JP2007263960A - Quantitative evaluation device and method of atomic vacancy existing in silicon wafer - Google Patents

Quantitative evaluation device and method of atomic vacancy existing in silicon wafer Download PDF

Info

Publication number
JP2007263960A
JP2007263960A JP2007053229A JP2007053229A JP2007263960A JP 2007263960 A JP2007263960 A JP 2007263960A JP 2007053229 A JP2007053229 A JP 2007053229A JP 2007053229 A JP2007053229 A JP 2007053229A JP 2007263960 A JP2007263960 A JP 2007263960A
Authority
JP
Japan
Prior art keywords
silicon
sample
quantitative evaluation
silicon wafer
atomic vacancies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007053229A
Other languages
Japanese (ja)
Other versions
JP5008423B2 (en
Inventor
Terutaka Goto
輝孝 後藤
Yuichi Nemoto
祐一 根本
Hiroshi Kaneda
寛 金田
Masataka Horai
正隆 宝耒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Fujitsu Ltd
Niigata University NUC
Original Assignee
Sumco Corp
Fujitsu Ltd
Niigata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp, Fujitsu Ltd, Niigata University NUC filed Critical Sumco Corp
Priority to JP2007053229A priority Critical patent/JP5008423B2/en
Publication of JP2007263960A publication Critical patent/JP2007263960A/en
Application granted granted Critical
Publication of JP5008423B2 publication Critical patent/JP5008423B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quantitative evaluation device of atomic vacancy existing in a wafer, in which the atomic vacancy concentration in a silicon wafer can be evaluated quantitatively without performing acceleration processing, for example, raising the concentration by forming a thin film oscillator subjected to rationalization on the surface of a silicon sample. <P>SOLUTION: The quantitative evaluation device of atomic vacancy comprises a magnetic force generating means 2 for applying an external magnetic field to a silicon sample 5 obtained by cutting out a predetermined part from a silicon wafer; a temperature control means 3 which can cool/control the silicon sample 5 to a temperature zone of 50K or below: and an ultrasonic oscillation/detection means 4 for oscillating an ultrasonic pulse on the surface of the silicon sample 5 to allow the pulse to propagate through the silicon sample 5 and detecting a variation in sound velocity of the propagating ultrasonic pulse. The quantitative evaluation device is characterized in that a thin film oscillator 8 having physical properties capable of following up expansion of the silicon sample 5 in the temperature zone and having C-axis arranged in a predetermined direction is formed directly on the surface of the silicon sample 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体産業で用いられるチョクラルスキー法(CZ法)やフロートゾーン法(FZ法)で製造されるシリコン結晶のウェーハ中に存在する原子空孔の種類を特定でき、しかも、原子空孔濃度を、ボイド総体積を測定する等の間接的方法で推定することなく、直接に定量的に評価することができる、シリコンウェーハ中に存在する原子空孔の定量評価装置および方法に関するものである。   The present invention can identify the types of atomic vacancies present in a silicon crystal wafer produced by the Czochralski method (CZ method) or the float zone method (FZ method) used in the semiconductor industry, and The present invention relates to an apparatus and method for quantitative evaluation of atomic vacancies existing in a silicon wafer, in which the pore concentration can be directly and quantitatively evaluated without indirect methods such as measuring the total void volume. is there.

シリコン結晶は人類が手にした最も純粋で理想的な結晶であると考えられている。しかし、自由エネルギーのエントロピー項が存在するために結晶を育成する融点1412℃では結晶に真性点欠陥(原子空孔および格子間シリコン)による結晶の乱れが必ず存在する。   Silicon crystals are considered to be the purest and ideal crystals that humans have. However, since there is an entropy term of free energy, at the melting point of 1412 ° C. where the crystal is grown, there is always a disorder of the crystal due to intrinsic point defects (atomic vacancies and interstitial silicon).

シリコン結晶中の孤立した原子空孔の存在量を測定する手段は、従来なかった。しかし、例えば、シリコン結晶の育成過程やシリコンデバイス製造の加熱過程等の熱処理を行うことにより、CZ結晶中に過飽和に存在する格子間酸素原子と原子空孔の反応により形成された酸素析出物を顕在化させることで、原子空孔の存在を定性的に判定していた。また、結晶凝固時に導入された過剰な原子空孔が結晶育成時の冷却過程で集合化することで、100nm程度の大きさを持つ二次欠陥であるボイドに成長することで、このボイドの総体積を赤外線トモグラフィーによって測定することで結晶育成時に導入された原子空孔の濃度を推定していた。しかしながら、かかる方法は、原子空孔の存在量を間接的に測定していたに過ぎない。   There has been no means for measuring the abundance of isolated atomic vacancies in a silicon crystal. However, for example, by performing a heat treatment such as a silicon crystal growth process or a silicon device manufacturing heating process, oxygen precipitates formed by the reaction of interstitial oxygen atoms and atomic vacancies that are supersaturated in the CZ crystal are formed. By making it manifest, the presence of atomic vacancies was qualitatively determined. In addition, excessive atomic vacancies introduced during crystal solidification aggregate in the cooling process during crystal growth, and grow into voids that are secondary defects having a size of about 100 nm. The concentration of atomic vacancies introduced during crystal growth was estimated by measuring the volume by infrared tomography. However, such a method only indirectly measures the abundance of atomic vacancies.

このため、本発明者らのうちの1人は、加速処理を行うことなく、シリコン結晶のウェーハ中の原子空孔濃度を定量的に測定できる方法を、特許文献1において提案した。特許文献1記載の方法は、結晶試料に外部磁場を印加し、冷却しながら結晶試料に超音波を通過させて、結晶試料での超音波音速変化又は超音波吸収変化と結晶試料の冷却温度との関係を示す曲線の急峻な落ち込み量に基づいて固有点欠陥濃度を求めることができ、また、供試材料としてのシリコンウェーハに超音波パルスの発振と受振を行うため、シリコンウェーハの表面に、接着剤を介して、例えばLiNbOからなる振動子が貼り付けられている。
特開平7−174742号公報
For this reason, one of the inventors of the present invention has proposed a method in Patent Document 1 that can quantitatively measure the concentration of atomic vacancies in a silicon crystal wafer without performing acceleration processing. The method described in Patent Document 1 applies an external magnetic field to a crystal sample, passes ultrasonic waves through the crystal sample while cooling, changes in the ultrasonic sound velocity or ultrasonic absorption in the crystal sample, and the cooling temperature of the crystal sample. Inherent point defect concentration can be obtained based on the steep drop amount of the curve showing the relationship, and in order to oscillate and receive ultrasonic pulses on the silicon wafer as the test material, A vibrator made of, for example, LiNbO 3 is attached via an adhesive.
JP-A-7-174742

しかしながら、発明者らがその後さらに詳細に検討を行ったところ、シリコンウェーハを50K以下の極低温まで冷却を行ったところ、冷却により、振動子がシリコンウエーハ表面から部分的に剥離する場合があり、振動子が剥離すると、シリコン試料中を伝播した超音波パルスの音速変化を精度よく検出することができなくなるという問題があった。
振動子がシリコンウエーハ表面から剥離する理由は、主に50K以下の極低温まで冷却すると、振動子は収縮し、一方、シリコンウェーハは膨張するため、振動子とシリコンウェーハの間で大きな熱膨張差が生じ、これに起因して剥離が生じるものと考えられる。
However, when the inventors conducted further detailed studies after that, when the silicon wafer was cooled to an extremely low temperature of 50K or less, the vibrator might partially peel from the silicon wafer surface due to the cooling. When the vibrator is peeled off, there is a problem that it is impossible to accurately detect the change in the speed of the ultrasonic pulse propagated through the silicon sample.
The reason why the vibrator peels off from the silicon wafer surface is that when the vibrator is cooled to an extremely low temperature of 50K or less, the vibrator contracts, while the silicon wafer expands. Therefore, there is a large difference in thermal expansion between the vibrator and the silicon wafer. It is considered that peeling occurs due to this.

本発明の目的は、シリコン試料の表面に、適正化を図った薄膜振動子を形成することにより、半導体産業で用いられるチョクラルスキー法(CZ法)やフロートゾーン法(FZ法)で製造されるシリコン結晶のウェーハ中に存在する原子空孔の種類を特定でき、しかも、原子空孔濃度を、その濃度を高める等の加速処理を行うことなく、定量的に評価することができる、シリコンウェーハ中に存在する原子空孔の定量評価装置および方法を提供することにある。   An object of the present invention is to produce a thin film vibrator with optimization on the surface of a silicon sample, and to manufacture it by the Czochralski method (CZ method) or the float zone method (FZ method) used in the semiconductor industry. A silicon wafer that can identify the type of atomic vacancies present in a silicon crystal wafer and quantitatively evaluate the atomic vacancy concentration without performing acceleration processing such as increasing the concentration. An object of the present invention is to provide a quantitative evaluation apparatus and method for atomic vacancies existing therein.

