JP2007264537A - Endoscopic device - Google Patents

Endoscopic device Download PDF

Info

Publication number
JP2007264537A
JP2007264537A JP2006092920A JP2006092920A JP2007264537A JP 2007264537 A JP2007264537 A JP 2007264537A JP 2006092920 A JP2006092920 A JP 2006092920A JP 2006092920 A JP2006092920 A JP 2006092920A JP 2007264537 A JP2007264537 A JP 2007264537A
Authority
JP
Japan
Prior art keywords
light
light sources
light source
image
spectral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006092920A
Other languages
Japanese (ja)
Other versions
JP4917822B2 (en
Inventor
Hiroshi Fujita
寛 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Priority to JP2006092920A priority Critical patent/JP4917822B2/en
Publication of JP2007264537A publication Critical patent/JP2007264537A/en
Application granted granted Critical
Publication of JP4917822B2 publication Critical patent/JP4917822B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a spectral image where every kind of fine structure or the like is expressed without depending on an individual difference in terms of spectral transmission characteristic or the like of an endoscope and to provide useful image information of a body to be observed serviceable to diagnosis or the like. <P>SOLUTION: The endoscopic device has: first to third light sources (LED) 14a to 14c emitting light beams whose wavelength regions are different; a light composing part 12 composing the light beams from the three light sources 14a to 14c; and first to third light source driving circuits 15a to 15c driving the light sources 14a to 14c independently and also variably adjusting output intensity of each of the light beams. By radiating three kinds of synthetic illuminating light beams, whose output intensity is variably adjusted, from the light sources 14a to 14c, arithmetic operation parts 25 and 26 perform matrix arithmetic operation for obtaining the spectral image based on image data of three frames and data on the output intensity of the light obtained by an imaging part 18. The spectral image is formed by selecting the wavelength region thereof or selecting the output intensity of the light sources 14a to 14c. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は内視鏡装置、特に医療分野で用いられ、特定の波長域の画像情報からなる分光画像を形成し表示するための構成に関する。   The present invention relates to an endoscope apparatus, and more particularly to a configuration for forming and displaying a spectral image made up of image information in a specific wavelength range, which is used in the medical field.

近年、固体撮像素子を用いた電子内視鏡装置では、消化器官(胃粘膜等)における分光反射率に基づき、狭帯域バンドパスフィルタを組み合わせた分光イメージング、即ち狭帯域フィルタ内蔵電子内視鏡装置(Narrow
Band Imaging ‐ NBI)が注目されている。この装置は、面順次式のR(赤),G(緑),B(青)の回転フィルタの代わりに、3つの狭(波長)帯域のバンドパスフィルタを設け、これら狭帯域バンドパスフィルタを介して照明光を順次出力し、これらの照明光で得られた3つの信号に対しそれぞれの重み付けを変えながらR,G,B(RGB)信号の場合と同様の処理を行うことにより、分光画像を形成するものである。このような分光画像によれば、胃、大腸等の消化器において、従来では不明瞭であった微細構造等が明瞭に観察可能となる。
In recent years, in an electronic endoscope apparatus using a solid-state imaging device, spectral imaging combined with a narrow-band bandpass filter based on a spectral reflectance in a digestive organ (such as gastric mucosa), that is, an electronic endoscope apparatus with a narrow-band filter. (Narrow
Band Imaging-NBI) is attracting attention. This device is provided with three narrow (wavelength) band-pass filters instead of the surface sequential R (red), G (green), and B (blue) rotary filters. By sequentially performing the same processing as in the case of the R, G, B (RGB) signals while changing the weighting of the three signals obtained with these illumination lights, the spectral image is output. Is formed. According to such a spectroscopic image, it is possible to clearly observe a fine structure or the like that was previously unclear in digestive organs such as the stomach and the large intestine.

一方、上記の狭帯域バンドパスフィルタを用いる面順次式のものではなく、特開2003−93336号公報に示されるように、固体撮像素子に微小モザイクの色フィルタを配置する同時式において、白色光で得られた画像信号を基に、演算処理にて分光画像を形成することが提案されている。これは、RGBのそれぞれのカラー感度特性を数値データ化したものと、特定の狭帯域バンドパスの分光特性を数値データ化したものとの関係をマトリックスデータ(係数セット)として求め、このマトリックスデータとRGB信号との演算により狭帯域バンドパスフィルタを介して得られる分光画像信号と同等のもの得るものである。このような演算によって分光画像を形成する場合は、所望の波長域に対応した複数のフィルタを用意する必要がなく、またこれらの交換配置が不要となるので、装置の大型化が避けられ、低コスト化を図ることができる。
特開2003−93336号公報
On the other hand, instead of using the above-described narrow-band bandpass filter, it is not a surface sequential type, but as shown in Japanese Patent Application Laid-Open No. 2003-93336, in a simultaneous type in which a fine mosaic color filter is arranged in a solid-state image sensor, white light It has been proposed to form a spectral image by arithmetic processing based on the image signal obtained in (1). This is a matrix data (coefficient set) for the relationship between the RGB color sensitivity characteristics converted into numerical data and the spectral characteristics of a specific narrowband bandpass converted into numerical data. An equivalent to a spectral image signal obtained through a narrow-band bandpass filter can be obtained by calculation with an RGB signal. When a spectral image is formed by such an operation, it is not necessary to prepare a plurality of filters corresponding to a desired wavelength region, and replacement arrangement of these is unnecessary, so that the apparatus can be prevented from being enlarged and reduced in size. Cost can be reduced.
JP 2003-93336 A

しかしながら、上記特許文献1では、RGBのカラー感度特性を数値データ化したものと特定の狭帯域バンドパスの分光特性を数値データ化したものとの関係を示す演算データ(マトリックスデータ)を用いているが、このような演算データは、対物光学系の分光透過特性や撮像系の分光透過特性等に依存しており、内視鏡の種類やその分光透過特性の個体差を考慮しなければならないという複雑さがある。本願発明は、このような対物光学系及び撮像系の分光透過特性等に依存しない形で、分光画像を得ることができる従来にない新しい手法の内視鏡装置を提案するものである。   However, in the above-mentioned Patent Document 1, calculation data (matrix data) indicating the relationship between the RGB color sensitivity characteristics converted into numerical data and the spectral characteristics of a specific narrowband bandpass converted into numerical data is used. However, such calculation data depends on the spectral transmission characteristics of the objective optical system, the spectral transmission characteristics of the imaging system, etc., and it is necessary to consider the type of endoscope and individual differences in the spectral transmission characteristics. There is complexity. The present invention proposes an endoscope apparatus of a new technique that has not been conventionally available and can obtain a spectral image without depending on the spectral transmission characteristics of the objective optical system and the imaging system.

