrode 1 and the counter electrode 2 provided with a titanium oxide film carrying a pigment by a conductive paste made of silver particles.

また、色素を担持した酸化チタン膜を設けた半導体電極1と対極2との張り合わせは、封止部4としての厚さ20μmの熱可塑性樹脂(三井デュポンポリケミカル製アイオノマー樹脂「ハイミラン」)を150℃で60秒間加熱して行った。   Further, the semiconductor electrode 1 provided with the dye-supported titanium oxide film and the counter electrode 2 are bonded with 150 μm-thick thermoplastic resin (ionomer resin “High Milan” made by Mitsui DuPont Polychemical) as the sealing portion 4. The heating was carried out at 60 ° C. for 60 seconds.

電解液の注入は対極2に設けた直径1mmの注入口(図示なし)より減圧注入方式により行って、電解質層3を形成した。注入口部の封止は、厚さ500μmのカバーガラスを上記熱可塑性樹脂により固定させることで行った。また、セルの周囲部には、エポキシ系接着剤(アネルバ製「トールシール」)を塗布し、封止強度の向上を図った。   The electrolyte solution 3 was formed by injecting the electrolyte solution through a 1 mm diameter injection port (not shown) provided in the counter electrode 2 by a reduced pressure injection method. The injection port portion was sealed by fixing a cover glass having a thickness of 500 μm with the thermoplastic resin. In addition, an epoxy adhesive (Anelva “Tall Seal”) was applied to the periphery of the cell to improve the sealing strength.

上記電解液としては、ガンマブチロラクトンに、メチルトリプロピルアンモニウムを0.5mol/dm、ヨウ素を0.05mol/dm、ヨウ化リチウムを0.05mol/dm、N−メチルベンゾイミダゾールを0.5mol/dmをそれぞれ溶解したものを用いた。 As the electrolytic solution, gamma-butyrolactone, methyltripropylammonium 0.5 mol / dm 3 , iodine 0.05 mol / dm 3 , lithium iodide 0.05 mol / dm 3 , and N-methylbenzimidazole 0. What melt | dissolved 5 mol / dm 3 each was used.

なお、本実施例で使用した試薬はすべて乾燥したものを用い、また、組み立て作業はドライルーム内で行い、組み立て時にセル内に水分が混入することを極力避けるように注意した。なお、光電変換素子Aの特性評価時には半導体電極1側から光を照射した。
<実施例2>
対極2の第二の導電性基板21に導電性ガラス基板ではなく、厚さ0.3mmのチタン板211を用いた以外は、実施例1と同様にして、図2と同様な構成の光電変換素子Aを作製した。なお、光電変換素子Aの特性評価時には半導体電極1側から光を照射した。
<実施例3>
半導体電極1の第一の導電性基板11に導電性ガラス基板ではなく、厚さ0.3mmのチタン板を用いた以外は、実施例1と同様にして光電変換素子Aを作製した。なお、光電変換素子Aの特性評価時には対極2側から光を照射した。
<実施例4>
導電性ガラス基板サイズを1.6cm×3.6cmから3.2cm×7.2cmに、また、酸化チタン膜を1cm×3cmから2cm×6cmに変更した以外は実施例1と同様にして、光電変換素子Aを作製した。なお、光電変換素子Aの特性評価時には対極2側から光を照射した。
<比較例>
銀粒子からなる導電性ペーストにより集電体を作製しないこと以外は実施例1と同様にして光電変換素子を作製した。なお、光電変換素子の特性評価時には半導体電極側から光を照射した。
The reagents used in this example were all dried, and the assembly work was performed in a dry room, and care was taken to avoid mixing water into the cell as much as possible during assembly. In addition, light was irradiated from the semiconductor electrode 1 side at the time of the characteristic evaluation of the photoelectric conversion element A.
<Example 2>
Photoelectric conversion having the same configuration as that of FIG. 2 except that a titanium plate 211 having a thickness of 0.3 mm is used as the second conductive substrate 21 of the counter electrode 2 instead of a conductive glass substrate. Element A was produced. In addition, light was irradiated from the semiconductor electrode 1 side at the time of the characteristic evaluation of the photoelectric conversion element A.
<Example 3>
A photoelectric conversion element A was produced in the same manner as in Example 1 except that a titanium plate having a thickness of 0.3 mm was used as the first conductive substrate 11 of the semiconductor electrode 1 instead of a conductive glass substrate. In addition, light was irradiated from the counter electrode 2 side at the time of the characteristic evaluation of the photoelectric conversion element A.
<Example 4>
Photoelectric glass substrate size was changed from 1.6 cm × 3.6 cm to 3.2 cm × 7.2 cm, and the titanium oxide film was changed from 1 cm × 3 cm to 2 cm × 6 cm in the same manner as in Example 1, except that A conversion element A was produced. In addition, light was irradiated from the counter electrode 2 side at the time of the characteristic evaluation of the photoelectric conversion element A.
<Comparative example>
A photoelectric conversion element was produced in the same manner as in Example 1 except that the current collector was not produced using a conductive paste made of silver particles. Note that light was irradiated from the semiconductor electrode side when the characteristics of the photoelectric conversion element were evaluated.