上記目的を達成するため、本発明の要旨構成は以下の通りである。
(1)シリコンウェーハから所定の部位を切り出したシリコン試料に対し外部磁場を印加する磁力発生手段と、シリコン試料を50K以下の温度域に冷却・制御可能な温度制御手段と、シリコン試料の表面に対し超音波パルスを発振し、発振させた超音波パルスをシリコン試料中を伝播させ、伝播した超音波パルスの音速変化を検出する超音波発振・検出手段とを有し、シリコン試料の表面に、前記温度域で温度降下に伴うシリコン試料の膨張に追随できる物性をもち、かつC軸が所定の方向に略揃った薄膜振動子を直接形成してなることを特徴とするシリコンウェーハ中に存在する原子空孔の定量評価装置。
In order to achieve the above object, the gist of the present invention is as follows.
(1) Magnetic force generating means for applying an external magnetic field to a silicon sample obtained by cutting a predetermined part from a silicon wafer, temperature control means for cooling and controlling the silicon sample to a temperature range of 50K or less, and the surface of the silicon sample In contrast, it has an ultrasonic oscillation / detection means that oscillates an ultrasonic pulse, propagates the oscillated ultrasonic pulse through the silicon sample, and detects a change in sound velocity of the propagated ultrasonic pulse. It exists in a silicon wafer characterized by directly forming a thin film vibrator having physical properties capable of following the expansion of a silicon sample accompanying a temperature drop in the temperature range and having the C axis substantially aligned in a predetermined direction. Quantitative evaluation device for atomic vacancies.

(2)超音波発振・検出手段は、発振させた超音波パルスを直接測定した参照波パルス信号と、前記超音波パルスを前記シリコン試料中を伝播させた後に測定した試料通過波パルス信号との位相差を検出する手段を有する上記(1)記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。 (2) The ultrasonic wave oscillating / detecting means includes a reference wave pulse signal obtained by directly measuring the oscillated ultrasonic pulse, and a sample passing wave pulse signal measured after the ultrasonic pulse is propagated through the silicon sample. The apparatus for quantitative evaluation of atomic vacancies existing in a silicon wafer according to (1), comprising means for detecting a phase difference.

(3)薄膜振動子は、酸化亜鉛(ZnO)または窒化アルミニウム(AlN)からなる上記(1)または(2)記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。 (3) The apparatus for quantitative evaluation of atomic vacancies present in a silicon wafer according to (1) or (2), wherein the thin film vibrator is made of zinc oxide (ZnO) or aluminum nitride (AlN).

(4)薄膜振動子は、物理蒸着法によりシリコンウェーハ上に形成する上記(1)、(2)または(3)記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。 (4) The apparatus for quantitative evaluation of atomic vacancies in the silicon wafer according to (1), (2) or (3), wherein the thin film vibrator is formed on the silicon wafer by physical vapor deposition.

(5)薄膜振動子とシリコン結晶との間に金薄膜を有する上記(1)〜(4)のいずれか1項記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。 (5) The apparatus for quantitative evaluation of atomic vacancies existing in a silicon wafer according to any one of the above (1) to (4), which has a gold thin film between a thin film vibrator and a silicon crystal.

(6)薄膜振動子は、シリコン試料の表面に対し5〜60°の角度で傾斜させたC軸をもち、シリコン試料中を伝播させて検知した超音波中の縦波成分と横波成分のうち、少なくとも横波成分を測定する上記(1)〜(5)のいずれか1項記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。 (6) The thin-film transducer has a C-axis inclined at an angle of 5 to 60 ° with respect to the surface of the silicon sample. Of the longitudinal wave component and the transverse wave component in the ultrasonic wave detected by propagating through the silicon sample, The apparatus for quantitative evaluation of atomic vacancies existing in a silicon wafer according to any one of (1) to (5), wherein at least a shear wave component is measured.

(7)薄膜振動子の厚さは、0.5〜200μmの範囲である上記(1)〜(6)のいずれか1項記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。 (7) The apparatus for quantitative evaluation of atomic vacancies present in a silicon wafer according to any one of (1) to (6) above, wherein the thickness of the thin film vibrator is in the range of 0.5 to 200 μm.

(8)薄膜振動子の共鳴周波数は、10MHz〜10GHzの範囲である上記(1)〜(7)のいずれか1項記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。 (8) The apparatus for quantitative evaluation of atomic vacancies present in a silicon wafer according to any one of (1) to (7) above, wherein the resonance frequency of the thin film vibrator is in the range of 10 MHz to 10 GHz.

(9)磁力発生手段は、0〜20テスラの範囲である上記(1)〜(8)のいずれか1項記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。 (9) The apparatus for quantitative evaluation of atomic vacancies in the silicon wafer according to any one of (1) to (8), wherein the magnetic force generating means is in the range of 0 to 20 Tesla.

(10)温度制御手段は、5mKまでの極低温に冷却できる希釈冷凍機を有する上記(1)〜(9)のいずれか1項記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。 (10) The apparatus for quantitative evaluation of atomic vacancies present in a silicon wafer according to any one of (1) to (9), wherein the temperature control means includes a dilution refrigerator that can be cooled to an extremely low temperature of 5 mK.

(11)超音波発生・検出手段は、10μs以下のパルス幅の超音波パルスを用いる上記(1)〜(10)のいずれか1項記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。 (11) The apparatus for quantitatively evaluating atomic vacancies existing in a silicon wafer according to any one of the above (1) to (10), wherein the ultrasonic wave generation / detection means uses an ultrasonic pulse having a pulse width of 10 μs or less. .

(12)超音波発生・検出手段は、温度や磁場で音速が変化することで生じる位相差が一定になるように発振周波数を変化させ零検出を行う手段を有する上記(1)〜(11)のいずれか1項記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。 (12) The ultrasonic wave generation / detection means includes means for performing zero detection by changing the oscillation frequency so that a phase difference caused by a change in sound speed due to a temperature or a magnetic field is constant. The quantitative evaluation apparatus of the atomic vacancy which exists in the silicon wafer of any one of these.

(13)多数個のシリコン試料および一のシリコン試料の複数点を測定対象として、同時に位相差を測定できる上記(1)〜(12)のいずれか1項記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。 (13) Atomic vacancies present in the silicon wafer according to any one of (1) to (12), wherein a phase difference can be measured simultaneously with a plurality of silicon samples and a plurality of points of one silicon sample as measurement targets. Hole quantitative evaluation device.

(14)シリコンウェーハから所定の部位を切り出したシリコン試料に対し、外部磁場を必要に応じて印加した状態で、25K以下の温度域で冷却しながら、前記温度域でシリコン試料の温度低下に伴う膨張に追随できる物性をもち、かつC軸が所定の方向に揃った薄膜振動子を、表面に直接形成したシリコン試料に対し超音波パルスを発振し、発振させた超音波パルスをシリコン試料中を伝播させ、伝播した超音波パルスの音速変化を検出し、この音速変化から、冷却温度の低下に伴う弾性定数の減少量を算出し、この算出した弾性定数の減少量からシリコンウェーハ中に存在する原子空孔の種類と濃度を定量評価することを特徴とするシリコンウェーハ中に存在する原子空孔の定量評価方法。 (14) With a temperature drop of the silicon sample in the temperature range while cooling in a temperature range of 25 K or less with an external magnetic field applied to the silicon sample cut out from the silicon wafer as required. An ultrasonic pulse is oscillated in a silicon sample directly formed on the surface of a thin film vibrator having physical properties that can follow expansion and the C axis is aligned in a predetermined direction, and the oscillated ultrasonic pulse is passed through the silicon sample. Propagation, detecting the change in the sound velocity of the propagated ultrasonic pulse, calculating the decrease in elastic constant accompanying the decrease in cooling temperature from this change in sound velocity, and present in the silicon wafer from the decrease in elastic constant calculated A method for quantitative evaluation of atomic vacancies present in a silicon wafer, characterized by quantitative evaluation of the type and concentration of atomic vacancies.

この発明によれば、シリコン試料の表面に、適正化を図った薄膜振動子を形成することにより、半導体産業で用いられるチョクラルスキー法(CZ法)やフロートゾーン法(FZ法)で製造されるシリコン結晶のウェーハ中に存在する孤立した原子空孔の種類を特定でき、しかも、原子空孔の存在濃度を、その濃度を高める等の加速処理を行うことなく、直接、定量的に評価することができる。   According to the present invention, an optimized thin film vibrator is formed on the surface of a silicon sample, and is manufactured by the Czochralski method (CZ method) or the float zone method (FZ method) used in the semiconductor industry. The type of isolated vacancies present in a silicon crystal wafer can be identified, and the concentration of vacancies can be directly and quantitatively evaluated without performing acceleration processing such as increasing the concentration. be able to.

次に、この発明に従うシリコンウェーハ中に存在する原子空孔の定量評価装置について図面を参照しながら説明する。
図1は、この発明の定量評価装置の概略図である。
Next, a quantitative evaluation apparatus for atomic vacancies existing in a silicon wafer according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram of a quantitative evaluation apparatus of the present invention.

図に示す定量評価装置1は、主に磁力発生手段2、温度制御手段3および超音波発振・検出手段4で構成されている。   The quantitative evaluation apparatus 1 shown in the figure is mainly composed of a magnetic force generation means 2, a temperature control means 3, and an ultrasonic oscillation / detection means 4.

磁力発生手段2は、シリコンウェーハから所定の部位を切り出したシリコン試料5に対し外部磁場を印加するため、シリコン試料5がセッティングされた位置を取り囲んで配置される。磁力発生手段2としては、例えば超伝導磁石が挙げられる。また、本発明は、シリコン試料5に対し外部磁場を必要に応じて印加した状態で、シリコン試料5中を伝播した超音波パルスの音速変化を検出するため、磁力発生手段2は、0〜20テスラの範囲で制御可能であることが好ましく、より好ましくは0〜6テスラの範囲である(図9参照)。例えばシリコン結晶のウェーハ中の孤立した原子空孔の種類は、後述するが、外部磁場を印加することによって特定することができる。   The magnetic force generating means 2 is disposed so as to surround a position where the silicon sample 5 is set in order to apply an external magnetic field to the silicon sample 5 obtained by cutting a predetermined part from the silicon wafer. An example of the magnetic force generating means 2 is a superconducting magnet. Further, in the present invention, in order to detect a change in the sound velocity of the ultrasonic pulse propagated through the silicon sample 5 with an external magnetic field applied to the silicon sample 5 as necessary, the magnetic force generating means 2 includes 0-20. It is preferably controllable within the range of Tesla, more preferably within the range of 0 to 6 Tesla (see FIG. 9). For example, the type of isolated atomic vacancies in a silicon crystal wafer can be specified by applying an external magnetic field, which will be described later.

温度制御手段3は、シリコン試料5を50K以下の温度域に冷却・制御可能に構成され、図1では、温度制御手段3として希釈冷凍機を用いた場合を示している。この希釈冷凍機は、混合室6内に、ヘリウム3とヘリウム4の混合液を適当に循環させることによって、例えば、装置上部側で4.2K、装置下部側で5mKまでの極低温に冷却・制御することができる。なお、図1では、シリコン試料5をセッティングした試料ホルダー部7が、混合室6内のヘリウム3とヘリウム4の混合液中に浸漬して直接冷却する構成を示しているが、この構成だけには限定されない。例えば、冷却した混合室6を形成する部材を熱伝導率の高い材質で構成し、混合室6を形成する部材からの熱伝導を利用してシリコン試料5を間接的に冷却することができる。かかる構成の場合には、特に冷却する温度域を高温側に広げられる点で有利である。   The temperature control means 3 is configured to be able to cool and control the silicon sample 5 in a temperature range of 50K or less. FIG. 1 shows a case where a dilution refrigerator is used as the temperature control means 3. This dilution refrigerator is cooled and controlled to a cryogenic temperature of, for example, 4.2 K on the upper side of the apparatus and 5 mK on the lower side of the apparatus by appropriately circulating a mixed solution of helium 3 and helium 4 in the mixing chamber 6. can do. FIG. 1 shows a configuration in which the sample holder portion 7 on which the silicon sample 5 is set is immersed in a mixed solution of helium 3 and helium 4 in the mixing chamber 6 and directly cooled, but only in this configuration. Is not limited. For example, the member that forms the cooled mixing chamber 6 can be made of a material having high thermal conductivity, and the silicon sample 5 can be indirectly cooled using the heat conduction from the member that forms the mixing chamber 6. In the case of such a configuration, it is particularly advantageous in that the temperature range for cooling can be expanded to the high temperature side.

超音波発振・検出手段4は、シリコン試料5の表面に対し超音波パルスを発振し、発振させた超音波パルスをシリコン試料5中を伝播させ、伝播した超音波パルスの音速変化を検出するために配置する。   The ultrasonic wave oscillating / detecting means 4 oscillates an ultrasonic pulse on the surface of the silicon sample 5, propagates the oscillated ultrasonic pulse through the silicon sample 5, and detects a change in sound velocity of the propagated ultrasonic pulse. To place.

図2は、図1の定量評価装置1を構成する、シリコン試料5をセッティングした試料ホルダ部7を抜き出して拡大して示した図である。   FIG. 2 is an enlarged view of the sample holder portion 7 in which the silicon sample 5 is set, which constitutes the quantitative evaluation apparatus 1 of FIG.

本発明では、シリコン試料5をセッティングするに先立って、シリコン試料5の表面には、50K以下の温度域でシリコン試料5の膨張に追随できる物性をもち、かつC軸が所定の方向に揃った薄膜振動子8を直接または金薄膜を介して形成する。この構成を採用することにより、シリコンウェーハを50K以下の極低温まで冷却を行っても、薄膜振動子がシリコンウエーハの膨張に追随できるため、前記冷却によって薄膜振動子が剥離することがなくなり、シリコン試料中を伝播した超音波パルスの音速変化を精度よく検出することができる結果、シリコン結晶のウェーハ中の孤立した原子空孔の種類と存在濃度を、その濃度を高める等の加速処理を行うことなく、直接、安定して定量的に評価することができる。   In the present invention, prior to setting the silicon sample 5, the surface of the silicon sample 5 has physical properties that can follow the expansion of the silicon sample 5 in a temperature range of 50K or less, and the C axis is aligned in a predetermined direction. The thin film vibrator 8 is formed directly or via a gold thin film. By adopting this configuration, even if the silicon wafer is cooled to an extremely low temperature of 50K or less, the thin film vibrator can follow the expansion of the silicon wafer. As a result of the accurate detection of changes in the speed of ultrasonic pulses that have propagated through the sample, the type and concentration of isolated atomic vacancies in the silicon crystal wafer must be accelerated to increase the concentration. And can be directly and stably quantitatively evaluated.

また、超音波発振・検出手段4は、図3に示すように、発振させた超音波パルスを直接測定した参照波パルス信号と、前記超音波パルスを前記シリコン試料中を伝播させた後に測定した試料通過波パルスとの位相差を検出する手段であることが好ましい。   Further, as shown in FIG. 3, the ultrasonic oscillation / detection means 4 measures a reference wave pulse signal obtained by directly measuring the oscillated ultrasonic pulse, and after the ultrasonic pulse is propagated through the silicon sample. A means for detecting a phase difference from the sample passing wave pulse is preferable.

薄膜振動子8は、酸化亜鉛(ZnO)または窒化アルミニウム(AlN)からなることが好ましい。   The thin film vibrator 8 is preferably made of zinc oxide (ZnO) or aluminum nitride (AlN).

薄膜振動子8は、例えばスパッタリングのような物理蒸着法によりシリコンウェーハ上に形成することが、シリコンウェーハと酸化亜鉛(ZnO)等が、原子レベルで密に結合され、密着性に優れた酸化亜鉛(ZnO)がシリコンウェーハ上に形成される結果として、50K以下の温度域でシリコン試料5の膨張に追随できる物性にすることができる点で好ましい。   The thin film vibrator 8 is formed on a silicon wafer by physical vapor deposition such as sputtering, for example. The silicon wafer and zinc oxide (ZnO) are closely bonded at an atomic level, and zinc oxide having excellent adhesion. As a result of forming (ZnO) on the silicon wafer, it is preferable in that the physical properties can follow the expansion of the silicon sample 5 in a temperature range of 50K or less.

加えて、薄膜振動子8とシリコン試料5との間に金蒸着膜を有することが、冷却時の剥離を防止するとともに導電性を高める点でより好適である。   In addition, it is more preferable to have a gold vapor deposition film between the thin film vibrator 8 and the silicon sample 5 in terms of preventing peeling during cooling and increasing the conductivity.