一方、内視鏡装置の分光画像では、例えば比較的太い血管、毛細血管、或いは深い位置の血管、浅い位置の血管、進行度の異なる癌組織等というように各種の微細構造を描出すること、また例えばオキシヘモグロビンとデオキシヘモグロビンとの差など、特定の物質間の差を標的として描出すること等が期待されており、従来では描出できなかった新しい被観察体内情報を有する分光画像が得られれば、診断等に役立つ有用な被観察体画像情報を提供することが可能になる。   On the other hand, in the spectroscopic image of the endoscope apparatus, for example, depict various fine structures such as relatively thick blood vessels, capillaries, or deep blood vessels, shallow blood vessels, cancer tissues with different degrees of progression, In addition, for example, it is expected that a difference between specific substances such as a difference between oxyhemoglobin and deoxyhemoglobin is drawn as a target. It is possible to provide useful object image information useful for diagnosis and the like.

本発明は上記問題点に鑑みてなされたものであり、その目的は、対物光学系及び撮像系の分光透過特性等の個体差に依存しない形で各種の微細構造等が描出される分光画像を形成することができ、診断等に役立つ有用な被観察体画像情報を提供することが可能となる内視鏡装置を提供することにある。   The present invention has been made in view of the above problems, and its purpose is to provide a spectral image in which various microstructures are rendered in a manner that does not depend on individual differences such as spectral transmission characteristics of the objective optical system and the imaging system. It is an object of the present invention to provide an endoscope apparatus that can be formed and can provide useful object image information useful for diagnosis and the like.

上記目的を達成するために、請求項1の発明は、照明光が照射された被観察体を内視鏡に搭載された撮像素子で撮像する内視鏡装置において、波長域の異なる光を発光する3つの光源を有し、これら3つの光源からの光を合成して上記照明光として出力する光源部と、この光源部の3つの光源を独立して駆動すると共に、それぞれの光源光の出力強度を可変調整する光源駆動回路と、この光源駆動回路を制御し、上記3つの光源の各波長域光の出力強度が可変調整された複数種類の合成照明光を形成するための制御回路と、上記複数種類の合成照明光の照射により撮像素子で得られた複数の画像データと上記3つの光源光の出力強度データに基づき、分光画像を得るためのマトリックス演算を行う演算回路と、を設けたことを特徴とする。
請求項2の発明は、上記分光画像の波長域を選択するための波長選択手段を設け、上記制御回路は、この波長選択手段にて選択された波長域に基づいて上記3つの光源の出力強度を可変設定することを特徴とする。
請求項3の発明は、上記3つの光源の出力強度を選択するための光強度選択手段を設け、上記制御回路は、この光強度選択手段からの出力に基づいて上記3つの光源の出力強度を可変設定することを特徴とする。
In order to achieve the above object, an invention according to claim 1 emits light having different wavelength ranges in an endoscope apparatus that images an object to be observed irradiated with illumination light with an imaging element mounted on the endoscope. A light source unit that synthesizes the light from these three light sources and outputs the illumination light, and independently drives the three light sources of the light source unit and outputs each light source light. A light source driving circuit for variably adjusting the intensity, a control circuit for controlling the light source driving circuit, and forming a plurality of types of combined illumination light in which the output intensities of the respective wavelength band lights of the three light sources are variably adjusted; An arithmetic circuit for performing a matrix operation for obtaining a spectral image based on a plurality of image data obtained by the imaging device by irradiation of the plurality of types of synthetic illumination light and output intensity data of the three light source lights is provided. It is characterized by that.
The invention of claim 2 is provided with wavelength selection means for selecting a wavelength range of the spectral image, and the control circuit outputs the output intensities of the three light sources based on the wavelength range selected by the wavelength selection means. Is variably set.
According to a third aspect of the present invention, there is provided light intensity selection means for selecting the output intensity of the three light sources, and the control circuit determines the output intensity of the three light sources based on the output from the light intensity selection means. It is characterized by variable setting.

上記の構成によれば、第1乃至第3光源のそれぞれから波長域と強度の異なる光が出力され、これらを合成した光が照明光として被観察体へ照射されることになり、この合成照明光によって撮像素子では被観察体の画像(映像)が撮像される。そして、例えば波長域で強度の異なる3種類の合成照明光の照射によって得られた3つ(例えば3フレーム)の画像データに基づき、分光マトリックス演算を行うことによって分光画像が形成される。   According to said structure, the light from which a wavelength range and intensity differ from each of the 1st thru | or 3rd light source, and the light which synthesize | combined these will be irradiated to a to-be-observed body as illumination light, This synthetic | combination illumination An image (video) of the object to be observed is picked up by the image pickup device with light. Then, a spectral image is formed by performing a spectral matrix calculation based on, for example, three (for example, three frames) image data obtained by irradiation with three types of synthetic illumination light having different intensities in the wavelength region.

以下に、波長域の異なる3つの光源光の強度を変えて3種類の合成照明光を作り、この合成照明光で撮影した3フレーム分の画像データに基づいて分光画像が形成できることを数式を用いて説明する。
ここで、3つの独立する光源は、その注入電流に比例した強度の出力となり、この場合の各光源の分光スペクトル波形(形状)は、強度に依存せず一定であり、また3つの光源の光を合成した光の分光スペクトル及び強度は、その線形和で表すことができることを前提とする。
In the following, using mathematical formulas, it is possible to form three types of combined illumination light by changing the intensities of three light sources having different wavelength ranges, and to form a spectral image based on image data for three frames photographed with this combined illumination light. I will explain.
Here, the three independent light sources output an intensity proportional to the injected current, and the spectral spectrum waveform (shape) of each light source in this case is constant regardless of the intensity, and the light from the three light sources is constant. It is assumed that the spectrum and intensity of the light synthesized by can be expressed by its linear sum.

まず、LED(発光ダイオード)等からなる第1乃至第3の光源の分光スペクトル(その強度を規格化したものとする)を、S(λ),S(λ),S(λ)とし、この各光源の強度を、駆動制御される注入電流により、α,β,γで代表させるとき、3通りの合成光源の分光スペクトルSc1(λ),Sc2(λ),Sc3(λ)は、次の数式1となる。

Figure 2007264537
First, spectrums of first to third light sources composed of LEDs (light emitting diodes) or the like (assuming that their intensities are normalized) are expressed as S 1 (λ), S 2 (λ), S 3 (λ). When the intensity of each light source is represented by α, β, γ by an injection current that is driven and controlled, the spectral spectra S c1 (λ), S c2 (λ), S c3 ( λ) is expressed by Equation 1 below.
Figure 2007264537

今、観察する生体の分光反射特性をR(λ)、対物光学系の分光透過特性をL(λ)とし、撮像系の分光透過特性をD(λ),D(λ),D(λ)(それぞれ、RGBに対応する)とする。このとき、撮像系より得られる最終の3つの刺激値(r,g,b)は、一般に次の数式2で表される[S(λ)は光源一般を意味する]。

Figure 2007264537
Now, the spectral reflection characteristics of a living body observing R (lambda), the spectral transmission characteristic of the objective optical system and L (lambda), the spectral transmission characteristic of the imaging system D 1 (λ), D 2 (λ), D 3 (Λ) (each corresponding to RGB). At this time, the last three stimulus values (r, g, b) obtained from the imaging system are generally expressed by the following formula 2 [S (λ) means a general light source].
Figure 2007264537

そして、上記数式1を数式2に展開し、以下の数式3のように定義する。

Figure 2007264537
この数式3により上記数式1での3通りの合成照明光より得られる最終刺激値(r,g,b,r,g,b,r,g,b:3フレーム分の3波長域の画像データ)は、以下の数式4のように表される。
Figure 2007264537
Then, Formula 1 is expanded into Formula 2 and defined as Formula 3 below.
Figure 2007264537
The final stimulus values (r 1 , g 1 , b 1 , r 2 , g 2 , b 2 , r 3 , g 3 , b 3 : 3 obtained from the three types of synthesized illumination light in the above formula 1 by this formula 3 The image data in the three wavelength regions for the frame) is expressed as the following Equation 4.
Figure 2007264537

一方、最終刺激値と第1乃至第3の各光源に注入した電流値は既知であるので、上記数式3に示す、使用している電子内視鏡装置の全体の系と、被観察体である生体の反射率特性により決まる固有の因子Sijを、次の数式5の演算にて求めることができる。

Figure 2007264537
On the other hand, since the final stimulus value and the current value injected into each of the first to third light sources are known, the entire system of the electronic endoscope apparatus used and the object to be observed shown in Equation 3 above are used. A specific factor S ij determined by the reflectance characteristic of a certain living body can be obtained by the calculation of the following Expression 5.
Figure 2007264537

次に、内視鏡装置で表示したい任意の分光画像は、照射合成光を任意の分光スペクトル特性を持つ光源で照射すればよいので、この分光画像に相当する分光スペクトルをS(λ)とし、S(λ)=α(λ)+β(λ)+γ(λ)とすると、以下の数式6の関係が擬似的に成立する。

Figure 2007264537
Next, since an arbitrary spectral image desired to be displayed by the endoscope apparatus may be irradiated with irradiation synthesized light with a light source having arbitrary spectral spectral characteristics, the spectral spectrum corresponding to this spectral image is defined as S 0 (λ). , S 0 (λ) = α 0 S 1 (λ) + β 0 S 2 (λ) + γ 0 S 3 (λ), the relationship of Equation 6 below is established in a pseudo manner.
Figure 2007264537

上記の数式5をそのまま解くことはできないので、この数式6の最終刺激値に係る係数(α,β,γ)を求めるには、擬似方程式を解き、次のように最適近似係数として求める。即ち、光源スペクトルをn個からなる列ベクトルとして、数式7のように表記する。

Figure 2007264537
例えば、この数式7の上記S(λ),S(λ),S(λ),S(λ)を、波長400〜700nmで5mm毎の要素からなる列ベクトルとして表記すると、61×1の列ベクトルとなる。従って、この上記行列Aの61×1、行列Bは61×3の構成をとることになる。このようにすれば、係数(α,β,γ)、次の数式8で近似される。
Figure 2007264537
Since Equation 5 above cannot be solved as it is, in order to obtain the coefficients (α 0 , β 0 , γ 0 ) related to the final stimulus value of Equation 6, the pseudo equation is solved and the optimum approximation coefficient is obtained as follows: Ask. That is, the light source spectrum is expressed as Equation 7 as n column vectors.
Figure 2007264537
For example, when S 0 (λ), S 1 (λ), S 2 (λ), and S 3 (λ) in Expression 7 are expressed as column vectors composed of elements every 5 mm at wavelengths of 400 to 700 nm, 61 A x1 column vector. Therefore, 61 × 1 and matrix B of the matrix A have a 61 × 3 configuration. In this way, the coefficients (α 0 , β 0 , γ 0 ) are approximated by the following formula 8.
Figure 2007264537

従って、分光画像に相当する分光スペクトルS(λ)の特性をもつ光源にて照射した際の最終刺激値(r,g,b)は、上記数式2〜8を用いて、以下の数式9のように推定される。

Figure 2007264537
この数式9において、右辺の諸量は、全て既知の値であるから、最終刺激値(r,g,b)は一意に求まり、この最終刺激値が分光画像の最終刺激値、即ち求めるべき3つの波長域の画像データとなる。なお、上記数式1に代表されるα,β,γの値の全ては非負であるが、上記数式8に代表されるα,β,γは、少なくとも1つが非負であればよい。 Therefore, the final stimulus values (r 0 , g 0 , b 0 ) when irradiated with a light source having the spectral spectrum S 0 (λ) characteristic corresponding to the spectral image are expressed as The following equation 9 is estimated.
Figure 2007264537
In Equation 9, since the quantities on the right side are all known values, the final stimulus value (r 0 , g 0 , b 0 ) is uniquely determined, and this final stimulus value is the final stimulus value of the spectral image, that is, This is image data of three wavelength ranges to be obtained. Note that all the values of α, β, and γ represented by Equation 1 are non-negative, but at least one of α 0 , β 0 , and γ 0 represented by Equation 8 may be non-negative.

