JP2007263034A - Engine cooling water circuit - Google Patents

Engine cooling water circuit Download PDF

Info

Publication number
JP2007263034A
JP2007263034A JP2006090840A JP2006090840A JP2007263034A JP 2007263034 A JP2007263034 A JP 2007263034A JP 2006090840 A JP2006090840 A JP 2006090840A JP 2006090840 A JP2006090840 A JP 2006090840A JP 2007263034 A JP2007263034 A JP 2007263034A
Authority
JP
Japan
Prior art keywords
water
cooling water
channel
cooling
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006090840A
Other languages
Japanese (ja)
Other versions
JP4802811B2 (en
Inventor
Yoshio Sekiyama
惠夫 関山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2006090840A priority Critical patent/JP4802811B2/en
Publication of JP2007263034A publication Critical patent/JP2007263034A/en
Application granted granted Critical
Publication of JP4802811B2 publication Critical patent/JP4802811B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide an engine cooling water circuit capable of shortening warming-up time, and capable of sufficiently cooling an EGR cooler after finishing warming-up. <P>SOLUTION: This engine cooling water circuit has a first water passage 32 connecting a first cooling water pipe 14 to an EGR cooler inlet 43, a second water passage 33 connecting an EGR cooler outlet 44 to a third cooling water pipe 20, a third water passage 34 connecting the third cooling water pipe 20 on the upstream side of the second water passage 33 to the first water passage 32, a fourth water passage 36 connecting the second water passage 33 to a second cooling water pipe 17 on the downstream side of a thermostat 10, a first solenoid valve 26 opening and closing the first water passage 32 on the upstream side of the third water passage 34, a fourth solenoid valve 29 opening and closing the second water passage 33 on the downstream side of the fourth water passage 36, a pump 35 sending cooling water to the first water passage 32 side from the third cooling water pipe 20 side, a second solenoid valve 27 opening and closing the third water passage 34 on the downstream side of the pump 35, a third solenoid valve 28 opening and closing the fourth water passage 36, a water temperature detecting means 30 detecting the engine outlet water temperature, and a control means 31 controlling the pump 35 for ON/OFF and controlling opening-closing of the solenoid valves on the basis of this detecting temperature. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、エンジンウォータジャケット、ラジエータ間で冷却水を循環させると共に、この冷却水をEGR(Exhaust Gas Recirculation)クーラに循環させるエンジンの冷却水回路に関する。   The present invention relates to an engine cooling water circuit that circulates cooling water between an engine water jacket and a radiator and circulates the cooling water to an EGR (Exhaust Gas Recirculation) cooler.

車両用のディーゼル又はガソリンエンジンの冷却水回路としては、図5、図6及び図7に示すものが知られている。図5に示す冷却水回路50は、エンジンウォータジャケット6、ラジエータ7間で冷却水を循環させる循環水路8に、暖機時にラジエータ7を迂回させるバイパス水路9及びエンジン用サーモスタット10を設けたものであり、エンジン出口15から冷却水の一部を取水してEGRクーラ4に導入すると共に冷却水をラジエータ入口16に戻すように構成されている。   As a cooling water circuit of a diesel or gasoline engine for a vehicle, those shown in FIGS. 5, 6 and 7 are known. A cooling water circuit 50 shown in FIG. 5 is provided with a bypass water channel 9 and a thermostat 10 for the engine that bypass the radiator 7 during warm-up in a circulating water channel 8 that circulates cooling water between the engine water jacket 6 and the radiator 7. Yes, a part of the cooling water is taken from the engine outlet 15 and introduced into the EGR cooler 4, and the cooling water is returned to the radiator inlet 16.

図6に示す冷却水回路51は、上記EGRクーラ4に取水する水路に変更が加えられたものであり、エンジン入口13から冷却水の一部を取水するようになっている。   The cooling water circuit 51 shown in FIG. 6 is a modification of the water channel for taking water into the EGR cooler 4, and takes a part of the cooling water from the engine inlet 13.

図7に示す冷却水回路52は、上記EGRクーラ4に取水する水路に更に変更が加えられたものであり、ラジエータ出口18から冷却水の一部を取水するようになっている。この場合、循環水路8の下流側から上流側に冷却水を流すこととなるため、EGRクーラ4に冷却水を取り込む入口水路53にEGRクーラ用水ポンプ35を設けている。   The cooling water circuit 52 shown in FIG. 7 is obtained by further changing the water path for taking water into the EGR cooler 4, and takes a part of the cooling water from the radiator outlet 18. In this case, since the cooling water flows from the downstream side to the upstream side of the circulation water channel 8, the EGR cooler water pump 35 is provided in the inlet water channel 53 that takes the cooling water into the EGR cooler 4.

特開2004−293369号公報JP 2004-293369 A

ところで、エンジン始動後、冷却水温度が所定温度を超えるまでエンジン2の排気ガス中にHC(hydrocarbon)成分が多く排出されることは周知であり、今後強化される排気ガス規制に対応するには、暖機中のHC低減、暖機終了後のNOx低減が大きな課題となるが、図5記載の冷却水回路50は、エンジン出口15から冷却水の一部を取水してEGRガスを冷却するようになっており、暖機終了時点でのエンジン出口水温が80℃以上にもなることからEGRガスは冷却水温度以下には下がらず、EGRガスを充分冷却することができず、給気中のCO2濃度を充分高めることができないため、NOxを充分低減できないという課題があった。また、暖機中におけるエンジン水温の上昇はエンジン2からの放熱量のみによって決まり、冷却水がEGRガスから受けた放熱はラジエータ7からの放熱によって大気に拡散され、エンジン2の暖機には寄与しない。このため、暖機時間を短縮してHC排出量を低減することはできなかった。そして、暖機中はEGRガスが過冷却され、EGRガス中の水分の結露等によってEGRクーラ4内部が汚損されやすいという課題があった。 By the way, after the engine is started, it is well known that a lot of HC (hydrocarbon) components are discharged in the exhaust gas of the engine 2 until the cooling water temperature exceeds a predetermined temperature. HC reduction during warm-up and NOx reduction after completion of warm-up are major issues, but the cooling water circuit 50 shown in FIG. 5 cools the EGR gas by taking a part of the cooling water from the engine outlet 15. Since the engine outlet water temperature at the end of warm-up becomes 80 ° C. or higher, the EGR gas does not fall below the cooling water temperature, and the EGR gas cannot be sufficiently cooled, and the air is being supplied. However, since the CO 2 concentration cannot be sufficiently increased, NOx cannot be sufficiently reduced. In addition, the rise in engine water temperature during warm-up is determined only by the amount of heat released from the engine 2, and the heat released from the EGR gas by the cooling water is diffused into the atmosphere by the heat released from the radiator 7, contributing to the warm-up of the engine 2. do not do. For this reason, it was not possible to reduce the HC emission amount by shortening the warm-up time. During the warm-up, the EGR gas is supercooled, and there is a problem that the inside of the EGR cooler 4 is easily contaminated due to condensation of moisture in the EGR gas.

また、図6記載の冷却水回路51は、エンジン入口13から取水してEGRガスを冷却するものであり、暖機終了後、エンジン入口13の水温は出口温度に対して10℃前後低くなるため、EGRクーラ4の放熱量が増し、EGRガスの冷却には図5記載の冷却水回路50より効果的である。しかしながら、暖機中にEGRガスからの熱を大気放熱する点は上述と同様であり、HC排出量の低減はできず、EGRクーラ4内部が汚損されやすいという課題があった。   Further, the cooling water circuit 51 shown in FIG. 6 takes in water from the engine inlet 13 and cools the EGR gas. After the warm-up is completed, the water temperature at the engine inlet 13 is about 10 ° C. lower than the outlet temperature. The amount of heat released from the EGR cooler 4 is increased, and cooling of the EGR gas is more effective than the cooling water circuit 50 shown in FIG. However, the point that the heat from the EGR gas is dissipated to the atmosphere during warm-up is the same as described above, and there is a problem that the amount of HC emission cannot be reduced, and the inside of the EGR cooler 4 is easily contaminated.