以上のようにして作製した光電変換素子の特性評価は、200lx下での開放電圧(Voc)、短絡電流密度(Jsc)、フィルファクター(FF)、最大出力(Pmax)を求めた。この結果を表1に示す。   For the characteristics evaluation of the photoelectric conversion element manufactured as described above, an open circuit voltage (Voc), a short circuit current density (Jsc), a fill factor (FF), and a maximum output (Pmax) under 200 lx were obtained. The results are shown in Table 1.

Figure 2007265796
表1の結果より、導電性材料で形成されている集電体が色素が担持された半導体層および電解質層と接触しないように封止部の周囲を囲んで透光性導電性基板に配設されている(実施例1〜4)ことで、集電体を設けていない比較例に比べて高いFFが得られ、Pmaxも高い値が得られた。また、実施例1〜3と実施例4を比較すると、半導体層の面積が12cmである実施例3の場合よりも、1cm〜11cmの範囲である実施例1〜2の場合の方が、より顕著に効果が現れていることが確認された。
Figure 2007265796
Based on the results in Table 1, the current collector formed of a conductive material is disposed on a light-transmitting conductive substrate so as to surround the sealing portion so as not to contact the semiconductor layer and the electrolyte layer carrying the dye. As a result (Examples 1 to 4), a higher FF was obtained and a higher value of Pmax was obtained compared to the comparative example in which no current collector was provided. Furthermore, a comparison of Example 4 and Examples 1-3, than in the case of Example 3 the area of the semiconductor layer is 12cm 2, towards the case of Examples 1-2 is in the range of 1cm 2 ~11cm 2 However, it was confirmed that the effect appeared more remarkably.

本願発明の光電変換素子の一例を示した模式図である。It is the schematic diagram which showed an example of the photoelectric conversion element of this invention. 導電性基板としてチタン板を用いた光電変換素子の模式図である。It is a schematic diagram of a photoelectric conversion element using a titanium plate as a conductive substrate. 本願発明の光電変換素子の別の一例を示した模式図である。It is the schematic diagram which showed another example of the photoelectric conversion element of this invention. 従来の光電変換素子を模式的に示した断面図である。It is sectional drawing which showed the conventional photoelectric conversion element typically.

符号の説明Explanation of symbols

1 半導体電極
11 第一の導電性基板
12 半導体層
2 対極
21 第二の導電性基板
211 チタン板
3 電解質層
4 封止部
5 集電体
6 基板
7 透明導電体層
A 光電変換素子
DESCRIPTION OF SYMBOLS 1 Semiconductor electrode 11 1st electroconductive board | substrate 12 Semiconductor layer 2 Counter electrode 21 2nd electroconductive board | substrate 211 Titanium plate 3 Electrolyte layer 4 Sealing part 5 Current collector 6 Substrate 7 Transparent conductor layer A Photoelectric conversion element

Claims (2)