以上のように、数式9に示されるように、分光画像の最終刺激値(各波長域画像データ)(r,g,b)は、撮像素子で撮影された3つの画像データ(r,g,b,r,g,b,r,g,b:3フレーム分の3波長域の画像データ)と、3種類の合成照明光の各波長域の光強度(α,β,γ,α,β,γ,α,β,γ)と、分光画像を構成する分光スペクトル(各波長域)の係数(α,β,γ)から求められる。そして、上記数式9から分かるように、最終刺激値(r,g,b)は、対物光学系の分光透過特性L(λ)や撮像系の分光透過特性D(λ)に依存しない値であり、分光画像の形成が内視鏡の個体差に影響されることはない。 As described above, as shown in Expression 9, the final stimulus value (each wavelength region image data) (r 0 , g 0 , b 0 ) of the spectral image is the three image data (r 1 , g 1 , b 1 , r 2 , g 2 , b 2 , r 3 , g 3 , b 3 : image data of 3 wavelength ranges for 3 frames) and 3 types of combined illumination light in each wavelength range The light intensity (α 1 , β 1 , γ 1 , α 2 , β 2 , γ 2 , α 3 , β 3 , γ 3 ) and the coefficient (α 0 , β 0 , γ 0 ). As can be seen from Equation 9, the final stimulus value (r 0 , g 0 , b 0 ) does not depend on the spectral transmission characteristic L (λ) of the objective optical system or the spectral transmission characteristic D (λ) of the imaging system. It is a value, and formation of a spectral image is not influenced by individual differences of endoscopes.

また、本発明では波長選択手段が設けられており、この波長選択手段により分光画像の波長域が選択されると、制御回路は、この波長域の分光画像を得るための第1乃至第3光源の強度を光源駆動回路へ出力しており、この光源駆動回路によって第1乃至第3光源の出力光の強度が設定される。更に、光強度選択手段を設けてもよく、この光強度選択手段によれば、第1乃至第3光源の出力光の強度を直接的に選択設定することができる。このようにして選択・設定された第1乃至第3光源の光強度データが、3フレーム分の画像データとの演算データとして用いられることにより、分光画像が形成される。   In the present invention, wavelength selection means is provided, and when the wavelength range of the spectral image is selected by the wavelength selection means, the control circuit includes first to third light sources for obtaining a spectral image of this wavelength range. Is output to the light source driving circuit, and the intensity of the output light of the first to third light sources is set by this light source driving circuit. Furthermore, a light intensity selection means may be provided, and according to this light intensity selection means, the intensity of the output light of the first to third light sources can be directly selected and set. The light intensity data of the first to third light sources selected and set in this way is used as operation data with image data for three frames, thereby forming a spectral image.

本発明の内視鏡装置によれば、対物光学系及び撮像系の分光透過特性等の個体差に依存しない形、即ち内視鏡の種類や固体差に関係なく、各種の微細構造等が描出される良好な分光画像を形成することができ、内視鏡画像上で、比較的太い血管、毛細血管、或いは深い位置の血管、浅い位置の血管、進行度の異なる癌組織等の微細構造を観察でき、また例えばオキシヘモグロビンとデオキシヘモグロビンとの差など、特定の物質間の差を観察することができ、診断等に役立つ有用な被観察体画像情報が得られるという利点がある。   According to the endoscope apparatus of the present invention, various types of microstructures and the like can be drawn regardless of individual differences such as the spectral transmission characteristics of the objective optical system and the imaging system, that is, regardless of the type of endoscope and individual differences. A good spectral image can be formed, and on the endoscopic image, a relatively thick blood vessel, a capillary blood vessel, a deep blood vessel, a shallow blood vessel, a fine structure such as a cancer tissue having a different degree of progression, etc. It can be observed, and a difference between specific substances such as a difference between oxyhemoglobin and deoxyhemoglobin can be observed, and there is an advantage that useful object image information useful for diagnosis and the like can be obtained.

図1には、実施例に係る電子内視鏡装置の構成ブロックが示され、図2には、光源部の構成が示されており、この電子内視鏡装置では、内視鏡先端部等に設けられる光源部として、図1に示されるように照射窓11、光合成部12、LED(発光ダイオード)からなる第1乃至第3光源14a,14b,14c及び第1乃至第3光源駆動回路15a,15b,15cが設けられる。即ち、実施例の光源部は、図2に示されるように、光合成部12として、例えばダイクロイック(2色性)プリズムが配置され、このダイクロイックプリズムの光合成部12の裏面側に第1光源14a、上面側に第2光源14b、下面側に第3光源14cが配置されており、これら第1、第2、第3光源14a〜14cのそれぞれはその発光波長域が異なる、例えばR(赤),G(緑),B(青)のLEDから構成される。そして、第1光源14aが第1光源駆動回路15aにより、第2光源14bが第2光源駆動回路15bにより、第3光源14cが第3光源駆動回路15cにより点灯駆動され、かつその出力光の強度が電流(又は電圧)制御によって可変調整される。   FIG. 1 shows a configuration block of an electronic endoscope apparatus according to the embodiment, and FIG. 2 shows a configuration of a light source unit. In this electronic endoscope apparatus, an endoscope tip portion and the like are shown. As shown in FIG. 1, the light source unit provided in the first to third light sources 14a, 14b, 14c and the first to third light source driving circuits 15a including an irradiation window 11, a light combining unit 12, LEDs (light emitting diodes). , 15b, 15c are provided. That is, as shown in FIG. 2, in the light source unit of the embodiment, for example, a dichroic (dichroic) prism is disposed as the light combining unit 12, and the first light source 14 a on the back side of the light combining unit 12 of this dichroic prism. A second light source 14b is disposed on the upper surface side, and a third light source 14c is disposed on the lower surface side. Each of the first, second, and third light sources 14a to 14c has a different emission wavelength range, for example, R (red), It consists of G (green) and B (blue) LEDs. The first light source 14a is driven by the first light source drive circuit 15a, the second light source 14b is driven by the second light source drive circuit 15b, and the third light source 14c is driven by the third light source drive circuit 15c, and the intensity of the output light. Is variably adjusted by current (or voltage) control.

