JP2007263841A - Device for monitoring steam quality of boiler - Google Patents

Device for monitoring steam quality of boiler Download PDF

Info

Publication number
JP2007263841A
JP2007263841A JP2006091105A JP2006091105A JP2007263841A JP 2007263841 A JP2007263841 A JP 2007263841A JP 2006091105 A JP2006091105 A JP 2006091105A JP 2006091105 A JP2006091105 A JP 2006091105A JP 2007263841 A JP2007263841 A JP 2007263841A
Authority
JP
Japan
Prior art keywords
steam
condensed water
boiler
absorbance
organic impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006091105A
Other languages
Japanese (ja)
Other versions
JP4900783B2 (en
Inventor
Shintaro Mori
信太郎 森
Yoshinao Kishine
義尚 岸根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006091105A priority Critical patent/JP4900783B2/en
Publication of JP2007263841A publication Critical patent/JP2007263841A/en
Application granted granted Critical
Publication of JP4900783B2 publication Critical patent/JP4900783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for monitoring steam quality of boiler capable of measuring the amount of organic impurities in steam accurately, in a short time. <P>SOLUTION: This device is equipped with a cooler 10 for cooling supply steam S1 from the boiler 2 into condensed water G, a spectrophotometer 20 for measuring the absorbance of the condensed water G with respect to light of a prescribed wavelength, and an operation means 21 for calculating the amount of organic impurities in the supply steam S1, by using the absorbance measured by the spectrophotometer 20. Since the amount of organic impurities in the supply steam S1 is determined via the operation means 21, by changing the supply steam S1 into condensed water G, and by measuring the absorbance of the condensed water G by the spectrophotometer 20, measurement can be performed in a short time. Since the calculation errors of the amount of organic impurities by the operation means 21 can be reduced by experiment or the like, accuracy of the calculated amount of organic impurities in the supply steam S1 can also be kept high. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ボイラの供給用蒸気中に含まれる有機系不純物量を測定して、この供給用蒸気の品質を監視するボイラの蒸気品質モニタリング装置に関するものである。   The present invention relates to a boiler steam quality monitoring device that measures the amount of organic impurities contained in boiler supply steam and monitors the quality of the supply steam.

ボイラ給水等には、水処理剤が加えられるので、ボイラ側には、これらの水処理剤やその熱分解物といった有機系不純物が蓄積するが、ブロー等の管理を適切に行えば、これらの有機系不純物がボイラ水中で濃縮してしまうことはなく、これらがキャリオーバによって蒸気中に混入してしまうこともあまりなかった。   Since water treatment agents are added to boiler feed water, etc., organic impurities such as these water treatment agents and their thermal decomposition products accumulate on the boiler side. Organic impurities did not concentrate in the boiler water, and they were not often mixed into the steam by carryover.

ところが、近年、比較的価格が安く、無人運転が可能な小型貫流ボイラが普及し、ボイラ給水のほぼ全量が蒸気化されるようになったため、蒸気中に有機系不純物が含まれ易い傾向となってきている。また、従来では、製品の加熱や殺菌は、蒸気を使用する熱交換器を介して間接的になされることが多かったが、近年では、蒸気を直接製品に吹き込んで行われることが一般化してきている。以上の理由により、上記のようなボイラを使用する工場などでは、蒸気の品質をモニタリングし、蒸気中に有機系不純物量が多ければ、蒸気を使用しないなど、何らかの処置をする必要が生じてきている。   However, in recent years, small-sized once-through boilers that are relatively inexpensive and capable of unattended operation have become widespread, and almost all of the boiler feedwater has been vaporized, so that organic impurities tend to be included in the steam. It is coming. In addition, conventionally, heating and sterilization of products are often performed indirectly through a heat exchanger that uses steam. However, in recent years, it has become common that steam is blown directly into products. ing. For these reasons, in factories that use boilers such as those mentioned above, it is necessary to monitor the quality of steam and to take some measures, such as not using steam if the amount of organic impurities in the steam is large. Yes.

このため、近年、ボイラからの蒸気の品質を評価することも行われるようになった。例えば、特許文献1には、ボイラからの蒸気を凝縮させ、この凝縮水を用いて蒸気の品質を監視するボイラ復水系監視装置が開示されている。このボイラ復水系監視装置では、ボイラから供給される蒸気の凝縮水中にテストピースを浸し、このテストピースの腐食の程度を観察することによって、蒸気の品質を監視している。   For this reason, in recent years, the quality of steam from boilers has also been evaluated. For example, Patent Document 1 discloses a boiler condensate system monitoring device that condenses steam from a boiler and monitors the quality of the steam using the condensed water. In this boiler condensate system monitoring device, the quality of steam is monitored by immersing a test piece in condensed water of steam supplied from the boiler and observing the degree of corrosion of the test piece.

しかしながら、上記のボイラ復水系監視装置では、テストピースの腐食が、有機系不純物に起因する腐食のみでなく、pH値に起因する腐食や、溶存酸素に起因する腐食も含むため、蒸気中にどの程度の有機系不純物が含まれているかが明確ではなく、かつ、観察結果が主観的なものになりやすく、正確さにも欠けるという問題があった。また、上記装置では、結果が出るまでに時間を要すという問題もあった。   However, in the above boiler condensate monitoring system, the test piece corrosion includes not only corrosion due to organic impurities, but also corrosion due to pH values and corrosion due to dissolved oxygen. There is a problem that it is not clear whether organic impurities of a certain level are contained, and the observation result tends to be subjective and lacks accuracy. In addition, the above apparatus has a problem that it takes time to obtain a result.