第一の導電性基板とこの第一の導電性基板の一方の面に配設されている色素が担持された半導体層とから構成される半導体電極と、この半導体電極と対向するように半導体層側に配置され、第二の導電性基板で構成される対極と、色素が担持された半導体層と対極との間に配置された電解質層と、この電解質層を密封する封止部と、導電性材料で形成され、第一の導電性基板および第二の導電性基板の少なくともいずれかに配設されて半導体電極と対極の少なくとも一方と電気的に接続されている集電体とを備えており、第一の導電性基板と第二の導電性基板のうち少なくとも一方は透光性であり、かつ、集電体は、色素が担持された半導体層および電解質層と接触しないように封止部の周囲を囲んで配設されていることを特徴とする光電変換素子。   A semiconductor electrode composed of a first conductive substrate and a semiconductor layer carrying a dye disposed on one surface of the first conductive substrate, and a semiconductor layer facing the semiconductor electrode A counter electrode disposed on the side and made of a second conductive substrate, an electrolyte layer disposed between the semiconductor layer carrying the dye and the counter electrode, a sealing portion for sealing the electrolyte layer, and a conductive layer And a current collector disposed on at least one of the first conductive substrate and the second conductive substrate and electrically connected to at least one of the semiconductor electrode and the counter electrode. And at least one of the first conductive substrate and the second conductive substrate is translucent, and the current collector is sealed so as not to contact the semiconductor layer and the electrolyte layer carrying the dye. Photoelectric conversion characterized by being placed around the periphery of the part Element. 第一の導電性基板とこの第一の導電性基板の一方の面に配設されている色素が担持された半導体層とから構成される半導体電極と、この半導体電極と対向するように半導体層側に配置され、第二の導電性基板で構成される対極と、色素が担持された半導体層と対極との間に配置された電解質層と、この電解質層を密封する封止部と、導電性材料で形成され、第一の導電性基板および第二の導電性基板の少なくともいずれかに配設されて半導体電極と対極の少なくとも一方と電気的に接続されている集電体とを備えており、第一の導電性基板と第二の導電性基板のうち少なくとも一方は透光性であり、かつ、集電体は、色素が担持された半導体層および電解質層と接触しないように封止部内に埋め込まれて配設されていることを特徴とする光電変換素子。   A semiconductor electrode composed of a first conductive substrate and a semiconductor layer carrying a dye disposed on one surface of the first conductive substrate, and a semiconductor layer facing the semiconductor electrode A counter electrode disposed on the side and made of a second conductive substrate, an electrolyte layer disposed between the semiconductor layer carrying the dye and the counter electrode, a sealing portion for sealing the electrolyte layer, and a conductive layer And a current collector disposed on at least one of the first conductive substrate and the second conductive substrate and electrically connected to at least one of the semiconductor electrode and the counter electrode. And at least one of the first conductive substrate and the second conductive substrate is translucent, and the current collector is sealed so as not to contact the semiconductor layer and the electrolyte layer carrying the dye. A photoelectric device characterized by being embedded in the unit換素Ko.
JP2006089399A 2006-03-28 2006-03-28 Photoelectric conversion element Pending JP2007265796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006089399A JP2007265796A (en) 2006-03-28 2006-03-28 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006089399A JP2007265796A (en) 2006-03-28 2006-03-28 Photoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2007265796A true JP2007265796A (en) 2007-10-11

Family

ID=38638583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006089399A Pending JP2007265796A (en) 2006-03-28 2006-03-28 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2007265796A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067007A (en) * 2008-09-10 2010-03-25 Panasonic Electric Works Co Ltd Flat identification device
JP2010067086A (en) * 2008-09-11 2010-03-25 Panasonic Electric Works Co Ltd Contactless identification device and contactless identification system using the same
JP2010067006A (en) * 2008-09-10 2010-03-25 Panasonic Electric Works Co Ltd Display
JP2011233513A (en) * 2010-04-26 2011-11-17 Samsung Sdi Co Ltd Photoelectric conversion module
WO2014132725A1 (en) * 2013-02-28 2014-09-04 日本写真印刷株式会社 Dye-sensitized solar cell
CN110326118A (en) * 2016-11-17 2019-10-11 无处不在能量公司 Monocell photovoltaic module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07193266A (en) * 1993-12-27 1995-07-28 Canon Inc Manufacture of solar battery module
JP2003178817A (en) * 2001-12-10 2003-06-27 Hitachi Maxell Ltd Photoelectric transducer and manufacturing method therefor
JP2005243557A (en) * 2004-02-27 2005-09-08 Hitachi Maxell Ltd Photoelectric conversion element and photoelectric conversion module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07193266A (en) * 1993-12-27 1995-07-28 Canon Inc Manufacture of solar battery module
JP2003178817A (en) * 2001-12-10 2003-06-27 Hitachi Maxell Ltd Photoelectric transducer and manufacturing method therefor
JP2005243557A (en) * 2004-02-27 2005-09-08 Hitachi Maxell Ltd Photoelectric conversion element and photoelectric conversion module

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067007A (en) * 2008-09-10 2010-03-25 Panasonic Electric Works Co Ltd Flat identification device
JP2010067006A (en) * 2008-09-10 2010-03-25 Panasonic Electric Works Co Ltd Display
JP2010067086A (en) * 2008-09-11 2010-03-25 Panasonic Electric Works Co Ltd Contactless identification device and contactless identification system using the same
JP2011233513A (en) * 2010-04-26 2011-11-17 Samsung Sdi Co Ltd Photoelectric conversion module
US8710356B2 (en) 2010-04-26 2014-04-29 Samsung Sdi Co., Ltd. Photoelectric conversion module
WO2014132725A1 (en) * 2013-02-28 2014-09-04 日本写真印刷株式会社 Dye-sensitized solar cell
CN110326118A (en) * 2016-11-17 2019-10-11 无处不在能量公司 Monocell photovoltaic module
JP2019534576A (en) * 2016-11-17 2019-11-28 ユビキタス エナジー, インコーポレイテッドUbiquitous Energy, Inc. Single cell photovoltaic module
JP7041969B2 (en) 2016-11-17 2022-03-25 ユビキタス エナジー, インコーポレイテッド Single cell photovoltaic module
CN110326118B (en) * 2016-11-17 2022-07-26 无处不在能量公司 Monocell photovoltaic module
US11545589B2 (en) 2016-11-17 2023-01-03 Ubiquitous Energy, Inc. Single cell photovoltaic module

Similar Documents

Publication Publication Date Title
US10366842B2 (en) Dye-sensitized solar cell and method for manufacturing thereof
US9607772B2 (en) Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP4172239B2 (en) Photoelectric conversion element
EP2211418A1 (en) Dye-sensitized solar cell module
EP2451005A1 (en) Wet type solar battery module
JP2007095682A (en) Laminate type photovoltaic element and its manufacturing method
CN102754273A (en) Dye-sensitized solar cell and method for manufacturing the same
JP2005251736A (en) Photoelectric conversion element, photocell using it and case of electronic equipment
JP4881600B2 (en) Dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell module
JP2007265796A (en) Photoelectric conversion element
JP4277639B2 (en) Photoelectric conversion element module
JP4639657B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2009009936A (en) Photoelectric conversion device
JP4892186B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5657780B2 (en) Photoelectric conversion element and photoelectric conversion module
JP2003187883A (en) Photoelectric conversion element
JP4092908B2 (en) Photoelectric conversion element and manufacturing method thereof
JP4710291B2 (en) Photoelectric conversion element container, photoelectric conversion unit, and photoelectric conversion module
JP2009043482A (en) Dye-sensitized solar cell, and dye-sensitized solar cell module
WO2012070603A1 (en) Photoelectric conversion element and photoelectric conversion element module
JP6270990B2 (en) Photoelectric conversion element, dye-sensitized solar cell, and dye-sensitized solar cell module
JP5181507B2 (en) Method for manufacturing photoelectric conversion element
JP2008243618A (en) Photoelectric conversion element
JPWO2012053327A1 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP6173560B2 (en) Photoelectric conversion module and electronic device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120731