一方、上記スコープ先端には、図1に示される対物光学系17と固体撮像素子であるCCDを有する撮像部18が設けられており、このCCDとしては、例えば撮像面にMg(マジェンタ),Ye(イエロー),Cy(シアン),G(グリーン)の色フィルタを有する補色型或いはR(赤),G(緑),B(青)の色フィルタを有する原色型のものが配置される。この撮像部18には、CCDから出力された信号に基づき、所定の画像(映像)処理(相関二重サンプリング、自動利得制御、γ補正等)を施す撮像信号処理回路20が設けられ、この撮像信号処理回路20の出力が表示系21に供給される。この表示系21には、例えば通常画像用モニタ21aと分光画像用モニタ21bが設けられており、通常画像と分光画像が並行して表示される(なお、これらの画像は1つのモニタ画面に分割表示してもよい)。   On the other hand, at the distal end of the scope, an imaging unit 18 having an objective optical system 17 shown in FIG. 1 and a CCD that is a solid-state imaging device is provided. As this CCD, for example, Mg (magenta), Ye on the imaging surface is provided. A complementary color type having color filters of (yellow), Cy (cyan) and G (green) or a primary color type having color filters of R (red), G (green) and B (blue) is arranged. The imaging unit 18 is provided with an imaging signal processing circuit 20 that performs predetermined image (video) processing (correlated double sampling, automatic gain control, γ correction, etc.) based on a signal output from the CCD. The output of the signal processing circuit 20 is supplied to the display system 21. The display system 21 is provided with, for example, a normal image monitor 21a and a spectral image monitor 21b, and the normal image and the spectral image are displayed in parallel (these images are divided into one monitor screen). May be displayed).

そして、上記撮像信号処理回路20の後段に、この撮像信号処理回路20から出力されたビデオ信号[例えばY(輝度)/C(色差)信号等]から、3つの波長域の画像データ[例えばR(赤),G(緑),B(青)の各色信号のデータ]からなる画像1(r,g,b)、画像2(r,g,b)、画像3(r,g,b)を形成出力する画像処理部24、上記数式5の演算を行う第1演算部25、上記数式9の演算を行う第2演算部26が設けられ、この第2演算部26で形成された分光画像信号が表示系21に供給される。 Then, after the imaging signal processing circuit 20, video data [for example, Y (luminance) / C (color difference) signal, etc.] output from the imaging signal processing circuit 20, image data [for example, R (Red, G (green), B (blue) color signal data)] image 1 (r 1 , g 1 , b 1 ), image 2 (r 2 , g 2 , b 2 ), image 3 ( r 3 , g 3 , b 3 ), an image processing unit 24 for forming and outputting, a first calculation unit 25 for performing the calculation of Equation 5, and a second calculation unit 26 for performing the calculation of Equation 9 are provided. The spectral image signal formed by the calculation unit 26 is supplied to the display system 21.

また、電子内視鏡装置には、この装置内の各回路を統括制御しかつ分光画像形成のための制御をする制御部(マイコン等)28、上記分光演算情報やプログラムを格納するメモリ29、そして分光画像生成のための波長や光強度等の入力手段としてキーボード30が設けられ、このキーボード30と上記表示系21にて波長選択手段及び光強度選択手段が構成される。即ち、表示系21のモニタに波長選択メニュー、光強度選択メニュー、描出したい特定構造や特定物質間差の選択メニュー等を表示し、このメニューの中でキーボード30にて波長や光強度を選択・設定することができる。なお、波長選択、光強度選択或いは特定構造等の選択のための操作スイッチ等を操作パネルに設けてもよい。   The electronic endoscope apparatus includes a control unit (such as a microcomputer) 28 that controls each circuit in the apparatus and performs control for spectral image formation, a memory 29 that stores the spectral calculation information and programs, A keyboard 30 is provided as input means for wavelength and light intensity for generating a spectral image, and the keyboard 30 and the display system 21 constitute wavelength selection means and light intensity selection means. That is, a wavelength selection menu, a light intensity selection menu, a selection menu for a specific structure to be drawn and a difference between specific substances are displayed on the monitor of the display system 21, and the wavelength and light intensity are selected with the keyboard 30 in this menu. Can be set. An operation switch or the like for selecting a wavelength, light intensity, or a specific structure may be provided on the operation panel.