薄膜振動子8は、シリコン試料の表面に対し5〜60°の角度で傾斜させたC軸をもち、シリコン試料中を伝播させて検知した超音波中の縦波成分と横波成分のうち、少なくとも横波成分を測定することが、せん断成分が大きくなり、分解能が向上する点で好ましい。前記角度が5°未満だと、超音波に含まれる縦波成分の発生がほとんどであり、横波成分の発生効率が著しく減少し、前記角度が60°を超えると縦波超音波と横波超音波の発生効率がともに著しく減少するからである。   The thin film vibrator 8 has a C axis inclined at an angle of 5 to 60 ° with respect to the surface of the silicon sample, and at least of the longitudinal wave component and the transverse wave component in the ultrasonic wave detected by propagating through the silicon sample. It is preferable to measure the shear wave component from the viewpoint of increasing the shear component and improving the resolution. When the angle is less than 5 °, the generation of the longitudinal wave component contained in the ultrasonic wave is mostly generated, and the generation efficiency of the transverse wave component is remarkably reduced. When the angle exceeds 60 °, the longitudinal wave ultrasonic wave and the transverse wave ultrasonic wave are generated. This is because the generation efficiency of both is significantly reduced.

なお、前記C軸の前記角度は、縦波超音波と横波超音波の双方の発生効率をバランスよく高める点で、40〜50°の範囲にすることがより好適である。図14は、同一サンプルから切り出した2個のFZ試料に、振動子として、C軸が試料表面に対し40°と80°の角度でそれぞれ傾斜させてZnOを形成したものを供試材とし、各供試材に、400MHzの共鳴周波数で超音波測定を行った結果である。 The angle of the C-axis is more preferably in the range of 40 to 50 ° from the viewpoint of improving the generation efficiency of both longitudinal and transverse ultrasonic waves in a balanced manner. FIG. 14 shows a sample material in which two FZ samples cut out from the same sample were formed as ZnO with a C-axis inclined at an angle of 40 ° and 80 ° with respect to the sample surface as a vibrator. It is the result of performing ultrasonic measurement on each sample material at a resonance frequency of 400 MHz.

図14の結果から、前記C軸の角度が40°の場合には、極低温領域での弾性定数の変化が精度良く測定できているのに対し、前記C軸の角度が80°の場合には、縦波超音波と横波超音波の発生が少ないため、極低温領域での弾性定数の変化が測定できていないのがわかる。 From the results of FIG. 14, when the C-axis angle is 40 °, the change in the elastic constant in the cryogenic region can be measured with high accuracy, whereas when the C-axis angle is 80 °. Since the generation of longitudinal and transverse ultrasonic waves is small, it can be seen that the change in the elastic constant in the extremely low temperature region cannot be measured.

C軸が所定の角度で傾斜した薄膜振動子8の作製方法としては、例えばシリコン試料をZnOターゲットに対して斜めに配置する方法が挙げられる。   As a manufacturing method of the thin film vibrator 8 in which the C axis is inclined at a predetermined angle, for example, a method in which a silicon sample is arranged obliquely with respect to a ZnO target can be mentioned.

薄膜振動子8の厚さは、0.5〜200μmの範囲であることが測定可能な超音波を発生させることができる点で好ましい。前記厚さが200μmを超えると測定精度が低下する傾向があり、また、前記厚さが0.5μm未満だと、高い周波数の電気測定が難しくなる傾向があるからである。   The thickness of the thin film vibrator 8 is preferable in that ultrasonic waves that can be measured are in the range of 0.5 to 200 μm. This is because if the thickness exceeds 200 μm, the measurement accuracy tends to decrease, and if the thickness is less than 0.5 μm, high-frequency electrical measurement tends to be difficult.

薄膜振動子8の共鳴周波数は、10MHz〜10GHzの範囲であることが超音波測定が適用できる点で好ましい。前記共鳴周波数が10GHzよりも高いと、高い周波数の電気測定が難しくなる傾向があり、また、前記厚さが10MHz未満だと、測定精度が低下する傾向があるからである。   The resonance frequency of the thin film vibrator 8 is preferably in the range of 10 MHz to 10 GHz from the viewpoint that ultrasonic measurement can be applied. This is because, when the resonance frequency is higher than 10 GHz, electrical measurement at a high frequency tends to be difficult, and when the thickness is less than 10 MHz, measurement accuracy tends to decrease.

超音波発生・検出手段4は、10μs以下のパルス幅の超音波パルスを用いることが、厚さ10mm以下のシリコン試料の音速を測定可能である点で好ましい。パルス幅が10μsよりも広くなると、隣り合うパルス同士の区別が難しくなる傾向があるからである。図10は、上図がパルス幅を0.2μsにした場合、下図がパルス幅を12μsにした場合の例を示したものである。   It is preferable that the ultrasonic wave generation / detection means 4 uses an ultrasonic pulse having a pulse width of 10 μs or less because the sound speed of a silicon sample having a thickness of 10 mm or less can be measured. This is because when the pulse width is wider than 10 μs, it is difficult to distinguish between adjacent pulses. FIG. 10 shows an example when the pulse width is 0.2 μs in the upper diagram and the pulse width is 12 μs in the lower diagram.

超音波発生・検出手段4は、温度や磁場で音速が変化することで生じる位相差が一定になるように発振周波数を変化させ零検出を行う手段を有することがより好適である。   It is more preferable that the ultrasonic wave generation / detection means 4 includes means for performing zero detection by changing the oscillation frequency so that the phase difference caused by the change in sound speed due to temperature or magnetic field becomes constant.

また、本発明の定量評価装置1は、多数個のシリコン試料および一のシリコン試料の複数点について、同時に位相差を測定できることが好ましい。図11は、一のシリコンウエーハの複数点(図11では4箇所)について、同時に位相を測るため、金(Au)/酸化亜鉛(ZnO)/金(Au)を蒸着して直接ウエーハ上に振動子を形成したときの一例を示したものである。   Moreover, it is preferable that the quantitative evaluation apparatus 1 of the present invention can simultaneously measure the phase difference of a plurality of silicon samples and a plurality of points of one silicon sample. FIG. 11 shows a case where gold (Au) / zinc oxide (ZnO) / gold (Au) is vapor-deposited directly on the wafer in order to simultaneously measure the phase at a plurality of points (four places in FIG. 11) of one silicon wafer. An example when a child is formed is shown.

図4は、直径6インチのノンドープCZシリコンインゴットを試作し、その縦断面を模式的に示したものである。図4から明らかなように、中心部には、約3cmにわたる真性点欠陥領域(Pv領域とPi領域)が存在するのが認められた。   FIG. 4 shows a prototype of a non-doped CZ silicon ingot having a diameter of 6 inches and schematically showing a longitudinal section thereof. As is apparent from FIG. 4, it was recognized that an intrinsic point defect region (Pv region and Pi region) extending about 3 cm exists in the central portion.

そこで次に、真性点欠陥領域であるPv領域とPi領域から、それぞれシリコン試料(A)と(B)を4mm×4mm×7mmに切り出し、図1及び図2に示す定量評価装置に設置し、本発明の定量評価方法によって、30K〜20mKまで冷却したときの、冷却温度に対する弾性定数の変化を測定した。測定結果を図5に示す。なお、弾性定数を求める際に用いた音速v は、図3に示す超音波パルスの位相差φnを検出し、この位相差を用いて、下記の式から算出した。
式:φn=2π(2n-1)lf/v
ここに、(2n-1)lはn番目のエコーの伝搬長であり、fは超音波周波数である。
Then, next, silicon samples (A) and (B) were cut into 4 mm × 4 mm × 7 mm from the Pv region and Pi region, which are intrinsic point defect regions, respectively, and installed in the quantitative evaluation apparatus shown in FIG. 1 and FIG. By the quantitative evaluation method of the present invention, the change in the elastic constant with respect to the cooling temperature when it was cooled to 30 to 20 mK was measured. The measurement results are shown in FIG. Note that the sound velocity v used for obtaining the elastic constant was calculated from the following equation using the phase difference φ n of the ultrasonic pulse shown in FIG.
Formula: φ n = 2π (2n-1) lf / v
Here, (2n-1) l is the propagation length of the nth echo, and f is the ultrasonic frequency.

図5に示す結果から、凍結原子空孔領域が豊富であると考えられてきたPv領域の試料(A)では、20K〜10mKまでの極低温領域で温度の逆数に比例して弾性定数が著しく低下、言い換えれば、低温ソフト化することが分かる。一方、格子間シリコンリッチと考えられてきたPi領域の試料(B)は、このような弾性定数の低下は認められなかった。   From the results shown in FIG. 5, in the sample (A) in the Pv region which has been considered to be rich in the frozen atomic vacancy region, the elastic constant is remarkably proportional to the reciprocal of the temperature in the cryogenic region from 20K to 10mK. It can be seen that the temperature decreases, in other words, softens at a low temperature. On the other hand, such a decrease in elastic constant was not observed in the Pi region sample (B) which was considered to be silicon-rich between the lattices.

また、図15は、FZシリコン結晶にZnOを振動子として形成した試料について、温度に対する弾性定数の変化を測定した結果の一例を示したものである。なお、図15では、温度制御手段として希釈冷凍機を用い、20mKまでの極低温まで測定した。図15に示す結果から、FZシリコン結晶でも、上述したCZシリコン結晶と同様、低温ソフト化する現象が認められた。   FIG. 15 shows an example of the result of measuring the change in elastic constant with respect to the temperature of a sample in which ZnO is formed as an oscillator on an FZ silicon crystal. In FIG. 15, a dilution refrigerator was used as the temperature control means, and measurement was performed up to an extremely low temperature of 20 mK. From the results shown in FIG. 15, the phenomenon of softening at a low temperature was recognized in the FZ silicon crystal as well as the above-described CZ silicon crystal.

また、BをドープしたFZシリコン単結晶と、B無添加FZシリコン単結晶を用い、磁場依存性についても調査した。図9は0〜16テスラの磁場を加えたときの弾性定数の変化結果の一例を示したものであって、上図がB無添加の場合、下図がB添加した場合である。図9の結果から、B添加FZシリコン単結晶における低温ソフト化は、4テスラ程度以下の磁場を印加すると生じ、それよりも大きな磁場の印加により消失するものの、無添加FZシリコン単結晶における低温ソフト化は、磁場の全範囲にわたって生じないという知見が得られた。これは、原子空孔の電荷状態と歪みとの結合がソフト化の起源であることを示している。無添加FZシリコン単結晶の原子空孔では4個の電子を捕獲した非磁性の電荷状態にあり、B添加FZシリコン単結晶では3個の電子を捕獲した磁気を帯びた電荷状態にある。原子空孔の分子軌道は一重項と三重項に分裂し、三重項の電気四極子と歪みとの結合によるJahn-Teller効果がC44および(C11−C12)/2の低温ソフト化を起こしているものと考えられる。無添加FZシリコン単結晶では、原子空孔の間に反強四極子相互作用が存在し、最低温度20mKでも原子空孔の周りのT対称性は保たれ、三重項は縮退しており、電気四極子の揺らぎが存在しているものとみられる。 In addition, the magnetic field dependence was also investigated using a B-doped FZ silicon single crystal and a B-free FZ silicon single crystal. FIG. 9 shows an example of a change result of the elastic constant when a magnetic field of 0 to 16 Tesla is applied. The upper diagram shows the case where B is not added, and the lower diagram shows the case where B is added. From the results of FIG. 9, low temperature softening in the B-added FZ silicon single crystal occurs when a magnetic field of about 4 Tesla or less is applied and disappears by applying a magnetic field larger than that, but low-temperature softening in the undoped FZ silicon single crystal. It was found that crystallization does not occur over the entire range of the magnetic field. This indicates that the bond between the charge state of the vacancies and the strain is the origin of softening. The atomic vacancies of the undoped FZ silicon single crystal are in a non-magnetic charge state in which four electrons are captured, and the B-doped FZ silicon single crystal is in a magnetically charged state in which three electrons are captured. The molecular orbitals of atomic vacancies are split into singlets and triplets, and the Jahn-Teller effect due to the combination of triplet electric quadrupoles and strains reduces C 44 and (C 11 -C 12 ) / 2 softening. It is thought that it is awake. In the additive-free FZ silicon single crystal, antiferromagnetic quadrupole interaction exists between atomic vacancies, T d symmetry around atomic vacancies is maintained even at a minimum temperature of 20 mK, and the triplet is degenerate. The electric quadrupole fluctuation appears to exist.

これらの結果から、捕捉された電子が奇数(3または5)個である原子空孔による弾性定数の低温ソフト化には磁場依存性があり、一方、偶数(4)個の電子を捕獲した原子空孔による弾性定数の低温ソフト化には磁場依存性がないという知見を利用して、本発明では、磁場依存性の有無から原子空孔の種類を決めることができる。   From these results, low-temperature softening of the elastic constant due to an odd number (3 or 5) of trapped electrons has a magnetic field dependence, whereas an atom that has captured even (4) electrons. In the present invention, the kind of atomic vacancies can be determined based on the presence or absence of magnetic field dependence by utilizing the knowledge that softening of the elastic constant due to vacancies has no magnetic field dependence.

次に、本発明に従うシリコンウェーハ中に存在する原子空孔の定量評価方法の一例について、以下で説明する。
本発明の定量評価方法は、シリコンウェーハから所定の部位を切り出したシリコン試料に対し外部磁場を必要に応じて印加した状態で、25K以下の温度域で冷却しながら、前記温度域でシリコン試料の膨張に追随できる物性をもち、かつC軸が所定の方向に揃った薄膜振動子を、表面に直接または金薄膜を介して形成したシリコン試料に対し超音波パルスを発振し、発振させた超音波パルスがシリコン試料中を伝播し、伝播した超音波パルスの音速変化を検出し、この音速変化から、冷却温度の低下に伴う弾性定数を算出し、この算出した弾性定数の減少量からシリコンウェーハ中に存在する原子空孔の種類と濃度を定量評価することができる。
Next, an example of a method for quantitative evaluation of atomic vacancies existing in a silicon wafer according to the present invention will be described below.
In the quantitative evaluation method of the present invention, an external magnetic field is applied to a silicon sample obtained by cutting out a predetermined part from a silicon wafer as necessary, and the silicon sample is cooled in the temperature range while being cooled in a temperature range of 25 K or less. An ultrasonic pulse is generated by oscillating an ultrasonic pulse to a silicon sample having a physical property that can follow expansion and having a C-axis aligned in a predetermined direction, directly on the surface or via a gold thin film. The pulse propagates through the silicon sample, detects the change in sound velocity of the propagated ultrasonic pulse, calculates the elastic constant associated with the decrease in cooling temperature from this change in sound velocity, and calculates the amount of decrease in the calculated elastic constant in the silicon wafer. It is possible to quantitatively evaluate the type and concentration of atomic vacancies present in

上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲において種々の変更を加えることができる。   The above description is merely an example of the embodiment of the present invention, and various modifications can be made within the scope of the claims.

本発明のシリコンウェーハ中に存在する原子空孔の定量評価装置を用いて、シリコンウェーハ中に存在する原子空孔濃度を定量評価したので、以下で説明する。   The atomic vacancy concentration present in the silicon wafer was quantitatively evaluated using the quantitative evaluation apparatus for atomic vacancies present in the silicon wafer of the present invention, and will be described below.

(実施例)
直径6インチ、45kgチャージ、全長800mmのノンドープCZインゴットを用い、そのCZインゴット中に存在する各領域(ボイド領域、R-OSF領域、P領域、P領域)を、Cuデコレーション法を用いて、図6に示すように各領域の境界線を特定した上で、図6に示す6箇所の位置で試料(Y−1およびY−6〜Y−10)を4mm×4mm×7mmサイズに切り出し、各試料の両面に直接、膜厚10μm、試料表面に対し40°の角度で傾斜させたC軸をもつZnOからなる振動子を形成した後、各試料を、図1及び図2に示す定量評価装置にセッティングし、本発明の定量評価方法によって、30K〜20mKまで冷却したときの、冷却温度に対する弾性定数の変化(ΔC44/C44)を測定した。それらの測定結果を図7に示す。なお、図7の縦軸(ΔC44/C44)は、相対値であり、各試料の値が重ならないようにずらして示している。
(Example)
With a 6 inch diameter, 45 kg charge, total length 800mm undoped CZ ingot, the region present in the CZ ingot (void region, R-OSF region, P V region, P i region) and, using a Cu decoration method 6, after specifying the boundary line of each region, the samples (Y-1 and Y-6 to Y-10) are cut into 4 mm × 4 mm × 7 mm size at the six positions shown in FIG. After forming a vibrator made of ZnO having a C axis with a film thickness of 10 μm and an inclination of 40 ° with respect to the sample surface directly on both surfaces of each sample, each sample was quantified as shown in FIGS. The elastic constant change (ΔC 44 / C 44 ) with respect to the cooling temperature was measured when set to an evaluation apparatus and cooled to 30-20 mK by the quantitative evaluation method of the present invention. The measurement results are shown in FIG. Note that the vertical axis (ΔC 44 / C 44 ) in FIG. 7 is a relative value, and is shifted so that the values of the samples do not overlap.

(比較例)
上記Y-7試料の表面に、接着剤を介してLiNbOからなる振動子が貼り付けられていること以外は、上記実施例と同様に試料を試作したので、実施例と同様な測定を行った。それらの測定結果を図13に示す。
(Comparative example)
Since the sample was prototyped in the same manner as in the above example except that a vibrator made of LiNbO 3 was attached to the surface of the Y-7 sample via an adhesive, the same measurement as in the example was performed. It was. The measurement results are shown in FIG.

実施例での測定では、図7に示す結果からも明らかなように、凍結原子空孔領域が豊富であると考えられてきたPv領域の試料Y−6〜Y8は、10K〜20mKまでの極低温領域で温度の逆数に比例して弾性定数が著しく低下しているのに対し、P領域を含めた他の領域の試料は、極低温領域で弾性定数の変化は認められなかった。 As is apparent from the results shown in FIG. 7, in the measurement in the examples, the samples Y-6 to Y8 in the Pv region, which has been considered to be rich in frozen atomic vacancy regions, are poles ranging from 10K to 20mK. while the elastic constants are significantly reduced in proportion to the inverse of the temperature in the low temperature region, the sample of other areas, including P i region, change of elastic constant at the cryogenic region was observed.

一方、比較例での測定では、図13に示す結果からも明らかなように、実施例(Y-7)において10K〜20mKまでの極低温領域で認められていた弾性定数の変化が認められなかった。これは、図13の4K 程度の温度で弾性定数の変化が確認できるが、この変化は、極低温領域で接着不良(接着剥離)が発生したことによるものであり、この接着不良の発生により、正確な測定ができなかったものと考えられる。   On the other hand, in the measurement in the comparative example, as is clear from the results shown in FIG. 13, the change in the elastic constant observed in the cryogenic region from 10K to 20mK in Example (Y-7) was not recognized. It was. The change in elastic constant can be confirmed at a temperature of about 4K in FIG. 13. This change is due to the occurrence of adhesion failure (adhesion peeling) in the cryogenic region. It is thought that accurate measurement was not possible.

また、ZnOの代わりにAlNを振動子として表面に形成した試料における弾性定数と温度の関係をプロットした一例として、図12の下図に示す。なお、図12の上図は、比較のため、図7で用いたY-8の試料にZnOを振動子として表面に形成した試料における弾性定数と温度の関係をプロットしたときのデータである。図12の結果から、AlNを振動子として用いた場合も、ZnOを振動子として用いた場合と同様の結果が得られているのがわかる。 An example in which the relationship between the elastic constant and temperature in a sample formed on the surface using AlN as a vibrator instead of ZnO is plotted is shown in the lower diagram of FIG. The upper diagram of FIG. 12 shows data obtained by plotting the relationship between the elastic constant and temperature of a sample formed on the surface of Zn-8 as a vibrator on the Y-8 sample used in FIG. 7 for comparison. From the results of FIG. 12, it can be seen that the same result as that obtained when ZnO was used as the vibrator was obtained when AlN was used as the vibrator.

次に、上記試料Y−1およびY−6〜Y−10について、原子空孔濃度を算出した結果を図8に示す。なお、図8における縦軸の原子空孔濃度は、試料Y−7を1.0としたときの相対値として示したものであり、試料Y−7の原子空孔濃度は2.46×1015/cm3であった。弾性定数の減少はC=C0(T-Tc)/(T-Θ)に従う。実験で得られる特性温度TcとΘの差Δ=Tc-Θは原子空孔濃度Nに比例する。実験で得られたΔを用いた関係式N=Δ・C02によって原子空孔濃度Nの絶対値を実験的に決定できる。ここに、δは外部から加えた歪みに対する原子空孔の電子状態のエネルギー変化の大きさ(変形エネルギー)である。 Next, FIG. 8 shows the result of calculating the atomic vacancy concentration for the samples Y-1 and Y-6 to Y-10. The atomic vacancy concentration on the vertical axis in FIG. 8 is shown as a relative value when the sample Y-7 is 1.0, and the atomic vacancy concentration of the sample Y-7 is 2.46 × 10 15 / cm 3. Met. The decrease in elastic constant follows C = C 0 (TT c ) / (T-Θ). The difference Δ = T c −Θ between the characteristic temperature Tc and Θ obtained in the experiment is proportional to the atomic vacancy concentration N. The absolute value of the atomic vacancy concentration N can be experimentally determined by the relational expression N = Δ · C 0 / δ 2 using Δ obtained in the experiment. Here, δ is the magnitude of energy change (deformation energy) of the electronic state of the atomic vacancies with respect to externally applied strain.

図8の結果から、P領域から切り出した試料Y−6〜Y−8と、P領域から切り出した試料Y−9およびY−10で比較すると、前者の原子空孔濃度が高く、後者の原子空孔濃度が低くなっている。また、ボイド領域から切り出した試料Y−1は、原子空孔としては存在せず、ボイドとして存在しているので、原子空孔濃度としては低くなっている。さらに、P領域から切り出した試料Y−6〜Y−8の間で比較すると、R-OSF領域側に位置する試料Y−6と、P領域側に位置する試料Y−8における原子空孔濃度よりもP領域の中央位置から切り出した試料Y−7における原子空孔濃度の方が最も高くなっていることもわかる。 From the results of FIG. 8, the sample Y-6~Y-8 cut out from the P V region, when compared with the sample Y-9 and Y-10 cut out from the P i region, high atomic vacancy concentration of the former, the latter The atomic vacancy concentration is low. Further, the sample Y-1 cut out from the void region does not exist as atomic vacancies but exists as voids, so the atomic vacancy concentration is low. Furthermore, when compared between the sample Y-6~Y-8 cut out from the P V region, and a sample Y-6 positioned on R-OSF region side, atomic air in the sample Y-8 positioned in the P i region side it can also be seen that the direction of atomic vacancy concentration in the sample Y-7 than the hole concentration was cut from the center position of the P V region is highest.

この発明によれば、シリコン試料の表面に、適正化を図った薄膜振動子を形成することにより、半導体産業で用いられるチョクラルスキー法(CZ法)やフロートゾーン法(FZ法)で製造されるシリコン結晶のウェーハ中の孤立した原子空孔の種類と存在濃度を、その濃度を高める等の加速処理を行うことなく、直接、定量的に評価することができる。
特に、半導体産業界では、ボイドなどの二次点欠陥が存在しない完全結晶を用いたシリコンウェーハの需要が急速に増大しているものの、従来技術では、ウェーハ中の原子空孔の存在濃度を直接観察し定量的に評価することが困難であり、製造されたシリコンデバイスの不良率が大きい場合が生じるなどの問題があったが、本発明の原子空孔の定量評価装置を用いることによって、原子空孔の種類と存在濃度の定量評価が可能となり、これは、半導体産業界に与する影響は極めて大きいと言える。
According to the present invention, an optimized thin film vibrator is formed on the surface of a silicon sample, and is manufactured by the Czochralski method (CZ method) or the float zone method (FZ method) used in the semiconductor industry. The type and concentration of isolated atomic vacancies in a silicon crystal wafer can be directly and quantitatively evaluated without performing an acceleration process such as increasing the concentration.
In particular, in the semiconductor industry, the demand for silicon wafers using perfect crystals that do not have secondary defects such as voids is rapidly increasing, but in the prior art, the concentration of atomic vacancies in the wafer is directly measured. Although there was a problem that it was difficult to observe and quantitatively evaluate and there was a case where the defect rate of the manufactured silicon device was large, by using the atomic vacancy quantitative evaluation apparatus of the present invention, Quantitative evaluation of the type and concentration of vacancies is possible, which can be said to have a significant impact on the semiconductor industry.

この発明に従う原子空孔の定量評価装置の概略図である。1 is a schematic view of an apparatus for quantitatively evaluating atomic vacancies according to the present invention. FIG. 図1の定量評価装置1を構成する、シリコン試料5をセッティングした試料ホルダ部7を抜き出したときの拡大図である。It is an enlarged view when the sample holder part 7 which set the silicon | silicone sample 5 which comprises the quantitative evaluation apparatus 1 of FIG. 1 is extracted. 超音波パルスを用いて位相差を検出する方法を説明するためのフロー図であるIt is a flowchart for demonstrating the method to detect a phase difference using an ultrasonic pulse. ノンドープCZシリコンインゴットの縦断面の一例を模式的に示したものである。An example of the longitudinal section of a non dope CZ silicon ingot is shown typically. 本発明の定量評価方法によって、30K〜20mKまで冷却したときの、冷却温度に対する弾性定数の変化を測定したときの図である。It is a figure when the change of the elastic constant with respect to cooling temperature is measured when it cools to 30-20 mK by the quantitative evaluation method of this invention. 実施例に用いたノンドープCZシリコンインゴットの縦断面であって、存在する各領域(ボイド領域、R-OSF領域、P領域、P領域)を、Cuデコレーション法を用いて各領域の境界線を特定した状態で示す。A longitudinal section of a non-doped CZ silicon ingot used in Example, each region existing (void region, R-OSF region, P V region, P i region) of the boundary line of each region using a Cu decoration method Is shown in a specific state. 図6に示す6箇所の位置で試料(Y−1およびY−6〜Y−10)について、30K〜20mKまで冷却したときの、冷却温度に対する弾性定数の変化(ΔCL[111]/CL[111])を測定したときの図である。When the samples (Y-1 and Y-6 to Y-10) were cooled to 30 to 20 mK at the six positions shown in FIG. 6, the change in elastic constant with respect to the cooling temperature (ΔC L [111] / C L [111] is a diagram when measuring. 図7で用いた試料Y−1およびY−6〜Y−10について、原子空孔濃度を算出したときの結果を示す図である。It is a figure which shows a result when calculating an atomic vacancy density | concentration about the sample Y-1 and Y-6 to Y-10 used in FIG. B無添加FZシリコン単結晶(上図)と、BをドープしたFZシリコン単結晶(下図)を用い、磁場を加えたときの弾性定数の変化結果の一例をプロットした図である。It is the figure which plotted an example of the change result of the elastic constant when applying a magnetic field using the BZ addition FZ silicon single crystal (upper figure) and the FZ silicon single crystal which doped B (lower figure). 振動子に与えるパルス信号の例を示したものであって、上図がパルス幅を0.2μsにした場合、下図がパルス幅を12μsにした場合である。The example of the pulse signal given to the vibrator is shown, and the upper diagram shows the case where the pulse width is 0.2 μs, and the lower diagram shows the case where the pulse width is 12 μs. 一のシリコンウエーハの4箇所について、同時に位相を測るため、金(Au)/酸化亜鉛(ZnO)/金(Au)を蒸着して直接ウエーハ上に振動子を形成したときの一例を示した模式図である。Schematic showing an example of forming a vibrator directly on a wafer by vapor-depositing gold (Au) / zinc oxide (ZnO) / gold (Au) in order to simultaneously measure the phase at four locations on one silicon wafer FIG. 同一サンプルから切り出した2個のCZシリコン結晶表面に振動子を形成した試料における弾性定数と温度の関係をプロットした図であり、上図がZnOを振動子として表面に形成した試料での測定結果、下図がAlNを振動子として表面に形成した試料での測定結果である。It is the figure which plotted the relation between the elastic constant and the temperature in the sample which formed the vibrator on the surface of two CZ silicon crystals cut out from the same sample, and the upper figure is the measurement result in the sample which formed ZnO on the surface using the vibrator The figure below shows the measurement results of a sample formed on the surface using AlN as a vibrator. 比較例の測定結果をプロットした図である。It is the figure which plotted the measurement result of the comparative example. 同一サンプルから切り出した2個のFZシリコン結晶試料に、振動子として、C軸が試料表面に対し40°と80°の角度でそれぞれ傾斜させてZnOを形成したものを供試材とし、各供試材に、400MHzの共鳴周波数で超音波測定を行ったときの測定結果をプロットした図である。Two FZ silicon crystal samples cut out from the same sample were used as specimens with ZnO formed by tilting the C-axis at angles of 40 ° and 80 ° with respect to the sample surface as vibrators. It is the figure which plotted the measurement result when performing ultrasonic measurement to the sample material at the resonant frequency of 400 MHz. FZシリコン結晶にZnOを振動子として形成した試料について、温度に対する弾性定数の変化を測定した結果をプロットした図である。It is the figure which plotted the result of having measured the change of the elastic constant with respect to temperature about the sample which formed ZnO in the FZ silicon crystal as a vibrator.

符号の説明Explanation of symbols

1 原子空孔の定量評価装置
2 磁力発生手段
3 温度制御手段(または希釈冷凍機)
4 超音波発振・検出手段
5 シリコン試料
6 混合室
7 試料ホルダ部
8 薄膜振動子
1 Quantitative evaluation device for atomic vacancies 2 Magnetic force generation means 3 Temperature control means (or dilution refrigerator)
4 Ultrasonic oscillation / detection means 5 Silicon sample 6 Mixing chamber 7 Sample holder 8 Thin film vibrator

Claims (14)

シリコン試料に対し外部磁場を印加する磁力発生手段と、
シリコン試料を50K以下の温度域に冷却・制御可能な温度制御手段と、
シリコン試料の表面に対し超音波パルスを発振し、発振させた超音波パルスをシリコン試料中を伝播させ、伝播した超音波パルスの音速変化を検出する超音波発振・検出手段と
を有し、
シリコン試料の表面に、前記温度域で温度降下に伴うシリコン試料の膨張に追随できる物性をもち、かつC軸が所定の方向に略揃った薄膜振動子を直接形成してなることを特徴とするシリコンウェーハ中に存在する原子空孔の定量評価装置。
A magnetic force generating means for applying an external magnetic field to the silicon sample;
Temperature control means capable of cooling and controlling the silicon sample to a temperature range of 50K or less;
An ultrasonic oscillation / detection means for oscillating an ultrasonic pulse to the surface of a silicon sample, propagating the oscillated ultrasonic pulse through the silicon sample, and detecting a change in sound velocity of the propagated ultrasonic pulse;
A thin film vibrator having physical properties capable of following expansion of a silicon sample accompanying a temperature drop in the temperature range and having a C axis substantially aligned in a predetermined direction is directly formed on the surface of the silicon sample. A quantitative evaluation system for atomic vacancies in silicon wafers.
超音波発振・検出手段は、発振させた超音波パルスを直接測定した参照波パルス信号と、前記超音波パルスを前記シリコン試料中を伝播させた後に測定した試料通過波パルス信号との位相差を検出する手段を有する請求項1記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。   The ultrasonic wave oscillating / detecting means calculates a phase difference between a reference wave pulse signal obtained by directly measuring an oscillated ultrasonic pulse and a sample passing wave pulse signal measured after the ultrasonic pulse is propagated through the silicon sample. 2. The apparatus for quantitative evaluation of atomic vacancies existing in a silicon wafer according to claim 1, further comprising means for detecting. 薄膜振動子は、酸化亜鉛(ZnO)または窒化アルミニウム(AlN)からなる請求項1または2記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。   3. The apparatus for quantitative evaluation of atomic vacancies existing in a silicon wafer according to claim 1, wherein the thin film vibrator is made of zinc oxide (ZnO) or aluminum nitride (AlN). 薄膜振動子は、物理蒸着法によりシリコンウェーハ上に形成する請求項1、2または3記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。   4. A quantitative evaluation apparatus for atomic vacancies existing in a silicon wafer according to claim 1, wherein the thin film vibrator is formed on the silicon wafer by physical vapor deposition. 薄膜振動子とシリコン結晶との間に金薄膜を有する請求項1〜4のいずれか1項記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。   The quantitative evaluation apparatus for atomic vacancies existing in a silicon wafer according to any one of claims 1 to 4, further comprising a gold thin film between the thin film vibrator and the silicon crystal. 薄膜振動子は、シリコン試料の表面に対し5〜60°の角度で傾斜させたC軸をもち、シリコン試料中を伝播させて検知した超音波中の縦波成分と横波成分のうち、少なくとも横波成分を測定する請求項1〜5のいずれか1項記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。   The thin film vibrator has a C axis inclined at an angle of 5 to 60 ° with respect to the surface of the silicon sample, and at least the transverse wave component of the longitudinal wave component and the transverse wave component in the ultrasonic wave detected by propagating through the silicon sample. The apparatus for quantitative evaluation of atomic vacancies present in a silicon wafer according to any one of claims 1 to 5, wherein components are measured. 薄膜振動子の厚さは、0.5〜200μmの範囲である請求項1〜6のいずれか1項記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。   The apparatus for quantitative evaluation of atomic vacancies existing in a silicon wafer according to any one of claims 1 to 6, wherein the thickness of the thin film vibrator is in a range of 0.5 to 200 µm. 薄膜振動子の共鳴周波数は、10MHz〜10GHzの範囲である請求項1〜7のいずれか1項記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。   The apparatus for quantitative evaluation of atomic vacancies existing in a silicon wafer according to any one of claims 1 to 7, wherein a resonance frequency of the thin film vibrator is in a range of 10 MHz to 10 GHz. 磁力発生手段は、0〜20テスラの範囲である請求項1〜8のいずれか1項記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。   The apparatus for quantitative evaluation of atomic vacancies present in a silicon wafer according to any one of claims 1 to 8, wherein the magnetic force generating means is in a range of 0 to 20 Tesla. 温度制御手段は、5mKまでの極低温に冷却できる希釈冷凍機を有する請求項1〜9のいずれか1項記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。   The apparatus for quantitative evaluation of atomic vacancies existing in a silicon wafer according to any one of claims 1 to 9, wherein the temperature control means has a dilution refrigerator that can be cooled to a cryogenic temperature of up to 5 mK. 超音波発生・検出手段は、10μs以下のパルス幅の超音波パルスを用いる請求項1〜10のいずれか1項記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。   The apparatus for quantitative evaluation of atomic vacancies existing in a silicon wafer according to claim 1, wherein the ultrasonic wave generation / detection means uses an ultrasonic pulse having a pulse width of 10 μs or less. 超音波発生・検出手段は、温度や磁場で音速が変化することで生じる位相差が一定になるように発振周波数を変化させ零検出を行う手段を有する請求項1〜11のいずれか1項記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。   12. The ultrasonic wave generation / detection means includes means for performing zero detection by changing an oscillation frequency so that a phase difference caused by a change in sound speed due to a temperature or a magnetic field becomes constant. For quantitative evaluation of atomic vacancies in silicon wafers. 多数個のシリコン試料および一のシリコン試料の複数点を測定対象として、同時に位相差を測定できる請求項1〜12のいずれか1項記載のシリコンウェーハ中に存在する原子空孔の定量評価装置。   The apparatus for quantitative evaluation of atomic vacancies existing in a silicon wafer according to any one of claims 1 to 12, wherein a phase difference can be measured simultaneously with a plurality of silicon samples and a plurality of points of one silicon sample as measurement targets. シリコンウェーハから所定の部位を切り出したシリコン試料に対し、外部磁場を必要に応じて印加した状態で、25K以下の温度域で冷却しながら、前記温度域でシリコン試料の温度低下に伴う膨張に追随できる物性をもちかつC軸が所定の方向に揃った薄膜振動子を表面に直接形成したシリコン試料に対し超音波パルスを発振し、発振させた超音波パルスをシリコン試料中を伝播させ、伝播した超音波パルスの音速変化を検出し、この音速変化から、冷却温度の低下に伴う弾性定数の減少量を算出し、この算出した弾性定数の減少量からシリコンウェーハ中に存在する原子空孔の種類と濃度を定量評価することを特徴とするシリコンウェーハ中に存在する原子空孔の定量評価方法。   A silicon sample cut out from a silicon wafer, with an external magnetic field applied as necessary, while cooling in a temperature range of 25K or less, following the expansion of the silicon sample due to the temperature drop in the temperature range An ultrasonic pulse is oscillated to a silicon sample having a physical property that can be obtained and a C-axis aligned in a predetermined direction directly on the surface, and the oscillated ultrasonic pulse is propagated through the silicon sample. The change in the velocity of the ultrasonic pulse is detected, and from this change in the velocity of sound, the amount of decrease in the elastic constant accompanying the decrease in the cooling temperature is calculated. From the amount of decrease in the calculated elastic constant, the type of atomic vacancies present in the silicon wafer Quantitative evaluation method of atomic vacancies existing in silicon wafer, characterized in that quantitative evaluation of concentration is performed.
JP2007053229A 2006-03-03 2007-03-02 Apparatus and method for quantitative evaluation of atomic vacancies existing in silicon wafer Active JP5008423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007053229A JP5008423B2 (en) 2006-03-03 2007-03-02 Apparatus and method for quantitative evaluation of atomic vacancies existing in silicon wafer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006058560 2006-03-03
JP2006058560 2006-03-03
JP2007053229A JP5008423B2 (en) 2006-03-03 2007-03-02 Apparatus and method for quantitative evaluation of atomic vacancies existing in silicon wafer

Publications (2)

Publication Number Publication Date
JP2007263960A true JP2007263960A (en) 2007-10-11
JP5008423B2 JP5008423B2 (en) 2012-08-22

Family

ID=38637069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007053229A Active JP5008423B2 (en) 2006-03-03 2007-03-02 Apparatus and method for quantitative evaluation of atomic vacancies existing in silicon wafer

Country Status (1)

Country Link
JP (1) JP5008423B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014168042A (en) * 2013-01-31 2014-09-11 Niigata Univ Method and device for evaluating atomic vacancy in silicon wafer surface layer
JP2014168043A (en) * 2013-01-31 2014-09-11 Niigata Univ Method for determining absolute value of atomic vacancy concentration in silicon wafer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198960A (en) * 1987-10-13 1989-04-17 Fujitsu Ltd Measuring element for sound velocity in silicon and its manufacture
JPH07174742A (en) * 1993-12-20 1995-07-14 Fujitsu Ltd Method for measuring crystal defect

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198960A (en) * 1987-10-13 1989-04-17 Fujitsu Ltd Measuring element for sound velocity in silicon and its manufacture
JPH07174742A (en) * 1993-12-20 1995-07-14 Fujitsu Ltd Method for measuring crystal defect

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014168042A (en) * 2013-01-31 2014-09-11 Niigata Univ Method and device for evaluating atomic vacancy in silicon wafer surface layer
JP2014168043A (en) * 2013-01-31 2014-09-11 Niigata Univ Method for determining absolute value of atomic vacancy concentration in silicon wafer
WO2015068391A1 (en) * 2013-01-31 2015-05-14 国立大学法人 新潟大学 Method and device for evaluating atomic vacancies in silicon wafer surface layer

Also Published As

Publication number Publication date
JP5008423B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5276347B2 (en) Quantitative evaluation apparatus for atomic vacancy existing in silicon wafer, method thereof, method for manufacturing silicon wafer, and thin film vibrator
Ogi et al. Stiffened ultrathin Pt films confirmed by acoustic-phonon resonances
Day et al. Intrinsic and dislocation-induced elastic behavior of solid helium
Fefferman et al. Dislocation networks in 4 He crystals
KR101048637B1 (en) Apparatus and method for quantitative evaluation of atomic vacancy present in silicon wafer
JP5008423B2 (en) Apparatus and method for quantitative evaluation of atomic vacancies existing in silicon wafer
Djemia et al. Elastic properties of β-SiC films by Brillouin light scattering
JP6291797B2 (en) Method and apparatus for evaluating atomic vacancies in surface layer of silicon wafer
KR101678872B1 (en) Method for quantitatively evaluating concentration of atomic vacancies existing in silicon wafer, method for manufacturing silicon wafer, and silicon wafer manufactured by the method for manufacturing silicon wafer
US20160258908A1 (en) Method for evaluating atomic vacancy in surface layer of silicon wafer and apparatus for evaluating the same
Han et al. Bridgman growth and properties of PMN-PT-based single crystals
Skvortsov et al. Effect of a constant magnetic field on dislocation anharmonicity in silicon
Nakamura et al. Resonant-ultrasound spectroscopy for studying annealing effect on elastic constant of thin film
JP6244833B2 (en) Determination method of absolute value of atomic vacancy concentration in silicon wafer
Bhalla et al. Mechanical and Thermo-physical Properties of Rare-Earth Materials
Bohn et al. Characterization of thin films by internal friction measurements
Zhuang et al. Nondestructive evaluation of homogeneity of Mn-doped 0.23 Pb (In1/2Nb1/2) O3–0.48 Pb (Mg1/3Nb2/3) O3–0.29 PbTiO3 single crystals via resonant ultrasound spectroscopy
Ogi et al. Elastic-stiffness distribution on polycrystalline Cu studied by resonance ultrasound microscopy: Young’s modulus microscopy
Wasserbäch et al. Low-temperature internal friction and thermal conductivity of plastically deformed, high-purity monocrystalline niobium
Butler et al. A magnetoelastic study of single-crystal HoCo2
Kojima et al. Simultaneous Measurements of Thermal, Electrical, and Acoustic Properties of BaTiO 3–New Feature of 403 K Phase Transition
Wu et al. On-wafer characterization of thermomechanical properties of isotropic thin films deposited on anisotropic substrates
Okamoto et al. OS02-5-2 Recovery of thin film studied by resonant-ultrasound spectroscopy
Swarnakar et al. Temperature Dependent Internal Friction Behavior of Single Crystal Germanium Studied by the Impulse Excitation Technique
Johnson et al. Acoustic damping in resonators of langasite and langatate at elevated temperatures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120529

R150 Certificate of patent or registration of utility model

Ref document number: 5008423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250