JP2007263621A - Coil for magnetic resonance detection and its manufacturing method - Google Patents

Coil for magnetic resonance detection and its manufacturing method Download PDF

Info

Publication number
JP2007263621A
JP2007263621A JP2006086230A JP2006086230A JP2007263621A JP 2007263621 A JP2007263621 A JP 2007263621A JP 2006086230 A JP2006086230 A JP 2006086230A JP 2006086230 A JP2006086230 A JP 2006086230A JP 2007263621 A JP2007263621 A JP 2007263621A
Authority
JP
Japan
Prior art keywords
main body
coil
layer
magnetic resonance
body layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006086230A
Other languages
Japanese (ja)
Inventor
Koji Inoue
浩司 井上
Takashi Miki
孝史 三木
Hideaki Maeda
秀明 前田
Masahito Takahashi
雅人 高橋
Shigeyuki Yokoyama
茂之 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
RIKEN Institute of Physical and Chemical Research
Original Assignee
Kobe Steel Ltd
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, RIKEN Institute of Physical and Chemical Research filed Critical Kobe Steel Ltd
Priority to JP2006086230A priority Critical patent/JP2007263621A/en
Priority to PCT/JP2007/055248 priority patent/WO2007111150A1/en
Publication of JP2007263621A publication Critical patent/JP2007263621A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34007Manufacture of RF coils, e.g. using printed circuit board technology; additional hardware for providing mechanical support to the RF coil assembly or to part thereof, e.g. a support for moving the coil assembly relative to the remainder of the MR system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/343Constructional details, e.g. resonators, specially adapted to MR of slotted-tube or loop-gap type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34092RF coils specially adapted for NMR spectrometers

Abstract

<P>PROBLEM TO BE SOLVED: To easily manufacture a coil for magnetic resonance detection capable of stably achieving satisfactory magnetic characteristics. <P>SOLUTION: A circumferential wall of the coil 10 for magnetic resonance detection is constituted of a main body layer 20 and a covering layer 22 covering its surface. High-purity aluminum is used for the main body layer 20, and a diamagnetic material such as gold which negates the magnetic susceptibility of aluminum is used for the covering layer 22. The covering layer 22 may be easily formed on the main body layer 20 by means such as vapor deposition and plating. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、NMR等に用いられる磁気共鳴検出用コイルとその製造方法に関するものである。   The present invention relates to a magnetic resonance detecting coil used for NMR and the like and a method for manufacturing the same.

一般に、NMR等の磁気共鳴の検出は、略筒状の磁気共鳴検出用コイルからその内側に挿入されたサンプルに高周波パルスを照射し、それから一定時間経過後に前記サンプルから放出される磁気共鳴信号を前記磁気共鳴プローブでピックアップするといった手段がとられる。さらに、前記磁気共鳴信号が微弱であることから、その検出感度を高めるべく、前記磁気共鳴プローブ内に冷却配管を設けてその冷却配管にヘリウム等の冷媒を流し、これにより前記磁気共鳴検出用コイルを極低温まで冷却して熱雑音を減らすといったことも行われている。   In general, magnetic resonance detection such as NMR is performed by irradiating a sample inserted inside a substantially cylindrical magnetic resonance detection coil with a high-frequency pulse, and then outputting a magnetic resonance signal emitted from the sample after a certain period of time. A means such as picking up with the magnetic resonance probe is taken. Further, since the magnetic resonance signal is weak, in order to increase the detection sensitivity, a cooling pipe is provided in the magnetic resonance probe and a refrigerant such as helium is allowed to flow through the cooling pipe, whereby the magnetic resonance detection coil It has also been carried out to reduce thermal noise by cooling to a very low temperature.

従来、このような磁気共鳴検出に好適なコイルとして、特許文献1には、内部層の表裏両面を外部層で覆った板材により成形されるNMRプローブ用RFコイルが提案されている。このRFコイルでは、前記外部層を構成する材料として、特に極低温状態において優れた比抵抗特性(比抵抗の磁界依存性が低い特性)を有する高純度アルミニウムが用いられる一方、前記内部層を構成する材料には、例えば銅のように、前記外部層を構成するアルミニウムの磁化率と反対の符号の磁化率をもつ材料すなわち反磁性材料が用いられている。   Conventionally, as a coil suitable for such magnetic resonance detection, Patent Document 1 proposes an RF coil for an NMR probe formed by a plate material in which both the front and back surfaces of an inner layer are covered with an outer layer. In this RF coil, as the material constituting the outer layer, high-purity aluminum having excellent specific resistance characteristics (characteristic that the specific resistance is low in magnetic field dependency) is used particularly in a cryogenic state, while the inner layer is configured. As the material to be used, a material having a magnetic susceptibility opposite to the magnetic susceptibility of aluminum constituting the outer layer, such as copper, that is, a diamagnetic material is used.

この構成によれば、前記外部層に高純度アルミニウムを用いることにより、極低温状態で強い磁界が形成される環境下においてもコイルの比抵抗を十分小さく抑えることができるとともに、前記内部層に反磁性材料を用いることにより、その反磁性を利用して前記アルミニウムの磁化率を打ち消すことができ、これによって磁気共鳴の検出精度をさらに高めることが可能になる。
特開2002−162455号公報
According to this configuration, by using high-purity aluminum for the outer layer, the specific resistance of the coil can be kept sufficiently small even in an environment where a strong magnetic field is formed at a very low temperature, and at the same time, By using a magnetic material, it is possible to cancel the magnetic susceptibility of the aluminum by using its diamagnetism, thereby further increasing the accuracy of detection of magnetic resonance.
JP 2002-162455 A

前記特許文献1に記載されるコイルでは、その外部層を構成する高純度アルミニウムの表面が酸化しやすく、その酸化膜の形成によって良好な磁気特性に悪影響が与えられるおそれがある。   In the coil described in Patent Document 1, the surface of high-purity aluminum constituting the outer layer is easily oxidized, and the formation of the oxide film may adversely affect good magnetic properties.

また、このコイルを成形する手段として、前記特許文献1には、通常の合板成形と同様にアルミニウム板と銅板とをホットプレスで一体化する方法が記載されているが、通常の合板に比べると前記磁気共鳴検出用コイルの生産量はきわめて低く、また板厚もきわめて小さいことから、このようなコイルを前記ホットプレスを用いて低コストで生産することは困難である。   In addition, as a means for forming this coil, Patent Document 1 describes a method of integrating an aluminum plate and a copper plate by hot pressing in the same manner as normal plywood molding, but compared with normal plywood. Since the production volume of the magnetic resonance detection coil is extremely low and the plate thickness is very small, it is difficult to produce such a coil at a low cost using the hot press.

本発明は、このような事情に鑑み、良好な磁気特性を安定して得ることが可能な磁気共鳴検出用コイルを提供し、さらに好ましくはその製造も容易に行うことができる磁気共鳴検出用コイル及びその製造方法を提供することを目的とする。   In view of such circumstances, the present invention provides a magnetic resonance detection coil capable of stably obtaining good magnetic characteristics, and more preferably, a magnetic resonance detection coil that can be easily manufactured. And it aims at providing the manufacturing method.

前記課題を解決するための手段として、本発明は、略筒状の周壁を有し、その内側にサンプルが挿入される空間を形成する磁気共鳴検出用コイルにおいて、前記周壁が、アルミニウムからなる本体層と、この本体層の表面を覆う被覆層とを含み、この被覆層は前記本体層を形成するアルミニウムの磁化率と符号が反対の磁化率をもつ反磁性材料により構成されているものである。   As means for solving the above-mentioned problems, the present invention provides a magnetic resonance detection coil having a substantially cylindrical peripheral wall and forming a space into which a sample is inserted, and the peripheral wall is made of aluminum. And a covering layer covering the surface of the main body layer, and the covering layer is made of a diamagnetic material having a magnetic susceptibility opposite to that of aluminum forming the main body layer. .

この構成によれば、前記本体層を構成するアルミニウムの磁化率が前記被覆層を構成する反磁性材料により打ち消されることにより、コイル自身の磁化率を有効に低減して精度の高い磁気共鳴実験を行うことができる。しかも、前記被覆層はアルミニウムからなる本体層の表面を覆うように形成されているので、当該本体層の表面が大気に触れるのを阻止して当該表面にアルミニウムの酸化膜が形成されるのを防ぎ、この酸化膜の形成による磁気特性の影響を有効に抑止することができる。   According to this configuration, the magnetic susceptibility of the aluminum constituting the main body layer is canceled out by the diamagnetic material constituting the covering layer, so that the magnetic susceptibility of the coil itself is effectively reduced and a highly accurate magnetic resonance experiment is performed. It can be carried out. In addition, since the coating layer is formed so as to cover the surface of the main body layer made of aluminum, the surface of the main body layer is prevented from being exposed to the atmosphere, and an aluminum oxide film is formed on the surface. It is possible to effectively prevent the influence of the magnetic characteristics due to the formation of the oxide film.

さらに、前記本体層を構成するアルミニウムの磁化率と前記被覆層を構成する反磁性材料の磁化率とが相殺されるように当該本体層と被覆層の体積比率を設定すれば、より優れた磁気特性を実現することが可能になる。   Furthermore, if the volume ratio of the main body layer and the covering layer is set so that the magnetic susceptibility of the aluminum constituting the main body layer and the magnetic susceptibility of the diamagnetic material constituting the covering layer are offset, better magnetic properties It becomes possible to realize the characteristics.

前記被覆層を構成する反磁性材料としては、例えば銀、銅、ベリリウム等の使用も可能であるが、特に金は反磁性が高く、その体積比率を抑えながら優れた磁化率打消し効果を得ることが可能である。   As the diamagnetic material constituting the coating layer, for example, silver, copper, beryllium, and the like can be used. In particular, gold has high diamagnetism, and an excellent magnetic susceptibility canceling effect is obtained while suppressing the volume ratio. It is possible.

また、この金を用いた磁気共鳴検出用コイルは、前記本体層を構成するアルミニウムの表面に金を蒸着させ、または金メッキすることによって被覆層を形成する被覆工程と、この被覆工程の前または後に前記本体層を筒状に成形するコイル成形工程とを含む方法によって容易に製造することができる。   The coil for magnetic resonance detection using gold includes a coating step in which a coating layer is formed by vapor deposition or gold plating on the surface of aluminum constituting the main body layer, and before or after the coating step. It can be easily manufactured by a method including a coil forming step of forming the main body layer into a cylindrical shape.

特に、前記被覆工程で金の蒸着を行う場合、その蒸着時間の設定によって、前記本体層を構成するアルミニウムの磁化率と前記被覆層を構成する反磁性材料の磁化率とが相殺されるような本体層と被覆層の体積比率を正確かつ容易に得ることができる。   In particular, when gold is deposited in the coating step, the setting of the deposition time cancels out the susceptibility of the aluminum constituting the main body layer and the diamagnetic material constituting the coating layer. The volume ratio of the main body layer and the coating layer can be obtained accurately and easily.

以上のように、本発明によれば、アルミニウムからなる本体層の表面を反磁性材料からなる被覆層で被覆することにより、優れた磁気特性を得ることができるとともに、前記本体層の表面にアルミニウムの酸化膜が形成されるのを有効に抑止して当該酸化膜が前記磁気特性に影響を与えるのを回避することができる効果がある。   As described above, according to the present invention, by coating the surface of the main body layer made of aluminum with the coating layer made of the diamagnetic material, excellent magnetic properties can be obtained, and the surface of the main body layer is made of aluminum. Thus, it is possible to effectively prevent the oxide film from being formed and to prevent the oxide film from affecting the magnetic characteristics.

本発明の好ましい実施の形態を図1及び図2を参照しながら説明する。   A preferred embodiment of the present invention will be described with reference to FIGS.

図2(a)は、この実施の形態に係るNMR(核磁気共鳴)装置の概略を示したものである。この装置は、液体ヘリウム等の冷媒を収容する容器30を備え、この容器30内の冷媒中に超電導コイル32が収容されている。この超電導コイル32は超電導線材が鉛直軸回りに筒状に巻回されたものであり、当該コイル32を径方向内側から覆うように前記容器30もドーナツ状に形成されている。すなわち、容器30の中央には鉛直方向に延びる内側空間34が形成されている。そして、この内側空間34内にNMRプローブ36が挿入されている。   FIG. 2A shows an outline of an NMR (nuclear magnetic resonance) apparatus according to this embodiment. This apparatus includes a container 30 that contains a refrigerant such as liquid helium, and a superconducting coil 32 is contained in the refrigerant in the container 30. The superconducting coil 32 is obtained by winding a superconducting wire in a cylindrical shape around a vertical axis, and the container 30 is also formed in a donut shape so as to cover the coil 32 from the radially inner side. That is, an inner space 34 extending in the vertical direction is formed at the center of the container 30. An NMR probe 36 is inserted into the inner space 34.

このNMRプローブ36は、電極部38と、この電極部38につながる筒状のプローブ本体40とを有し、このプローブ本体40が前記内側空間34内に下側から挿入されている。   The NMR probe 36 has an electrode portion 38 and a cylindrical probe main body 40 connected to the electrode portion 38, and the probe main body 40 is inserted into the inner space 34 from below.

このプローブ本体40は、図2(b)に示すように、その径方向の内側に配される内側管42と、径方向の外側に配される外側管44とを有しており、これらの管42,44は磁界に影響を与えない石英ガラス等の非磁性材料により構成されている。そして、前記内側管42の内側に試料挿入空間46が確保される一方、両管42,44の間に本発明にかかる磁気共鳴検出用コイル(この実施の形態ではNMR検出用コイル10)が径方向の内外から挟み込まれる構造となっている。   As shown in FIG. 2 (b), the probe body 40 has an inner tube 42 arranged on the inner side in the radial direction and an outer tube 44 arranged on the outer side in the radial direction. The tubes 42 and 44 are made of a nonmagnetic material such as quartz glass that does not affect the magnetic field. A sample insertion space 46 is secured inside the inner tube 42, while the magnetic resonance detection coil (NMR detection coil 10 in this embodiment) has a diameter between the tubes 42 and 44. The structure is sandwiched between the inside and outside of the direction.

このNMR検出用コイル10は、図1(a)に示すように、金属薄板を丸めることによって略円筒状の周壁が形成されたもので、その上側に円筒部12を有する一方、下側には互いに周方向に分断された一対のスカート部14を有している。これらスカート部14と前記円筒部12とはそれぞれ連結部16を介して連結されており、これら連結部16同士の間に側方に開放された試料空間18が確保されている。そして、前記両スカート部14が前記電極部38を介して図略の電源に接続されるとともに、プローブ内に配設された図略の冷却用配管によって前記NMR検出用コイル10が極低温まで冷却されるようになっている。   As shown in FIG. 1 (a), the NMR detection coil 10 is formed by rolling a thin metal plate to form a substantially cylindrical peripheral wall. It has a pair of skirt parts 14 divided in the circumferential direction. The skirt portion 14 and the cylindrical portion 12 are connected to each other via a connecting portion 16, and a sample space 18 opened laterally is secured between the connecting portions 16. The skirt portions 14 are connected to a power source (not shown) via the electrode portion 38, and the NMR detection coil 10 is cooled to a very low temperature by a cooling pipe (not shown) disposed in the probe. It has come to be.

なお、本発明では具体的なコイル形状を問わず、磁気共鳴検出に用いられる高周波パルスの周波数その他の仕様に応じて適宜設定が可能である。例えば前記特許文献1に記載される形状のコイルにも本発明を好適に適用することが可能である。   In the present invention, any specific coil shape can be set as appropriate according to the frequency of the high frequency pulse used for magnetic resonance detection and other specifications. For example, the present invention can be suitably applied to a coil having a shape described in Patent Document 1.

この実施の形態に係るNMR検出用コイル10の特徴として、その周壁を構成する板材が、図2(b)に示すように、本体層20と、この本体層20の表面を表裏両側から被覆する被覆層22とで構成されたものとなっている。   As a feature of the NMR detection coil 10 according to this embodiment, the plate material constituting the peripheral wall covers the main body layer 20 and the surface of the main body layer 20 from both the front and back sides as shown in FIG. The coating layer 22 is constituted.

前記本体層20は、高純度アルミニウムからなっている。この高純度アルミニウムは、特に極低温状態において優れた比抵抗特性を示すものであり、当該極低温状態では磁界の変化にかかわらず低い比抵抗を維持する。例えば銅と比較すると、銅の比抵抗は磁界が強くなるにつれて顕著に上昇するが、高純度アルミニウムは、磁界がある程度のレベルに達するとそれ以上は磁界が強くなっても比抵抗は低い値を維持する特性を有しており、その特性は純度が高いほど顕著になる。   The main body layer 20 is made of high purity aluminum. This high-purity aluminum exhibits excellent specific resistance characteristics particularly in a cryogenic state, and maintains a low resistivity regardless of the change of the magnetic field in the cryogenic state. For example, compared to copper, the specific resistance of copper increases significantly as the magnetic field increases. It has the characteristic to maintain, and the characteristic becomes more remarkable as the purity is higher.

従って、本発明では、本体層20に使用するアルミニウムの純度が高いほど特性的には好ましいものとなるが、コスト面も考慮すると、比較的入手が容易な99.99%純度レベルのものでも十分である。   Therefore, in the present invention, the higher the purity of the aluminum used for the main body layer 20 is, the better in terms of characteristics. However, considering the cost, a 99.99% purity level that is relatively easily available is sufficient. It is.

これに対して前記被覆層22は、前記高純度アルミニウムのもつ磁化率を相殺する役目を担うものであり、その関係から、当該被覆層22には前記高純度アルミニウムの磁化率(温度300Kで+21×10−6)と反対の符号(マイナス)の磁化率をもつ反磁性材料が用いられる。 On the other hand, the covering layer 22 plays a role of canceling out the magnetic susceptibility of the high-purity aluminum. From this relationship, the covering layer 22 has a magnetic susceptibility of the high-purity aluminum (+21 at a temperature of 300K). A diamagnetic material having a magnetic susceptibility with a sign (minus) opposite to × 10 −6 ) is used.

この被覆層22の材質は、前記高純度アルミニウムの磁化率を打ち消す特性を有するものであればよく、例えば銀や銅、ベリリウム等の適用も可能であるが、特に金が好適である。この金には次のような利点がある。   The coating layer 22 may be made of any material as long as it has a property of canceling the magnetic susceptibility of the high-purity aluminum. For example, silver, copper, and beryllium can be applied, but gold is particularly preferable. This gold has the following advantages:

1)特に反磁性が強い。例えば温度300Kでは、銅の磁化率が−9.8×10−6、銀の磁化率が−24×10−6であるのに対し、金の磁化率は−34×10−6となる。従って、本体層20を構成する高純度アルミニウムに対する体積比率を小さく抑えながらも、その高純度アルミニウムの磁化率を有効に打ち消すことが可能になる。いま、コイル径に比べて各層20,22の厚みが十分に小さく、各層20,22の体積比率が層の厚み比と同等であるとすると、両被覆層22に金を用いた場合、これらの被覆層22の厚みの総和はアルミニウム製の本体層20の約2/3あればよいことになり、片側の被覆層22については前記本体層20の1/3の厚みでよいことになる。極低温下で使用する場合には、その温度下での磁化率を考慮する必要があるが、いずれにせよ、銀や銅に比して金の層厚を小さく設定できることに変わりはない。 1) Particularly strong diamagnetism. For example, at a temperature of 300 K, the magnetic susceptibility of copper is −9.8 × 10 −6 and the magnetic susceptibility of silver is −24 × 10 −6 , whereas the magnetic susceptibility of gold is −34 × 10 −6 . Therefore, it is possible to effectively cancel the magnetic susceptibility of the high-purity aluminum while keeping the volume ratio with respect to the high-purity aluminum constituting the main body layer 20 small. Now, assuming that the thicknesses of the layers 20 and 22 are sufficiently smaller than the coil diameter and the volume ratio of the layers 20 and 22 is equal to the thickness ratio of the layers, The total thickness of the covering layer 22 may be about 2/3 of the aluminum main body layer 20, and the covering layer 22 on one side may be 1/3 the thickness of the main body layer 20. When used at an extremely low temperature, it is necessary to consider the magnetic susceptibility at that temperature, but in any case, the gold layer thickness can be set smaller than that of silver or copper.

ただし、本発明では、被覆層22の本体層20に対する体積比率が磁化率を相殺するように正確に設定されていなくてもよく、少なくとも、当該磁化率の絶対値を低減させることができるように層厚が設定されていればよい。   However, in the present invention, the volume ratio of the coating layer 22 to the main body layer 20 may not be set accurately so as to cancel the magnetic susceptibility, and at least the absolute value of the magnetic susceptibility can be reduced. It is sufficient that the layer thickness is set.

2)被覆層22の形成が容易である。具体的には、金の蒸着や金メッキといったごく一般的な手法で本体層20の両面に被覆層22を形成することができる。特に蒸着を採用する場合、その蒸着時間の管理によって所望の層厚を正確にかつ容易に得ることが可能となる。   2) The coating layer 22 can be easily formed. Specifically, the coating layer 22 can be formed on both surfaces of the main body layer 20 by a very general method such as gold vapor deposition or gold plating. In particular, when vapor deposition is employed, a desired layer thickness can be obtained accurately and easily by managing the vapor deposition time.

実際にコイルを成形するにあたっては、前記本体層20の表裏両面に前記被覆層22を形成する被覆層形成工程を行ってから、両層20,22をまとめて筒状(コイル状)に成形するコイル成形工程を行ってもよいし、逆に本体層20を筒状に成形しておいてからその表裏両面に被覆層22を積層するようにしてもよい。   When actually forming the coil, after performing the coating layer forming step of forming the coating layer 22 on both the front and back surfaces of the main body layer 20, the layers 20 and 22 are molded into a cylindrical shape (coil shape). The coil forming step may be performed, or conversely, the main body layer 20 may be formed into a cylindrical shape, and then the covering layer 22 may be laminated on both the front and back surfaces.

なお、出来上がったコイルの端面(例えば、前記図1(a)に示すNMR検出用コイル10の上端面11や側部開口を囲む縁面13)においては、本体層20を構成するアルミニウムが僅かに露出することになるが、その露出面積は極めて微小であるため磁性に影響はなく、本発明の効果を十分発揮することが可能である。また、この端面において露出する本体層20は他の面と同様に被覆層22によって覆うことも可能である。   Note that, on the end face of the completed coil (for example, the upper end face 11 of the NMR detection coil 10 shown in FIG. 1A and the edge face 13 surrounding the side opening), the aluminum constituting the main body layer 20 is slightly present. Although it will be exposed, the exposed area is extremely small, so there is no effect on magnetism, and the effects of the present invention can be fully exerted. Further, the main body layer 20 exposed at the end face can be covered with the covering layer 22 in the same manner as the other faces.

逆に、前記被覆層22は必ずしも本体層20の表裏を全面にわたって被覆するように形成されていなくてもよく、本体層20が一部露出した構造となっていてもよい。ただし、本体層20の表裏全面を覆うように被覆層22が形成されていれば、より高い磁化率相殺効果が得られるとともに、アルミニウム製の本体層20の表面に酸化膜が形成されるのをより有効に抑止して当該酸化膜の形成による磁気特性の変動をより確実に回避できる利点がある。   Conversely, the covering layer 22 does not necessarily have to be formed so as to cover the entire surface of the main body layer 20 and may have a structure in which the main body layer 20 is partially exposed. However, if the covering layer 22 is formed so as to cover the entire front and back surfaces of the main body layer 20, a higher magnetic susceptibility canceling effect can be obtained, and an oxide film can be formed on the surface of the main body layer 20 made of aluminum. There is an advantage that it is possible to more effectively suppress the fluctuation of the magnetic characteristics due to the formation of the oxide film more reliably.

前記図1(a)(b)に示すようなNMR検出用コイル10を製造するにあたり、次の各工程を実行する。   In manufacturing the NMR detection coil 10 as shown in FIGS. 1A and 1B, the following steps are executed.

1)本体層形成工程
本体層20を構成する金属薄板として、99.99%のアルミニウムからなる厚み30μmのアルミフォイルを用意する。このフォイルは、最終的に50mm四方程度の大きさを有するものとなっていればよいが、当該フォイルを薄板材料からXY二軸NC加工機などで所定形状(例えば図1(a)に示すコイルを展開した形状)に切り出しする場合には、前記金属薄板の大きさに余裕をみて100mm四方程度の大きさのものを用意しておくのがよい。
1) Body layer forming step As a metal thin plate constituting the body layer 20, an aluminum foil having a thickness of 30 μm made of 99.99% aluminum is prepared. It is sufficient that this foil finally has a size of about 50 mm square. However, the foil is made of a thin plate material with a predetermined shape (for example, a coil shown in FIG. In the case of cutting out the shape of the metal sheet, it is preferable to prepare a sheet having a size of about 100 mm square with a margin in the size of the metal thin plate.

2)被覆層形成工程
前記アルミフォイルの表裏両面に金を蒸着させて被覆層22を形成する。その前処理として、前記アルミフォイルの表面に形成されている酸化膜や付着物(空気中の有機物等)を除去すべく、当該フォイルの表裏両面をスパッタ処理等で5μmほど損耗させておく。その結果、前記アルミフォイルの厚みは30μm−5μm×2=20μmとなる。このアルミフォイルを構成する高純度アルミニウムの磁化率の絶対値と、被覆層22を構成する金の磁化率の絶対値との比は約2:3であるので、両磁化率を相殺すべく、この本体層20の表裏両面にはそれぞれ約6.7μm(表裏両側で約13.3μm)の厚みの被覆層22を形成するようにする。この被覆層22の厚みは前記金の蒸着時間の管理によって正確かつ容易に実現することが可能である。
2) Coating layer forming step Gold is vapor-deposited on both the front and back surfaces of the aluminum foil to form the coating layer 22. As a pretreatment, the front and back surfaces of the foil are worn by about 5 μm by sputtering or the like in order to remove oxide films and deposits (organic matter in the air, etc.) formed on the surface of the aluminum foil. As a result, the thickness of the aluminum foil is 30 μm−5 μm × 2 = 20 μm. Since the ratio of the absolute value of the magnetic susceptibility of the high-purity aluminum constituting the aluminum foil and the absolute value of the magnetic susceptibility of the gold constituting the coating layer 22 is about 2: 3, A coating layer 22 having a thickness of about 6.7 μm (about 13.3 μm on both sides) is formed on both the front and back surfaces of the main body layer 20. The thickness of the coating layer 22 can be accurately and easily realized by managing the gold deposition time.

なお、前記高純度アルミニウムの磁化率と金の磁化率とを相殺するには、正確には両者の体積比率を設定する必要があるが、各層の厚みは一定であり、かつ、その厚み寸法は当該層の曲率(すなわちコイル径)に比べて十分小さいため、層厚比によって十分に近似することが可能である。   In order to cancel out the magnetic susceptibility of the high-purity aluminum and the magnetic susceptibility of gold, it is necessary to accurately set the volume ratio of the two, but the thickness of each layer is constant, and the thickness dimension is Since the curvature of the layer (that is, the coil diameter) is sufficiently small, it can be sufficiently approximated by the layer thickness ratio.

3)コイル成形工程
前記本体層20及び被覆層22が積層された板材を図1(a)に示すような筒状に丸めて磁気共鳴検出用コイル10とし、前記図2(b)に示すような内側管42と外側管44との間に挟み込む。
3) Coil forming step The plate material on which the main body layer 20 and the covering layer 22 are laminated is rolled into a cylindrical shape as shown in FIG. 1A to form a magnetic resonance detecting coil 10, as shown in FIG. 2B. The inner tube 42 and the outer tube 44 are sandwiched.

下記の各種金属リングを模擬コイルとしてサンプルの一部に巻き付け、その軸方向についての磁場強度分布を測定した。具体的には、NMR装置において前記模擬コイルを挿入する前の状態で前記磁場強度が軸方向に均一となるように超電導コイルを調整しておき、その後に各種コイルを挿入して磁場強度を測定するようにした。   The following various metal rings were wound around a part of the sample as a simulation coil, and the magnetic field strength distribution in the axial direction was measured. Specifically, in the NMR apparatus, the superconducting coil is adjusted so that the magnetic field strength is uniform in the axial direction before the simulation coil is inserted, and then various coils are inserted to measure the magnetic field strength. I tried to do it.

金属リング1(実施例):厚み30μmのアルミニウム製本体層の表裏両面を厚み10μmの金製被覆層で被覆。   Metal ring 1 (Example): Both front and back surfaces of an aluminum main body layer having a thickness of 30 μm are covered with a gold coating layer having a thickness of 10 μm.

金属リング2(実施例):厚み100μmのアルミニウム製本体層の表裏両面を厚み30μmの銅製被覆層で被覆。   Metal ring 2 (Example): The front and back surfaces of an aluminum main body layer having a thickness of 100 μm are covered with a copper coating layer having a thickness of 30 μm.

金属リング3(比較例):厚み100μmの銅板のみ。   Metal ring 3 (comparative example): Only a copper plate having a thickness of 100 μm.

その結果を図3に示す。同図において、曲線L1,L2,L3がそれぞれ前記金属リング1,2,3の特性を示している。   The result is shown in FIG. In the figure, curves L1, L2, and L3 indicate the characteristics of the metal rings 1, 2, and 3, respectively.

図の曲線L3(一点鎖線)に示されるように、金属リング3では銅の反磁性がそのまま磁気強度分布に現われ、負側に著しい磁場ひずみが生じている。この金属リング3に比べ、金属リング2では、前記銅の反磁性とアルミニウムの磁性とが相殺されて曲線L2(破線)に示されるように磁場ひずみが有効に低減しているが、本発明の実施例に相当する金属リング1によれば、曲線L1に示されるように前記磁場ひずみをさらに有効に低減させることが可能となっている。   As indicated by the curve L3 (dashed line) in the figure, in the metal ring 3, the diamagnetism of copper appears in the magnetic intensity distribution as it is, and a significant magnetic field distortion is generated on the negative side. Compared with this metal ring 3, in the metal ring 2, the diamagnetism of copper and the magnetism of aluminum cancel each other, and the magnetic field distortion is effectively reduced as shown by the curve L2 (broken line). According to the metal ring 1 corresponding to the embodiment, the magnetic field distortion can be further effectively reduced as shown by the curve L1.

(a)は本発明の実施の形態に係るNMR検出用コイルの斜視図、(b)は同コイルを構成する板材の構造を示す断面図である。(A) is a perspective view of the NMR detection coil which concerns on embodiment of this invention, (b) is sectional drawing which shows the structure of the board | plate material which comprises the coil. (a)は前記NMR検出用コイルを含むNMR装置の断面正面図、(b)は同装置に組み込まれるNMRプローブの内部構造を示す断面平面図である。(A) is a cross-sectional front view of an NMR apparatus including the NMR detection coil, and (b) is a cross-sectional plan view showing an internal structure of an NMR probe incorporated in the apparatus. 各種材料で形成された磁気共鳴検出用コイルの磁場強度分布を示すグラフである。It is a graph which shows magnetic field strength distribution of the coil for magnetic resonance detection formed with various materials.

符号の説明Explanation of symbols

10 NMR検出用コイル
20 本体層
22 被覆層
10 Coil for NMR detection 20 Body layer 22 Covering layer

Claims (5)

略筒状の周壁を有し、その内側にサンプルが挿入される空間を形成する磁気共鳴検出用コイルにおいて、前記周壁が、アルミニウムからなる本体層と、この本体層の表面を覆う被覆層とを含み、この被覆層は、前記本体層を形成するアルミニウムの磁化率と符号が反対の磁化率をもつ反磁性材料により構成されていることを特徴とする磁気共鳴検出用コイル。   In a magnetic resonance detection coil having a substantially cylindrical peripheral wall and forming a space into which a sample is inserted, a main body layer made of aluminum and a coating layer covering the surface of the main body layer The coil for magnetic resonance detection is characterized in that the coating layer is made of a diamagnetic material having a magnetic susceptibility opposite to the magnetic susceptibility of aluminum forming the main body layer. 請求項1記載の磁気共鳴検出用コイルにおいて、前記本体層を構成するアルミニウムの磁化率と前記被覆層を構成する反磁性材料の磁化率とが相殺されるように当該本体層と被覆層の体積比率が設定されていることを特徴とする磁気共鳴検出用コイル。   2. The magnetic resonance detection coil according to claim 1, wherein the volume of the main body layer and the coating layer is such that the magnetic susceptibility of aluminum constituting the main body layer and the susceptibility of the diamagnetic material constituting the coating layer are offset. A coil for magnetic resonance detection, characterized in that a ratio is set. 請求項1または2記載の磁気共鳴検出用コイルにおいて、前記被覆層が金で構成されていることを特徴とする磁気共鳴検出用コイル。   The magnetic resonance detection coil according to claim 1 or 2, wherein the coating layer is made of gold. 請求項3記載の磁気共鳴検出用コイルを製造する方法であって、前記本体層を構成するアルミニウムの表面に金を蒸着させ、または金メッキすることによって被覆層を形成する被覆工程と、この被覆工程の前または後に前記本体層を筒状に成形するコイル成形工程とを含むことを特徴とする磁気共鳴検出用コイルの製造方法。   A method for manufacturing the magnetic resonance detecting coil according to claim 3, wherein a coating layer is formed by depositing gold on the surface of aluminum constituting the main body layer or by gold plating, and the coating step. A coil forming step of forming the main body layer into a cylindrical shape before or after the step of manufacturing the magnetic resonance detecting coil. 請求項4記載の磁気共鳴検出用コイルの製造方法において、前記被覆工程は、前記本体層の表面に金を蒸着させるものであり、前記本体層を構成するアルミニウムの磁化率と前記被覆層を構成する反磁性材料の磁化率とが相殺されるような本体層と被覆層の体積比率が得られるように前記金の蒸着時間を設定することを特徴とする磁気共鳴検出用コイルの製造方法。   5. The method for manufacturing a magnetic resonance detecting coil according to claim 4, wherein the covering step is to deposit gold on the surface of the main body layer, and to form the magnetic susceptibility of the aluminum constituting the main body layer and the covering layer. A method for manufacturing a magnetic resonance detecting coil, characterized in that the gold deposition time is set so that a volume ratio of a main body layer and a coating layer is obtained so that a magnetic susceptibility of a diamagnetic material to be canceled out.
JP2006086230A 2006-03-27 2006-03-27 Coil for magnetic resonance detection and its manufacturing method Pending JP2007263621A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006086230A JP2007263621A (en) 2006-03-27 2006-03-27 Coil for magnetic resonance detection and its manufacturing method
PCT/JP2007/055248 WO2007111150A1 (en) 2006-03-27 2007-03-15 Magnetic resonance detection coil and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006086230A JP2007263621A (en) 2006-03-27 2006-03-27 Coil for magnetic resonance detection and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007263621A true JP2007263621A (en) 2007-10-11

Family

ID=38541071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006086230A Pending JP2007263621A (en) 2006-03-27 2006-03-27 Coil for magnetic resonance detection and its manufacturing method

Country Status (2)

Country Link
JP (1) JP2007263621A (en)
WO (1) WO2007111150A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096639A (en) * 2008-10-17 2010-04-30 Hitachi Ltd Probe for nmr device, and the nmr device
JP2015186915A (en) * 2014-02-24 2015-10-29 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation Custom-made magnetic susceptibility materials

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234939A (en) 2011-04-28 2012-11-29 High Energy Accelerator Research Organization Magnetic shielding material for superconducting magnet
JP2012234938A (en) * 2011-04-28 2012-11-29 High Energy Accelerator Research Organization Low-temperature heat transfer material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284033A (en) * 1999-03-30 2000-10-13 Jeol Ltd Sample coil for nuclear magnetic resonance
JP2001194440A (en) * 2000-01-14 2001-07-19 Jeol Ltd Manufacturing method for conductive material inside magnetic field
JP2002162455A (en) * 2000-09-30 2002-06-07 Varian Inc Clad metal foil for low-temperature nmr probe rf coil
JP2005508004A (en) * 2001-10-26 2005-03-24 ヴァリアン インコーポレーテッド RF conductor for round conductor NMR

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284033A (en) * 1999-03-30 2000-10-13 Jeol Ltd Sample coil for nuclear magnetic resonance
JP2001194440A (en) * 2000-01-14 2001-07-19 Jeol Ltd Manufacturing method for conductive material inside magnetic field
JP2002162455A (en) * 2000-09-30 2002-06-07 Varian Inc Clad metal foil for low-temperature nmr probe rf coil
JP2005508004A (en) * 2001-10-26 2005-03-24 ヴァリアン インコーポレーテッド RF conductor for round conductor NMR

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096639A (en) * 2008-10-17 2010-04-30 Hitachi Ltd Probe for nmr device, and the nmr device
JP2015186915A (en) * 2014-02-24 2015-10-29 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation Custom-made magnetic susceptibility materials
US9810751B2 (en) 2014-02-24 2017-11-07 Northrop Grumman Systems Corporation Customized magnetic susceptibility materials
US10451690B2 (en) 2014-02-24 2019-10-22 Northrop Grumman Systems Corporation Customized magnetic susceptibility materials

Also Published As

Publication number Publication date
WO2007111150A1 (en) 2007-10-04

Similar Documents

Publication Publication Date Title
EP2466662B1 (en) Magnetostrictive film, magnetostrictive element, torque sensor, force sensor, pressure sensor, and process for production of magnetostrictive film
JP2007263621A (en) Coil for magnetic resonance detection and its manufacturing method
CN106898452B (en) The NMR shimming device for the cryogenic refrigeration being easily accessible to
JP4427075B2 (en) Superconducting wire, method for manufacturing the same, antenna coil for probe of nuclear magnetic resonance apparatus, and nuclear magnetic resonance apparatus system using the same
JP2008233025A (en) Nmr measurment apparatus
US6239594B1 (en) Mageto-impedance effect element
US20080061778A1 (en) Antenna coil for nmr probe and wire rod for same and nmr system
JP7203490B2 (en) Magnetic sensor assembly and magnetic sensor assembly manufacturing method
JP2006162258A (en) Nuclear magnetic resonance probe coil
US6153297A (en) Magnetic recording medium and method of manufacturing the same
Hemmous et al. Magnetic properties of evaporated Ni thin films: effect of substrates, thickness, and Cu underlayer
JP2009175081A (en) Antenna coil for nmr, low magnetism superconductive filament used for it, its manufacturing method, magnetic susceptibility adjusting method, and nmr system
JP5394972B2 (en) Sample tube for nuclear magnetic resonance apparatus and manufacturing method thereof
Liu et al. Soft magnetic properties of FeCo films with Co underlayer
US20190265312A1 (en) Magnetic Field Sensor Using In Situ Solid Source Graphene and Graphene Induced Anti-Ferromagnetic Coupling and Spin Filtering
JP5066136B2 (en) Cobalt iron alloy sputtering target material with high magnetic permeability
US6555248B1 (en) Magnetic recording medium
CN202996512U (en) Amorphous alloy core
WO2016208547A1 (en) Magnetic resonance imaging device
CN117524624A (en) Manufacturing method of composite structure magnetic core of fluxgate sensor
JP2010197055A (en) Nmr probe
JPH02125871A (en) Sputtering device
JPH06251967A (en) Current probe core
Ning et al. NiFe/insulator/Cu composite wires and their giant magneto-impedance effects
JPH03245016A (en) Magnetic type encoder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120214