実施例は以上の構成からなり、まず図1の上記表示系21に表示された各メニューによりキーボード30を用いて所望の分光画像の波長や各光源14a〜14cの光強度を選択することになるが、例えば図3(D)に記載したスペクトルの光源により照明を行った場合の分光画像を算出・表示する場合、即ち470nm(b)、500nm(g)、670nm(r)の波長域(中心波長)で構成される場合、制御部28によって、図3(A)〜(C)のように、第1乃至第3合成照明光の各光源14a〜14cの光強度が決定され、これらの光強度が第1乃至第3光源駆動回路15a〜15cの電流制御等によって設定される。即ち、図3(A)の第1合成照明光は、第1光源14aの光S(上記演算式ではrに対応する)の強度がα(上記演算式の強度パラメータで代用する)、第2光源14bの光S(上記演算式ではgに対応する)の強度がβ、第3光源14cの光S(上記演算式ではbに対応する)の強度がγからなる合成光Scとなり、図3(B)の第2合成照明光は、第1光源14aの光Sの強度がα、第2光源14bの光Sの強度がβ、第3光源14cの光Sの強度がγからなる合成光Scとなり、図3(C)の第3合成照明光は、第1光源14aの光Sの強度がα、第2光源14bの光Sの強度がβ、第3光源14cの光Sの強度がγからなる合成光Scとなり、これら第1合成照明光から第3合成照明光が順に被観察体へ照射される。 The embodiment has the above-described configuration. First, the wavelength of a desired spectral image and the light intensity of each of the light sources 14a to 14c are selected using the keyboard 30 by each menu displayed on the display system 21 of FIG. However, for example, when calculating and displaying a spectral image when illumination is performed with a light source having the spectrum described in FIG. 3D, that is, wavelengths of 470 nm (b 0 ), 500 nm (g 0 ), and 670 nm (r 0 ) In the case of a region (center wavelength), the control unit 28 determines the light intensities of the light sources 14a to 14c of the first to third combined illumination lights as shown in FIGS. These light intensities are set by current control of the first to third light source driving circuits 15a to 15c. That is, in the first combined illumination light in FIG. 3A, the intensity of the light S 1 of the first light source 14a (corresponding to r 1 in the above arithmetic expression) is α 1 (instead of the intensity parameter of the above arithmetic expression). The intensity of the light S 2 of the second light source 14b (corresponding to g 1 in the above arithmetic expression) is β 1 , and the intensity of the light S 3 of the third light source 14c (corresponding to b 1 in the above arithmetic expression) is γ 1. made of synthetic light Sc, and the 3 second combined illumination light (B) is 2 intensity of light S 1 of the first light source 14a is alpha, the intensity of light S 2 of the second light source 14b is beta 2, 3 combined light Sc next to the intensity of light S 3 of the light source 14c is formed of gamma 2, 3 third combined illumination light (C), the intensity of the light S 1 of the first light source 14a is alpha 3, the second light source 14b 3 the intensity of the light S 2 is beta, the combined light Sc next to the intensity of light S 3 of the third light source 14c is made of gamma 3, these first combined illumination light 3 Synthesis illumination light is sequentially irradiated to the observation target.

そして、第1乃至第3の合成照明光が照射された被観察体は、対物光学系17を介して撮像部18で撮像され、この撮像部18から出力されたビデオ信号は撮像信号処理回路20で所定の処理が施され、この撮像信号処理回路20の出力は、表示系21と分光画像形成のための画像処理部24へ供給される。即ち、撮像信号処理回路20では、従来と同様に通常のビデオ信号が形成されており、表示系21の通常画像用モニタ21aには通常の被観察体画像が表示される。一方、画像処理部24では、分光演算に適した3波長域の画像データが形成され、r,g,bの信号データから構成される画像1(第1合成照明光で得られる画像)、r,g,bの信号データから構成される画像2(第2合成照明光で得られる画像)、r,g,bの信号データから構成される画像3(第3合成照明光で得られる画像)が順次出力される。 The object to be observed irradiated with the first to third combined illumination lights is imaged by the imaging unit 18 via the objective optical system 17, and the video signal output from the imaging unit 18 is the imaging signal processing circuit 20. A predetermined process is performed, and the output of the imaging signal processing circuit 20 is supplied to a display system 21 and an image processing unit 24 for forming a spectral image. That is, in the imaging signal processing circuit 20, a normal video signal is formed as in the conventional case, and a normal object image is displayed on the normal image monitor 21 a of the display system 21. On the other hand, in the image processing unit 24, image data of three wavelength regions suitable for spectral calculation is formed, and an image 1 (image obtained by the first combined illumination light) composed of signal data of r 1 , g 1 , b 1 is formed. ), r 2, g 2, b 2 of the signal data from the composed image 2 (image obtained by the second synthetic illumination light), r 3, g 3, b composed of three signal data image 3 (the (Images obtained with three combined illumination light) are sequentially output.

そして、分光演算では上記の3フレーム分の画像1〜3のデータを用いて、第1演算部25では上記数式5の演算が行われ、第2演算部26では第1演算部25の出力に対して数式8の最終刺激値の係数(α,β,γ)を乗算する上記数式9のマトリッスク演算が行われることにより、分光画像(r,g,b)が形成される。この分光画像は、図3(D)に示されるように、470nmを中心とする波長域(b)の画像データ、500nmを中心とする波長域(g)の画像データ、670nmを中心とする波長域(r)の画像データからなる画像であり、この分光画像が表示系21の分光画像用モニタ21bに表示される。なお、この分光画像の形成・表示において、3つの波長域の中の1つ又は2つの画像データのみで分光画像を表示することもできる。 Then, in the spectral calculation, using the data of the images 1 to 3 for the above three frames, the first calculation unit 25 performs the calculation of the above formula 5, and the second calculation unit 26 outputs the output of the first calculation unit 25. A matrix image (r 0 , g 0 , b 0 ) is formed by performing the matrix operation of the above formula 9 that multiplies the coefficients (α 0 , β 0 , γ 0 ) of the final stimulus value of the formula 8. The As shown in FIG. 3D, the spectral image has image data in a wavelength range (b 0 ) centered at 470 nm, image data in a wavelength range (g 0 ) centered at 500 nm, and centered at 670 nm. an image consisting of image data in the wavelength range (r 0) to, the spectral image is displayed on the spectral image monitor 21b of the display system 21. In the formation and display of the spectral image, the spectral image can be displayed using only one or two image data in the three wavelength ranges.

このような分光画像は、図3(A)から図3(C)の第1合成照明光から第3合成照明光における各光源14a〜14cの強度(α,β,γ,α,β,γ,α,β,γ)をキーボード30によって設定することによっても、同様に形成・表示することができる。 Such spectral images are obtained by comparing the intensity (α 1 , β 1 , γ 1 , α 2 ) of the light sources 14a to 14c in the first to third synthesized illumination light from the first synthesized illumination light in FIGS. 3 (A) to 3 (C). , Β 2 , γ 2 , α 3 , β 3 , γ 3 ) can also be formed and displayed in the same manner by setting with the keyboard 30.