一方、蒸気中の有機系不純物量は、この蒸気の凝縮水中の全有機炭素(TOC)濃度を、市販のTOC計を用いて測定することにより明確かつ正確に(精度よく)知ることができる。
特開平8−28803号公報
On the other hand, the amount of organic impurities in the steam can be known clearly and accurately (with high accuracy) by measuring the total organic carbon (TOC) concentration in the condensed water of the steam using a commercially available TOC meter.
JP-A-8-28803

しかしながら、市販のTOC計でも、一回の測定に3〜4分の時間を要し、蒸気中の有機系不純物量を直ちに知ることができないという問題があった。このため、市販のTOC計を蒸気のモニタリングに使用すると、製造ラインの蒸気の使用ポイント直前の位置で、蒸気の品質確認がすぐには行えず、品質が確認された蒸気と使用する蒸気との間に時間的ギャップが生じてしまうという不都合があった。このため、蒸気の品質が確認されても、使い始めた蒸気の品質が保たれているか否かは明確ではないという不都合が生じていた。   However, even a commercially available TOC meter has a problem that it takes 3 to 4 minutes for one measurement, and the amount of organic impurities in the vapor cannot be immediately known. For this reason, when a commercially available TOC meter is used for steam monitoring, it is not possible to immediately check the quality of the steam at the position immediately before the use point of the steam on the production line. There was a disadvantage that a time gap occurred between them. For this reason, even if the quality of the steam is confirmed, there is an inconvenience that it is not clear whether or not the quality of the steam that has been used is maintained.

この発明は、以上の点に鑑み、蒸気中の有機系不純物量を短時間のうちに精度よく測定できるボイラの蒸気品質モニタリング装置を提供することを目的とする。   In view of the above, an object of the present invention is to provide a steam quality monitoring apparatus for a boiler that can accurately measure the amount of organic impurities in steam within a short time.

この発明の請求項1記載の発明は、ボイラの供給用蒸気を冷却して凝縮水にする冷却器と、前記凝縮水の所定波長の光に対する吸光度を計測する分光光度計と、前記分光光度計によって計測された前記吸光度を用いて前記供給用蒸気中の有機系不純物量を算出する演算手段とを備えたことを特徴とする。   The invention according to claim 1 of the present invention includes a cooler that cools steam for supplying boiler to condensate, a spectrophotometer that measures the absorbance of the condensed water with respect to light of a predetermined wavelength, and the spectrophotometer. And an arithmetic means for calculating the amount of organic impurities in the supply vapor using the absorbance measured by the above-described method.

この発明では、事前に、凝縮水の有機系不純物濃度(例えばTOC濃度)と、この凝縮水の所定波長の光に対する吸光度との関係を求めておき、凝縮水の上記所定波長の光に対する吸光度がわかれば、この吸光度を用いて、演算手段が凝縮水の有機系不純物濃度を算出できるようにしておく。   In this invention, the relationship between the organic impurity concentration (for example, TOC concentration) of the condensed water and the absorbance of the condensed water with respect to the predetermined wavelength of light is obtained in advance, and the absorbance of the condensed water with respect to the predetermined wavelength of light is determined. If known, using this absorbance, the calculation means can calculate the organic impurity concentration of the condensed water.

すなわち、この発明では、冷却器からのボイラの供給用蒸気の凝縮水に、分光光度計により、所定波長の光を当てて、この凝縮水の吸光度を計測し、この吸光度を用いて、演算手段が有機系不純物濃度(例えばTOC濃度)を算出することにより、供給蒸気中の有機系不純物量が測定される。   That is, in the present invention, the condensed water of the boiler supply steam from the cooler is irradiated with light of a predetermined wavelength by a spectrophotometer, the absorbance of the condensed water is measured, and the absorbance is used to calculate the calculation means. Calculates the organic impurity concentration (for example, TOC concentration), thereby measuring the amount of organic impurities in the supply steam.

ここで、蒸気中の有機系不純物、すなわち、ボイラに持ち込まれた有機酸やその塩又は糖類を含む水処理剤やこれらの熱分解物は、光を吸収する官能基を有すので、光のいくつかの波長に関して吸収特性を有するとともに、一般の有機成分と同様に、紫外領域の光を吸収する性質を有す。また、着色された水処理剤が使用された場合、蒸気中の有機系不純物は、可視領域の光を吸収する性質を有する。一方、凝縮水の光の吸収特性は、光の波長毎に、有機系不純物濃度(例えばTOC濃度)によって変化するので、凝縮水の有機系不純物濃度(例えばTOC濃度)と、この凝縮水の所定波長の光に対する吸光度とには一定の関係が生じる。   Here, the organic impurities in the vapor, that is, the water treatment agent containing the organic acid, its salt or saccharide brought into the boiler, or the thermal decomposition product thereof has a functional group that absorbs light. It has absorption characteristics with respect to several wavelengths, and has the property of absorbing light in the ultraviolet region, as with general organic components. Further, when a colored water treatment agent is used, the organic impurities in the vapor have a property of absorbing light in the visible region. On the other hand, the light absorption characteristics of the condensed water change depending on the organic impurity concentration (for example, TOC concentration) for each wavelength of light, so the organic impurity concentration (for example, TOC concentration) of the condensed water and the predetermined concentration of the condensed water are determined. There is a certain relationship with the absorbance of light of a wavelength.

この発明の請求項2記載の発明は、請求項1に記載の発明の場合に、前記分光光度計の測定波長は、190〜780nmであることを特徴とする。   According to a second aspect of the present invention, in the case of the first aspect, the measurement wavelength of the spectrophotometer is 190 to 780 nm.

この発明では、波長が190〜780nmの紫外領域と可視領域の光が使用される。蒸気中の有機系不純物が、これらの光の何れかを吸収する特性を有すからである。   In the present invention, light in the ultraviolet region and visible region having a wavelength of 190 to 780 nm is used. This is because the organic impurities in the vapor have a characteristic of absorbing any of these lights.

この発明の請求項3記載の発明は、請求項1又は2に記載の発明の場合に、前記分光光度計のセルは、前記凝縮水を流して、その吸光度を連続的に計測できるフローセルであることを特徴とする。   According to a third aspect of the present invention, in the case of the first or second aspect, the spectrophotometer cell is a flow cell capable of continuously measuring the absorbance by flowing the condensed water. It is characterized by that.

この発明の請求項1記載の発明によれば、ボイラの供給用蒸気を凝縮水にして、この凝縮水の吸光度を分光光度計により計測すれば、演算手段を介して、供給用蒸気中の有機系不純物量が決定されるので、この決定までに時間がかからず、供給用蒸気中の有機系不純物量を短時間のうちに容易に測定できる。また、この発明によれば、有機系不純物量を算出するのに使用される、凝縮水の有機系不純物濃度(例えばTOC濃度)と、この凝縮水の所定波長の光に対する吸光度との関係も、実験によって明らかにできるので、算出された供給用蒸気中の有機系不純物量の精度も高く保つことができる。したがって、この発明によれば、例えば工場の作業者は、使用ポイント直前の蒸気の品質を直ちに確認して、品質のよい蒸気のみを確実に使用でき、蒸気の品質に起因するトラブルを未然に防止することができる。   According to the first aspect of the present invention, when the supply steam of the boiler is condensed water, and the absorbance of the condensed water is measured by a spectrophotometer, the organic in the supply steam is obtained via the arithmetic means. Since the amount of system impurities is determined, it does not take time until the determination, and the amount of organic impurities in the supply steam can be easily measured in a short time. Moreover, according to this invention, the relationship between the organic impurity concentration (for example, TOC concentration) of condensed water used for calculating the amount of organic impurities and the absorbance of the condensed water with respect to light of a predetermined wavelength is Since it can be clarified by experiment, the accuracy of the calculated amount of organic impurities in the supply steam can be kept high. Therefore, according to the present invention, for example, a factory worker can immediately check the quality of steam immediately before the point of use, and can reliably use only high-quality steam, preventing troubles caused by the quality of the steam. can do.

この発明の請求項2記載の発明によれば、紫外及び可視領域の光を使用して、蒸気中の有機系不純物の量を容易に知ることができる。   According to invention of Claim 2 of this invention, the quantity of the organic type impurity in vapor | steam can be known easily using the light of an ultraviolet region and visible region.

この発明の請求項3記載の発明によれば、蒸気中の有機系不純物量を時々刻々と知ることができ、作業者は、常に品質のよい蒸気のみを使用でき、蒸気の品質に起因するトラブルを確実に防止することができる。   According to the third aspect of the present invention, the amount of organic impurities in the steam can be known from moment to moment, and the operator can always use only high-quality steam, and troubles caused by the quality of the steam. Can be reliably prevented.

以下、この発明の実施の形態を図面を参照しつつ説明する。
図1はこの発明の一実施の形態に係る蒸気品質モニタリング装置を示している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a steam quality monitoring apparatus according to an embodiment of the present invention.

蒸気品質モニタリング装置1は、ボイラ2にて発生した、例えば温度150℃の供給用蒸気S1中の有機系不純物量を測定して、この供給用蒸気S1の品質を監視するものである。この蒸気品質モニタリング装置1は、図1で示されるように、供給用蒸気ラインL1中の、蒸気使用設備3へ供給用蒸気S1を送る供給弁4の直前に設けられている。そして、この蒸気品質モニタリング装置1は、蒸気サンプリングユニットY1と、計測ユニットY2ととから構成されている。なお、ボイラ2は、丸ボイラ、水管ボイラ、貫流ボイラ、その他特殊ボイラであってもよいし、供給用蒸気S1の圧力も、低圧、中圧、高圧の何れであってもよい。   The steam quality monitoring device 1 measures the amount of organic impurities in the supply steam S1 generated at the boiler 2, for example, at a temperature of 150 ° C., and monitors the quality of the supply steam S1. As shown in FIG. 1, the steam quality monitoring device 1 is provided immediately before the supply valve 4 that sends the supply steam S1 to the steam use facility 3 in the supply steam line L1. The steam quality monitoring device 1 includes a steam sampling unit Y1 and a measurement unit Y2. The boiler 2 may be a round boiler, a water tube boiler, a once-through boiler, or other special boilers, and the pressure of the supply steam S1 may be any of low pressure, medium pressure, and high pressure.

蒸気サンプリングユニットY1は、供給用蒸気S1の凝縮水Gを、所定の温度及び流量で計測ユニットY2に供給するものである。この蒸気サンプリングユニットY1は、冷却器10と、冷却器10と供給用蒸気ラインL1とをつなぐ蒸気配管L2と、冷却器10と計測ユニットY2とをつなぐ凝縮水配管L3と、蒸気配管L2中に設けられる逆止弁11、遮断弁12、圧力計13と、凝縮水配管L3中に設けられる温度計14、流量計15、流量調整弁16と、冷却器10への冷却水入口に設けられる冷却水量調整弁17と、コントローラ18と、所定の配線とから構成されている。   The steam sampling unit Y1 supplies the condensed water G of the supply steam S1 to the measurement unit Y2 at a predetermined temperature and flow rate. The steam sampling unit Y1 includes a cooler 10, a steam pipe L2 that connects the cooler 10 and the supply steam line L1, a condensed water pipe L3 that connects the cooler 10 and the measurement unit Y2, and a steam pipe L2. Check valve 11, shut-off valve 12, pressure gauge 13 provided, thermometer 14 provided in the condensed water pipe L 3, flow meter 15, flow rate adjustment valve 16, and cooling provided at the cooling water inlet to the cooler 10 It is comprised from the water quantity adjustment valve 17, the controller 18, and predetermined wiring.

冷却器10は、供給用蒸気S1を冷却水Rにより冷却し、これを凝縮水Gに変える熱交換器である。遮断弁12は、圧力計13からの信号を受けて開閉する電磁弁である。コントローラ18は、温度計14からの凝縮水Gの温度信号を基に、冷却水量調整弁17の弁開度を制御するとともに、流量計15からの流量信号を基に、流量調整弁16の弁開度を制御する。   The cooler 10 is a heat exchanger that cools the supply steam S <b> 1 with the cooling water R and converts it into condensed water G. The shutoff valve 12 is an electromagnetic valve that opens and closes in response to a signal from the pressure gauge 13. The controller 18 controls the valve opening degree of the cooling water amount adjusting valve 17 based on the temperature signal of the condensed water G from the thermometer 14 and controls the valve of the flow rate adjusting valve 16 based on the flow signal from the flow meter 15. Control the opening.

ここで、凝縮水Gの流量は、例えば、120mL/minであるが、30〜200mL/minであることが好ましく、50〜150mL/minであることがより好ましい。また、凝縮水Gの温度は、例えば、20℃であるが、10〜40℃であることが好ましく、20〜30℃であることがより好ましい。   Here, the flow rate of the condensed water G is, for example, 120 mL / min, preferably 30 to 200 mL / min, and more preferably 50 to 150 mL / min. Moreover, although the temperature of the condensed water G is 20 degreeC, for example, it is preferable that it is 10-40 degreeC, and it is more preferable that it is 20-30 degreeC.

計測ユニットY2は、凝縮水Gの吸光度を計測し、この吸光度からTOC濃度を介して、供給用蒸気S1中の有機系不純物量を定めるものである。この計測ユニットY2は、所定波長の光に対する凝縮水Gの吸光度を計測する分光光度計20と、凝縮水Gの吸光度から凝縮水GのTOC濃度を算出する演算手段としての演算器21と、算出されたTOC濃度又はこれを蒸気中の有機系不純物量に換算した値を供給用蒸気S1中の有機系不純物量として表示し、記録する記録計22とから構成されている。なお、TOC濃度は、凝縮水Gの有機系不純物濃度と見なせるものであり、これによって、供給用蒸気S1中の有機系不純物量を知ることができる。   The measurement unit Y2 measures the absorbance of the condensed water G, and determines the amount of organic impurities in the supply steam S1 from the absorbance via the TOC concentration. The measurement unit Y2 includes a spectrophotometer 20 that measures the absorbance of the condensed water G with respect to light of a predetermined wavelength, an arithmetic unit 21 that calculates the TOC concentration of the condensed water G from the absorbance of the condensed water G, and a calculation. The recorded TOC concentration or a value obtained by converting the TOC concentration into the amount of organic impurities in the steam is displayed and recorded as the amount of organic impurities in the supply steam S1. Note that the TOC concentration can be regarded as the organic impurity concentration of the condensed water G, whereby the amount of organic impurities in the supply steam S1 can be known.

分光光度計20は、波長が190〜780nmの紫外及び可視領域の光を用いて、試料の吸光度を計測する紫外/可視分光光度計である。この分光光度計20は、紫外及び可視領域の全波長の光を用いる必要は無く、例えば、複数又は一つの所定波長の光(具体的には波長が250nmの紫外領域の光)を用いて、試料である凝縮水Gの吸光度を計測すればよいので、計測に数ミリセカンドの時間しか要しない。このため、この分光光度計20には、試料を保持するセルにフローセル、すなわち、試料を静止させず流しながら吸光度が連続的に計測できるセルが用いられている。なお、フローセルから流れ出た凝縮水Gは、排出管L4を通って外部に排出される。   The spectrophotometer 20 is an ultraviolet / visible spectrophotometer that measures the absorbance of a sample using light in the ultraviolet and visible regions having a wavelength of 190 to 780 nm. The spectrophotometer 20 does not need to use light of all wavelengths in the ultraviolet and visible regions, for example, using a plurality of or one light having a predetermined wavelength (specifically, light in the ultraviolet region having a wavelength of 250 nm) Since it is only necessary to measure the absorbance of the condensed water G as a sample, the measurement takes only a few milliseconds. For this reason, the spectrophotometer 20 uses a flow cell in a cell holding a sample, that is, a cell capable of continuously measuring absorbance while flowing the sample without making it stand still. In addition, the condensed water G which flowed out from the flow cell is discharged | emitted outside through the discharge pipe L4.

つぎに、演算器21で使用される凝縮水の吸光度とTOC濃度との関係について説明する。なお、ボイラの負荷変動や缶水濃縮によって、キャリオーバが生じ、ボイラ水中の有機系不純物、すなわち、ボイラに持ち込まれた水処理剤(有機酸やその塩又は糖類を含む)やこれらの熱分解物が蒸気中に混入する。   Next, the relationship between the absorbance of the condensed water used in the calculator 21 and the TOC concentration will be described. Carryover occurs due to boiler load fluctuations and can water concentration, and organic impurities in boiler water, that is, water treatment agents (including organic acids, their salts or sugars) brought into the boiler, and their thermal decomposition products. Is mixed in the steam.

水処理剤やこれらの熱分解物質からなる蒸気中の有機系不純物は、光を吸収する官能基(多重結合を持った発色基と助色基など)を有すので、光のいくつかの波長に関して吸収特性を有する。また、この有機系不純物は、一般の有機成分と同様に、紫外領域の光を吸収して基底状態における結合軌道からエネルギーの高い反結合軌道へと遷移するので、紫外領域の光を吸収する性質を有す。さらに、着色された水処理剤が使用された場合、この有機系不純物は、可視領域の光を吸収する性質を有する。したがって、ボイラの蒸気を凝縮して液体(凝縮水)とし、これに紫外領域や特定の可視領域の光を当てると、波長毎に光の吸収が生じ、この光の吸収の程度が、吸光度として分光光度計により計測できる。一方、この吸光度は、凝縮水の有機系不純物濃度、例えば、TOC濃度によっても変化する。   Organic impurities in water treatment agents and vapors composed of these pyrolysis substances have functional groups that absorb light (such as color-forming groups and auxiliary color groups with multiple bonds), so there are several wavelengths of light Have absorption properties. In addition, like general organic components, this organic impurity absorbs light in the ultraviolet region and transitions from a bond orbit in the ground state to an antibonding orbital with high energy, so it absorbs light in the ultraviolet region. Have Further, when a colored water treatment agent is used, this organic impurity has a property of absorbing light in the visible region. Therefore, when the steam of the boiler is condensed into a liquid (condensed water) and irradiated with light in the ultraviolet region or a specific visible region, light absorption occurs for each wavelength, and the degree of light absorption is expressed as absorbance. It can be measured with a spectrophotometer. On the other hand, this absorbance also varies depending on the concentration of organic impurities in the condensed water, for example, the TOC concentration.

図2は、蒸気の凝縮水に関して調べられた、TOC濃度と、紫外領域の光の波長と、吸光度との関係をグラフで示している。このグラフは、TOC濃度をパラメータとして実際のボイラ実験によって求められたものであるが、このグラフでは、TOC濃度が大きくなるほど、かつ、波長が小さくなるほど、吸光度が大きくなることが分かる。   FIG. 2 is a graph showing the relationship between the TOC concentration, the wavelength of light in the ultraviolet region, and the absorbance, which were examined with respect to the condensed water of steam. This graph is obtained by an actual boiler experiment using the TOC concentration as a parameter. In this graph, it can be seen that the absorbance increases as the TOC concentration increases and the wavelength decreases.

上記ボイラ実験では、実験ボイラの補給水に、水処理剤として有機酸を主体とする脱酸素剤(栗田工業(株)製ダイクリーンTL404)を180mg/Lの割合で加えた。そして、実験ボイラからのボイラ水のブローダウン量を0とし、ボイラ水中の有機系不純物濃度を上げて、実験ボイラ中でキャリオーバを発生させ、蒸気中の有機系不純物量を上げた。そして、バッチにてサンプリングした蒸気の凝縮水中の有機系不純物濃度をTOC濃度としてTOC計で計測するとともに、この凝縮水の吸光度を分光光度計で計測した。この場合、波長スペクトルをとる際のスキャン速度は100nm/minで行ったため、一つのサンプルの吸光度を計測するのに約1分半の時間を要した。なお、分光光度計には日立社製のもの(U−2810型)を使用し、TOC計にはSIERVERS社製のもの(TOC分析計ポータブル型)を使用した。   In the boiler experiment, an oxygen scavenger mainly composed of organic acids (Daiclean TL404 manufactured by Kurita Kogyo Co., Ltd.) as a water treatment agent was added to the makeup water of the experimental boiler at a rate of 180 mg / L. Then, the blowdown amount of boiler water from the experimental boiler was set to 0, the organic impurity concentration in the boiler water was increased, carryover was generated in the experimental boiler, and the organic impurity amount in the steam was increased. And while measuring the organic impurity density | concentration in the condensed water of the vapor sampled in batch as TOC density | concentration with the TOC meter, the light absorbency of this condensed water was measured with the spectrophotometer. In this case, since the scanning speed when taking the wavelength spectrum was 100 nm / min, it took about one and a half minutes to measure the absorbance of one sample. A spectrophotometer manufactured by Hitachi (U-2810 type) was used, and a TOC meter manufactured by SIERVERS (TOC analyzer portable type) was used.

図3は、凝縮水のTOC濃度と、例えば、波長250nmの光に対する凝縮水の吸光度との関係をグラフで示している。このグラフは、図2中の250nmの波長に対する、TOC濃度と吸光度から求められたもので、吸光度とTOC濃度とが比例関係にあることを示している。もちろん、吸光度とTOC濃度との関係は、図2から紫外部の他の波長の光についても表すことができる。   FIG. 3 is a graph showing the relationship between the TOC concentration of condensed water and the absorbance of condensed water with respect to light having a wavelength of 250 nm, for example. This graph is obtained from the TOC concentration and the absorbance with respect to the wavelength of 250 nm in FIG. 2, and shows that the absorbance and the TOC concentration are in a proportional relationship. Of course, the relationship between the absorbance and the TOC concentration can also be expressed for light of other wavelengths in the ultraviolet region from FIG.

したがって、演算器21は、上記吸光度とTOC濃度との関係を基に、分光光度計20で計測された吸光度から、凝縮水GのTOC濃度を算出する。なお、複数の波長について吸光度とTOC濃度との関係を調べ、演算器22は、これらを基に算出されたTOC濃度の例えば平均値を出力するようにしてもよい。   Therefore, the computing unit 21 calculates the TOC concentration of the condensed water G from the absorbance measured by the spectrophotometer 20 based on the relationship between the absorbance and the TOC concentration. Note that the relationship between the absorbance and the TOC concentration for a plurality of wavelengths may be examined, and the calculator 22 may output, for example, an average value of the TOC concentrations calculated based on these.

つぎに、蒸気品質モニタリング装置1の作用効果について説明する。
ボイラ2からの供給用蒸気S1は、供給用蒸気ラインL1から蒸気配管L2を介して蒸気サンプリングユニットY1に導かれる。この供給用蒸気S1は、蒸気サンプリングユニットY1において、冷却水Rにて冷やされて凝縮水Gに変えられる。この場合、冷却器10出口の凝縮水Gの温度は温度計14で計測され、この温度が設定温度になるように、コントローラ18が冷却水量調整弁17を介して冷却器10に流入する冷却水Rの流量を制御する。また、冷却器10出口の凝縮水Gの流量は流量計15で計測され、この流量が設定流量になるように、コントローラ18が流量調整弁16を介して冷却器10に流入する供給用蒸気S1の流量を制御する。したがって、凝縮水Gは、コントローラ18による流量調整弁16と冷却水量調整弁17との制御の結果、設定温度(20℃)、設定流量(120mL/min)で、継続的に計測ユニットY2側に送られる。
Below, the effect of the steam quality monitoring apparatus 1 is demonstrated.
The supply steam S1 from the boiler 2 is led from the supply steam line L1 to the steam sampling unit Y1 via the steam pipe L2. This supply steam S1 is cooled by the cooling water R in the steam sampling unit Y1 and converted into condensed water G. In this case, the temperature of the condensed water G at the outlet of the cooler 10 is measured by the thermometer 14, and the cooling water that the controller 18 flows into the cooler 10 through the cooling water amount adjusting valve 17 so that this temperature becomes the set temperature. Control the flow rate of R. Further, the flow rate of the condensed water G at the outlet of the cooler 10 is measured by the flow meter 15, and the supply steam S <b> 1 that the controller 18 flows into the cooler 10 through the flow rate adjustment valve 16 so that this flow rate becomes the set flow rate. To control the flow rate. Therefore, the condensate G is continuously supplied to the measurement unit Y2 side at the set temperature (20 ° C.) and the set flow rate (120 mL / min) as a result of the control of the flow rate adjustment valve 16 and the cooling water amount adjustment valve 17 by the controller 18. Sent.

ここで、ボイラ2が運転を停止するなど、供給用蒸気S1の圧力が所定の設定値まで降下すると、蒸気配管L2中の圧力を計測している圧力計13からの信号により遮断弁12が閉じ、計測ユニットY2側での計測動作を中止させる。また、ボイラ2が運転を開始するなど、供給用蒸気S1の圧力が所定の設定値より上昇すると、圧力計13からの信号により遮断弁12が開き、計測ユニットY2側での計測動作を開始させる。なお、逆止弁11は、ボイラ2側の圧力が負圧になった場合に、蒸気サンプリングユニットY1側からの凝縮水G等の逆流を防止する。   Here, when the pressure of the supply steam S1 falls to a predetermined set value, such as when the boiler 2 stops operating, the shutoff valve 12 is closed by a signal from the pressure gauge 13 that measures the pressure in the steam pipe L2. Then, the measurement operation on the measurement unit Y2 side is stopped. Further, when the pressure of the supply steam S1 rises above a predetermined set value, such as when the boiler 2 starts operation, the shutoff valve 12 is opened by a signal from the pressure gauge 13, and measurement operation on the measurement unit Y2 side is started. . The check valve 11 prevents the backflow of condensed water G and the like from the steam sampling unit Y1 side when the pressure on the boiler 2 side becomes negative.

計測ユニットY2に送られた凝縮水Gは、分光光度計20のセル(フローセル)中を通過中に、所定波長の光(例えば波長250nmの紫外部の光)による吸光度が計測され、その後、排出配管L4から排出される。この場合、分光光度計20に送られる凝縮水Gの流量及び温度が一定条件に保たれるので、凝縮水Gに対する計測結果と供給用蒸気S1の品質とが常に一定の関係となり、凝縮水Gに対する計測結果から、供給用蒸気S1の品質の正確な判断が可能となる。   The condensed water G sent to the measurement unit Y2 is measured for absorbance by light of a predetermined wavelength (for example, light in the ultraviolet region having a wavelength of 250 nm) while passing through the cell (flow cell) of the spectrophotometer 20, and then discharged. It is discharged from the pipe L4. In this case, since the flow rate and temperature of the condensed water G sent to the spectrophotometer 20 are maintained at a constant condition, the measurement result for the condensed water G and the quality of the supply steam S1 are always in a constant relationship, and the condensed water G From the measurement result, the quality of the supply steam S1 can be accurately determined.

演算器21は、分光光度計20にて計測された吸光度を基に、凝縮水GのTOC濃度を算出し、記録計22は、このTOC濃度又はこれを蒸気中の有機系不純物量に換算した値を供給用蒸気S1中の有機系不純物量として、表示し、記録する。   The calculator 21 calculates the TOC concentration of the condensed water G based on the absorbance measured by the spectrophotometer 20, and the recorder 22 converts this TOC concentration or the amount of organic impurities in the vapor. The value is displayed and recorded as the amount of organic impurities in the supply steam S1.

以上のように、この蒸気品質モニタリング装置1では、ボイラ2の供給用蒸気S1を凝縮水Gにして、この凝縮水Gの吸光度を計測した後、所定の演算を行えば、供給用蒸気S1中の有機系不純物量が決定されるので、この決定までに時間がかからず、供給用蒸気S1中の有機系不純物量を短時間のうちに容易に測定できる。また、この蒸気品質モニタリング装置1では、有機系不純物量を算出するのに使用される、凝縮水のTOC濃度と、この凝縮水の所定波長の光に対する吸光度との関係も、実験によって充分に明確化できるので、供給用蒸気S1中の有機系不純物量も精度よく算出できる。   As described above, in the steam quality monitoring apparatus 1, if the supply steam S1 of the boiler 2 is the condensed water G, the absorbance of the condensed water G is measured, and then a predetermined calculation is performed, the supply steam S1 Since the amount of organic impurities is determined, it takes no time until the determination, and the amount of organic impurities in the supply steam S1 can be easily measured in a short time. Moreover, in this vapor quality monitoring apparatus 1, the relationship between the TOC concentration of condensed water used for calculating the amount of organic impurities and the absorbance with respect to light of a predetermined wavelength of the condensed water is sufficiently clarified by experiments. Therefore, the amount of organic impurities in the supply steam S1 can also be calculated with high accuracy.

したがって、作業者は、蒸気使用設備3の使用ポイント直前の供給用蒸気S1の品質を直ちに確認して、供給弁4を開くことができるので、蒸気使用設備3側で品質のよい蒸気のみを確実に使用でき、蒸気の品質に起因するトラブルを未然に防止することができる。   Therefore, the operator can immediately confirm the quality of the supply steam S1 immediately before the point of use of the steam use facility 3 and open the supply valve 4, so that only the high-quality steam is reliably ensured on the steam use facility 3 side. It is possible to prevent the trouble caused by the quality of the steam.

また、この蒸気品質モニタリング装置1では、計測ユニットY2側に連続的に凝縮水Gを流し、時々刻々変化する供給用蒸気S1の品質を短時間のうちに連続的に表示することができる。このため、例えば作業者は、使用している供給用蒸気S1の品質が低下すれば直ちに供給弁4を閉じて、蒸気使用設備3への供給用蒸気S1の供給を停止することができ、常に品質のよい蒸気のみを使用して、蒸気の品質に起因するトラブルを確実に防止することができる。   Moreover, in this steam quality monitoring apparatus 1, the condensed water G can be continuously flowed to the measurement unit Y2 side, and the quality of the supply steam S1 that changes from time to time can be displayed continuously in a short time. For this reason, for example, if the quality of the supply steam S1 used is lowered, the worker can immediately close the supply valve 4 to stop the supply of the supply steam S1 to the steam use facility 3, By using only high-quality steam, troubles caused by the quality of the steam can be reliably prevented.

さらに、この蒸気品質モニタリング装置1では、TOC計に比べて構成パーツが少なく、かつ、キャリヤガスや反応試薬も使用しない分光光度計を使用すればよいので、TOC計を使用する場合に比べて、装置の維持管理が容易であり、TOC濃度を簡易迅速に計測できる。したがって、この蒸気品質モニタリング装置1は、設置が容易であり、蒸気が採取できる場所であれば、どのような場所にも容易に設置して、蒸気の品質を監視できる。   Furthermore, in this vapor quality monitoring apparatus 1, since it is sufficient to use a spectrophotometer that has fewer components than a TOC meter and does not use a carrier gas or a reaction reagent, compared to the case where a TOC meter is used, The maintenance of the apparatus is easy, and the TOC concentration can be measured easily and quickly. Therefore, the steam quality monitoring device 1 can be easily installed and can be easily installed at any place where steam can be collected to monitor the quality of the steam.

なお、計測ユニットY2に、TOC濃度が設定値より高い場合、警報を発する警報機を設けてもよい。   The measurement unit Y2 may be provided with an alarm device that issues an alarm when the TOC concentration is higher than the set value.

また、凝縮水Gの有機系不純物濃度は、TOC濃度測定以外の方法で行ってもよい。   Moreover, you may perform the organic type impurity density | concentration of the condensed water G by methods other than TOC density | concentration measurement.

この発明の一実施の形態に係るボイラの蒸気品質モニタリング装置の機器配置と、水、蒸気、信号の流れを示す図である。It is a figure which shows the equipment arrangement | positioning of the steam quality monitoring apparatus of the boiler which concerns on one embodiment of this invention, and the flow of water, steam, and a signal. 蒸気の凝縮水に関する、TOC濃度と、紫外部における光の波長と、吸光度との関係を示す線図である。It is a diagram which shows the relationship between the TOC density | concentration regarding the condensed water of a vapor | steam, the wavelength of the light in an ultraviolet part, and a light absorbency. 波長250nmの光に対する、凝縮水の吸光度とTOC濃度との関係を示す線図である。It is a diagram which shows the relationship between the light absorbency of condensed water with respect to the light of wavelength 250nm, and a TOC density | concentration.

符号の説明Explanation of symbols

1 蒸気品質モニタリング装置
2 ボイラ
10 冷却器
20 分光光度計
21 演算器(演算手段)
G 凝縮水
S1 供給用蒸気
DESCRIPTION OF SYMBOLS 1 Steam quality monitoring apparatus 2 Boiler 10 Cooler 20 Spectrophotometer 21 Calculator (calculation means)
G Condensed water S1 Supply steam

Claims (3)

ボイラの供給用蒸気を冷却して凝縮水にする冷却器と、前記凝縮水の所定波長の光に対する吸光度を計測する分光光度計と、前記分光光度計によって計測された前記吸光度を用いて前記供給用蒸気中の有機系不純物量を算出する演算手段とを備えたことを特徴とするボイラの蒸気品質モニタリング装置。 A cooler that cools steam for supplying boiler to condensate, a spectrophotometer that measures the absorbance of the condensed water with respect to light of a predetermined wavelength, and the supply using the absorbance measured by the spectrophotometer A boiler steam quality monitoring apparatus, comprising: an arithmetic means for calculating the amount of organic impurities in the steam. 前記分光光度計の計測波長は、190〜780nmであることを特徴とする請求項1に記載のボイラの蒸気品質モニタリング装置。 2. The boiler steam quality monitoring apparatus according to claim 1, wherein a measurement wavelength of the spectrophotometer is 190 to 780 nm. 前記分光光度計のセルは、前記凝縮水を流しながら、その吸光度を連続的に計測できるフローセルであることを特徴とする請求項1又は2に記載のボイラの蒸気品質モニタリング装置。 The boiler steam quality monitoring apparatus according to claim 1 or 2, wherein the spectrophotometer cell is a flow cell capable of continuously measuring the absorbance while flowing the condensed water.
JP2006091105A 2006-03-29 2006-03-29 Boiler steam quality monitoring device Active JP4900783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006091105A JP4900783B2 (en) 2006-03-29 2006-03-29 Boiler steam quality monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006091105A JP4900783B2 (en) 2006-03-29 2006-03-29 Boiler steam quality monitoring device

Publications (2)

Publication Number Publication Date
JP2007263841A true JP2007263841A (en) 2007-10-11
JP4900783B2 JP4900783B2 (en) 2012-03-21

Family

ID=38636970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006091105A Active JP4900783B2 (en) 2006-03-29 2006-03-29 Boiler steam quality monitoring device

Country Status (1)

Country Link
JP (1) JP4900783B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038458A (en) * 2008-08-05 2010-02-18 Kurita Water Ind Ltd Steam quality monitoring apparatus
JP2010038457A (en) * 2008-08-05 2010-02-18 Kurita Water Ind Ltd Steam quality monitoring method and steam quality monitoring apparatus
US8463116B2 (en) 2008-07-01 2013-06-11 Tap Development Limited Liability Company Systems for curing deposited material using feedback control
WO2015098277A1 (en) * 2013-12-27 2015-07-02 アズビル株式会社 Steam-quality assessment device and steam-quality assessment method
JP2015232520A (en) * 2014-06-10 2015-12-24 アズビル株式会社 Dryness measurement apparatus
CN106885882A (en) * 2017-03-12 2017-06-23 广西农垦糖业集团良圻制糖有限公司 A kind of sugar refinery boiler enters sugared part automatic checkout system of stove vapor condensed water
JP2019081121A (en) * 2017-10-27 2019-05-30 株式会社東芝 Carbon dioxide separation recovery system and method for operation of carbon dioxide separation recovery system
US20190301308A1 (en) * 2018-03-30 2019-10-03 Mitsubishi Hitachi Power Systems, Ltd. Water Quality Monitoring System and Steam Turbine System Including the Same as Well as Water Quality Monitoring Method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228144A (en) * 1986-03-29 1987-10-07 Shimadzu Corp Ultraviolet type organic substance measuring apparatus
JPH08327535A (en) * 1995-06-02 1996-12-13 Meidensha Corp Optical concentration measurement device
JPH09170704A (en) * 1995-12-21 1997-06-30 Hitachi Ltd Water quality monitoring for vapour condensed water and energy converting system using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228144A (en) * 1986-03-29 1987-10-07 Shimadzu Corp Ultraviolet type organic substance measuring apparatus
JPH08327535A (en) * 1995-06-02 1996-12-13 Meidensha Corp Optical concentration measurement device
JPH09170704A (en) * 1995-12-21 1997-06-30 Hitachi Ltd Water quality monitoring for vapour condensed water and energy converting system using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8463116B2 (en) 2008-07-01 2013-06-11 Tap Development Limited Liability Company Systems for curing deposited material using feedback control
JP2010038458A (en) * 2008-08-05 2010-02-18 Kurita Water Ind Ltd Steam quality monitoring apparatus
JP2010038457A (en) * 2008-08-05 2010-02-18 Kurita Water Ind Ltd Steam quality monitoring method and steam quality monitoring apparatus
WO2015098277A1 (en) * 2013-12-27 2015-07-02 アズビル株式会社 Steam-quality assessment device and steam-quality assessment method
JP2015127648A (en) * 2013-12-27 2015-07-09 アズビル株式会社 Dryness measuring device and dryness measuring method
JP2015232520A (en) * 2014-06-10 2015-12-24 アズビル株式会社 Dryness measurement apparatus
CN106885882A (en) * 2017-03-12 2017-06-23 广西农垦糖业集团良圻制糖有限公司 A kind of sugar refinery boiler enters sugared part automatic checkout system of stove vapor condensed water
JP2019081121A (en) * 2017-10-27 2019-05-30 株式会社東芝 Carbon dioxide separation recovery system and method for operation of carbon dioxide separation recovery system
US20190301308A1 (en) * 2018-03-30 2019-10-03 Mitsubishi Hitachi Power Systems, Ltd. Water Quality Monitoring System and Steam Turbine System Including the Same as Well as Water Quality Monitoring Method
US11060422B2 (en) * 2018-03-30 2021-07-13 Mitsubishi Power, Ltd. Water quality monitoring system and steam turbine system including the same as well as water quality monitoring method

Also Published As

Publication number Publication date
JP4900783B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP4900783B2 (en) Boiler steam quality monitoring device
JP3118138B2 (en) Method for determining leakage from boiler equipment
US7153693B2 (en) Method and apparatus for determining urea concentration
CA1334772C (en) Continuous on-stream monitoring of cooling tower water
JP5315844B2 (en) Vapor quality monitoring device
JP2000111004A (en) Operation method of boiler
JPH07251182A (en) Method of adjusting water treatment agent in-system concentration of industrial fluidic system
US8650935B2 (en) Method of TOC monitoring
SA517381910B1 (en) Apparatus for, system for and method of maintaining sensor accuracy
KR20170102545A (en) Apparatus, system and method for maintaining sensor accuracy
JP2007255838A (en) Boiler device
US20080250846A1 (en) Engine oil consumption measurement device and engine oil consumption measurement method
JP2007093128A (en) Vapor quality monitoring device
JP5277933B2 (en) Condensate quality monitoring device
US20190017698A1 (en) Saturated steam quality measurement system and method
JP4713905B2 (en) Membrane filtration device membrane breakage detection method and apparatus
KR100569761B1 (en) Automatic apparatus and method to diagnose and control water quality in boiler facilities
JP6421633B2 (en) Cooling method for heavy oil
US11307138B2 (en) Testing method for residual organic compounds in a liquid sample
JP5224045B2 (en) Vapor quality monitoring method and vapor quality monitoring device
KR101393136B1 (en) Testing system for deaerater and method thereof
CA2040114A1 (en) Method and system for continuously monitoring and controlling a process stream for dechlorination residual
JPH11264656A (en) Detection of impurity in liquid to be vaporized
JP3921752B2 (en) High temperature and high pressure boiler management method and apparatus
JPH10104220A (en) Combustion-oxidation type toc meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4900783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250