図7記載の冷却水回路52は、ラジエータ出口18から取水してEGRガスを冷却するものであるため、EGRクーラ4に導入される冷却水の温度は図5〜図7に示す3例中で最も低く、EGRガスの冷却効果が最大となる。しかしながら、ラジエータ出口18の冷却水温は、エンジン2が充分に暖機され、サーモスタット10が開いて高温になったエンジン冷却水の一部、又は全部がラジエータ7に入るまで、EGRガスは過冷却になる時間帯が延び、HC排出量の低減ができないと共にEGRガス中の水分の結露等によってEGRクーラ4内部が汚損されやすいという課題があった。   Since the cooling water circuit 52 shown in FIG. 7 takes water from the radiator outlet 18 and cools the EGR gas, the temperature of the cooling water introduced into the EGR cooler 4 is in three examples shown in FIGS. The lowest, the cooling effect of EGR gas is maximized. However, the cooling water temperature at the radiator outlet 18 is such that the EGR gas is subcooled until the engine 2 is sufficiently warmed up and the thermostat 10 is opened and a part or all of the high temperature engine cooling water enters the radiator 7. There is a problem in that the time period during which the EGR cooler 4 cannot be reduced and the inside of the EGR cooler 4 is easily contaminated due to condensation of moisture in the EGR gas.

なお、特許文献1記載のエンジンの冷却水回路は、EGRクーラでEGRガスを冷却し、これにより温度が上がったEGRクーラの冷却水を車両ヒータに導入し、ヒータの効きを高めるものである。すなわち、暖機中に積極的に冷却水の熱を大気放出するものである。   The engine cooling water circuit described in Patent Document 1 cools EGR gas with an EGR cooler, and introduces cooling water of the EGR cooler whose temperature has risen to the vehicle heater, thereby enhancing the effectiveness of the heater. That is, the heat of the cooling water is positively released to the atmosphere during warm-up.

そこで、本発明の目的は、上記課題を解決し、暖機時間を短縮でき、かつ、暖機終了後にEGRクーラを充分冷却することができるエンジンの冷却水回路を提供することにある。   Therefore, an object of the present invention is to provide an engine coolant circuit that can solve the above-described problems, shorten the warm-up time, and sufficiently cool the EGR cooler after the warm-up is completed.

上記課題を解決するために本発明は、エンジン用水ポンプの吐出口とエンジンウォータジャケットの入口を接続する第1冷却水管と、前記エンジンウォータジャケットの出口とラジエータの入口を接続する第2冷却水管と、前記ラジエータの出口と前記エンジン用水ポンプの吸込口を接続する第3冷却水管と、前記第2冷却水管と前記第3冷却水管を接続するバイパス水管と、冷却水の水温が所定温度に満たないとき前記バイパス水管に冷却水を流通させると共にラジエータへの冷却水の流通を止め、前記水温が所定温度以上のとき前記バイパス水管への冷却水の流通を止めると共にラジエータに冷却水を流通させるサーモスタットと、前記いずれかの冷却水管から冷却水を取り込んでEGRガスとの熱交換を行うEGRクーラとを備えたエンジンの冷却水回路において、前記第1冷却水管とEGRクーラの入口を接続する第1水路と、前記EGRクーラの出口と第3冷却水管を接続する第2水路と、該第2水路より上流側の第3冷却水管と前記第1水路とを接続する第3水路と、前記第2水路と前記サーモスタットの下流側の第2冷却水管を接続する第4水路と、前記第3水路より上流側の第1水路を開閉する第1電磁バルブと、第4水路の下流側の第2水路を開閉する第4電磁バルブと、第3水路に設けられ第3冷却水管側から第1水路側に冷却水を送るEGRクーラ用水ポンプと、該EGRクーラ用水ポンプの下流側の第3水路を開閉する第2電磁バルブと、前記第4水路を開閉する第3電磁バルブと、エンジン出口水温を検出する水温検出手段と、該水温検出手段の検出温度に基づいて前記EGRクーラ用水ポンプをオンオフ制御すると共に前記各電磁バルブを開閉制御する制御手段とを備えるものである。   In order to solve the above-described problems, the present invention provides a first cooling water pipe that connects an outlet of an engine water pump and an inlet of an engine water jacket, and a second cooling water pipe that connects an outlet of the engine water jacket and an inlet of a radiator. The third cooling water pipe connecting the outlet of the radiator and the suction port of the engine water pump, the bypass water pipe connecting the second cooling water pipe and the third cooling water pipe, and the cooling water temperature does not reach a predetermined temperature. When the cooling water is circulated through the bypass water pipe and the circulation of the cooling water to the radiator is stopped, and when the water temperature is equal to or higher than a predetermined temperature, the circulation of the cooling water to the bypass water pipe is stopped and the cooling water is circulated through the radiator; An EGR cooler that takes in the cooling water from any one of the cooling water pipes and performs heat exchange with the EGR gas. In the cooling water circuit of the gin, the first water channel connecting the first cooling water pipe and the inlet of the EGR cooler, the second water channel connecting the outlet of the EGR cooler and the third cooling water pipe, and the upstream side of the second water channel A third water channel connecting the third cooling water pipe and the first water channel, a fourth water channel connecting the second water channel and the second cooling water pipe downstream of the thermostat, and an upstream side of the third water channel. A first electromagnetic valve for opening and closing the first water channel, a fourth electromagnetic valve for opening and closing a second water channel downstream of the fourth water channel, and cooling water provided in the third water channel from the third cooling water pipe side to the first water channel side An EGR cooler water pump, a second electromagnetic valve for opening and closing a third water passage downstream of the EGR cooler water pump, a third electromagnetic valve for opening and closing the fourth water passage, and a water temperature detection for detecting an engine outlet water temperature And temperature detected by the water temperature detecting means In which a control means for controlling opening and closing each of said solenoid valves with on-off controlling the EGR cooler water pump based on.

前記制御手段は、前記水温検出手段で検出された出口水温が所定温度以下のとき、前記エンジン用水ポンプの吐出側からEGRクーラに冷却水を導くと共に、EGRクーラにて暖められた冷却水をエンジン用水ポンプの吸込側に戻す回路を形成すべく、前記EGRクーラ用水ポンプを停止し、前記第1電磁バルブと第4電磁バルブを開弁すると共に、前記第2電磁バルブと第3電磁バルブを閉弁するとよい。   The control means guides the cooling water from the discharge side of the engine water pump to the EGR cooler when the outlet water temperature detected by the water temperature detecting means is equal to or lower than a predetermined temperature, and supplies the cooling water warmed by the EGR cooler to the engine. In order to form a circuit for returning to the suction side of the water pump, the EGR cooler water pump is stopped, the first electromagnetic valve and the fourth electromagnetic valve are opened, and the second electromagnetic valve and the third electromagnetic valve are closed. It is good to speak.

前記制御手段は、前記水温検出手段で検出された出口水温が所定温度を超えるとき、前記ラジエータの出口側からEGRクーラに冷却水を導くと共に、EGRクーラにて暖められた冷却水をラジエータの入口側に戻す回路を形成すべく、前記EGRクーラ用水ポンプを駆動し、前記第2電磁バルブと第3電磁バルブを開弁すると共に、前記第1電磁バルブと第4電磁バルブを閉弁するとよい。   When the outlet water temperature detected by the water temperature detection means exceeds a predetermined temperature, the control means guides the cooling water from the outlet side of the radiator to the EGR cooler, and supplies the cooling water warmed by the EGR cooler to the inlet of the radiator In order to form a circuit to return to the side, the EGR cooler water pump is driven to open the second electromagnetic valve and the third electromagnetic valve, and close the first electromagnetic valve and the fourth electromagnetic valve.

また、エンジンウォータジャケット、ラジエータ間で冷却水を循環させる循環水路と、前記ラジエータの上流側の循環水路と下流側の循環水路を接続するバイパス水路と、冷却水の水温が所定温度に満たないときバイパス水路に冷却水を流通させると共にラジエータへの冷却水の流通を止め、前記水温が所定温度以上のとき前記バイパス水路への冷却水の流通を止めると共にラジエータに冷却水を流通させるサーモスタットと、前記循環水路に前記バイパス水路よりもエンジン側に位置して設けられ冷却水を循環させるエンジン用水ポンプと、前記循環水路から冷却水を取り込んでEGRガスとの熱交換を行うEGRクーラとを備えたエンジンの冷却水回路において、前記ラジエータの出口側の循環水路から前記EGRクーラに冷却水を取り込むための入口水路と、前記EGRクーラからの冷却水を前記ラジエータの入口側の循環水路に戻すための冷却用出口水路と、前記EGRクーラからの冷却水を前記ラジエータの出口側の循環水路に戻すための暖機用出口水路と、前記EGRクーラの出口水路を前記冷却用出口水路又は前記暖機用出口水路のいずれか一方に切り替える水路切替手段と、前記循環水路に設けられエンジンの出口水温を検出する水温検出手段と、該水温検出手段で検出された出口水温が所定温度を超えるとき前記冷却用出口水路を開き前記暖機用出口水路を閉じるように前記水路切替手段を作動させ、前記出口水温が所定温度以下のとき前記暖機用出口水路を開き前記冷却用出口水路を閉じるように前記水路切替手段を作動させる制御手段とを備えるとよい。   Also, when the coolant temperature of the cooling water does not reach a predetermined temperature, a circulating water channel for circulating the cooling water between the engine water jacket and the radiator, a bypass water channel connecting the upstream circulating water channel and the downstream circulating water channel, and the cooling water temperature A thermostat that circulates the cooling water to the bypass channel and stops the circulation of the cooling water to the radiator, stops the circulation of the cooling water to the bypass channel when the water temperature is equal to or higher than a predetermined temperature, and circulates the cooling water to the radiator; and An engine including an engine water pump that is provided in the circulation water channel on the engine side of the bypass water channel and circulates the cooling water, and an EGR cooler that takes in the cooling water from the circulation water channel and performs heat exchange with the EGR gas. In this cooling water circuit, cooling water is taken into the EGR cooler from the circulation water channel on the outlet side of the radiator. An inlet water channel for cooling, a cooling outlet water channel for returning the cooling water from the EGR cooler to the circulating water channel on the inlet side of the radiator, and a cooling water channel for returning the cooling water from the EGR cooler to the circulating water channel on the outlet side of the radiator An outlet water channel for warming up, a water channel switching means for switching the outlet water channel of the EGR cooler to either the cooling water channel for cooling or the outlet water channel for warming up, and detecting the outlet water temperature of the engine provided in the circulating water channel Water temperature detecting means, and when the outlet water temperature detected by the water temperature detecting means exceeds a predetermined temperature, operates the water channel switching means to open the cooling outlet water channel and close the warm-up outlet water channel, And control means for operating the water channel switching means to open the warm-up outlet water channel and close the cooling outlet water channel when the temperature is equal to or lower than a predetermined temperature.

本発明によれば、暖機時間を短縮でき、かつ、暖機終了後にEGRクーラを充分冷却することができる。   According to the present invention, the warm-up time can be shortened, and the EGR cooler can be sufficiently cooled after the warm-up is completed.

本発明の好適実施の形態を添付図面を用いて説明する。   Preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1に示すように、エンジンの冷却水回路1は、エンジン2を冷却するための主回路3と、EGRクーラ4を冷却すべく主回路3に接続される副回路5とからなる。   As shown in FIG. 1, the engine coolant circuit 1 includes a main circuit 3 for cooling the engine 2 and a sub circuit 5 connected to the main circuit 3 for cooling the EGR cooler 4.

主回路3は、エンジンウォータジャケット(以下、エンジンと略す)6、ラジエータ7間で冷却水を循環させる循環水路8と、ラジエータ7の上流側の循環水路8と下流側の循環水路8を接続するバイパス水路9と、冷却水の水温が所定の設定温度(例えば80℃)に満たないときバイパス水路9に冷却水を流通させると共にラジエータ7への冷却水の流通を止め、水温が所定温度以上のときバイパス水路9への冷却水の流通を止めると共にラジエータ7に冷却水を流通させるサーモスタット10と、循環水路8にバイパス水路9よりもエンジン6側に位置して設けられ冷却水を循環させるエンジン用水ポンプ11とを備えて構成されている。循環水路8は、エンジン用水ポンプ11の吐出口12とエンジン6の入口13を接続する第1冷却水管14と、エンジン6の出口15とラジエータ7の入口16を接続する第2冷却水管17と、ラジエータ7の出口18とエンジン用水ポンプ11の吸込口19を接続する第3冷却水管20とを備える。バイパス水路9は、ラジエータ7を迂回するための水路であり、第2冷却水管17と第3冷却水管20を接続するバイパス水管21からなる。サーモスタット10は第2冷却水管17とバイパス水管21との接続部に設けられており、サーモスタット10内を流れる冷却水の水温に基づいてエンジン6側から流れる冷却水をラジエータ7側の第2冷却水管17又はバイパス水管21のいずれか一方に切り替えて流すようになっている。   The main circuit 3 connects an engine water jacket (hereinafter abbreviated as an engine) 6, a circulation water channel 8 for circulating cooling water between the radiator 7, and a circulation water channel 8 upstream of the radiator 7 and a circulation water channel 8 downstream. When the water temperature of the bypass water passage 9 and the cooling water is less than a predetermined set temperature (for example, 80 ° C.), the cooling water is circulated through the bypass water passage 9 and the circulation of the cooling water to the radiator 7 is stopped. When the thermostat 10 stops circulation of the cooling water to the bypass water channel 9 and distributes the cooling water to the radiator 7, the engine water is provided in the circulation water channel 8 on the engine 6 side of the bypass water channel 9 and circulates the cooling water. A pump 11 is provided. The circulation water channel 8 includes a first cooling water pipe 14 that connects the discharge port 12 of the engine water pump 11 and the inlet 13 of the engine 6, a second cooling water pipe 17 that connects the outlet 15 of the engine 6 and the inlet 16 of the radiator 7, A third cooling water pipe 20 connecting the outlet 18 of the radiator 7 and the suction port 19 of the engine water pump 11 is provided. The bypass water passage 9 is a water passage for bypassing the radiator 7, and includes a bypass water pipe 21 that connects the second cooling water pipe 17 and the third cooling water pipe 20. The thermostat 10 is provided at a connection portion between the second cooling water pipe 17 and the bypass water pipe 21, and the cooling water flowing from the engine 6 side based on the temperature of the cooling water flowing through the thermostat 10 is supplied to the second cooling water pipe on the radiator 7 side. 17 or the bypass water pipe 21 is switched to flow.

副回路5は、EGRガスを冷却するためのEGRクーラ4と、ラジエータ出口18近傍の循環水路8からEGRクーラ4に冷却水を取り込む冷却用入口水路22と、エンジン6入口近傍の循環水路8からEGRクーラ4に冷却水を取り込む暖機用入口水路23と、EGRクーラ4から排出される冷却水をラジエータ7の入口16側の循環水路8に戻すための冷却用出口水路24と、EGRクーラ4から排出される冷却水をラジエータ7の出口18側の循環水路8に戻すための暖機用出口水路25と、EGRクーラ4の入口水路を冷却用入口水路22又は暖機用入口水路23のいずれか一方に切り替える入口側水路切替手段26、27と、EGRクーラ4の出口水路を冷却用出口水路24又は暖機用出口水路25のいずれか一方に切り替える出口側水路切替手段28、29と、循環水路8に設けられエンジン6の出口水温を検出する水温検出手段30と、水温検出手段30で検出された出口水温に基づいて入口側水路切替手段26、27と出口側水路切替手段28、29を作動させ入口水路22、23及び出口水路24、25をそれぞれ切り替える制御手段31とを備えて構成されている。   The auxiliary circuit 5 includes an EGR cooler 4 for cooling the EGR gas, a cooling inlet water passage 22 for taking cooling water into the EGR cooler 4 from the circulation water passage 8 in the vicinity of the radiator outlet 18, and the circulation water passage 8 in the vicinity of the engine 6 inlet. A warm-up inlet water passage 23 for taking in the cooling water to the EGR cooler 4, a cooling outlet water passage 24 for returning the cooling water discharged from the EGR cooler 4 to the circulation water passage 8 on the inlet 16 side of the radiator 7, and the EGR cooler 4 The warming-up outlet water channel 25 for returning the cooling water discharged from the radiator 7 to the circulating water channel 8 on the outlet 18 side of the radiator 7, the cooling water inlet water channel 22 or the warming-up inlet water channel 23 as the inlet water channel of the EGR cooler 4. The inlet-side water channel switching means 26, 27 for switching to one of these and the outlet water channel for the EGR cooler 4 are switched to either the cooling water channel 24 or the warm-up water channel 25. Side water channel switching means 28, 29, water temperature detection means 30 provided in the circulation water channel 8 for detecting the outlet water temperature of the engine 6, and inlet side water channel switching means 26, 27 based on the outlet water temperature detected by the water temperature detection means 30. And control means 31 for operating the outlet side water passage switching means 28 and 29 and switching the inlet water passages 22 and 23 and the outlet water passages 24 and 25, respectively.

EGRクーラ4は、循環水路8から取り込んだ冷却水とEGRガスとの熱交換によりEGRガスを冷却するものである。冷却すべきEGRガスは、エンジン2の排気側からEGRクーラ4に流入されて冷却水と熱交換したのち、エンジン2の吸気側へ向けて排出されるようになっている。   The EGR cooler 4 cools the EGR gas by heat exchange between the cooling water taken in from the circulation water channel 8 and the EGR gas. The EGR gas to be cooled flows into the EGR cooler 4 from the exhaust side of the engine 2 and exchanges heat with the cooling water, and is then discharged toward the intake side of the engine 2.

暖機用入口水路23は、第1冷却水管14とEGRクーラ4の入口43を接続する第1水路32からなる。冷却用入口水路22は、後述する第2水路33より主回路3上流側の第3冷却水管20と第1水路32を接続する第3水路34と、第3水路34、EGRクーラ4間の第1水路32とからなり、ラジエータ7から出た直後の循環水路8内で最も冷えた冷却水をEGRクーラ4に導入するように設定されている。また、第3水路34には第3冷却水管20側から第1水路32側に冷却水を送るEGRクーラ用水ポンプ35が設けられている。暖機用出口水路25は、EGRクーラ4の出口44と第3水路34より主回路3下流側の第3冷却水管20を接続する第2水路33からなり、EGRクーラ4で暖められた冷却水をラジエータ7を通さずにエンジン6に帰して暖機時間を短縮するようになっている。冷却用出口水路24は、第2水路33とサーモスタット10の主回路3下流側の第2冷却水管17を接続する第4水路36からなる。   The warm-up inlet water channel 23 includes a first water channel 32 that connects the first cooling water pipe 14 and the inlet 43 of the EGR cooler 4. The cooling inlet water channel 22 includes a third water channel 34 connecting the third cooling water pipe 20 and the first water channel 32 upstream of the main circuit 3 with respect to the second water channel 33 described later, and a third water channel 34 between the third water channel 34 and the EGR cooler 4. The cooling water that is the coldest in the circulation water channel 8 immediately after exiting the radiator 7 is set to be introduced into the EGR cooler 4. The third water passage 34 is provided with an EGR cooler water pump 35 for sending the cooling water from the third cooling water pipe 20 side to the first water passage 32 side. The warm-up outlet water channel 25 includes a second water channel 33 connecting the outlet 44 of the EGR cooler 4 and the third cooling water pipe 20 on the downstream side of the main circuit 3 from the third water channel 34, and the cooling water heated by the EGR cooler 4. The warm-up time is shortened by returning the engine to the engine 6 without passing through the radiator 7. The cooling outlet water channel 24 includes a fourth water channel 36 that connects the second water channel 33 and the second cooling water pipe 17 on the downstream side of the main circuit 3 of the thermostat 10.

入口側水路切替手段26、27は、第3水路34との接続位置より上流側の第1水路32を開閉する第1電磁バルブ26と、EGRクーラ用水ポンプ35下流側の第3水路34を開閉する第2電磁バルブ27とからなり、第1電磁バルブ26又は第2電磁バルブ27のいずれか一方を開き他方を閉じることで入口水路を冷却用入口水路22又は暖機用入口水路23のいずれか一方に切り替えられるようになっている。出口側水路切替手段28、29は、第4水路36を開閉する第3電磁バルブ28と、第4水路36との接続位置より下流側の第2水路33を開閉する第4電磁バルブ29とからなり、第3電磁バルブ28又は第4電磁バルブ29のいずれか一方を開き他方を閉じることで出口水路を冷却用出口水路24又は暖機用出口水路25のいずれか一方に切り替えられるようになっている。   The inlet side water channel switching means 26 and 27 open and close the first electromagnetic valve 26 that opens and closes the first water channel 32 upstream of the connection position with the third water channel 34 and the third water channel 34 downstream of the EGR cooler water pump 35. The first electromagnetic valve 26 or the second electromagnetic valve 27 is opened, and either the first electromagnetic valve 26 or the second electromagnetic valve 27 is opened and the other is closed so that the inlet water channel is either the cooling inlet water channel 22 or the warm-up inlet water channel 23. It can be switched to one side. The outlet side water channel switching means 28, 29 includes a third electromagnetic valve 28 that opens and closes the fourth water channel 36, and a fourth electromagnetic valve 29 that opens and closes the second water channel 33 downstream from the connection position with the fourth water channel 36. Thus, the outlet water channel can be switched to either the cooling outlet water channel 24 or the warming-up outlet water channel 25 by opening one of the third electromagnetic valve 28 or the fourth electromagnetic valve 29 and closing the other. Yes.

水温検出手段30は、第2冷却水管17に設けられ測定したエンジン出口水温を電気信号として制御手段31に入力する温度センサからなる。   The water temperature detection means 30 includes a temperature sensor that is provided in the second cooling water pipe 17 and inputs the measured engine outlet water temperature to the control means 31 as an electrical signal.

制御手段31は、マイクロコンピュータからなり、水温検出手段30の検出温度に基づいてEGRクーラ用水ポンプ35をオンオフ制御すると共に各電磁バルブ26、27、28、29を開閉制御するようになっている。具体的には、制御手段31は、水温検出手段30で検出された出口水温が所定温度以下のとき、EGRクーラ用水ポンプ35を停止し、第1電磁バルブ26と第4電磁バルブ29を開弁すると共に、第2電磁バルブ27と第3電磁バルブ28を閉弁してエンジン用水ポンプ11の吐出側からEGRクーラ4に冷却水を導くと共に、EGRクーラ4にて暖められた冷却水をエンジン用水ポンプ11の吸込側に戻す回路を形成するようになっている。そしてさらに制御手段31は、水温検出手段30で検出された出口水温が所定温度を超えるとき、EGRクーラ用水ポンプ35を駆動し、第2電磁バルブ27と第3電磁バルブ28を開弁すると共に、第1電磁バルブ26と第4電磁バルブ29を閉弁してラジエータ7の出口18側からEGRクーラ4に冷却水を導くと共に、EGRクーラ4にて暖められた冷却水をラジエータ7の入口側に戻す回路を形成するようになっている。出口水温と比較する所定温度は、EGRクーラ4に関して暖機が終了したと判断できる温度(例えば50℃)に設定されている。   The control means 31 is composed of a microcomputer, and controls the on / off of the EGR cooler water pump 35 based on the temperature detected by the water temperature detecting means 30 and also controls the opening and closing of the electromagnetic valves 26, 27, 28 and 29. Specifically, the control means 31 stops the EGR cooler water pump 35 and opens the first electromagnetic valve 26 and the fourth electromagnetic valve 29 when the outlet water temperature detected by the water temperature detection means 30 is equal to or lower than a predetermined temperature. At the same time, the second electromagnetic valve 27 and the third electromagnetic valve 28 are closed to guide the cooling water from the discharge side of the engine water pump 11 to the EGR cooler 4, and the cooling water heated by the EGR cooler 4 is supplied to the engine water. A circuit for returning to the suction side of the pump 11 is formed. Further, the control means 31 drives the EGR cooler water pump 35 to open the second electromagnetic valve 27 and the third electromagnetic valve 28 when the outlet water temperature detected by the water temperature detection means 30 exceeds a predetermined temperature, and The first electromagnetic valve 26 and the fourth electromagnetic valve 29 are closed to guide the cooling water from the outlet 18 side of the radiator 7 to the EGR cooler 4, and the cooling water heated by the EGR cooler 4 is introduced to the inlet side of the radiator 7. A return circuit is formed. The predetermined temperature to be compared with the outlet water temperature is set to a temperature (for example, 50 ° C.) at which it can be determined that the warm-up of the EGR cooler 4 has been completed.

次に本実施の形態の作用を述べる。   Next, the operation of this embodiment will be described.

図2に示すように、イグニッション用のキースイッチをオン37すると、制御手段31は可変設定値を読み込む等のイニシャライズ38を行う。この後、制御手段31は、水温検出手段30にてエンジン出口水温Twの測定39を行い、エンジン出口水温Twが所定温度T0より大きいか否かを判別40する。 As shown in FIG. 2, when the ignition key switch is turned on 37, the control means 31 performs initialization 38 such as reading a variable set value. Thereafter, the control means 31 measures 39 the engine outlet water temperature Tw by the water temperature detecting means 30 and determines 40 whether or not the engine outlet water temperature Tw is higher than a predetermined temperature T 0 .

出口水温Twが所定温度T0以下である場合、図3に示すように、制御手段31はEGRクーラ用水ポンプ35を停止し、暖機用入口水路23と暖機用出口水路25を開き、かつ、冷却用入口水路22と冷却用出口水路24を閉じるように水路切替手段26、27、28、29を作動させる。すなわち、制御手段31はEGRクーラ用水ポンプ35を停止し、第1電磁バルブ26と第4電磁バルブ29を開弁すると共に、第2電磁バルブ27と第3電磁バルブ28を閉弁41(図2参照)する。これによりエンジン用水ポンプ吐出口12近傍の循環水路8からEGRクーラ4に冷却水を導入し、EGRクーラ4を出た冷却水をエンジン用水ポンプ吸込口19近傍の循環水路8に戻すことができる。そして、冷却水の水温がサーモスタット10の設定温度に至るまでは、エンジン6側の冷却水はラジエータ7を通らずに全てエンジン6内部を循環するので、EGRガスより受けた熱を全てエンジン6に戻すことができ、暖機が促進される。また、暖機が促進されることでEGRクーラ冷却水温度も早く上がり、EGRガスが過冷却される時間を大幅に短縮することができる。 When the outlet water temperature Tw is equal to or lower than the predetermined temperature T 0 , as shown in FIG. 3, the control means 31 stops the EGR cooler water pump 35, opens the warm-up inlet water channel 23 and the warm-up outlet water channel 25, and Then, the water channel switching means 26, 27, 28, 29 are operated so as to close the cooling inlet water channel 22 and the cooling outlet water channel 24. That is, the control means 31 stops the EGR cooler water pump 35, opens the first electromagnetic valve 26 and the fourth electromagnetic valve 29, and closes the second electromagnetic valve 27 and the third electromagnetic valve 28 (FIG. 2). refer. As a result, cooling water can be introduced into the EGR cooler 4 from the circulating water passage 8 in the vicinity of the engine water pump discharge port 12, and the cooling water exiting the EGR cooler 4 can be returned to the circulating water passage 8 in the vicinity of the engine water pump suction port 19. Until the coolant temperature reaches the set temperature of the thermostat 10, the coolant on the engine 6 side circulates entirely inside the engine 6 without passing through the radiator 7, so that all the heat received from the EGR gas is supplied to the engine 6. It can be returned and warm-up is promoted. Further, the warm-up is promoted, so that the temperature of the EGR cooler cooling water rises quickly, and the time during which the EGR gas is supercooled can be greatly shortened.

出口水温Twが所定温度T0を超えると、図4に示すように、制御手段31はEGRクーラ用水ポンプ35を駆動し、冷却用入口水路22と冷却用出口水路24を開き、かつ、暖機用入口水路23と暖機用出口水路25を閉じるように水路切替手段26、27、28、29を作動させてEGRクーラ冷却水の経路を変更する。すなわち、制御手段31はEGRクーラ用水ポンプ35を駆動し、第2電磁バルブ27と第3電磁バルブ28を開弁すると共に、第1電磁バルブ26と第4電磁バルブ29を閉弁42(図2参照)する。これによりラジエータ7の出口18近傍の循環水路8からEGRクーラ4に冷却水を導入し、EGRクーラ4にて暖められた冷却水をラジエータ7入口近傍の循環水路8に戻す配管に変更できる。この配管は、図7に示す従来の最も冷却能力が高い配管であり、NOx低減性能を従来の最高水準にできる。 When the outlet water temperature Tw exceeds the predetermined temperature T 0 , as shown in FIG. 4, the control means 31 drives the EGR cooler water pump 35 to open the cooling inlet water passage 22 and the cooling outlet water passage 24, and The channel switching means 26, 27, 28 and 29 are operated so as to close the inlet water channel 23 and the warm-up outlet channel 25 to change the path of the EGR cooler cooling water. That is, the control means 31 drives the EGR cooler water pump 35, opens the second electromagnetic valve 27 and the third electromagnetic valve 28, and closes the first electromagnetic valve 26 and the fourth electromagnetic valve 29 (FIG. 2). refer. As a result, the cooling water can be introduced into the EGR cooler 4 from the circulation water passage 8 near the outlet 18 of the radiator 7 and the cooling water heated by the EGR cooler 4 can be changed to a pipe that returns to the circulation water passage 8 near the radiator 7 inlet. This pipe is the conventional pipe having the highest cooling capacity shown in FIG. 7, and can reduce the NOx reduction performance to the highest level in the past.

このように、第1冷却水管14とEGRクーラ4の入口43を接続する第1水路32と、EGRクーラ4の出口44と第3冷却水管20を接続する第2水路33と、第2水路33より上流側の第3冷却水管20と第1水路32とを接続する第3水路34と、第2水路33と前記サーモスタット10の下流側の第2冷却水管17を接続する第4水路36と、前記第3水路34より上流側の第1水路32を開閉する第1電磁バルブ26と、第4水路36の下流側の第2水路33を開閉する第4電磁バルブ29と、第3水路34に設けられ第3冷却水管20側から第1水路32側に冷却水を送るEGRクーラ用水ポンプ35と、EGRクーラ用水ポンプ35の下流側の第3水路34を開閉する第2電磁バルブ27と、第4水路36を開閉する第3電磁バルブ28と、エンジン出口水温を検出する水温検出手段30と、水温検出手段30の検出温度に基づいてEGRクーラ用水ポンプ35をオンオフ制御すると共に各電磁バルブ26、27、28、29を開閉制御する制御手段31とを備えてエンジン6の冷却水回路1を構成したため、エンジン始動後、エンジン水温が所定温度に達するまでEGRクーラ冷却水の副回路5を用いてEGRガスから放熱される熱量をエンジン6に帰すことができ、暖機時間を短縮でき、暖機終了後には、EGRクーラ冷却水の副回路5を変更し、EGRクーラ4の冷却能力を上げることができ、NOxの低減ができる。そしてこれにより、HCの低減とNOxの低減を高い水準で両立でき、EGRガスの過冷却によって生じるEGRクーラ4内の汚損を低減できる。   As described above, the first water channel 32 connecting the first cooling water pipe 14 and the inlet 43 of the EGR cooler 4, the second water channel 33 connecting the outlet 44 of the EGR cooler 4 and the third cooling water tube 20, and the second water channel 33. A third water channel 34 connecting the third cooling water pipe 20 and the first water channel 32 on the more upstream side, a fourth water channel 36 connecting the second water channel 33 and the second cooling water pipe 17 on the downstream side of the thermostat 10, and The first electromagnetic valve 26 that opens and closes the first water passage 32 upstream of the third water passage 34, the fourth electromagnetic valve 29 that opens and closes the second water passage 33 downstream of the fourth water passage 36, and the third water passage 34 An EGR cooler water pump 35 that is provided and sends cooling water from the third cooling water pipe 20 side to the first water channel 32 side; a second electromagnetic valve 27 that opens and closes a third water channel 34 on the downstream side of the EGR cooler water pump 35; 4th electric train that opens and closes the four water channels 36 The EGR cooler water pump 35 is controlled to be turned on / off based on the detected temperature of the valve 28, the engine outlet water temperature, and the temperature detected by the water temperature detection means 30, and the electromagnetic valves 26, 27, 28, 29 are controlled to open and close. Since the cooling water circuit 1 of the engine 6 is configured with the control means 31, the amount of heat radiated from the EGR gas using the sub-circuit 5 of the EGR cooler cooling water after the engine is started until the engine water temperature reaches a predetermined temperature. 6, the warm-up time can be shortened, and after completion of the warm-up, the sub-circuit 5 of the EGR cooler cooling water can be changed, the cooling capacity of the EGR cooler 4 can be increased, and NOx can be reduced. As a result, both HC reduction and NOx reduction can be achieved at a high level, and fouling in the EGR cooler 4 caused by supercooling of the EGR gas can be reduced.

制御手段31は、水温検出手段30で検出された出口水温Twが所定温度T0以下のとき、EGRクーラ用水ポンプ35を停止し、第1電磁バルブ26と第4電磁バルブ29を開弁すると共に、第2電磁バルブ27と第3電磁バルブ28を閉弁するものとしたため、簡単な構造で確実に入口水路を暖機用入口水路23に切り替えることができると共に出口水路を暖機用出口水路25に切り替えることができる。 When the outlet water temperature Tw detected by the water temperature detection means 30 is equal to or lower than the predetermined temperature T 0 , the control means 31 stops the EGR cooler water pump 35 and opens the first electromagnetic valve 26 and the fourth electromagnetic valve 29. Since the second electromagnetic valve 27 and the third electromagnetic valve 28 are closed, the inlet water channel can be reliably switched to the warm-up inlet water channel 23 with a simple structure and the outlet water channel can be switched to the warm-up outlet water channel 25. You can switch to

また、制御手段31は、水温検出手段30で検出された出口水温Twが所定温度T0を超えるとき、EGRクーラ用水ポンプ35を駆動し、第2電磁バルブ27と第3電磁バルブ28を開弁すると共に、第1電磁バルブ26と第4電磁バルブ29を閉弁するものとしたため、簡単な構造で確実に入口水路を冷却用入口水路22に切り替えることができると共に出口水路を冷却用出口水路24に切り替えることができる。 Further, when the outlet water temperature Tw detected by the water temperature detection means 30 exceeds the predetermined temperature T 0 , the control means 31 drives the EGR cooler water pump 35 and opens the second electromagnetic valve 27 and the third electromagnetic valve 28. In addition, since the first electromagnetic valve 26 and the fourth electromagnetic valve 29 are closed, the inlet water channel can be reliably switched to the cooling inlet water channel 22 with a simple structure and the outlet water channel can be switched to the cooling outlet water channel 24. You can switch to

また、ラジエータ7の出口18側の循環水路8からEGRクーラ4に冷却水を取り込むための入口水路22、23と、EGRクーラ4からの冷却水をラジエータ7の入口側の循環水路8に戻すための冷却用出口水路24と、EGRクーラ4からの冷却水をラジエータ7の出口18側の循環水路8に戻すための暖機用出口水路25と、EGRクーラ4の出口水路を冷却用出口水路24又は暖機用出口水路25のいずれか一方に切り替える出口側水路切替手段28、29と、循環水路8に設けられエンジン6の出口水温を検出する水温検出手段30と、水温検出手段30で検出された出口水温Twが所定温度T0を超えるとき冷却用出口水路24を開き暖機用出口水路25を閉じるように出口側水路切替手段28、29を作動させ、出口水温Twが所定温度T0以下のとき暖機用出口水路25を開き冷却用出口水路24を閉じるように出口側水路切替手段28、29を作動させる制御手段31とを備えてエンジン6の冷却水回路1を構成したため、暖機時間を短縮でき、かつ、暖機終了後にEGRクーラ4を充分冷却することができる。 In addition, inlet water passages 22 and 23 for taking cooling water from the circulating water passage 8 on the outlet 18 side of the radiator 7 into the EGR cooler 4 and cooling water from the EGR cooler 4 are returned to the circulating water passage 8 on the inlet side of the radiator 7. The cooling outlet water channel 24, the warming outlet water channel 25 for returning the cooling water from the EGR cooler 4 to the circulating water channel 8 on the outlet 18 side of the radiator 7, and the outlet water channel 24 for the EGR cooler 4 Or, the outlet side water channel switching means 28 and 29 for switching to any one of the warm-up outlet water paths 25, the water temperature detecting means 30 provided in the circulating water path 8 for detecting the outlet water temperature of the engine 6, and the water temperature detecting means 30 are detected. outlet water temperature Tw so that actuate the outlet side water passage switching means 28, 29 so as to close the cooling warming-up outlet waterway 25 to open the outlet water passage 24 when exceeding the predetermined temperature T 0, the outlet water temperature Tw The cooling water circuit 1 of the engine 6 and a control unit 31 for actuating the predetermined temperature T 0 exit-side water passage switching means 28, 29 so as to close the cooling outlet water passage 24 to open the warming-up outlet waterway 25 when following Since it comprised, warm-up time can be shortened and the EGR cooler 4 can fully be cooled after warm-up completion.

なお、ラジエータ7の出口18側の循環水路8からEGRクーラ4に冷却水を取り込むための入口水路は、上述したように暖機用入口水路23と冷却用入口水路22とのいずれか一方に切り替えることが好ましいが、いずれか一方の入口水路22、23を省略して切り替えないものとしても暖機時間を短縮でき、かつ、暖機終了後にEGRクーラ4を図6に示す従来の冷却水回路51と同等に充分冷却することができる。   Note that the inlet water channel for taking cooling water from the circulation water channel 8 on the outlet 18 side of the radiator 7 into the EGR cooler 4 is switched to either the warm-up inlet water channel 23 or the cooling inlet water channel 22 as described above. However, even if one of the inlet water channels 22 and 23 is omitted and not switched, the warm-up time can be shortened, and the EGR cooler 4 shown in FIG. Can be cooled as well as

本発明の好適実施の形態を示すエンジンの冷却水回路の回路図である。It is a circuit diagram of a cooling water circuit of an engine showing a preferred embodiment of the present invention. 制御手段の制御フローを示す流れ図である。It is a flowchart which shows the control flow of a control means. 暖機中の冷却水の流れを示す説明図である。It is explanatory drawing which shows the flow of the cooling water during warming-up. 暖機終了後の冷却水の流れを示す説明図である。It is explanatory drawing which shows the flow of the cooling water after completion | finish of warming-up. 従来のエンジンの冷却水回路の回路図である。It is a circuit diagram of the cooling water circuit of the conventional engine. 従来のエンジンの冷却水回路の回路図である。It is a circuit diagram of the cooling water circuit of the conventional engine. 従来のエンジンの冷却水回路の回路図である。It is a circuit diagram of the cooling water circuit of the conventional engine.

符号の説明Explanation of symbols

1 冷却水回路
4 EGRクーラ
6 エンジンウォータジャケット
7 ラジエータ
10 サーモスタット
11 エンジン用水ポンプ
12 吐出口
13 入口
14 第1冷却水管
17 第2冷却水管
18 出口
19 吸込口
20 第3冷却水管
21 バイパス水管
26 第1電磁バルブ
27 第2電磁バルブ
28 第3電磁バルブ
29 第4電磁バルブ
30 水温検出手段
31 制御手段
32 第1水路
33 第2水路
34 第3水路
35 EGRクーラ用水ポンプ
36 第4水路
43 入口
44 出口
1 Cooling Water Circuit 4 EGR Cooler 6 Engine Water Jacket 7 Radiator 10 Thermostat 11 Engine Water Pump 12 Discharge Port 13 Inlet 14 First Cooling Water Pipe 17 Second Cooling Water Pipe 18 Outlet 19 Suction Port 20 Third Cooling Water Pipe 21 Bypass Water Pipe 26 First Electromagnetic valve 27 Second electromagnetic valve 28 Third electromagnetic valve 29 Fourth electromagnetic valve 30 Water temperature detecting means 31 Control means 32 First water passage 33 Second water passage 34 Third water passage 35 EGR cooler water pump 36 Fourth water passage 43 Inlet 44 Outlet

Claims (4)

エンジン用水ポンプの吐出口とエンジンウォータジャケットの入口を接続する第1冷却水管と、前記エンジンウォータジャケットの出口とラジエータの入口を接続する第2冷却水管と、前記ラジエータの出口と前記エンジン用水ポンプの吸込口を接続する第3冷却水管と、前記第2冷却水管と前記第3冷却水管を接続するバイパス水管と、冷却水の水温が所定温度に満たないとき前記バイパス水管に冷却水を流通させると共にラジエータへの冷却水の流通を止め、前記水温が所定温度以上のとき前記バイパス水管への冷却水の流通を止めると共にラジエータに冷却水を流通させるサーモスタットと、前記いずれかの冷却水管から冷却水を取り込んでEGRガスとの熱交換を行うEGRクーラとを備えたエンジンの冷却水回路において、前記第1冷却水管とEGRクーラの入口を接続する第1水路と、前記EGRクーラの出口と第3冷却水管を接続する第2水路と、該第2水路より上流側の第3冷却水管と前記第1水路とを接続する第3水路と、前記第2水路と前記サーモスタットの下流側の第2冷却水管を接続する第4水路と、前記第3水路より上流側の第1水路を開閉する第1電磁バルブと、第4水路の下流側の第2水路を開閉する第4電磁バルブと、第3水路に設けられ第3冷却水管側から第1水路側に冷却水を送るEGRクーラ用水ポンプと、該EGRクーラ用水ポンプの下流側の第3水路を開閉する第2電磁バルブと、前記第4水路を開閉する第3電磁バルブと、エンジン出口水温を検出する水温検出手段と、該水温検出手段の検出温度に基づいて前記EGRクーラ用水ポンプをオンオフ制御すると共に前記各電磁バルブを開閉制御する制御手段とを備えることを特徴とするエンジンの冷却水回路。   A first cooling water pipe connecting the discharge port of the engine water pump and the inlet of the engine water jacket, a second cooling water pipe connecting the outlet of the engine water jacket and the inlet of the radiator, the outlet of the radiator and the water pump of the engine A third cooling water pipe connecting the suction port, a bypass water pipe connecting the second cooling water pipe and the third cooling water pipe, and circulating the cooling water through the bypass water pipe when the temperature of the cooling water does not reach a predetermined temperature. Stop the flow of the cooling water to the radiator, stop the flow of the cooling water to the bypass water pipe when the water temperature is equal to or higher than the predetermined temperature, and flow the cooling water to the radiator, and the cooling water from any one of the cooling water pipes An engine cooling water circuit including an EGR cooler that takes in and exchanges heat with EGR gas. A first water passage connecting the cooling water pipe and the inlet of the EGR cooler; a second water passage connecting the outlet of the EGR cooler and the third cooling water pipe; a third cooling water pipe upstream of the second water passage; and the first water passage. A third water channel connecting the second water channel and a fourth water channel connecting the second cooling water pipe downstream of the thermostat, and a first electromagnetic valve opening and closing the first water channel upstream of the third water channel A fourth electromagnetic valve that opens and closes the second water channel downstream of the fourth water channel, an EGR cooler water pump that is provided in the third water channel and sends cooling water from the third cooling water pipe side to the first water channel side, and the EGR A second electromagnetic valve for opening and closing a third water passage downstream of the cooler water pump; a third electromagnetic valve for opening and closing the fourth water passage; a water temperature detecting means for detecting an engine outlet water temperature; and a detected temperature of the water temperature detecting means. Based on the EGR cooler water port Cooling water circuit of the engine, characterized in that it comprises a control means for the opening and closing control of each solenoid valve with on-off control of the flop. 前記制御手段は、前記水温検出手段で検出された出口水温が所定温度以下のとき、前記エンジン用水ポンプの吐出側からEGRクーラに冷却水を導くと共に、EGRクーラにて暖められた冷却水をエンジン用水ポンプの吸込側に戻す回路を形成すべく、前記EGRクーラ用水ポンプを停止し、前記第1電磁バルブと第4電磁バルブを開弁すると共に、前記第2電磁バルブと第3電磁バルブを閉弁することを特徴とする請求項1記載のエンジンの冷却水回路。   The control means guides the cooling water from the discharge side of the engine water pump to the EGR cooler when the outlet water temperature detected by the water temperature detecting means is equal to or lower than a predetermined temperature, and supplies the cooling water warmed by the EGR cooler to the engine. In order to form a circuit for returning to the suction side of the water pump, the EGR cooler water pump is stopped, the first electromagnetic valve and the fourth electromagnetic valve are opened, and the second electromagnetic valve and the third electromagnetic valve are closed. 2. The engine coolant circuit according to claim 1, wherein the engine coolant circuit is provided. 前記制御手段は、前記水温検出手段で検出された出口水温が所定温度を超えるとき、前記ラジエータの出口側からEGRクーラに冷却水を導くと共に、EGRクーラにて暖められた冷却水をラジエータの入口側に戻す回路を形成すべく、前記EGRクーラ用水ポンプを駆動し、前記第2電磁バルブと第3電磁バルブを開弁すると共に、前記第1電磁バルブと第4電磁バルブを閉弁することを特徴とする請求項1又は2記載のエンジンの冷却水回路。   When the outlet water temperature detected by the water temperature detection means exceeds a predetermined temperature, the control means guides the cooling water from the outlet side of the radiator to the EGR cooler, and supplies the cooling water warmed by the EGR cooler to the inlet of the radiator Driving the EGR cooler water pump to open the second electromagnetic valve and the third electromagnetic valve, and closing the first electromagnetic valve and the fourth electromagnetic valve to form a circuit for returning to the side. The engine cooling water circuit according to claim 1 or 2, characterized in that エンジンウォータジャケット、ラジエータ間で冷却水を循環させる循環水路と、前記ラジエータの上流側の循環水路と下流側の循環水路を接続するバイパス水路と、冷却水の水温が所定温度に満たないときバイパス水路に冷却水を流通させると共にラジエータへの冷却水の流通を止め、前記水温が所定温度以上のとき前記バイパス水路への冷却水の流通を止めると共にラジエータに冷却水を流通させるサーモスタットと、前記循環水路に前記バイパス水路よりもエンジン側に位置して設けられ冷却水を循環させるエンジン用水ポンプと、前記循環水路から冷却水を取り込んでEGRガスとの熱交換を行うEGRクーラとを備えたエンジンの冷却水回路において、前記ラジエータの出口側の循環水路から前記EGRクーラに冷却水を取り込むための入口水路と、前記EGRクーラからの冷却水を前記ラジエータの入口側の循環水路に戻すための冷却用出口水路と、前記EGRクーラからの冷却水を前記ラジエータの出口側の循環水路に戻すための暖機用出口水路と、前記EGRクーラの出口水路を前記冷却用出口水路又は前記暖機用出口水路のいずれか一方に切り替える水路切替手段と、前記循環水路に設けられエンジンの出口水温を検出する水温検出手段と、該水温検出手段で検出された出口水温が所定温度を超えるとき前記冷却用出口水路を開き前記暖機用出口水路を閉じるように前記水路切替手段を作動させ、前記出口水温が所定温度以下のとき前記暖機用出口水路を開き前記冷却用出口水路を閉じるように前記水路切替手段を作動させる制御手段とを備えることを特徴とするエンジンの冷却水回路。   An engine water jacket, a circulation channel for circulating cooling water between the radiator, a bypass channel connecting the upstream circulation channel and the downstream circulation channel of the radiator, and a bypass channel when the coolant temperature does not reach a predetermined temperature A thermostat that circulates cooling water to the radiator and stops circulation of the cooling water to the radiator, stops the circulation of cooling water to the bypass water channel when the water temperature is equal to or higher than a predetermined temperature, and circulates the cooling water to the radiator, and the circulation water channel An engine water pump that is provided on the engine side of the bypass water passage and circulates the cooling water, and an EGR cooler that takes in the cooling water from the circulation water passage and performs heat exchange with the EGR gas. In the water circuit, cooling water was taken into the EGR cooler from the circulation water channel on the outlet side of the radiator. An inlet water channel, a cooling water channel for returning cooling water from the EGR cooler to the circulating water channel on the radiator inlet side, and a cooling water channel from the EGR cooler to return to the circulating water channel on the outlet side of the radiator An outlet water channel for warming up, a water channel switching means for switching the outlet water channel of the EGR cooler to either the cooling water channel for cooling or the outlet water channel for warming up, and detecting the outlet water temperature of the engine provided in the circulating water channel Water temperature detecting means, and when the outlet water temperature detected by the water temperature detecting means exceeds a predetermined temperature, operates the water channel switching means to open the cooling outlet water channel and close the warm-up outlet water channel, Control means for operating the water channel switching means so as to open the warm-up outlet water channel and close the cooling outlet water channel when the temperature is equal to or lower than a predetermined temperature. Cooling water circuit of the engine.
JP2006090840A 2006-03-29 2006-03-29 Engine coolant circuit Expired - Fee Related JP4802811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090840A JP4802811B2 (en) 2006-03-29 2006-03-29 Engine coolant circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090840A JP4802811B2 (en) 2006-03-29 2006-03-29 Engine coolant circuit

Publications (2)

Publication Number Publication Date
JP2007263034A true JP2007263034A (en) 2007-10-11
JP4802811B2 JP4802811B2 (en) 2011-10-26

Family

ID=38636260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090840A Expired - Fee Related JP4802811B2 (en) 2006-03-29 2006-03-29 Engine coolant circuit

Country Status (1)

Country Link
JP (1) JP4802811B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196493A (en) * 2009-02-23 2010-09-09 Tokyo Radiator Mfg Co Ltd Cooling device for egr cooler
CN101918689A (en) * 2008-01-03 2010-12-15 马克卡车公司 Exhaust gas recirculation cooling circuit
JP2010281213A (en) * 2009-06-02 2010-12-16 Fuji Heavy Ind Ltd Egr cooling device
JP2011017315A (en) * 2009-07-10 2011-01-27 Hino Motors Ltd Warmup promoting device of internal combustion engine
GB2473437A (en) * 2009-09-09 2011-03-16 Gm Global Tech Operations Inc Cooling system for an internal combustion engine
JP2012041904A (en) * 2010-08-23 2012-03-01 Toyota Motor Corp Internal combustion engine
JP2012052515A (en) * 2010-09-03 2012-03-15 Toyota Motor Corp Cylinder block of internal combustion engine and cooling device
JP2012188965A (en) * 2011-03-09 2012-10-04 Fuji Heavy Ind Ltd Engine cooling system
WO2013011768A1 (en) * 2011-07-19 2013-01-24 いすゞ自動車株式会社 Engine cooling circuit
WO2013011767A1 (en) * 2011-07-19 2013-01-24 いすゞ自動車株式会社 Engine cooling circuit
JP2013127224A (en) * 2011-12-19 2013-06-27 Toyota Motor Corp Control device of cooling device
WO2013093997A1 (en) 2011-12-19 2013-06-27 トヨタ自動車株式会社 Cooling system control device
JP5267654B2 (en) * 2009-03-16 2013-08-21 トヨタ自動車株式会社 Engine cooling system
CN103370524A (en) * 2010-12-18 2013-10-23 大众汽车有限公司 Cooling circuit for an internal combustion engine having exhaust gas recirculation and method for operating an internal combustion engine having such a cooling circuit
JP2014009634A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Control device of cooling system
JP2014080925A (en) * 2012-10-17 2014-05-08 Mitsubishi Heavy Ind Ltd Control device of internal combustion engine and control method thereof
WO2018003423A1 (en) * 2016-06-28 2018-01-04 株式会社豊田自動織機 Control device for engine
JP2018204519A (en) * 2017-06-02 2018-12-27 愛三工業株式会社 EGR system
CN113565613A (en) * 2021-07-12 2021-10-29 东风柳州汽车有限公司 Engine cooling system and method
CN114991931A (en) * 2021-03-01 2022-09-02 比亚迪股份有限公司 Engine cooling system and power device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298616A (en) * 1986-06-17 1987-12-25 Mazda Motor Corp Engine cooling device
JP2004293369A (en) * 2003-03-26 2004-10-21 Nissan Diesel Motor Co Ltd Engine cooling system circuit
JP2006002660A (en) * 2004-06-17 2006-01-05 Hino Motors Ltd Egr system for engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298616A (en) * 1986-06-17 1987-12-25 Mazda Motor Corp Engine cooling device
JP2004293369A (en) * 2003-03-26 2004-10-21 Nissan Diesel Motor Co Ltd Engine cooling system circuit
JP2006002660A (en) * 2004-06-17 2006-01-05 Hino Motors Ltd Egr system for engine

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101918689A (en) * 2008-01-03 2010-12-15 马克卡车公司 Exhaust gas recirculation cooling circuit
JP2011508851A (en) * 2008-01-03 2011-03-17 マック トラックス インコーポレイテッド Exhaust gas recirculation cooling circuit
JP2010196493A (en) * 2009-02-23 2010-09-09 Tokyo Radiator Mfg Co Ltd Cooling device for egr cooler
JP5267654B2 (en) * 2009-03-16 2013-08-21 トヨタ自動車株式会社 Engine cooling system
JP2010281213A (en) * 2009-06-02 2010-12-16 Fuji Heavy Ind Ltd Egr cooling device
JP2011017315A (en) * 2009-07-10 2011-01-27 Hino Motors Ltd Warmup promoting device of internal combustion engine
US8434432B2 (en) 2009-09-09 2013-05-07 GM Global Technology Operations LLC Cooling system for internal combustion engines
GB2473437A (en) * 2009-09-09 2011-03-16 Gm Global Tech Operations Inc Cooling system for an internal combustion engine
GB2473437B (en) * 2009-09-09 2015-11-25 Gm Global Tech Operations Inc Cooling system for internal combustion engines
JP2012041904A (en) * 2010-08-23 2012-03-01 Toyota Motor Corp Internal combustion engine
JP2012052515A (en) * 2010-09-03 2012-03-15 Toyota Motor Corp Cylinder block of internal combustion engine and cooling device
CN103370524A (en) * 2010-12-18 2013-10-23 大众汽车有限公司 Cooling circuit for an internal combustion engine having exhaust gas recirculation and method for operating an internal combustion engine having such a cooling circuit
JP2012188965A (en) * 2011-03-09 2012-10-04 Fuji Heavy Ind Ltd Engine cooling system
WO2013011767A1 (en) * 2011-07-19 2013-01-24 いすゞ自動車株式会社 Engine cooling circuit
WO2013011768A1 (en) * 2011-07-19 2013-01-24 いすゞ自動車株式会社 Engine cooling circuit
JPWO2013093997A1 (en) * 2011-12-19 2015-04-27 トヨタ自動車株式会社 Control device for cooling system
CN103998739A (en) * 2011-12-19 2014-08-20 丰田自动车株式会社 Cooling system control device
WO2013093997A1 (en) 2011-12-19 2013-06-27 トヨタ自動車株式会社 Cooling system control device
JP2013127224A (en) * 2011-12-19 2013-06-27 Toyota Motor Corp Control device of cooling device
US9611811B2 (en) 2011-12-19 2017-04-04 Toyota Jidosha Kabushiki Kaisha Control device for cooling system
JP2014009634A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Control device of cooling system
JP2014080925A (en) * 2012-10-17 2014-05-08 Mitsubishi Heavy Ind Ltd Control device of internal combustion engine and control method thereof
WO2018003423A1 (en) * 2016-06-28 2018-01-04 株式会社豊田自動織機 Control device for engine
JP2018003632A (en) * 2016-06-28 2018-01-11 株式会社豊田自動織機 Control device for engine
JP2018204519A (en) * 2017-06-02 2018-12-27 愛三工業株式会社 EGR system
CN114991931A (en) * 2021-03-01 2022-09-02 比亚迪股份有限公司 Engine cooling system and power device
CN114991931B (en) * 2021-03-01 2024-04-16 比亚迪股份有限公司 Engine cooling system and power device
CN113565613A (en) * 2021-07-12 2021-10-29 东风柳州汽车有限公司 Engine cooling system and method

Also Published As

Publication number Publication date
JP4802811B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP4802811B2 (en) Engine coolant circuit
JP5993759B2 (en) Engine intake cooling system
JP4571897B2 (en) EGR cooler cooling water circuit
US9441511B2 (en) Apparatus for adjusting temperature of oil for vehicle and method for controlling the apparatus
KR101637680B1 (en) Thereof controlling method and cooling system for vehicle
JP5787994B2 (en) INTERNAL COMBUSTION ENGINE HAVING COOLANT COLLECTION TUBE FOR COOLING DURING COLD OR OPERATION
JP2008274900A (en) Cooling system device for internal combustion engine
JP6024822B2 (en) Cooling water control device
JP2009216028A (en) Cooling device for internal combustion engine
JP2007107522A (en) Cooling system for combustion engine
KR101779273B1 (en) Engine intake air thermal management device and associated thermal management method
JP2014009617A (en) Cooling device of internal combustion engine
JP2002227646A (en) Engine with egr cooler
JP6007128B2 (en) Exhaust recirculation system cooling system
KR20210074714A (en) Cooling water flow control device of cooling system for vehicle
JP2007100665A (en) Exhaust gas passage structure for internal combustion engine
KR20080027683A (en) Engine coolant control system for exhaust gas recirculation in automobile
JP3692426B2 (en) Engine cooling system
JP2010096138A (en) Cooling device for engine
JP2015175296A (en) engine cooling system
JP2005273582A (en) Exhaust heat recovery system
JP2012184754A (en) Cooling system
JP2006132469A (en) Cooling device for egr gas
WO2017090548A1 (en) Engine cooling device
KR20090007950A (en) Cooling water line structure of cylinder head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees