JP2007263674A - Crack detection sensor - Google Patents

Crack detection sensor Download PDF

Info

Publication number
JP2007263674A
JP2007263674A JP2006087821A JP2006087821A JP2007263674A JP 2007263674 A JP2007263674 A JP 2007263674A JP 2006087821 A JP2006087821 A JP 2006087821A JP 2006087821 A JP2006087821 A JP 2006087821A JP 2007263674 A JP2007263674 A JP 2007263674A
Authority
JP
Japan
Prior art keywords
detection sensor
crack detection
crack
sensor element
electrical resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006087821A
Other languages
Japanese (ja)
Inventor
Kazumi Matsuoka
和巳 松岡
Masahiro Yamamoto
正弘 山本
Kazuaki Kaya
和昭 賀屋
Yoshikazu Nakamura
嘉和 中村
Akira Miura
明 三浦
Keiichi Hino
啓一 日野
Atsushi Nogami
敦嗣 野上
Tomoyoshi Murata
朋美 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshikawa Kogyo Co Ltd
Nippon Steel Corp
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Yoshikawa Kogyo Co Ltd
Nippon Steel Corp
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshikawa Kogyo Co Ltd, Nippon Steel Corp, Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Yoshikawa Kogyo Co Ltd
Priority to JP2006087821A priority Critical patent/JP2007263674A/en
Publication of JP2007263674A publication Critical patent/JP2007263674A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crack detection sensor for reducing the crack keeping control cost of a steel structure to aim labor saving in consideration of the point at issue of a crack detection method due to a linear sensor or a crack detection tape being a conventional method because crack monitoring is important from an aspect of the maintenance and control of the steel structure, a measuring instrument using the crack detection sensor, a measuring method using the crack detection sensor and a manufacturing method of the crack detection sensor. <P>SOLUTION: The crack detection sensor is equipped with a sensor element of which the electric resistance value is increased by the occurrence and development of the crack of a structure, a measuring circuit for measuring the electric resistance value of the sensor element, an antenna for taking in drive power in a non-contact state from an external activator and a communication circuit for transmitting the electric resistance value to the activator in a non-contact state. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は,亀裂の発生が予測される監視対象物の表面に形成され,この監視対象物の亀裂の発生及びこの亀裂進展を監視する亀裂検出技術に関するものである。   The present invention relates to a crack detection technique that is formed on the surface of a monitoring object that is predicted to generate cracks, and that monitors the occurrence of cracks in the monitoring object and the progress of the cracks.

鋼構造物は,繰り返し荷重を受けることで引張荷重の作用する部位に疲労亀裂が発生する。初期段階では小さな亀裂でも,繰返し継続されることで成長し,最終的に大きな変形や脆性的破壊につながることがある。このような重大変状を未然に防止する目的で,変状部位別に許容される変状程度を超える恐れがあった場合には,補修や補強のために工事が行われている。通常,鋼構造物の重大変状は,複数年かけて進展するため変状発生時に直ちに補修や補強を行う必要はない。また,変状の中には進展が途中で止まる場合もあるため,補修や補強の必要性を判定するためには変状発生後の進展を監視する必要がある。   In steel structures, fatigue cracks occur at sites where tensile loads are applied due to repeated loads. Even in the initial stage, even a small crack can grow by being continued repeatedly, eventually leading to large deformation and brittle fracture. For the purpose of preventing such serious troubles, if there is a risk of exceeding the degree of deformation allowed for each deformed part, construction is being carried out for repair and reinforcement. Normally, the seriousness of steel structures progresses over several years, so there is no need to repair or reinforce immediately when deformation occurs. In addition, since the progress may stop in the middle of the deformation, it is necessary to monitor the progress after the occurrence of the deformation in order to determine the necessity of repair or reinforcement.

これまで,上記のような目的で鋼構造物の亀裂をモニタリングする手法が種々開発されている。例えば,特許文献1には,疲労亀裂が生じやすい領域に連続した1本の線状センサを波形形状に折り曲げて貼り付け,亀裂によるこのセンサの破断を常時通電計測しデータローガーに測定データを蓄積するとともに,遠隔地に無線伝送するシステムが記載されている。しかしながら,実際の構造物は構造が複雑で,実橋梁などでは疲労亀裂が懸念される箇所は1橋に通常は数十箇所もあり,夫々は離れている場合が多い。したがって1本の連続した線状センサを配置するには,無駄が多く施工も極めて煩雑となる。また,これらの多くの個所に設置されたセンサ測定を行い,データを記録保存するには100V電源等を必要とする計測機器を配置しなければならない。そしてこれら装置を常に維持管理していく必要もある。したがって,このような測定システムでは初期投資,ランニング経費ともにコスト高となり,広く採用されるには到っていない。   Until now, various methods for monitoring cracks in steel structures have been developed for the above purpose. For example, in Patent Document 1, one linear sensor continuous in an area where fatigue cracks are likely to occur is bent and pasted into a wave shape, and the breakage of this sensor due to cracks is constantly energized to measure data in a data logger. It describes a system that accumulates and transmits wirelessly to remote locations. However, actual structures are complicated in structure, and there are usually dozens of places where there are concerns about fatigue cracks in actual bridges, etc., which are often separated from each other. Therefore, placing one continuous linear sensor is wasteful and extremely complicated. In addition, in order to measure the sensors installed at these many locations and record and save the data, it is necessary to install measuring equipment that requires a 100V power supply. It is also necessary to maintain and manage these devices at all times. Therefore, in such a measurement system, both initial investment and running costs are high and have not been widely adopted.

また,特許文献2には,トンネルの亀裂が生じやすい領域に貼り付けで亀裂検出を容易に行うことを目的としたテープとして,通電層を上下2層の絶縁層で挟み込み被覆して,最下層には対象物に接着させるための接着層を有する亀裂検出テープ及び亀裂検出システムが記載されている。しかしながら,この亀裂検出テープでは亀裂の生じたことは検出できるが,生じた亀裂が進展し成長していく過程をモニタリングすることができない。既存の構造物では,多くの場合,すでに幾つかの亀裂は存在しており,この亀裂が時間経過ととともにどのように進展していくかが維持管理の大きな課題となっている。また,特許文献1と同様に,電源や計測機器を多数配置し,維持管理する必要があり,初期投資,ランニング経費ともにコスト高となってしまう。   Patent Document 2 discloses that a tape for the purpose of facilitating crack detection by being attached to an area where a tunnel is liable to crack is sandwiched between two upper and lower insulating layers to cover the bottom layer. Describes a crack detection tape and a crack detection system having an adhesive layer for bonding to an object. However, although this crack detection tape can detect the occurrence of cracks, it cannot monitor the process of crack growth and growth. In many cases, existing structures already have some cracks, and how these cracks develop over time is a major issue in maintenance. In addition, as in Patent Document 1, it is necessary to arrange and maintain a large number of power supplies and measuring devices, and the initial investment and running costs are high.

特開2004-75301号公報「構造物の疲労亀裂モニタリングシステム」JP 2004-75301 A "Fatigue Crack Monitoring System for Structures" 特開2005-91167号公報「亀裂検出テープ及び亀裂検出システム」78号公報Japanese Patent Laid-Open No. 2005-91167 “Crack Detection Tape and Crack Detection System” 78

鋼構造物の維持管理上で亀裂のモニタリングは重要な課題である.これを実施にするにあたり従来手段では,センサの取り付け,大掛かりなデータロガー,データ記録装置,通信装置,電源等の設置に多くの費用を要する。特にモニタリングすべき箇所が高所や狭隘な箇所での作業は一層困難なものとなり,遠隔地では電源の準備にも大きな費用負担となる。また,これら装置の長期にわたる維持管理費も多大な費用を要する。   Monitoring cracks is an important issue in the maintenance and management of steel structures. In order to implement this, the conventional means requires a lot of cost for installing the sensor, installing a large data logger, a data recording device, a communication device, and a power source. In particular, it becomes more difficult to work in places with high or narrow locations to be monitored, and in remote locations, power supply preparation is also a heavy burden. In addition, the maintenance costs for these devices over a long period of time are also significant.

このような状況に鑑み,本発明では鋼構造物の亀裂維持管理費低減に資する低コスト,省力化を狙いとした亀裂検出センサと,その亀裂検出センサを使用した亀裂測定装置及び亀裂測定方法,ならびに亀裂検出センサ用センサエレメントの製造方法を提供することを目的とする。   In view of such a situation, in the present invention, a crack detection sensor aiming at low cost and labor saving, which contributes to reduction in crack maintenance cost of a steel structure, a crack measuring device and a crack measuring method using the crack detection sensor, It is another object of the present invention to provide a method for manufacturing a sensor element for a crack detection sensor.

本発明では,以下のことを規定する。
(1)被亀裂検出構造物の亀裂発生及び進展により抵抗が変化するセンサエレメントと,当該センサエレメントの電気抵抗値を測定する測定回路と,外部のアクティベータから非接触で駆動電力を取り込むアンテナと,前記電気抵抗値を前記アクティベータに非接触で送信する通信回路とを備えることを特徴とする亀裂検出センサ。
In the present invention, the following is defined.
(1) A sensor element whose resistance changes due to the occurrence and development of a crack in the crack detection structure, a measurement circuit that measures the electrical resistance value of the sensor element, and an antenna that captures drive power from an external activator in a non-contact manner A crack detection sensor comprising: a communication circuit that transmits the electrical resistance value to the activator in a contactless manner.

(2)前記センサエレメントが,電気的絶縁部材で被覆された一本又は複数本の導体若しくは抵抗体と,当該導体又は抵抗体に接続された2箇所以上の電気抵抗測定用端子とを有することを特徴とする(1)に記載の亀裂検出センサ。 (2) The sensor element has one or a plurality of conductors or resistors covered with an electrically insulating member, and two or more electrical resistance measurement terminals connected to the conductors or resistors. The crack detection sensor as described in (1) characterized by these.

(3)前記一本又は複数本の導体若しくは抵抗体が,線状で,且つそれぞれの両端部に前記電気抵抗測定用端子を有し,前記測定回路は,前記それぞれの導体又は抵抗体の電気抵抗値を測定することを特徴とする(2)に記載の亀裂検出センサ。 (3) The one or more conductors or resistors are linear, and have the electric resistance measurement terminals at both ends, and the measurement circuit includes the electric current of each conductor or resistor. The crack detection sensor according to (2), wherein a resistance value is measured.

(4)前記導体又は抵抗体を複数本有し,当該複数本の導体若しくは抵抗体が,線状で,且つ,それぞれの片側一方の端部に前記電気抵抗測定用端子を有し,それぞれのもう一方の端部は互いに接続されて一つの共通の前記電気抵抗測定用端子を有することを特徴とする(2)に記載の亀裂検出センサ。 (4) having a plurality of the conductors or resistors, the plurality of conductors or resistors being linear and having the electrical resistance measurement terminal at one end of each side; The other end portion is connected to each other and has one common electric resistance measurement terminal. The crack detection sensor according to (2),

(5)前記導体又は抵抗体を複数本有し,当該複数本の導体又は抵抗体が,線状で,且つ,並列回路を形成し,前記並列回路の両端部に前記電気抵抗測定用端子を有することを特徴とする(2)に記載の亀裂検出センサ。 (5) Having a plurality of the conductors or resistors, the plurality of conductors or resistors are linear and form a parallel circuit, and the electrical resistance measurement terminals are provided at both ends of the parallel circuit. (2) The crack detection sensor according to (2).

(6)前記センサエレメントにおいて,前記導体又は抵抗体が帯状であり,当該帯状抵抗体の両端部に電気抵抗測定用端子を有することを特徴とする(2)に記載の亀裂検出センサ。 (6) The crack detection sensor according to (2), wherein, in the sensor element, the conductor or the resistor has a strip shape and has terminals for measuring electrical resistance at both ends of the strip resistor.

(7)前記導体若しくは抵抗体が導電塗料により形成されたことを特徴とする(1)〜(6)のいずれか1項に記載の亀裂検出センサ。 (7) The crack detection sensor according to any one of (1) to (6), wherein the conductor or the resistor is formed of a conductive paint.

(8)前記亀裂検出センサは,更に,前記亀裂検出センサ固有の識別コード,前記センサエレメント固有の識別コードの少なくともいずれかを記憶するメモリを有し,前記通信回路は,前記電気抵抗値に加えて,前記識別コードを送信する機能を有することを特徴とする(1)〜(7)のいずれか1項に記載の亀裂検出センサ。
(8) The crack detection sensor further includes a memory for storing at least one of an identification code unique to the crack detection sensor and an identification code unique to the sensor element, and the communication circuit adds to the electrical resistance value. The crack detection sensor according to any one of (1) to (7), wherein the crack detection sensor has a function of transmitting the identification code.

(9)(1)〜(8)のいずれか1項に記載の亀裂検出センサを用いた亀裂測定装置であって,前記亀裂検出センサと,当該亀裂検出センサに駆動電力を非接触で送付し,かつ,前記亀裂検出センサ固有の識別コード又は前記センサエレメント固有の識別コードの少なくともいずれかと前記電気抵抗値,又は前記電気抵抗値を非接触で受信する機能を有するアクティベータとを備えることを特徴とする亀裂測定装置。 (9) A crack measuring apparatus using the crack detection sensor according to any one of (1) to (8), wherein driving power is sent to the crack detection sensor and the crack detection sensor in a non-contact manner. And an activator having a function of receiving at least one of an identification code unique to the crack detection sensor or an identification code unique to the sensor element and the electrical resistance value or the electrical resistance value in a non-contact manner. A crack measuring device.

(10)(9)に記載の亀裂測定装置を用いた亀裂発生及び進展の測定方法であって,前記亀裂検出センサを構造物に貼り付け,当該亀裂検出センサに前記アクティベータより駆動電力を非接触で送信し,かつ,前記センサエレメントの電気抵抗値,又は電気抵抗値及び前記識別コードを,非接触で受信して,構造物の亀裂発生又は進展を測定することを特徴とする亀裂測定方法。 (10) A method for measuring crack initiation and propagation using the crack measuring apparatus according to (9), wherein the crack detection sensor is attached to a structure, and driving power is not applied to the crack detection sensor from the activator. A method for measuring cracks, characterized by transmitting the contact and receiving the electrical resistance value of the sensor element or the electrical resistance value and the identification code in a non-contact manner and measuring the occurrence or progress of cracks in the structure. .

(11)(7)に記載の亀裂検出センサにおけるセンサエレメントの製造方法であって,シート状の電気的絶縁部材上に電気抵抗測定端子を取付け,その上に所定の回路線部をくり貫いた遮蔽板を載置した後,導電塗料を塗布して前記回路線部に導体若しくは抵抗体を形成し,当該形成された導体若しくは抵抗体を更に電気的絶縁部材で被覆することを特徴とする亀裂検出センサ用センサエレメントの製造方法。 (11) A method for manufacturing a sensor element in a crack detection sensor according to (7), wherein an electrical resistance measurement terminal is mounted on a sheet-like electrical insulating member, and a predetermined circuit line portion is cut through the electrical resistance measurement terminal. After the shielding plate is placed, a conductive paint is applied to form a conductor or a resistor on the circuit line portion, and the formed conductor or resistor is further covered with an electrical insulating member. A method for manufacturing a sensor element for a detection sensor.

(12)(2)に記載の亀裂検出センサにおけるセンサエレメントの製造方法であって,シート状の電気的絶縁部材上に金属材料を接着し,その上に感光性レジストを塗布した後,所定の回路線部が描かれた光遮蔽板を介して,露光により前記感光性レジスト上に前記回路線部を露光部と未露光部に分けて転写させ,その後,露光部または未露光部の前記感光性レジストを除去し,更に,前記感光性レジストが除去されて露出した前記金属材料部をエッチング処理により取り除いて,前記導体又は抵抗体を形成し,当該導体又は抵抗体に電気抵抗測定端子を取付けた後,その上を電気的絶縁部材で被覆してセンサエレメントを形成することを特徴とする亀裂検出センサ用センサエレメントの製造方法。 (12) A method for manufacturing a sensor element in a crack detection sensor according to (2), wherein a metal material is bonded onto a sheet-like electrical insulating member, a photosensitive resist is applied thereon, The circuit line portion is transferred onto the photosensitive resist by exposure through the light shielding plate on which the circuit line portion is drawn, and then the exposed portion and the unexposed portion are transferred to the photosensitive resist. The conductive resist is removed, and the metal material portion exposed by removing the photosensitive resist is removed by etching to form the conductor or resistor, and an electrical resistance measurement terminal is attached to the conductor or resistor. Then, a sensor element is formed by covering the top with an electrically insulating member to form a sensor element.

本発明を用いることにより,高所や狭隘な個所での構造物の亀裂進展を非接触で容易に測定でき,また電源あるいは電池のない条件下でも長期にわたる測定が可能となることから,構造物の補修や保全などの管理を簡便に実施できる。
また,本発明の亀裂検出センサ,亀裂測定装置,亀裂測定方法,及び亀裂検出センサ用センサエレメントの製造方法は,低コストで多くの構造物の亀裂監視することを可能とするものである。
By using the present invention, it is possible to easily measure the crack growth of a structure at a high place or in a narrow place without contact, and it is possible to measure for a long time even under conditions without a power source or battery. Management such as repair and maintenance can be carried out easily.
The crack detection sensor, crack measurement device, crack measurement method, and method for manufacturing a sensor element for a crack detection sensor according to the present invention can monitor cracks in many structures at low cost.

本発明の亀裂検出センサは,被亀裂検出構造物の亀裂発生及び進展により電気抵抗値が増加するセンサエレメントと,当該センサエレメントの電気抵抗を測定する測定回路と,外部のアクティベータから非接触で駆動電力を取り込むアンテナと,前記電気抵抗を前記アクティベータに非接触で送信する通信回路とを備えたことを特徴とする。   The crack detection sensor of the present invention includes a sensor element whose electrical resistance value increases as a result of crack generation and development of a crack detection structure, a measurement circuit for measuring the electrical resistance of the sensor element, and an external activator in a non-contact manner. An antenna for taking in drive power and a communication circuit for transmitting the electrical resistance to the activator in a contactless manner are provided.

図1にその構成を示す。アクティベータ7の送受信回路9につながったアンテナ8から電磁波を受け取り,亀裂検出センサ1内の送受信アンテナ3により,電磁誘導によって起電力を得る。この電力を元に,測定回路4により,亀裂検出のセンサエレメント2の電気抵抗値を測定する。測定された測定値は通信回路5により送信用データに変換され,送受信アンテナ3を経由してアクティベータ7のアンテナ8に送られる。   Figure 1 shows the configuration. An electromagnetic wave is received from the antenna 8 connected to the transmission / reception circuit 9 of the activator 7, and an electromotive force is obtained by electromagnetic induction by the transmission / reception antenna 3 in the crack detection sensor 1. Based on this electric power, the measurement circuit 4 measures the electric resistance value of the sensor element 2 for detecting cracks. The measured value is converted into transmission data by the communication circuit 5 and sent to the antenna 8 of the activator 7 via the transmission / reception antenna 3.

ここで,送受信アンテナ3は,図1ではデータの送信と駆動電力用電磁力の受信を兼ねるアンテナを使用した例を示しているが,両者を別々に設けることもできる。また,送受信アンテナ3は,更に,アクティベータ7から送られる識別番号等のデータも受信可能なアンテナとすることもできる。   Here, FIG. 1 shows an example in which the antenna for transmitting and receiving data and reception of electromagnetic force for driving power is used as the transmitting and receiving antenna 3, but both can be provided separately. Further, the transmission / reception antenna 3 may be an antenna capable of receiving data such as an identification number sent from the activator 7.

アクティベータ7と亀裂検出センサ1の電力の送受信や通信に用いる交流の周波数は特に限定するものではないが,電波法などの規定により,125kHz帯や,13.56MHz帯を目的によって使うことができる。   The AC frequency used for power transmission / reception and communication between the activator 7 and the crack detection sensor 1 is not particularly limited, but the 125 kHz band and 13.56 MHz band can be used depending on the purpose according to regulations of the Radio Law.

本発明に用いるアクティベータは,亀裂検出センサに交流を送信して起電力を誘起し,亀裂検出センサより送信されたデータを読み取ることのできる機能を有するものであれば,特に限定するものではない。たとえば,市販品としては,125kHz帯用の吉川アールエフシステム社製のRX2100などが利用でき,13.56MHz帯では同じく吉川アールエフシステム社製のRX-TP-RW01などが適用できる。   The activator used in the present invention is not particularly limited as long as it has a function of transmitting an alternating current to the crack detection sensor to induce an electromotive force and reading data transmitted from the crack detection sensor. . For example, commercially available products such as the RX2100 manufactured by Yoshikawa AR System for the 125kHz band can be used, and the RX-TP-RW01 manufactured by Yoshikawa AR System can also be used for the 13.56MHz band.

なお,本発明における亀裂検出センサは,一体となった形でも,また,センサエレメントとアンテナ,通信回路,測定回路が分離してその間を電気的に接続したものでもどちらでも問題はない。以下に本発明の特徴について記す。   It should be noted that the crack detection sensor according to the present invention has no problem even if it is an integrated type, or the sensor element and the antenna, the communication circuit, and the measurement circuit are separated and electrically connected to each other. The features of the present invention will be described below.

まず,本発明の亀裂検出センサは,センサエレメントが,電気的絶縁部材で被覆された一本又は複数本の導体若しくは抵抗体と,当該導体又は抵抗体に接続された2箇所以上の電気抵抗測定用端子とを有することを特徴とする。   First, in the crack detection sensor of the present invention, the sensor element has one or more conductors or resistors covered with an electrically insulating member, and two or more electrical resistance measurements connected to the conductors or resistors. And a terminal for use.

図2(a)にその第1の実施形態の亀裂検出センサにおけるセンサエレメント2の例を示す。13は構造物の金属溶接部の一部を示す。図2(a)では,構造物13の表面に接着材等により貼りつけた電気的絶縁材11上に,電気回路を形成する1本の線状の導体もしくは抵抗体10を接着剤で固着し,その両端に電気抵抗測定用端子12を取り付け,形成された電気回路部を電気的絶縁部材11で覆ったものを示している。また,亀裂14がセンサエレメント2近傍にある状態も示している。この例では,例えば導体もしくは抵抗体10は,略U字状に形成され,2つの電気的測定用端子12が隣り合う位置に近接している。亀裂の発生進展によりまず電気的絶縁部材11が切断され,さらなる亀裂進展により電気的絶縁部材11上に固着された電気回路が切断されることになる。したがって,電気回路の両端部に取り付けられた電気抵抗測定用端子12を測定回路4に接続し抵抗を測定すれば,電気回路が切断されたことで抵抗が無限大へと変化し,亀裂が発生あるいは亀裂進展がセンサエレメント2位置まで達したことは容易に検出可能である。通常,電気回路長26は構造物の亀裂サイズ,施工性を考慮し,5mmから100mm程度が好ましい。   FIG. 2A shows an example of the sensor element 2 in the crack detection sensor of the first embodiment. Reference numeral 13 denotes a part of a metal weld of the structure. In FIG. 2A, a single linear conductor or resistor 10 forming an electric circuit is fixed with an adhesive on an electrical insulating material 11 adhered to the surface of the structure 13 with an adhesive or the like. The electrical resistance measuring terminals 12 are attached to both ends of the electrical circuit portion formed by covering the electrical circuit portion with the electrical insulating member 11. Further, a state in which the crack 14 is in the vicinity of the sensor element 2 is also shown. In this example, for example, the conductor or resistor 10 is formed in a substantially U shape, and the two electrical measurement terminals 12 are close to adjacent positions. The electrical insulation member 11 is first cut by the development of cracks, and the electrical circuit fixed on the electrical insulation member 11 is cut by further development of cracks. Therefore, if the electrical resistance measurement terminals 12 attached to both ends of the electrical circuit are connected to the measurement circuit 4 and the resistance is measured, the resistance is changed to infinity due to the electrical circuit being disconnected, and a crack is generated. Alternatively, it can be easily detected that the crack progress has reached the position of the sensor element 2. Usually, the electric circuit length 26 is preferably about 5 mm to 100 mm in consideration of the crack size and workability of the structure.

次に,本発明の第2の実施形態の亀裂検出センサは,そのセンサエレメントにおいて,一本又は複数本の導体若しくは抵抗体が,線状で,且つそれぞれの両端部に電気抵抗測定用端子を有し,測定回路がそれぞれの導体又は抵抗体の電気抵抗値を測定することを特徴とする。   Next, in the crack detection sensor of the second embodiment of the present invention, in the sensor element, one or a plurality of conductors or resistors are linear, and electric resistance measurement terminals are provided at both ends. And a measuring circuit measures an electric resistance value of each conductor or resistor.

この構造例を図2(b)に示す。この図では,電気回路を形成する複数本の線状の導体又は抵抗体10は,各々の両端部に電気抵抗測定用端子12を有し,これらが並走している。そして,それぞれの電気回路の電気抵抗値を測定する測定回路を別途準備することで,それぞれの抵抗値変化から亀裂発生と進展とを検出することができる。   An example of this structure is shown in FIG. In this figure, a plurality of linear conductors or resistors 10 forming an electric circuit have electric resistance measuring terminals 12 at both ends, and these are running side by side. Then, by separately preparing a measurement circuit for measuring the electric resistance value of each electric circuit, it is possible to detect crack generation and progress from the respective resistance value changes.

次に,本発明の第3の実施形態の亀裂検出センサは,そのセンサエレメントにおいて,複数本の導体若しくは抵抗体が,線状で,且つ,それぞれの片側一方の端部に電気抵抗測定用端子を有し,それぞれのもう一方の端部は互いに接続されて一つの共通の電気抵抗測定用端子を有することを特徴とする。   Next, in the crack detection sensor of the third embodiment of the present invention, in the sensor element, a plurality of conductors or resistors are linear, and an electric resistance measurement terminal at one end of each side. Each of the other ends is connected to each other and has one common electric resistance measurement terminal.

この構造例を図2(c)に示す。この図では,電気回路を形成する複数本の線状の導体又は抵抗体10が並走しており,それぞれの片側一方の端部に個別の電気抵抗測定用端子12を有し,もう一方の端部に,互いに接続された一つの共通の電気抵抗測定用端子16を有している。この構造とすることで,図2(b)の片側一方の複数の電気抵抗測定用端子を一つにまとめることができ配線が簡略化される。このセンサエレメント2を用いた測定では,複数の電気抵抗測定用端子12を測定回路4に接続し,共通の電気抵抗測定用端子16と各電気抵抗測定用端子12との間の抵抗を順次測定する手法をとる。このセンサエレメント2では亀裂14が進展に伴い順次回路を切断する形態となるので,亀裂進展がどこまで進展したのかを監視することが可能となる。したがって,電気回路の複数線の間隔を目的に合わせて適切に設定することで,一定の測定サイクル期間内に幾つの線の切断があったのかを知ることで亀裂進展速度を算定することが可能となる。   An example of this structure is shown in FIG. In this figure, a plurality of linear conductors or resistors 10 forming an electric circuit are running side by side, each having an individual electric resistance measuring terminal 12 at one end on one side, and the other side. One common electric resistance measuring terminal 16 connected to each other is provided at the end. With this structure, a plurality of electrical resistance measurement terminals on one side in FIG. 2B can be combined into one, and wiring can be simplified. In the measurement using the sensor element 2, a plurality of electrical resistance measurement terminals 12 are connected to the measurement circuit 4, and the resistance between the common electrical resistance measurement terminal 16 and each electrical resistance measurement terminal 12 is sequentially measured. Take a technique. In this sensor element 2, the crack 14 sequentially cuts the circuit as it progresses, so it is possible to monitor how far the crack has progressed. Therefore, it is possible to calculate the crack growth rate by knowing how many lines were cut within a certain measurement cycle period by appropriately setting the interval of multiple lines in the electric circuit according to the purpose. It becomes.

次に,本発明の第4の実施形態の亀裂検出センサは,そのセンサエレメントにおいて,複数本の導体又は抵抗体が,線状で,且つ,並列回路を形成し,当該並列回路の両端部に電気抵抗測定用端子を有することを特徴とする。   Next, in the crack detection sensor of the fourth embodiment of the present invention, in the sensor element, a plurality of conductors or resistors are linear and form a parallel circuit, and are formed at both ends of the parallel circuit. It has an electrical resistance measurement terminal.

この構造例を図3に示す。これでは,複数の線状の導体又は抵抗体10が並列に配列されており,その各線の片側端が一つの共通の電気抵抗測定用端子16に接続され,もう一方側も別の一つの共通の電気抵抗測定用端子16に接続されており,並列タイプの電気回路を形成している。このセンサエレメント2を用いた測定では,2つの共通の電気抵抗測定用端子16を測定回路4に接続し,並列電気回路の抵抗を測定する手法をとる。このセンサエレメント2では亀裂14が進展に伴い順次回路を切断する形態となるので,電気回路の抵抗が徐々に変化し,この変化から亀裂進展の状況を監視することが可能となる。したがって,電気回路の複数線の間隔を目的に合わせて適切に設定することで,一定の測定サイクル期間内に幾つの線の切断があったのかを知ることで亀裂進展速度を算定することが可能となる。通常,前記間隔は構造物の亀裂サイズから勘案して,鋼構造物の場合で0.5mmから10mm程度,コンクリート構造物の場合で5mmから50mm程度としておくことが好ましい。また,この図では,並列に配列された複数の線状の導体又は抵抗体10の長さ及び幅が同じとしているが,必ずしも長さ及び幅を同じとする必要はない。並列抵抗回路の切断による抵抗値変化が大きく変化させる等の目的に応じて長さ及び幅を変えることも有効である。   An example of this structure is shown in FIG. In this case, a plurality of linear conductors or resistors 10 are arranged in parallel, and one end of each line is connected to one common electrical resistance measurement terminal 16, and the other side is also another common. Are connected to the electric resistance measuring terminal 16 to form a parallel type electric circuit. In the measurement using the sensor element 2, two common electric resistance measurement terminals 16 are connected to the measurement circuit 4 to measure the resistance of the parallel electric circuit. In this sensor element 2, the circuit is sequentially cut as the crack 14 progresses, so that the resistance of the electric circuit gradually changes, and the progress of the crack can be monitored from this change. Therefore, it is possible to calculate the crack growth rate by knowing how many lines were cut within a certain measurement cycle period by appropriately setting the interval between multiple lines of the electric circuit according to the purpose. It becomes. In general, the distance is preferably about 0.5 mm to 10 mm in the case of a steel structure and about 5 mm to 50 mm in the case of a concrete structure in consideration of the crack size of the structure. In this figure, the lengths and widths of the plurality of linear conductors or resistors 10 arranged in parallel are the same, but the lengths and widths are not necessarily the same. It is also effective to change the length and width according to the purpose such as a large change in resistance value caused by cutting the parallel resistance circuit.

次に,本発明の第5の実施形態の亀裂検出センサは,そのセンサエレメントにおいて,当該導体又は抵抗体が帯状であり,当該帯状抵抗体の両端部に電気抵抗測定用端子を有することを特徴とする。   Next, a crack detection sensor according to a fifth embodiment of the present invention is characterized in that, in the sensor element, the conductor or the resistor has a strip shape, and has terminals for measuring electrical resistance at both ends of the strip resistor. And

この構造例を図4に示す。この例では,構造物表面に貼付された電気的絶縁部材11上に,電気回路を形成する帯状の導体又は抵抗体17を接着材で貼付し,その帯状の導体又は抵抗体17の2箇所(図では両端部)に電気抵抗測定用端子12を接続したセンサエレメント2を示す。このセンサエレメント2を用いた測定では,2つの電気抵抗測定用端子12を測定回路4に接続し,電気回路の抵抗を測定する手法をとる。導体もしくは抵抗体17が帯状であることで,構造物の表面に接着材等で位置決めが容易で固定しやすい利点がある。また,このセンサエレメント2を帯状の導体又は抵抗体17とすることで,亀裂14の進展に伴い帯状抵抗体17が徐々に切断されることとなり,これに伴って電気回路抵抗が徐々に大となる。この抵抗値から亀裂進展の状況を監視することも可能となる。事前に亀裂長さと電気回路抵抗との関係を検量線として求めておくことより定量的な亀裂進展評価が可能となる。なお,電気抵抗測定用端子12は必ずしも帯状の導体又は抵抗17の両端部とする必要はなく,亀裂発生により抵抗変化が検出される箇所であったらどこでもよい。   An example of this structure is shown in FIG. In this example, a strip-like conductor or resistor 17 that forms an electric circuit is pasted with an adhesive on the electrical insulating member 11 stuck on the surface of the structure, and two locations of the strip-like conductor or resistor 17 ( The sensor element 2 is shown with electrical resistance measuring terminals 12 connected to both ends in the figure. In the measurement using the sensor element 2, two electric resistance measurement terminals 12 are connected to the measurement circuit 4 to measure the resistance of the electric circuit. Since the conductor or resistor 17 has a strip shape, there is an advantage that it can be easily positioned and fixed with an adhesive or the like on the surface of the structure. Further, by using the sensor element 2 as a strip-shaped conductor or resistor 17, the strip-shaped resistor 17 is gradually cut with the progress of the crack 14, and accordingly, the electric circuit resistance gradually increases. Become. It is also possible to monitor the progress of crack growth from this resistance value. By obtaining the relationship between crack length and electrical circuit resistance as a calibration curve in advance, quantitative crack growth evaluation becomes possible. The electrical resistance measurement terminal 12 is not necessarily required to be a strip-shaped conductor or both ends of the resistor 17, and may be anywhere as long as a change in resistance is detected due to the occurrence of a crack.

次に,本発明の第6の実施形態の亀裂検出センサは,そのセンサエレメントにおいて,当該導体若しくは抵抗体が導電塗料により形成されたことを特徴とする。センサエレメントの導電体もしくは抵抗体に導電塗料を用いることで,構造物の表面に塗料等で形成した電気的絶縁層の上に導電塗料を刷毛や筆等で撫でつけることで構造物表面の凸凹状態にあわせて自在に電気回路を形成させ得ることが可能となる。ここで導電塗料とは,アクリル樹脂,ポリウレタン樹脂,エポキシ樹脂,フェロロエラストマー,セルロース,ケイ酸カリウム,PVB,PVC等のバインダーに導電粒子としての黒鉛,カーボンブラック,ニッケル,アルミニウム,銀,銅,銀メッキ銅等を加えて混練したものである。特に好ましくは,アクリル樹脂にニッケル粒子を混練した導電塗料が常温硬化,耐熱温度も高く扱いやすい。   Next, a crack detection sensor according to a sixth embodiment of the present invention is characterized in that the conductor or resistor is formed of a conductive paint in the sensor element. By using a conductive paint for the conductor or resistor of the sensor element, the conductive surface of the structure can be bumped with a brush or brush on the electrically insulating layer formed of the paint on the surface of the structure. It is possible to freely form an electric circuit according to the state. Here, the conductive paint is an acrylic resin, polyurethane resin, epoxy resin, ferroelastomer, cellulose, potassium silicate, PVB, PVC, etc. binder as conductive particles such as graphite, carbon black, nickel, aluminum, silver, copper, Silver-plated copper or the like is added and kneaded. Particularly preferably, a conductive paint obtained by kneading nickel particles in an acrylic resin is cured at room temperature and has a high heat resistance and is easy to handle.

以上の図2,図3,図4で示した亀裂検出センサのセンサエレメントは,いずれも単一のセンサエレメントのみを示している。しかしながら構造物によっては,数十センチの範囲にわたり亀裂検出を行う必要もある。また数箇所をまとめて亀裂監視が必要とされる場合もある。このような目的で,2端を有するセンサエレメントを複数個用いて,亀裂監視する実施形態の例を図5に示す。図5(a)には,縦にした4個のセンサエレメント2を横方向に並列して一定間隔に配置させ,センサエレメント2の一方側の各一端を共通の電気抵抗測定用端子16に接続し,もう一方側の各一端を個別の電気抵抗測定用端子12に接続している例を示す。この図では,既に存在する亀裂14を中間に置くようにセンサエレメント2が配置されている。したがって,亀裂が成長しセンサエレメント間隔を超えた時点で電気回路に切断が生じ,一定の亀裂長の監理に活用することができる。通常,このセンサエレメントの間隔は,構造物の亀裂の監理限界長を考慮して,10mmから100mmとするのが好ましい。   All of the sensor elements of the crack detection sensor shown in FIGS. 2, 3, and 4 show only a single sensor element. However, some structures require crack detection over a range of tens of centimeters. In some cases, crack monitoring is required at several locations. For this purpose, FIG. 5 shows an example of an embodiment in which a plurality of sensor elements having two ends are used to monitor cracks. In FIG. 5A, four vertical sensor elements 2 are arranged in parallel in the horizontal direction at regular intervals, and one end of one side of the sensor element 2 is connected to a common electrical resistance measurement terminal 16. An example is shown in which one end of the other side is connected to an individual electrical resistance measurement terminal 12. In this figure, the sensor element 2 is arranged so as to place an existing crack 14 in the middle. Therefore, when the crack grows and the sensor element interval is exceeded, the electric circuit is cut off, which can be used for the management of a certain crack length. In general, the distance between the sensor elements is preferably 10 mm to 100 mm in consideration of the supervision limit length of cracks in the structure.

図5(b)には,横にした4個のセンサエレメント2を横方向に一列に配置させ,センサエレメント2の一方側の各一端を共通の電気抵抗測定用端子16に接続し,もう一方側の各一端をそれぞれ個別の電気抵抗測定用端子12に接続している例を示す。例えば,亀裂監視区間長を40cmとした場合には,電気回路長10cmのセンサエレメント2を4枚用いることになる。この配置は,亀裂が監理区間のどの場所から発生するのか予見しがたい場合に有効となる。   In FIG. 5 (b), four sensor elements 2 arranged in a horizontal direction are arranged in a row in the horizontal direction, one end of one side of the sensor element 2 is connected to a common electrical resistance measurement terminal 16, and the other side. An example in which one end of each side is connected to an individual electrical resistance measurement terminal 12 is shown. For example, when the crack monitoring section length is 40 cm, four sensor elements 2 having an electric circuit length of 10 cm are used. This arrangement is effective when it is difficult to predict where the crack will occur in the control section.

図5(c)には,縦にした4個のセンサエレメント2を横方向に並列して一定間隔に配置させ,センサエレメント2の一方側の各一端を共通の電気抵抗測定用端子16に接続し,もう一方側の各一端も別の一つの共通の電気抵抗測定用端子16に接続している例を示す。この図では,既に存在する亀裂14を中間に置くようにセンサエレメント2が配置されている。したがって,亀裂が成長しセンサエレメント間隔を超えた時点で電気回路に切断が生じ,この抵抗変化により一定の亀裂長の監理に活用することができる。   In FIG. 5C, four vertical sensor elements 2 are arranged in parallel in the horizontal direction at regular intervals, and one end of one side of the sensor element 2 is connected to a common electrical resistance measurement terminal 16. An example in which each one end on the other side is also connected to another common electric resistance measurement terminal 16 is shown. In this figure, the sensor element 2 is arranged so as to place an existing crack 14 in the middle. Therefore, when the crack grows and the sensor element interval is exceeded, the electric circuit is cut, and this resistance change can be used to manage a certain crack length.

図5(d)には,横にした4個のセンサエレメント2を横方向に一列に配置させ,各センサエレメント2の一方側の各一端を共通の電気抵抗測定用端子16に接続し,もう一方側の各一端をそれぞれ個別の電気抵抗測定用端子12に接続している例を示す。例えば,亀裂監視区間長を40cmとした場合には,電気回路長10cmのセンサエレメント2を4枚用いることになる。この配置は,亀裂が監理区間のどの場所から発生するのか予見しがたい場合に有効となる。ここでセンサエレメントの個数はいずれも4個の例を示したが,目的に応じてさらに多くすることも少なくすることも有効となる。   In FIG. 5 (d), four horizontal sensor elements 2 are arranged in a row in the horizontal direction, one end of each side of each sensor element 2 is connected to a common electric resistance measurement terminal 16, An example is shown in which each one end on one side is connected to an individual electrical resistance measurement terminal 12. For example, when the crack monitoring section length is 40 cm, four sensor elements 2 having an electric circuit length of 10 cm are used. This arrangement is effective when it is difficult to predict where the crack will occur in the control section. In this example, the number of sensor elements is four, but it is effective to increase or decrease the number according to the purpose.

以上図5では,複数のセンサエレメントを並列もしくは一列に配置する例を示したが,本発明の亀裂検出センサは,そのセンサエレメントの複数個を積層して用いることもできる。その例を図6に示す。この例では,例えば2つの各センサエレメント2が,複数本の直線状の導体又は抵抗体10を平行に配置した構成を有し,これらの2つのセンサエレメント2が,互いの導体又は抵抗体10同士が直角に格子状に交わるように,上下に積層配置されている。ここで、格子点における抵抗体10同士は互いに絶縁されている。この配置とすることで構造物表面で2次元的に進展する亀裂がどのような進展径路をたどるかを,2方向に配置したセンサエレメントの各々の切断個所を特定し追跡することで検出することで可能となる。このようなセンサエレメントは,構造物の亀裂発生領域はおおよそ特定できるが,詳細な位置および向きは特定できない場合に有効である。   Although FIG. 5 shows an example in which a plurality of sensor elements are arranged in parallel or in a row, the crack detection sensor of the present invention can be used by stacking a plurality of sensor elements. An example is shown in FIG. In this example, for example, each of the two sensor elements 2 has a configuration in which a plurality of linear conductors or resistors 10 are arranged in parallel, and these two sensor elements 2 are connected to each other's conductors or resistors 10. They are stacked one above the other so that they intersect at right angles in a grid pattern. Here, the resistors 10 at the lattice points are insulated from each other. By using this arrangement, it is possible to detect what kind of propagation path the crack that propagates two-dimensionally on the surface of the structure will follow by identifying and tracking each cutting point of the sensor elements arranged in two directions. Is possible. Such a sensor element is effective when the crack occurrence region of the structure can be roughly specified, but the detailed position and orientation cannot be specified.

以上,図2,図3及び図4に説明してきたセンサエレメントは,亀裂が進展することで電気回路が直接切断される原理を応用した例であるが,必ずしも電気回路が亀裂により直接切断される必要はない。亀裂発生が予見される近くにセンサエレメントを貼り付けておくことで,亀裂発生もしくは応力状態の変化により歪に変化が生じ電気回路の抵抗が変化する原理によっても亀裂発生や更には部材変状が検出可能である。   As described above, the sensor element described in FIGS. 2, 3 and 4 is an example of applying the principle that the electric circuit is directly cut by the progress of the crack, but the electric circuit is not necessarily cut directly by the crack. There is no need. By attaching the sensor element in the vicinity where cracks are expected to occur, cracks or even member deformations may occur depending on the principle that changes in strain occur due to cracks or changes in the stress state and the resistance of the electric circuit changes. It can be detected.

次に本発明のセンサエレメントに用いる材料について説明する。本発明の導体とは,比抵抗が1.0×10-6Ωcmから30.0×10-6Ωcm程度の物質を意味しており,抵抗体とは,導体以上で106Ωcmの程度以下の比抵抗を有するもの意味している。導体としては,金属材料が加工等が容易で,中でも銅および銅合金が最も適当であるが,アルミニウム,鉄,亜鉛,錫,鉛,黄銅,白金,銀,ニッケル,及びこれら合金でもよい。抵抗体としては,ニッケル,ニクロム,マンガン,アンチモン,およびこれらの合金と先に述べた導電塗料が適用できるが,銅ニッケル合金,ニクロム系合金が一般的で入手も容易であるため好ましい。 Next, materials used for the sensor element of the present invention will be described. The conductor of the present invention means a substance having a specific resistance of about 1.0 × 10 −6 Ωcm to about 30.0 × 10 −6 Ωcm, and the resistor is a ratio of about 10 6 Ωcm or more above the conductor. It means having resistance. As the conductor, a metal material is easy to process, and copper and copper alloy are most suitable, but aluminum, iron, zinc, tin, lead, brass, platinum, silver, nickel, and alloys thereof may be used. As the resistor, nickel, nichrome, manganese, antimony, and alloys thereof and the above-described conductive paints can be applied. However, copper nickel alloys and nichrome alloys are preferable because they are common and easily available.

次にセンサエレメントの導体もしくは抵抗体を電気的に絶縁被覆する材料(電気的絶縁部材11)もしくは構造物とセンサエレメントを同じく電気的絶縁する為に用いる絶縁材料について記す。絶縁材としては,特に規定するものではないが比抵抗が10Ωcm以上の物質で,ある程度弾性があり,溶接部等の凹凸のある部位の表面に貼付することができる材料が好ましく,例としてエポキシ樹脂,ウレタン樹脂,アクリル樹脂,ポリイミド樹脂,フェノール樹脂,ポリエステル樹脂,シリコン樹脂,ポリエチレン樹脂,エンビ,テフロン,生ゴム,軟質ゴム,ブチルゴム,ネオプレーンゴムを用いることができる。 Next, a material (electrical insulating member 11) for electrically insulating and covering the conductor or resistor of the sensor element or an insulating material used for electrically insulating the structure and the sensor element will be described. The insulating material is not particularly specified, but is preferably a material having a specific resistance of 10 6 Ωcm or more, having a certain degree of elasticity, and capable of being affixed to the surface of uneven parts such as welds. Epoxy resin, urethane resin, acrylic resin, polyimide resin, phenol resin, polyester resin, silicon resin, polyethylene resin, enbi, teflon, raw rubber, soft rubber, butyl rubber, neoprene rubber can be used.

また,塗装として用いる場合にはエポキシ樹脂,ウレタン樹脂,アクリル樹脂等の塗装を用いることができる。中でも,シート状にして用いる場合にはエポキシ樹脂,ポリイミド樹脂が入手しやすいため好ましく,塗装として用いる場合は,エポキシ樹脂,アクリル樹脂塗装が扱いやすいため好ましい。   Moreover, when using as a coating, coatings, such as an epoxy resin, a urethane resin, an acrylic resin, can be used. Among them, when used in the form of a sheet, an epoxy resin and a polyimide resin are preferable because they are easily available, and when used as a coating, an epoxy resin and an acrylic resin coating are preferable because they are easy to handle.

次に本発明の亀裂検出センサに係る一実施形態として,複数の亀裂検出センサを使用する場合に備えて,亀裂検出センサ内に,識別用のコード(以下,「識別コード」と呼称する)をメモリする機能を有し,更に,この識別コードをアクティベータへ非接触で送信する機能を有する例について説明する。   Next, as an embodiment of the crack detection sensor of the present invention, an identification code (hereinafter referred to as “identification code”) is provided in the crack detection sensor in preparation for using a plurality of crack detection sensors. An example will be described which has a function of storing data and further has a function of transmitting this identification code to the activator in a non-contact manner.

これにより,複数の亀裂検出センサを使用した際には,アクティベータへ送信される電気抵抗値のデータが,どの亀裂検出センサから送られたデータかを,識別することが可能となる。   As a result, when a plurality of crack detection sensors are used, it is possible to identify which crack detection sensor the data of the electrical resistance value transmitted to the activator is transmitted from.

識別コードのメモリ機能としては,例えば,各亀裂検出センサの通信回路内に16進数で8桁以上の識別コードを記憶する回路を保有させることができる。このことで,複数設置された亀裂検出センサの個々の測定値を個別に識別することが可能となる。この場合,具体的には予め設定した識別コードをアクティベータの送受信アンテナを介して電磁波として送信し,これを各亀裂検出センサの送受信アンテナで受信し,通信回路内のメモリに記憶させる。   As a memory function of the identification code, for example, a circuit for storing an identification code of 8 digits or more in hexadecimal can be held in the communication circuit of each crack detection sensor. This makes it possible to individually identify individual measurement values of a plurality of crack detection sensors installed. In this case, specifically, an identification code set in advance is transmitted as an electromagnetic wave via the transmission / reception antenna of the activator, which is received by the transmission / reception antenna of each crack detection sensor and stored in the memory in the communication circuit.

また,別の実施形態として,図7に示すように,亀裂検出センサ1内に複数のセンサエレメント27を設けることもできる。この場合は,識別コードを,複数のセンサエレメント27それぞれに割り当てるとよく,それぞれのセンサエレメント27をチャンネル毎に識別コードを有するマルチプレクサ28に接続し,識別コードをそれぞれのセンサエレメント27に割り振ることで,センサエレメント27の識別コードを決めることもできる。   As another embodiment, as shown in FIG. 7, a plurality of sensor elements 27 can be provided in the crack detection sensor 1. In this case, an identification code may be assigned to each of the plurality of sensor elements 27. Each sensor element 27 is connected to a multiplexer 28 having an identification code for each channel, and the identification code is assigned to each sensor element 27. The identification code of the sensor element 27 can also be determined.

そして,その識別コードと電気抵抗値を同時に送信することで,それぞれのセンサエレメント27の電気抵抗値を識別することが可能となる。図7においては,4個のセンサエレメント27をマルチプレクサ28に接続している。マルチプレクサ28は,それぞれのセンサエレメント27を順次切り換えることで,センサエレメント27毎に測定回路4で測定した電気抵抗値と認識コードを,送受信アンテナ3を介して通信回路5からアクティベータに送信する。   And it becomes possible to identify the electrical resistance value of each sensor element 27 by transmitting the identification code and the electrical resistance value at the same time. In FIG. 7, four sensor elements 27 are connected to a multiplexer 28. The multiplexer 28 sequentially switches each sensor element 27 to transmit the electrical resistance value and the recognition code measured by the measurement circuit 4 for each sensor element 27 from the communication circuit 5 to the activator via the transmission / reception antenna 3.

これらの識別コードは,予め例えば工場出荷の段階で亀裂検出センサ1内にメモリしておくことも出来るが,当該センサを被測定構造物にセットした後に,アクティベータからデータを送信し,亀裂検出センサ1の通信回路5内のメモリに記憶させることもできる。   These identification codes can be stored in advance in the crack detection sensor 1 at the time of factory shipment, for example, but after the sensor is set on the structure to be measured, data is transmitted from the activator to detect cracks. It can also be stored in a memory in the communication circuit 5 of the sensor 1.

更には,亀裂検出センサ毎に識別コードを割り当て,更に,亀裂検出センサ内に複数存在する各センサエレメントにも識別コードを割り当てるといった組み合わせも可能である。   Furthermore, a combination of assigning an identification code to each crack detection sensor and further assigning an identification code to each sensor element existing in the crack detection sensor is also possible.

また,本発明の亀裂測定装置に係る一実施形態を説明する。この装置は,前記亀裂検出センサと,当該センサに駆動電力を非接触で送付し,かつ,センサエレメントを構成する導体もしくは抵抗体それぞれの電気抵抗値,さらにセンサエレメント自身の識別コードを非接触で受け取る機能を有するアクティベータとにより構成される。   An embodiment according to the crack measuring apparatus of the present invention will be described. This device sends the drive power to the crack detection sensor and the sensor in a non-contact manner, and the electrical resistance value of each conductor or resistor constituting the sensor element and the identification code of the sensor element itself in a non-contact manner. And an activator having a receiving function.

さらに,本発明の亀裂測定装置を用いた亀裂測定方法に係る一実施形態を説明する。本実施形態は,受動及び非接触型の亀裂検出装置を用いた亀裂の検出方法であって,前記亀裂検出センサを構造物に貼り付け,当該センサにアクティベータより駆動電力を非接触で送付し,かつ,センサエレメントを構成する導体もしくは抵抗体のそれぞれの電気抵抗値を非接触で受け取ることで構造物の亀裂を検出することを特徴とする受動及び非接触型の亀裂検出方法である。   Furthermore, an embodiment according to a crack measuring method using the crack measuring apparatus of the present invention will be described. The present embodiment is a crack detection method using a passive and non-contact type crack detection device, wherein the crack detection sensor is attached to a structure, and driving power is sent to the sensor in a non-contact manner from an activator. In addition, the present invention is a passive and non-contact type crack detection method for detecting a crack in a structure by receiving each electrical resistance value of a conductor or a resistor constituting a sensor element in a non-contact manner.

さらに本発明では,亀裂検出センサにおけるセンサエレメントの第一の製造方法として,シート状の電気的絶縁部材上に電気抵抗測定端子を取付け,その上に所定の回路線部をくり貫いた遮蔽板を載置した後,導電塗料を塗布して前記導体若しくは抵抗体を形成し,当該形成された導体若しくは抵抗体を電気的絶縁部材で被覆することを特徴とする。   Furthermore, in the present invention, as a first method of manufacturing a sensor element in a crack detection sensor, an electrical resistance measurement terminal is attached on a sheet-like electrical insulation member, and a shield plate that is cut through a predetermined circuit line portion thereon is provided. After the mounting, a conductive paint is applied to form the conductor or resistor, and the formed conductor or resistor is covered with an electrically insulating member.

図8に製造方法の例を示す。この例では,先に説明した電気的絶縁部材11からなるシート(図8(a))上に電気抵抗測定用端子12を取付け(図8(b)),その上に電気回路の回路線部をくり貫いた遮蔽板19を置いて(図8(c)),導電塗料20を塗布することで,測定回路を形成し(図8(d)),さらに電気回路上層に表面絶縁シート21を取り付けることでセンサエレメントを形成する(図8(e))方法の手順を示す。ここで遮断板19は,紙,各種プラスチック類,ビニールシート類が用いられる。   FIG. 8 shows an example of the manufacturing method. In this example, the electrical resistance measuring terminal 12 is mounted on the sheet (FIG. 8A) made of the electrical insulating member 11 described above (FIG. 8B), and the circuit line portion of the electrical circuit is mounted thereon. A shield plate 19 that has been cut through is placed (FIG. 8 (c)), and a conductive circuit 20 is applied to form a measurement circuit (FIG. 8 (d)). Further, a surface insulating sheet 21 is formed on the upper layer of the electric circuit. A procedure of a method of forming a sensor element by attaching (FIG. 8E) is shown. Here, the blocking plate 19 is made of paper, various plastics, or vinyl sheets.

さらに本発明では,亀裂検出センサにおけるセンサエレメントの第二の製造方法として,シート状の前記電気的絶縁部材上に,導体又は抵抗体を形成するようになる金属材料を接着し,さらにその上に感光性レジストを塗布した後,所定の回路線部が描かれた光遮蔽板を介して,露光により前記感光性レジスト上に前記回路線部を露光部と未露光部に分けて転写させ,その後,露光部または未露光部の前記感光性レジストを除去し,更に,前記感光性レジストが除去されて露出した前記金属材料部をエッチング処理により取り除いて,前記導体又は抵抗体を形成し,当該導体又は抵抗体に電気抵抗測定端子を取付け,さらにその上を電気的絶縁部材で被覆してセンサエレメントを形成することを特徴とする。   Further, in the present invention, as a second manufacturing method of the sensor element in the crack detection sensor, a metal material that forms a conductor or a resistor is bonded on the sheet-like electrical insulating member, and further on the adhesive. After coating the photosensitive resist, the circuit line portion is transferred onto the photosensitive resist by exposure through a light shielding plate on which a predetermined circuit line portion is drawn, and then transferred to an exposed portion and an unexposed portion. , Removing the photosensitive resist in the exposed part or the unexposed part, and further removing the metal material part exposed by removing the photosensitive resist by an etching process to form the conductor or resistor. Alternatively, the sensor element is formed by attaching an electrical resistance measurement terminal to the resistor and further covering the terminal with an electrical insulating member.

上記のシート状の前記電気的絶縁部材上に金属材料を接着する方法としては,例えば,電気的絶縁材に熱硬化樹脂を用い,ロール等で金属材料とを圧着する方法が適用できる。   As a method for adhering a metal material onto the sheet-like electrical insulating member, for example, a method of using a thermosetting resin as an electrical insulating material and pressing the metal material with a roll or the like can be applied.

図9に製造方法の例を示す。この例では,先に説明した電気的絶縁部材11からなるシート(図9(a))上に金属材料22を接着し(図9(b)),その上に感光性レジスト23を塗布した後(図9(c)),電気回路の回路線部を描いた光遮蔽板19(回路線部以外の部分を光透過性とする)をその上部にセットして(図9(d)),露光により回路線部以外の前記感光性レジスト部を溶解性に変質させ(図9(e))(24は溶解性に変質した感光性レジスト部を示す。),その後,溶解性の前記感光性レジストを現像液で除去し,更にその下層部金属材料をエッチング法等で取り除き,測定回路25を形成し(図9(f)),そして回路端に電気抵抗測定用端子12を取り付け(図9(g)),さらには電気回路表層に電気的絶縁部材である表面絶縁シート21を取り付ける(図9(h))ことでセンサエレメントを形成する。   FIG. 9 shows an example of the manufacturing method. In this example, after a metal material 22 is bonded onto the sheet (FIG. 9A) made of the electrical insulating member 11 described above (FIG. 9B), a photosensitive resist 23 is applied thereon. (FIG. 9 (c)), a light shielding plate 19 depicting a circuit line portion of an electric circuit (a portion other than the circuit line portion is made light transmissive) is set on the upper portion (FIG. 9 (d)), The photosensitive resist portion other than the circuit line portion is altered to be soluble by exposure (FIG. 9E) (24 indicates the photosensitive resist portion altered to be soluble), and then the soluble photosensitive property. The resist is removed with a developer, and the lower layer metal material is removed by an etching method or the like to form a measurement circuit 25 (FIG. 9 (f)), and an electric resistance measurement terminal 12 is attached to the circuit end (FIG. 9). (G)) Furthermore, a surface insulating sheet 21 as an electrically insulating member is attached to the surface of the electric circuit. That (Fig. 9 (h)) to form a sensor element by.

これは,露光によって,回路線部以外の光の照射を受けた部分の感光性レジストが溶解性となり除去されるポジ型の製造例であるが,その逆に回路線部を光透過性を有する光遮蔽板とし,回路線部以外の光の照射を受けない部分が除去されるネガ型であってもよい。   This is a positive type manufacturing example in which the photosensitive resist in the portion other than the circuit line portion irradiated with light is dissolved and removed by exposure, but conversely, the circuit line portion has light transmittance. The light shielding plate may be a negative type in which a portion other than the circuit line portion that is not irradiated with light is removed.

図9に示す金属材料22としては,ステンレス材料,銅,アルミおよびこれらの合金が一般的であるが,鉄ニッケル合金,鉄コバルトニッケル合金,銀,モリブデン,タングステン,チタン等でもよい。感光性レジスト23は,一般にはフォトレジストとも呼ばれ,ノボラック型フェノール樹脂に感光剤と有機溶剤を混合した溶液を用いることができる。ここで光遮断板19は,フォトマスクとも呼ばれ,回路が焼き込まれた写真フィルムが用いられる。現像液としては,アンモニウム塩溶液を用い,エッチングでは,ヨウ素,ヨウ化アルカリと有機溶媒との混合液を用いるのが一般的であるが,目的に応じて塩酸,硝酸の混合液を用いることもできる。   As the metal material 22 shown in FIG. 9, stainless steel material, copper, aluminum and alloys thereof are generally used, but iron nickel alloy, iron cobalt nickel alloy, silver, molybdenum, tungsten, titanium and the like may be used. The photosensitive resist 23 is generally called a photoresist, and a solution obtained by mixing a novolac type phenol resin with a photosensitive agent and an organic solvent can be used. Here, the light blocking plate 19 is also called a photomask, and a photographic film in which a circuit is burned is used. As a developer, an ammonium salt solution is generally used, and in etching, a mixed solution of iodine, alkali iodide and an organic solvent is generally used. However, a mixed solution of hydrochloric acid and nitric acid may be used depending on the purpose. it can.

亀裂検出センサを貼り付ける構造物としては,亀裂により劣化が進むことで問題が生じる怖れのある構造物で,橋,道路,トンネルなどの陸上構造物や,ビル,体育館,競技場などの建築物,河川,港湾,護岸などの海洋・水上構造物,に代表される社会資本や船舶,発電所,工場などの民間資本による構造物などが対象となる。これらの構造物に貼り付ける方法としては,接着剤や粘着材による貼り付け,電気的絶縁を考慮したボルト接合や,構造物に直接埋め込む方法などが適宜選ばれる。取り付ける位置としては,亀裂が懸念される部位で,変動応力が高い,応力集中が高い,変形が大きい部位,また部材を溶接,圧接した部位,コンクリート等のうち継ぎ目等が適当である。実際に測定状況を以下に示す。   The structure to which the crack detection sensor is attached is a structure that may cause problems due to deterioration due to cracks, such as land structures such as bridges, roads, and tunnels, and buildings such as buildings, gymnasiums, and stadiums. This includes social capital represented by water, rivers, harbors, seawalls, etc., and private capital such as ships, power plants and factories. As a method for affixing to these structures, a method such as affixing with an adhesive or a sticking material, a bolt connection considering electric insulation, or a method of directly embedding in the structure is appropriately selected. As for the attachment position, the part where the crack is concerned, the fluctuating stress is high, the stress concentration is high, the part where the deformation is large, the part where the member is welded and pressed, the joint of the concrete, etc. are suitable. Actual measurement conditions are shown below.

図13,図14は,亀裂検出センサを設置してから亀裂が進行した時点でアクティベータにより抵抗測定を行う作業員の様子である。図13は,橋梁の溶接部に亀裂検出センサ1を設置し手に持ったアクティベータ7で測定している例で,図14は,回転体内部の溶接部に亀裂検出センサ1を設置し,これも手に持ったアクティベータ7で測定している例である。いずれも亀裂検出センサ1とアクティベータ7の距離は,使用する周波数や周りの電波の状況などにより異なるが,通常は20cmから50cmである。   FIG. 13 and FIG. 14 show the state of an operator who performs resistance measurement with an activator when a crack progresses after the crack detection sensor is installed. FIG. 13 shows an example in which the crack detection sensor 1 is installed in the welded portion of the bridge and measurement is performed by the activator 7 held in the hand. FIG. 14 shows the crack detection sensor 1 installed in the welded portion inside the rotating body. This is also an example in which measurement is performed with the activator 7 held in hand. In either case, the distance between the crack detection sensor 1 and the activator 7 varies depending on the frequency used and the situation of surrounding radio waves, but is usually 20 to 50 cm.

以上,添付図面を参照しながら本発明の好適な実施の形態について説明したが,本発明はかかる例に限定されない。当業者であれば,特許請求の範囲に記載された思想の範疇内において,各種の変更例または修正例に相到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiment of the present invention has been described above with reference to the accompanying drawings, but the present invention is not limited to such an example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the spirit described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

本発明の亀裂検出センサの機能を確認するために実施した疲労試験の概要を記す。図10には,鋼構造物の一部を模擬した疲労試験体29を示す。主部材30に面外のガセット31が溶接にて接合されている。疲労試験体29の寸法は,長さ500mm,板幅70mm,板厚15mm,ガセット31の寸法は,長さ70mm,板幅50mm,板厚10mmである。32はセンサ貼り付け部を示す。図11には,図10のガセット31の溶接部33の止端に疲労亀裂の監視を目的に本発明のセンサエレメント2を添付した図を示す。   The outline of the fatigue test conducted in order to confirm the function of the crack detection sensor of this invention is described. FIG. 10 shows a fatigue test body 29 that simulates a part of a steel structure. An out-of-plane gusset 31 is joined to the main member 30 by welding. The fatigue test body 29 has a length of 500 mm, a plate width of 70 mm, a plate thickness of 15 mm, and the gusset 31 has a length of 70 mm, a plate width of 50 mm, and a plate thickness of 10 mm. Reference numeral 32 denotes a sensor attaching portion. FIG. 11 shows a diagram in which the sensor element 2 of the present invention is attached to the toe of the welded portion 33 of the gusset 31 of FIG. 10 for the purpose of monitoring fatigue cracks.

センサエレメント2は,絶縁材となるポリイミド樹脂シート(幅25mm,長さ30mm,厚さ13μm)上に藤倉化成株式会社製の導電塗料FC-415(カーボン粉末含有,比抵抗0.2Ωcm)からなる抵抗体(厚さ50μm,幅1mm,長さ20mm)6本からなる電気回路を形成し,更にこの回路上に絶縁材となるポリアミド樹脂シートを用いてカバーして,製作された。なお電気回路の平行線部の間隔は5mmとした。これを測定回路と通信回路およびアンテナを封止して作製した回路とに接続し,亀裂検出センサを作製した。この亀裂検出センサを図11の溶接部33の止端に接着材を用いて接着した。疲労試験では,主部材30に150Mpaの応力振幅を1日10回のサイクルで作用させ,2日に1回,吉川アールエフシステム社製のリーダライタ(RX2100)をアクティベータとして抵抗値を測定した。 Sensor element 2 consists of a conductive resin FC-415 (containing carbon powder, specific resistance 0.2 Ωcm) manufactured by Fujikura Kasei Co., Ltd. on a polyimide resin sheet (25 mm wide, 30 mm long, 13 μm thick) as an insulating material. An electric circuit composed of six bodies (thickness 50 μm, width 1 mm, length 20 mm) was formed, and further covered with a polyamide resin sheet serving as an insulating material on the circuit. The interval between the parallel lines of the electric circuit was 5 mm. This was connected to a measurement circuit, a communication circuit, and a circuit fabricated by sealing an antenna, and a crack detection sensor was fabricated. This crack detection sensor was bonded to the toe of the weld 33 in FIG. 11 using an adhesive. In the fatigue test, a stress amplitude of 150 Mpa was applied to the main member 30 in a cycle of 10 5 times a day, and the resistance value was measured once every 2 days using a reader / writer (RX2100) manufactured by Yoshikawa Arf System as an activator. .

表1に,測定日における疲労繰返し回数Nに対する,電気抵抗測定値と,確認された回路切断本数を示す。   Table 1 shows the measured electrical resistance and the number of confirmed circuit breaks for the number of fatigue cycles N on the measurement date.

Figure 2007263674
Figure 2007263674

図12は,表1に示した,疲労繰返し回数Nに対する電気抵抗測定値をグラフにしたものである。試験開始から6日に抵抗の変化が確認され,試験機を止めて確認したところ,亀裂の発生が確認された。その後,急激な抵抗の変化が測定され,最終10日には抵抗が202.0Ωとなり,観察の結果でも電気回路は5本切断されていることを確認できた。この結果,本発明の亀裂検出センサは十分に機能し,亀裂検出が容易に実施することが実証された。   FIG. 12 is a graph showing the measured electric resistance value with respect to the fatigue repetition number N shown in Table 1. On the 6th day after the start of the test, the resistance change was confirmed, and when the tester was stopped, the occurrence of cracks was confirmed. After that, a sudden change in resistance was measured, and on the last 10th, the resistance became 202.0Ω, and it was confirmed from observation results that five electrical circuits were cut. As a result, it was proved that the crack detection sensor of the present invention functions sufficiently and that crack detection is easily performed.

この実験では,最終段階では2日間に疲労繰返し回数が2×10回で,亀裂進展距離は15mm程度であったことが算定される。今後は,亀裂進展速度は,7.5mm/日以上の速度で進展していくことが予測され,この様な溶接部を有する構造物では,亀裂管理限界長を50mmとした場合,単純計算では7日程度で限界に達することが想定される。したがって,本発明の亀裂検出センサを用いると構造物の維持管理も省力化可能で,将来の補修時期の予測も容易に実施できることとなる。 In this experiment, it was calculated that the fatigue repetition number was 2 × 10 5 times in 2 days and the crack propagation distance was about 15 mm in the final stage. In the future, the crack growth rate is expected to grow at a speed of 7.5 mm / day or more. For structures with such welds, if the crack management limit length is 50 mm, a simple calculation of 7 It is assumed that the limit will be reached in about days. Therefore, if the crack detection sensor of the present invention is used, the maintenance and management of the structure can be saved, and the future repair timing can be easily predicted.

本発明は,構造物の亀裂の発生や進展を,省電力及び低コストで検出する際に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful when detecting the occurrence and progress of a crack in a structure with low power consumption and low cost.

亀裂検出センサ及び亀裂測定装置の構成例である。It is an example of a structure of a crack detection sensor and a crack measuring apparatus. (a)は,第1の実施形態の亀裂検出センサにおけるセンサエレメントの構成例である。(b)は,第2の実施形態の亀裂検出センサにおけるセンサエレメントの構成例である。(c)は,第3の実施形態の亀裂検出センサにおけるセンサエレメントの構成例である。(A) is a structural example of the sensor element in the crack detection sensor of 1st Embodiment. (B) is a structural example of the sensor element in the crack detection sensor of 2nd Embodiment. (C) is a configuration example of a sensor element in the crack detection sensor of the third embodiment. 第4の実施形態の亀裂検出センサにおけるセンサエレメントの構成例である。It is a structural example of the sensor element in the crack detection sensor of 4th Embodiment. 第5の実施形態の亀裂検出センサにおけるセンサエレメントの構成例である。It is a structural example of the sensor element in the crack detection sensor of 5th Embodiment. (a)は,複数のセンサエレメントを用いた構成例である。(b)は,複数のセンサエレメントを用いたセンサエレメントの構成例である。(c)は,複数のセンサエレメントを用いたセンサエレメントの構成例である。(d)は,複数のセンサエレメントを用いたセンサエレメントの構成例である。(A) is a configuration example using a plurality of sensor elements. (B) is a configuration example of a sensor element using a plurality of sensor elements. (C) is a configuration example of a sensor element using a plurality of sensor elements. (D) is a configuration example of a sensor element using a plurality of sensor elements. 複数のセンサエレメントを積層して用いたセンサエレメントの構成例である。It is a structural example of a sensor element using a plurality of stacked sensor elements. 複数のセンサエレメントを持つ亀裂検出センサの構成例である。It is a structural example of a crack detection sensor having a plurality of sensor elements. センサエレメントの第一の製造方法の例である。It is an example of the 1st manufacturing method of a sensor element. センサエレメントの第二の製造方法の例である。It is an example of the 2nd manufacturing method of a sensor element. 実施例に用いた疲労試験体を示す図である。It is a figure which shows the fatigue test body used for the Example. 図10の疲労試験体にセンサエレメント貼り付けた状況を示す図である。It is a figure which shows the condition which affixed the sensor element on the fatigue test body of FIG. 疲労繰返し回数と抵抗測定値の変化を示した図である。It is the figure which showed the change of fatigue repetition frequency and resistance measured value. 橋梁の溶接部にセンサを設置した測定例である。It is the example of a measurement which installed the sensor in the welding part of a bridge. 回転体内部の溶接部にセンサを設置した測定例である。It is the measurement example which installed the sensor in the welding part inside a rotary body.

符号の説明Explanation of symbols

1 亀裂検出センサ
2 センサエレメント
3 送受信アンテナ
4 測定回路
5 通信回路
7 アクティベータ
8 送受信アンテナ
9 送受信回路
10 導体もしくは抵抗体
11 電気的絶縁部材
12 電気抵抗測定用端子
13 金属溶接部
14 亀裂
16 共通の電気抵抗測定用端子
17 帯状導体もしくは帯状抵抗体
19 光遮蔽板
20 導電塗料
21 表面絶縁シート
22 金属材料
23 感光性レジスト
24 溶解性に変質した感光性レジスト部
25 成形された測定回路
26 電気回路長
27 センサエレメント
28 マルチプレクサ
29 疲労試験体
30 主部材
31 ガセット
32 センサ貼付け部
33 溶接部
DESCRIPTION OF SYMBOLS 1 Crack detection sensor 2 Sensor element 3 Transmission / reception antenna 4 Measurement circuit 5 Communication circuit 7 Activator 8 Transmission / reception antenna 9 Transmission / reception circuit 10 Conductor or resistor 11 Electrical insulation member 12 Terminal for electrical resistance measurement 13 Metal welding part 14 Crack 16 Common Electrical resistance measurement terminal 17 Strip conductor or strip resistor 19 Light shielding plate 20 Conductive paint 21 Surface insulating sheet 22 Metal material 23 Photosensitive resist 24 Photosensitive resist portion altered to solubility 25 Molded measuring circuit 26 Electric circuit length 27 Sensor Element 28 Multiplexer 29 Fatigue Specimen 30 Main Member 31 Gusset 32 Sensor Attaching Portion 33 Welded Portion

Claims (12)

被亀裂検出構造物の亀裂発生及び進展により電気抵抗値が増加するセンサエレメントと,当該センサエレメントの電気抵抗値を測定する測定回路と,外部のアクティベータから非接触で駆動電力を取り込むアンテナと,前記電気抵抗値を前記アクティベータに非接触で送信する通信回路とを備えることを特徴とする亀裂検出センサ。 A sensor element whose electrical resistance value increases due to the occurrence and progress of cracks in the cracked detection structure, a measurement circuit for measuring the electrical resistance value of the sensor element, an antenna for capturing driving power from an external activator in a non-contact manner, A crack detection sensor comprising: a communication circuit that transmits the electrical resistance value to the activator in a non-contact manner. 前記センサエレメントが,電気的絶縁部材で被覆された一本又は複数本の導体若しくは抵抗体と,当該導体又は抵抗体に接続された2箇所以上の電気抵抗測定用端子とを有することを特徴とする請求項1に記載の亀裂検出センサ。 The sensor element has one or a plurality of conductors or resistors covered with an electrically insulating member, and two or more electrical resistance measurement terminals connected to the conductors or resistors. The crack detection sensor according to claim 1. 前記一本又は複数本の導体若しくは抵抗体が,線状で,且つそれぞれの両端部に前記電気抵抗測定用端子を有し,前記測定回路は,前記それぞれの導体又は抵抗体の電気抵抗値を測定することを特徴とする請求項2に記載の亀裂検出センサ。 The one or more conductors or resistors are linear, and have the electric resistance measurement terminals at both ends, and the measurement circuit determines the electric resistance value of each conductor or resistor. The crack detection sensor according to claim 2, wherein measurement is performed. 前記導体又は抵抗体を複数本有し,当該複数本の導体若しくは抵抗体が,線状で,且つ,それぞれの片側一方の端部に前記電気抵抗測定用端子を有し,それぞれのもう一方の端部は互いに接続されて一つの共通の前記電気抵抗測定用端子を有することを特徴とする請求項2に記載の亀裂検出センサ。 A plurality of the conductors or resistors, the plurality of conductors or resistors are linear, and have the electrical resistance measurement terminal at one end of each side; The crack detection sensor according to claim 2, wherein the ends are connected to each other and have one common electric resistance measurement terminal. 前記導体又は抵抗体を複数本有し,当該複数本の導体又は抵抗体が,線状で,且つ,並列回路を形成し,前記並列回路の両端部に前記電気抵抗測定用端子を有することを特徴とする請求項2に記載の亀裂検出センサ。 A plurality of the conductors or resistors, the plurality of conductors or resistors being linear, forming a parallel circuit, and having the electrical resistance measurement terminals at both ends of the parallel circuit; The crack detection sensor according to claim 2, wherein: 前記センサエレメントにおいて,前記導体又は抵抗体が帯状であり,当該帯状の導体又は抵抗体の2箇所に電気抵抗測定用端子を有することを特徴とする請求項2に記載の亀裂検出センサ。 3. The crack detection sensor according to claim 2, wherein in the sensor element, the conductor or the resistor has a strip shape, and has electrical resistance measurement terminals at two locations of the strip-shaped conductor or resistor. 前記導体若しくは抵抗体が導電塗料により形成されたことを特徴とする請求項2〜6のいずれか1項に記載の亀裂検出センサ。 The crack detection sensor according to claim 2, wherein the conductor or the resistor is formed of a conductive paint. 前記亀裂検出センサは,更に,前記亀裂検出センサ固有の識別コード,前記センサエレメント固有の識別コードの少なくともいずれかを記憶するメモリを有し,前記通信回路は,前記電気抵抗値に加えて,前記識別コードを送信する機能を有することを特徴とする請求項1〜7のいずれか1項に記載の亀裂検出センサ。 The crack detection sensor further includes a memory for storing at least one of an identification code unique to the crack detection sensor and an identification code unique to the sensor element, and the communication circuit includes the electrical resistance value, The crack detection sensor according to claim 1, which has a function of transmitting an identification code. 請求項1〜8のいずれか1項に記載の亀裂検出センサを用いた亀裂測定装置であって,前記亀裂検出センサと,当該亀裂検出センサに駆動電力を非接触で送付し,かつ,前記亀裂検出センサ固有の識別コード又は前記センサエレメント固有の識別コードの少なくともいずれかと前記電気抵抗値,又は前記電気抵抗値を非接触で受信する機能を有するアクティベータとを備えることを特徴とする亀裂測定装置。 A crack measuring apparatus using the crack detection sensor according to any one of claims 1 to 8, wherein the crack detection sensor and a driving power are sent to the crack detection sensor in a non-contact manner, and the crack is detected. A crack measuring apparatus comprising: an identification code unique to a detection sensor or an identification code unique to the sensor element; and an activator having a function of receiving the electrical resistance value or the electrical resistance value in a non-contact manner. . 請求項9に記載の亀裂測定装置を用いた亀裂発生及び進展の測定方法であって,前記亀裂検出センサを構造物に貼り付け,当該亀裂検出センサに前記アクティベータより駆動電力を非接触で送信し,かつ,前記センサエレメントの電気抵抗値,又は電気抵抗値及び前記識別コードを,非接触で受信して,構造物の亀裂発生又は進展を測定することを特徴とする亀裂測定方法。 A crack generation and progress measurement method using the crack measurement device according to claim 9, wherein the crack detection sensor is attached to a structure, and driving power is transmitted to the crack detection sensor from the activator in a non-contact manner. And measuring the occurrence or progress of cracks in the structure by receiving the electrical resistance value of the sensor element or the electrical resistance value and the identification code in a non-contact manner. 請求項7に記載の亀裂検出センサにおけるセンサエレメントの製造方法であって,シート状の電気的絶縁部材上に電気抵抗測定端子を取付け,その上に所定の回路線部をくり貫いた遮蔽板を載置した後,導電塗料を塗布して前記回路線部に導体若しくは抵抗体を形成し,当該形成された導体若しくは抵抗体を更に電気的絶縁部材で被覆することを特徴とする亀裂検出センサ用センサエレメントの製造方法。 8. A method of manufacturing a sensor element in a crack detection sensor according to claim 7, wherein an electrical resistance measurement terminal is mounted on a sheet-like electrical insulation member, and a shielding plate is formed by cutting a predetermined circuit line portion thereon. After mounting, a conductive paint is applied to form a conductor or a resistor on the circuit line portion, and the formed conductor or resistor is further covered with an electrically insulating member. A method for manufacturing a sensor element. 請求項2に記載の亀裂検出センサにおけるセンサエレメントの製造方法であって,シート状の電気的絶縁部材上に金属材料を接着し,その上に感光性レジストを塗布した後,所定の回路線部が描かれた光遮蔽板を介して,露光により前記感光性レジスト上に前記回路線部を露光部と未露光部に分けて転写させ,その後,露光部または未露光部の前記感光性レジストを除去し,更に,前記感光性レジストが除去されて露出した前記金属材料部をエッチング処理により取り除いて,前記導体又は抵抗体を形成し,当該導体又は抵抗体に電気抵抗測定端子を取付けた後,その上を電気的絶縁部材で被覆してセンサエレメントを形成することを特徴とする亀裂検出センサ用センサエレメントの製造方法。 3. A method of manufacturing a sensor element in a crack detection sensor according to claim 2, wherein a metal material is bonded onto a sheet-like electrical insulating member, a photosensitive resist is applied thereon, and then a predetermined circuit line portion is formed. The circuit line portion is transferred onto the photosensitive resist by exposure through the light shielding plate on which the light is drawn, and then the photosensitive resist in the exposed portion or the unexposed portion is transferred to the exposed portion and the unexposed portion. Further, the metal material portion exposed by removing the photosensitive resist is removed by etching to form the conductor or resistor, and an electrical resistance measurement terminal is attached to the conductor or resistor. A method of manufacturing a sensor element for a crack detection sensor, wherein the sensor element is formed by covering the top with an electrically insulating member.
JP2006087821A 2006-03-28 2006-03-28 Crack detection sensor Pending JP2007263674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006087821A JP2007263674A (en) 2006-03-28 2006-03-28 Crack detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006087821A JP2007263674A (en) 2006-03-28 2006-03-28 Crack detection sensor

Publications (1)

Publication Number Publication Date
JP2007263674A true JP2007263674A (en) 2007-10-11

Family

ID=38636817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006087821A Pending JP2007263674A (en) 2006-03-28 2006-03-28 Crack detection sensor

Country Status (1)

Country Link
JP (1) JP2007263674A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103632A (en) * 2007-10-25 2009-05-14 Nippon Sharyo Seizo Kaisha Ltd Linear detecting implement
JP2009103631A (en) * 2007-10-25 2009-05-14 Nippon Sharyo Seizo Kaisha Ltd Fatigue crack detector and fatigue crack detecting system
JP2010044007A (en) * 2008-08-18 2010-02-25 Nippon Sharyo Seizo Kaisha Ltd System for detecting crack of movable object
CN103392126A (en) * 2010-12-22 2013-11-13 意法半导体股份有限公司 Integrated electronic device for monitoring parameters within a solid structure and monitoring system using such a device
JP2014032057A (en) * 2012-08-02 2014-02-20 Kyowa Electron Instr Co Ltd Crack sensor, device for monitoring crack, and system for monitoring crack
JP2014077253A (en) * 2012-10-09 2014-05-01 Highway Technology Research Center Device and method for monitoring structure crack, and disconnection gauge
JP2014190761A (en) * 2013-03-26 2014-10-06 Railway Technical Research Institute Crack monitoring element and crack monitoring apparatus
JP5793784B1 (en) * 2014-10-21 2015-10-14 ウネベ建設株式会社 Structure monitoring apparatus and structure monitoring method
KR101617414B1 (en) 2016-02-17 2016-05-02 주식회사 동일구조 The crack Monitoring Device and Crack Monitoring System using The same
CN105784774A (en) * 2015-01-14 2016-07-20 东芝泰格有限公司 Crack sensor and crack monitoring device
JP2017044585A (en) * 2015-08-27 2017-03-02 公益財団法人鉄道総合技術研究所 Changed state detection method of bearing section installed between superstructure and substructure and changed state detection device of the same
JP2017518479A (en) * 2014-03-13 2017-07-06 サムスン ヘビー インダストリーズ カンパニー リミテッド Surface defect identification device for offshore structures
KR101806239B1 (en) * 2016-08-12 2018-01-10 태원주식회사 Geogrid with Having a Function of Ground Sink Detection and Falling Accident Prevention
JP2018115453A (en) * 2017-01-17 2018-07-26 住友重機械工業株式会社 Shovel
JP2018122467A (en) * 2017-01-31 2018-08-09 公益財団法人鉄道総合技術研究所 Conductive coating tape
CN108445047A (en) * 2018-05-15 2018-08-24 新疆金风科技股份有限公司 Detection device and wind power generating set
JP2019023655A (en) * 2018-10-12 2019-02-14 東芝テック株式会社 Disconnection detection sensor
PL423479A1 (en) * 2017-11-16 2019-05-20 Inst Techniczny Wojsk Lotniczych Digital circuit for detection and monitoring of a structure elements cracking, preferably of the aircraft
JP2019100790A (en) * 2017-11-30 2019-06-24 日本電信電話株式会社 Deformation detection method, deformation detecting device, and deformation detection program
JP2019124528A (en) * 2018-01-15 2019-07-25 大日本印刷株式会社 Detection sensor
CN110487165A (en) * 2019-08-23 2019-11-22 北京石墨烯技术研究院有限公司 Metal Crack detection sensor and system
CN113474643A (en) * 2019-02-27 2021-10-01 三菱重工业株式会社 Crack sensor system
CN113532691A (en) * 2021-07-15 2021-10-22 威海建设集团股份有限公司 Bulky concrete temperature automatic acquisition and cooling processing system thereof
JP2022549845A (en) * 2019-09-24 2022-11-29 エル テク カンパニー リミテッド Crack sensor and low-power driven crack detection system using the same

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140444U (en) * 1986-02-27 1987-09-04
JPS6457703A (en) * 1987-08-28 1989-03-06 Matsushita Electric Ind Co Ltd Metallized film capacitor
JPH01124534U (en) * 1988-02-15 1989-08-24
JPH03146900A (en) * 1989-11-01 1991-06-21 Hitachi Ltd Sensor for water quality control of atomic reactor and its control method
JPH0755741A (en) * 1993-08-20 1995-03-03 Fuji Xerox Co Ltd Measuring method for growthrate of crack of brittle material
JPH10111266A (en) * 1996-10-03 1998-04-28 Shimizu Corp Inspection for concrete structure
JPH10185854A (en) * 1996-12-25 1998-07-14 B M C:Kk Method and device for detecting fatigue damage of structural material
JP2001201477A (en) * 1999-11-09 2001-07-27 Horyo Sangyo Kk Structure maintenance support system
JP2002039810A (en) * 2000-07-24 2002-02-06 Nippon Lsi Card Co Ltd Method of state inspection for civil.construction structure, its system, and sensor integrated device used to it
JP2003107030A (en) * 2001-09-27 2003-04-09 Matsushita Electric Ind Co Ltd Crack detection system
WO2003079498A1 (en) * 2002-03-20 2003-09-25 J.S.T. Mfg. Co., Ltd. Anisotropically conductive block and its manufacturing method
JP2004125464A (en) * 2002-09-30 2004-04-22 Mitsui Mining & Smelting Co Ltd Alcohol concentration detection device, alcohol concentration detection method using the same, and manufacturing method for alcohol concentration detection sensor
JP2005062038A (en) * 2003-08-15 2005-03-10 Ishikawajima Harima Heavy Ind Co Ltd Crack detection structure and manufacturing method of the crack detection structure
JP2005091167A (en) * 2003-09-17 2005-04-07 Railway Technical Res Inst Crack detecting tape, and crack detection system
JP2006022379A (en) * 2004-07-08 2006-01-26 Electroplating Eng Of Japan Co Electrolytic plating apparatus

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140444U (en) * 1986-02-27 1987-09-04
JPS6457703A (en) * 1987-08-28 1989-03-06 Matsushita Electric Ind Co Ltd Metallized film capacitor
JPH01124534U (en) * 1988-02-15 1989-08-24
JPH03146900A (en) * 1989-11-01 1991-06-21 Hitachi Ltd Sensor for water quality control of atomic reactor and its control method
JPH0755741A (en) * 1993-08-20 1995-03-03 Fuji Xerox Co Ltd Measuring method for growthrate of crack of brittle material
JPH10111266A (en) * 1996-10-03 1998-04-28 Shimizu Corp Inspection for concrete structure
JPH10185854A (en) * 1996-12-25 1998-07-14 B M C:Kk Method and device for detecting fatigue damage of structural material
JP2001201477A (en) * 1999-11-09 2001-07-27 Horyo Sangyo Kk Structure maintenance support system
JP2002039810A (en) * 2000-07-24 2002-02-06 Nippon Lsi Card Co Ltd Method of state inspection for civil.construction structure, its system, and sensor integrated device used to it
JP2003107030A (en) * 2001-09-27 2003-04-09 Matsushita Electric Ind Co Ltd Crack detection system
WO2003079498A1 (en) * 2002-03-20 2003-09-25 J.S.T. Mfg. Co., Ltd. Anisotropically conductive block and its manufacturing method
JP2004125464A (en) * 2002-09-30 2004-04-22 Mitsui Mining & Smelting Co Ltd Alcohol concentration detection device, alcohol concentration detection method using the same, and manufacturing method for alcohol concentration detection sensor
JP2005062038A (en) * 2003-08-15 2005-03-10 Ishikawajima Harima Heavy Ind Co Ltd Crack detection structure and manufacturing method of the crack detection structure
JP2005091167A (en) * 2003-09-17 2005-04-07 Railway Technical Res Inst Crack detecting tape, and crack detection system
JP2006022379A (en) * 2004-07-08 2006-01-26 Electroplating Eng Of Japan Co Electrolytic plating apparatus

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103632A (en) * 2007-10-25 2009-05-14 Nippon Sharyo Seizo Kaisha Ltd Linear detecting implement
JP2009103631A (en) * 2007-10-25 2009-05-14 Nippon Sharyo Seizo Kaisha Ltd Fatigue crack detector and fatigue crack detecting system
JP4620101B2 (en) * 2007-10-25 2011-01-26 日本車輌製造株式会社 Fatigue crack detection device and fatigue crack detection system
JP2010044007A (en) * 2008-08-18 2010-02-25 Nippon Sharyo Seizo Kaisha Ltd System for detecting crack of movable object
JP4660576B2 (en) * 2008-08-18 2011-03-30 日本車輌製造株式会社 Crack detection system for movable objects
CN103392126A (en) * 2010-12-22 2013-11-13 意法半导体股份有限公司 Integrated electronic device for monitoring parameters within a solid structure and monitoring system using such a device
JP2014032057A (en) * 2012-08-02 2014-02-20 Kyowa Electron Instr Co Ltd Crack sensor, device for monitoring crack, and system for monitoring crack
JP2014077253A (en) * 2012-10-09 2014-05-01 Highway Technology Research Center Device and method for monitoring structure crack, and disconnection gauge
JP2014190761A (en) * 2013-03-26 2014-10-06 Railway Technical Research Institute Crack monitoring element and crack monitoring apparatus
JP2017518479A (en) * 2014-03-13 2017-07-06 サムスン ヘビー インダストリーズ カンパニー リミテッド Surface defect identification device for offshore structures
JP5793784B1 (en) * 2014-10-21 2015-10-14 ウネベ建設株式会社 Structure monitoring apparatus and structure monitoring method
US11035812B2 (en) 2014-10-21 2021-06-15 Unebe Corporation Structural health monitoring apparatus and monitoring method
JP2016080635A (en) * 2014-10-21 2016-05-16 ウネベ建設株式会社 Structure monitoring device and structure monitoring method
EP3211405B1 (en) * 2014-10-21 2023-06-07 Unebe Corporation Structural health monitoring system and structural health monitoring method for monitoring the integrity of a building
WO2016063788A1 (en) * 2014-10-21 2016-04-28 ウネベ建設株式会社 Structural object monitoring device and structural object monitoring method
JP2016130682A (en) * 2015-01-14 2016-07-21 東芝テック株式会社 Crack sensor and crack monitor
CN105784774A (en) * 2015-01-14 2016-07-20 东芝泰格有限公司 Crack sensor and crack monitoring device
JP2017044585A (en) * 2015-08-27 2017-03-02 公益財団法人鉄道総合技術研究所 Changed state detection method of bearing section installed between superstructure and substructure and changed state detection device of the same
KR101617414B1 (en) 2016-02-17 2016-05-02 주식회사 동일구조 The crack Monitoring Device and Crack Monitoring System using The same
KR101806239B1 (en) * 2016-08-12 2018-01-10 태원주식회사 Geogrid with Having a Function of Ground Sink Detection and Falling Accident Prevention
JP2018115453A (en) * 2017-01-17 2018-07-26 住友重機械工業株式会社 Shovel
CN108331065A (en) * 2017-01-17 2018-07-27 住友重机械工业株式会社 Excavator
CN108331065B (en) * 2017-01-17 2022-04-08 住友重机械工业株式会社 Excavator
JP2018122467A (en) * 2017-01-31 2018-08-09 公益財団法人鉄道総合技術研究所 Conductive coating tape
PL423479A1 (en) * 2017-11-16 2019-05-20 Inst Techniczny Wojsk Lotniczych Digital circuit for detection and monitoring of a structure elements cracking, preferably of the aircraft
JP2019100790A (en) * 2017-11-30 2019-06-24 日本電信電話株式会社 Deformation detection method, deformation detecting device, and deformation detection program
JP2019124528A (en) * 2018-01-15 2019-07-25 大日本印刷株式会社 Detection sensor
CN108445047A (en) * 2018-05-15 2018-08-24 新疆金风科技股份有限公司 Detection device and wind power generating set
JP2019023655A (en) * 2018-10-12 2019-02-14 東芝テック株式会社 Disconnection detection sensor
CN113474643A (en) * 2019-02-27 2021-10-01 三菱重工业株式会社 Crack sensor system
CN110487165A (en) * 2019-08-23 2019-11-22 北京石墨烯技术研究院有限公司 Metal Crack detection sensor and system
JP2022549845A (en) * 2019-09-24 2022-11-29 エル テク カンパニー リミテッド Crack sensor and low-power driven crack detection system using the same
JP7264565B2 (en) 2019-09-24 2023-04-25 エル テク カンパニー リミテッド Crack sensor and low-power driven crack detection system using the same
CN113532691A (en) * 2021-07-15 2021-10-22 威海建设集团股份有限公司 Bulky concrete temperature automatic acquisition and cooling processing system thereof

Similar Documents

Publication Publication Date Title
JP2007263674A (en) Crack detection sensor
JP4886577B2 (en) Corrosion rate measuring sensor, apparatus, and corrosion rate measuring method
JP5450629B2 (en) Health sensor using laminated hybrid structure of elastic layer and fragile layer
JP6179033B2 (en) Degradation detection method, sensor manufacturing method, and sensor
EP2060897B1 (en) Fracture detecting structural health sensor
JP4895886B2 (en) Corrosion measurement sensor
US9927381B2 (en) Apparatus, systems and methods for local in situ measurement of corrosion condition information with contactless electrodes
JP2006337169A (en) Corrosion sensor, sheath tube, sheath tube jointing member, and corrosion sensor unit
US20110024269A1 (en) Sensor system for a conveyor belt
JP6226453B2 (en) Corrosion detection device and corrosion detection method
JP2008180727A (en) Low cost, on-line corrosion monitor and high-performance corrosion probe
US10641679B2 (en) Leakage detection system and leakage detection method
JP6679995B2 (en) Wiring board for detecting abnormality of structure, structure abnormality detection device, and structure abnormality detection system
JPH1031002A (en) Structure and method of detecting crack of structure
JPWO2005033475A1 (en) Tunnel fall monitoring system, tunnel fall monitoring method, and civil engineering structure damage monitoring system
Novak et al. Development of state sensors for civil engineering structures
JP2005091034A (en) System and apparatus for detecting injury from salt of steel material/concrete structure, and steel material/concrete structure
JP2018022687A (en) Wiring sheet, sheet-shaped system, and structure operation support system
JP6875672B2 (en) Structure strain sensor and structure strain detection method
US20220003704A1 (en) Smart sensing system
KR100740843B1 (en) System and Method for Monitering of Structure
JP7063737B2 (en) Anti-corrosion condition monitoring system for steel structures
JP2018013942A (en) Monitoring system and monitoring method
JP2004069680A (en) System for detecting abnormality in structure
JP2008298710A (en) Corrosion environment sensor and sensor system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106