また、実施例では、例えば太い血管、毛細血管、深い位置の血管、浅い位置の血管、進行度の異なる癌組織等というような特定構造を選択するメニュー、或いは例えばオキシヘモグロビンとデオキシヘモグロビンとの差など、特定物質間の差の描出を選択するメニュー等を設けており、この場合は、特定構造、特定物質間差のメニューを選択することにより、これら特定構造、特定物質間差を描出するための波長域(r,g,b)から第1乃至第3光源14a〜14cの強度を設定する(或いはこの強度を直接的に設定してもよい)ことにより、特定構造、特定物質間差を描出した分光画像が形成、表示される。
なお、上記実施例では、3種類の合成照明光を用いた場合を説明したが、この合成照明光は、2種類或いは4種類以上でもよい。
In the embodiment, a menu for selecting a specific structure such as a thick blood vessel, a capillary blood vessel, a deep blood vessel, a shallow blood vessel, a cancer tissue having a different degree of progression, or the difference between oxyhemoglobin and deoxyhemoglobin, for example. In order to draw the difference between these specific structures and specific substances by selecting the menu for specific structures and differences between specific substances, etc. By setting the intensity of the first to third light sources 14a to 14c from the wavelength range (r 0 , g 0 , b 0 ) (or the intensity may be set directly), the specific structure and the specific substance A spectral image depicting the difference is formed and displayed.
In the above-described embodiment, the case where three types of combined illumination light are used has been described. However, the combined illumination light may be two types or four or more types.

本発明の実施例に係る電子内視鏡装置の構成を示すブロック図である。It is a block diagram which shows the structure of the electronic endoscope apparatus which concerns on the Example of this invention. 実施例の光源部の構成を示す図である。It is a figure which shows the structure of the light source part of an Example. 実施例で設定される第1乃至第3合成照明光とこれら照明光によって得られる分光画像の波長域の一例を示す波形図である。It is a wave form diagram which shows an example of the wavelength range of the spectral image obtained by the 1st thru | or 3rd synthetic | combination illumination light set in an Example, and these illumination light.

符号の説明Explanation of symbols

12…光合成部、 14a〜14c…第1乃至第3光源部、
15a〜15c…第1乃至第3光源駆動回路、
17…対物光学系、 18…撮像部、
21…表示系(モニタ)、 24…画像処理部、
25…第1演算部、 26…第2演算部、
28…制御部、 29…メモリ、
30…キーボード。
12 ... Photosynthesis part, 14a-14c ... 1st thru | or 3rd light source part,
15a to 15c: first to third light source driving circuits,
17 ... Objective optical system, 18 ... Imaging unit,
21 ... Display system (monitor), 24 ... Image processing unit,
25 ... 1st calculating part, 26 ... 2nd calculating part,
28 ... Control unit, 29 ... Memory,
30 ... Keyboard.

Claims (3)

照明光が照射された被観察体を内視鏡に搭載された撮像素子で撮像する内視鏡装置において、
波長域の異なる光を発光する3つの光源を有し、これら3つの光源からの光を合成して上記照明光として出力する光源部と、
この光源部の3つの光源を独立して駆動すると共に、それぞれの光源光の出力強度を可変調整する光源駆動回路と、
この光源駆動回路を制御し、上記3つの光源の各波長域光の出力強度が可変調整された複数種類の合成照明光を形成するための制御回路と、
上記複数種類の合成照明光の照射により撮像素子で得られた複数の画像データと上記3つの光源光の出力強度データに基づき、分光画像を得るためのマトリックス演算を行う演算回路と、を設けたことを特徴とする内視鏡装置。
In an endoscope apparatus that images an object to be observed irradiated with illumination light with an imaging element mounted on the endoscope,
A light source unit having three light sources that emit light having different wavelength ranges, and combining the light from the three light sources and outputting the light as the illumination light;
A light source driving circuit that independently drives the three light sources of the light source unit and variably adjusts the output intensity of each light source light; and
A control circuit for controlling the light source driving circuit to form a plurality of types of combined illumination light in which the output intensities of the respective wavelength band lights of the three light sources are variably adjusted;
An arithmetic circuit for performing a matrix operation for obtaining a spectral image based on a plurality of image data obtained by the imaging device by irradiation of the plurality of types of synthetic illumination light and output intensity data of the three light source lights is provided. An endoscope apparatus characterized by that.
上記分光画像の波長域を選択するための波長選択手段を設け、
上記制御回路は、この波長選択手段にて選択された波長域に基づいて上記3つの光源の出力強度を可変設定することを特徴とする請求項1記載の内視鏡装置。
Provide a wavelength selection means for selecting the wavelength range of the spectral image,
2. The endoscope apparatus according to claim 1, wherein the control circuit variably sets the output intensities of the three light sources based on the wavelength range selected by the wavelength selection means.
上記3つの光源の出力強度を選択するための光強度選択手段を設け、
上記制御回路は、この光強度選択手段からの出力に基づいて上記3つの光源の出力強度を可変設定することを特徴とする上記請求項1記載の内視鏡装置。
A light intensity selecting means for selecting the output intensity of the three light sources;
The endoscope apparatus according to claim 1, wherein the control circuit variably sets the output intensities of the three light sources based on the output from the light intensity selecting means.
JP2006092920A 2006-03-30 2006-03-30 Endoscope device Expired - Fee Related JP4917822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006092920A JP4917822B2 (en) 2006-03-30 2006-03-30 Endoscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006092920A JP4917822B2 (en) 2006-03-30 2006-03-30 Endoscope device

Publications (2)

Publication Number Publication Date
JP2007264537A true JP2007264537A (en) 2007-10-11
JP4917822B2 JP4917822B2 (en) 2012-04-18

Family

ID=38637548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092920A Expired - Fee Related JP4917822B2 (en) 2006-03-30 2006-03-30 Endoscope device

Country Status (1)

Country Link
JP (1) JP4917822B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2258253A1 (en) 2009-06-04 2010-12-08 FUJIFILM Corporation Endoscopic apparatus and endoscopic image obtainment method
JP2011067268A (en) * 2009-09-24 2011-04-07 Fujifilm Corp Endoscope apparatus and illumination control method of endoscope apparatus
JP2013099595A (en) * 2013-02-04 2013-05-23 Fujifilm Corp Electronic endoscope system
WO2015029709A1 (en) * 2013-08-27 2015-03-05 富士フイルム株式会社 Endoscope system
JP2015062728A (en) * 2014-12-16 2015-04-09 富士フイルム株式会社 Endoscope system, light source device for endoscope system, and operation method for endoscope system
US9107603B2 (en) 2011-01-27 2015-08-18 Fujifilm Corporation Electronic endoscope system including a suppression section
WO2017168477A1 (en) * 2016-03-28 2017-10-05 パナソニックIpマネジメント株式会社 Imaging apparatus and image processing method
CN108992023A (en) * 2018-08-15 2018-12-14 重庆金山医疗器械有限公司 Illumination for endoscope system
JP2021135404A (en) * 2020-02-27 2021-09-13 富士フイルム株式会社 Lens device, imaging apparatus, imaging method, and imaging program
KR20230078137A (en) * 2021-11-26 2023-06-02 한국전기연구원 Lighting system and imaging system for improving the visibility in tissue optical image

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11225953A (en) * 1998-02-12 1999-08-24 Olympus Optical Co Ltd Endoscope device
JP2002122794A (en) * 2000-10-13 2002-04-26 Asahi Optical Co Ltd Light source section or electronic endoscope
JP2003093336A (en) * 2001-09-26 2003-04-02 Toshiba Corp Electronic endoscope apparatus
JP2004194993A (en) * 2002-12-19 2004-07-15 Pentax Corp Electronic endoscopic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11225953A (en) * 1998-02-12 1999-08-24 Olympus Optical Co Ltd Endoscope device
JP2002122794A (en) * 2000-10-13 2002-04-26 Asahi Optical Co Ltd Light source section or electronic endoscope
JP2003093336A (en) * 2001-09-26 2003-04-02 Toshiba Corp Electronic endoscope apparatus
JP2004194993A (en) * 2002-12-19 2004-07-15 Pentax Corp Electronic endoscopic apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100312058A1 (en) * 2009-06-04 2010-12-09 Fujifilm Corporation Endoscopic apparatus and endoscopic image obtainment method
JP2010279521A (en) * 2009-06-04 2010-12-16 Fujifilm Corp Endoscopic apparatus and endoscopic image obtaining method
EP2258253A1 (en) 2009-06-04 2010-12-08 FUJIFILM Corporation Endoscopic apparatus and endoscopic image obtainment method
JP2011067268A (en) * 2009-09-24 2011-04-07 Fujifilm Corp Endoscope apparatus and illumination control method of endoscope apparatus
US8564651B2 (en) 2009-09-24 2013-10-22 Fujifilm Corporation Endoscope apparatus and illumination control method of endoscope apparatus
US9107603B2 (en) 2011-01-27 2015-08-18 Fujifilm Corporation Electronic endoscope system including a suppression section
JP2013099595A (en) * 2013-02-04 2013-05-23 Fujifilm Corp Electronic endoscope system
WO2015029709A1 (en) * 2013-08-27 2015-03-05 富士フイルム株式会社 Endoscope system
JP2017185267A (en) * 2013-08-27 2017-10-12 富士フイルム株式会社 Endoscope system
JP2015062728A (en) * 2014-12-16 2015-04-09 富士フイルム株式会社 Endoscope system, light source device for endoscope system, and operation method for endoscope system
WO2017168477A1 (en) * 2016-03-28 2017-10-05 パナソニックIpマネジメント株式会社 Imaging apparatus and image processing method
US10616458B2 (en) 2016-03-28 2020-04-07 Panasonic Intellectual Property Management Imaging apparatus and image processing method
CN108992023A (en) * 2018-08-15 2018-12-14 重庆金山医疗器械有限公司 Illumination for endoscope system
JP2021135404A (en) * 2020-02-27 2021-09-13 富士フイルム株式会社 Lens device, imaging apparatus, imaging method, and imaging program
JP7261192B2 (en) 2020-02-27 2023-04-19 富士フイルム株式会社 LENS DEVICE, IMAGING DEVICE, IMAGING METHOD, AND IMAGING PROGRAM
KR20230078137A (en) * 2021-11-26 2023-06-02 한국전기연구원 Lighting system and imaging system for improving the visibility in tissue optical image
KR102626859B1 (en) * 2021-11-26 2024-01-17 한국전기연구원 Lighting system and imaging system for improving the visibility in tissue optical image

Also Published As

Publication number Publication date
JP4917822B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP4917822B2 (en) Endoscope device
US9414741B2 (en) Endoscopic diagnosis system
US8633977B2 (en) Electronic endoscope apparatus
JP5191090B2 (en) Endoscope device
JP4931199B2 (en) Electronic endoscope device
US7850599B2 (en) Endoscope apparatus
JP4579721B2 (en) Endoscope device
JP5498626B1 (en) Endoscope device
JP5977772B2 (en) Endoscope system, processor device for endoscope system, method for operating endoscope system, method for operating processor device
US20120190922A1 (en) Endoscope system
CN108135459B (en) Endoscope device
US11497390B2 (en) Endoscope system, method of generating endoscope image, and processor
WO2018066347A1 (en) Endoscope system and operation method therefor
JP5039621B2 (en) Electronic endoscope device
JP2010082141A (en) Electronic endoscope apparatus
JP2007195829A (en) Endoscopic system apparatus
JP2018051364A (en) Endoscope system, endoscope system processor, endoscope system operation method, and processor operation method
EP2105086B1 (en) Electronic endoscope apparatus
WO2022071413A1 (en) Image processing device, endoscope system, method for operating image processing device, and program for image processing device
JP2011177532A (en) Endoscope apparatus
JP5068205B2 (en) Electronic endoscope device
WO2019171703A1 (en) Endoscope system
JP2020192007A (en) Information processing device, operation method thereof, endoscope system, and operation method thereof
JP2010115341A (en) Electronic endoscopic device
JP6272956B2 (en) Endoscope system, processor device for endoscope system, method for operating endoscope system, method for operating processor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090902

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees