JP4571897B2 - EGR cooler cooling water circuit - Google Patents

EGR cooler cooling water circuit Download PDF

Info

Publication number
JP4571897B2
JP4571897B2 JP2005286372A JP2005286372A JP4571897B2 JP 4571897 B2 JP4571897 B2 JP 4571897B2 JP 2005286372 A JP2005286372 A JP 2005286372A JP 2005286372 A JP2005286372 A JP 2005286372A JP 4571897 B2 JP4571897 B2 JP 4571897B2
Authority
JP
Japan
Prior art keywords
cooling water
engine
egr cooler
egr
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005286372A
Other languages
Japanese (ja)
Other versions
JP2007092718A (en
Inventor
宏史 木澤
和夫 古橋
泰生 大久保
英行 盛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2005286372A priority Critical patent/JP4571897B2/en
Publication of JP2007092718A publication Critical patent/JP2007092718A/en
Application granted granted Critical
Publication of JP4571897B2 publication Critical patent/JP4571897B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、EGRクーラの冷却水回路に関する。   The present invention relates to a cooling water circuit of an EGR cooler.

従来、排気ガスの一部を排気ガス再循環流路を通して給気側に再循環させることで、排気ガスを含んだ給気をエンジンに供給してNOxの低減を図るようにしたEGR(外気ガス再循環)装置が知られている。また、このようなEGR装置には、給気側に再循環させる排気ガスの一部(以下、EGRガスと称する)を冷却するEGRクーラが設けられることがある。   Conventionally, a part of the exhaust gas is recirculated to the intake side through the exhaust gas recirculation flow path, so that the supply air containing the exhaust gas is supplied to the engine to reduce NOx (outside air gas). Recirculation) devices are known. Such an EGR device may be provided with an EGR cooler that cools a part of exhaust gas (hereinafter referred to as EGR gas) that is recirculated to the supply side.

EGRクーラは一種の熱交換器であり、エンジン冷却水とEGRガスとの間で熱交換が行われるように構成されている。そして、EGRクーラでは、エンジンの始動直後のようにエンジン冷却水が低温である場合、EGRガスのエンジン冷却水による冷却度合いが大きくなり、凝縮水が多く生じることがある。この凝縮水は、EGRクーラの内部やガス吐出付近に滞留すると腐食の原因となるため、好ましくない。   The EGR cooler is a kind of heat exchanger, and is configured such that heat exchange is performed between engine cooling water and EGR gas. In the EGR cooler, when the engine cooling water is at a low temperature just after the engine is started, the degree of cooling of the EGR gas by the engine cooling water increases, and a lot of condensed water may be generated. If this condensed water stays in the EGR cooler or in the vicinity of gas discharge, it causes corrosion, which is not preferable.

そこで、凝縮水の発生を抑制するための提案がなされている。この提案の一例として、エンジンとEGRクーラとの間でエンジン冷却水を循環させる冷却水回路上に冷却水調整弁を設け、EGRクーラの冷却水吐出側に温度センサを設け、この温度センサによる検出結果に基づいて前記冷却水調整弁の開閉を制御するEGR制御装置を設けたものがある(例えば特許文献1)。   Therefore, proposals have been made to suppress the generation of condensed water. As an example of this proposal, a cooling water adjustment valve is provided on the cooling water circuit for circulating the engine cooling water between the engine and the EGR cooler, a temperature sensor is provided on the cooling water discharge side of the EGR cooler, and detection by this temperature sensor is performed. There is one provided with an EGR control device that controls opening and closing of the cooling water regulating valve based on the result (for example, Patent Document 1).

このEGR制御装置を用いた提案では、エンジン冷却水が所定温度以下の低温である場合、EGR制御装置は冷却水調整弁を閉じるように制御し、冷却水エンジン側からEGRクーラにエンジン冷却水が流れないようにして、EGRクーラでのEGRガスの必要以上の温度低下を防止し、凝縮水の発生を抑制している。そして、エンジン冷却水が所定温度を越えた場合には、EGR制御装置は冷却水調整弁を開くように制御し、EGRクーラによるEGRガスの冷却が行われるようにする。   In the proposal using this EGR control device, when the engine coolant is at a low temperature equal to or lower than a predetermined temperature, the EGR control device controls the coolant adjustment valve to close so that the engine coolant is supplied from the coolant engine side to the EGR cooler. In order not to flow, the EGR gas in the EGR cooler is prevented from lowering the temperature more than necessary, and the generation of condensed water is suppressed. When the engine cooling water exceeds a predetermined temperature, the EGR control device controls to open the cooling water adjustment valve so that the EGR gas is cooled by the EGR cooler.

特開平11−351073号公報Japanese Patent Laid-Open No. 11-351073

しかしながら、前記特許文献1の提案によれば、高精度の温度センサや、EGR制御装置からの制御信号で動作するソレノイド式の冷却水調整弁など、複数の高価な部品が必要になるうえ、構成が複雑になるという問題がある。   However, according to the proposal of Patent Document 1, a plurality of expensive parts such as a high-accuracy temperature sensor and a solenoid-type cooling water regulating valve that operates by a control signal from the EGR control device are required, and the configuration There is a problem that becomes complicated.

本発明の目的は、安価で簡素な構成にてEGRクーラでの凝縮水の発生を確実に防止できるEGRクーラの冷却水回路を提供することにある。   An object of the present invention is to provide a cooling water circuit for an EGR cooler that can reliably prevent generation of condensed water in the EGR cooler with an inexpensive and simple configuration.

請求項1に係る発明は、エンジンの排気側と吸気側とを連通させて排気ガスの一部を再循環させるEGR通路と、このEGR通路に設けられたEGRクーラとを備えたEGR装置における前記EGRクーラの冷却水回路において、前記EGRクーラの冷却水回路の下流で、かつ前記EGRクーラの出口側冷却水流路とエンジンからの吐出流路との合流部より上流に設けられ、前記出口側冷却水流路を開閉するサーモスタットと、前記出口側冷却水流路での前記EGRクーラの冷却水室と前記サーモスタットとの間から分岐して前記サーモスタットの感温室に常時冷却水を流す感温室側分岐流路とを備え、前記サーモスタットには、前記感温室に流入する冷却水が所定温度以下の場合に前記出口側冷却水流路を遮断し、かつ所定温度を越えた場合に前記出口側冷却水流路を連通させる弁部材が設けられていることを特徴とする。 According to a first aspect of the present invention, there is provided an EGR apparatus including: an EGR passage that recirculates a part of exhaust gas by communicating an exhaust side and an intake side of an engine; and an EGR cooler provided in the EGR passage. in the cooling water circuit of the EGR cooler, the downstream of the cooling water circuit of the EGR cooler, and provided upstream from the merging portion of the discharge flow path from the outlet side cooling water passage and the engine of the EGR cooler, the exit side A thermostat that opens and closes the cooling water flow path, and a temperature sensitive side branch flow that branches from between the cooling water chamber of the EGR cooler and the thermostat in the outlet side cooling water flow path and constantly flows cooling water to the temperature sensitive greenhouse of the thermostat And the thermostat shuts off the outlet-side cooling water flow path when the cooling water flowing into the temperature-sensitive room is below a predetermined temperature and exceeds the predetermined temperature. Wherein the valve member for communicating the outlet side cooling water passage to is provided.

請求項2に係る発明は、請求項1に記載のEGRクーラの冷却水回路において、前記冷却水はエンジン冷却水であることを特徴とする。   The invention according to claim 2 is the cooling water circuit of the EGR cooler according to claim 1, wherein the cooling water is engine cooling water.

以上において、請求項1の発明によれば、冷却水が所定温度以下の場合、サーモスタットでの弁部材によりEGRクーラの出口側冷却水流路を遮断するため、EGRクーラに流入する冷却水は、感温室側分岐流路を通った僅かな流量となり、EGRクーラでのEGRガスにより加熱されることとなる。従って、冷却水の温度が短時間で上昇し、EGRガスから凝縮水が生成されにくくなる。また、冷却水の温度が所定温度を超えると、サーモスタットでの弁部材により出口側冷却水流路を連通させるので、多量の冷却水がEGRクーラに流入するようになり、EGRガスを効果的に冷却する。しかも、このような構成の冷却水回路では、従来のような高価な温度センサや冷却水調整弁を用いないから、構成が簡素で安価である。   In the above, according to the first aspect of the present invention, when the cooling water is below the predetermined temperature, the cooling water flowing into the EGR cooler is sensed because the valve member in the thermostat blocks the outlet side cooling water flow path of the EGR cooler. It becomes a slight flow rate through the branch channel on the greenhouse side, and is heated by the EGR gas in the EGR cooler. Therefore, the temperature of the cooling water rises in a short time, and it becomes difficult for condensed water to be generated from the EGR gas. Also, if the temperature of the cooling water exceeds a predetermined temperature, the outlet side cooling water flow path is communicated by the valve member in the thermostat, so that a large amount of cooling water flows into the EGR cooler, effectively cooling the EGR gas. To do. In addition, since the cooling water circuit having such a configuration does not use an expensive temperature sensor or a cooling water regulating valve as in the prior art, the configuration is simple and inexpensive.

請求項2の発明によれば、冷却水がエンジン冷却水であるから、本発明に係る冷却水回路をエンジンが搭載された車両等に容易に適用できる。   According to the invention of claim 2, since the cooling water is engine cooling water, the cooling water circuit according to the present invention can be easily applied to a vehicle or the like on which the engine is mounted.

以下、本発明の一実施形態を図面に基づいて説明する。
図1には、本実施形態に係る冷却水回路20が採用されたエンジン1回りの構成が模式的に示されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 schematically shows a configuration around the engine 1 in which the cooling water circuit 20 according to the present embodiment is employed.

エンジン1は、図示略のターボ過給機を備えた例えばディーゼルエンジンやガソリンエンジンである。ターボ過給機のコンプレッサ側出口には給気管路2が接続され、給気管路2とエンジン1との間には給気を各気筒に分配する給気マニホールド3が設けられている。また、ターボ過給機のタービン側入口には排気管路4が接続され、この排気管路4とエンジン1との間には、各気筒からの排気ガスを集約して排気する排気マニホールド5が設けられている。また、本実施形態でのエンジン1には、排気ガスの一部をEGRガス(矢印参照)として給気側に再循環させるEGR装置10が設けられている。   The engine 1 is, for example, a diesel engine or a gasoline engine provided with a turbocharger (not shown). An air supply line 2 is connected to the compressor side outlet of the turbocharger, and an air supply manifold 3 for distributing the air supply to each cylinder is provided between the air supply line 2 and the engine 1. Further, an exhaust pipe 4 is connected to the turbine side inlet of the turbocharger, and an exhaust manifold 5 that collects and exhausts exhaust gases from each cylinder is provided between the exhaust pipe 4 and the engine 1. Is provided. Further, the engine 1 in the present embodiment is provided with an EGR device 10 that recirculates a part of the exhaust gas to the supply side as EGR gas (see arrow).

EGR装置10は、排気管路4と給気管路2(無過給の場合には吸気管路となる)とを連通させるEGR通路11と、EGR通路11の途中に設けられたEGRバルブ12と、EGRバルブ12の下流側に設けられたEGRクーラ13と、エンジン1の回転速度および負荷(燃料噴射量)に応じてEGRバルブ12の開閉を制御する図示略のEGR制御装置とを備えている。EGR装置10が作動している状態では、EGRバルブ12が開とされ、EGRガスがEGR通路11内を通って排気側から給気側に再循環する。この際、EGRガスはEGRクーラ13を通過し、エンジン冷却水との間で熱交換を行う。   The EGR device 10 includes an EGR passage 11 that connects the exhaust pipe 4 and the air supply pipe 2 (which becomes an intake pipe in the case of non-supercharging), and an EGR valve 12 that is provided in the middle of the EGR passage 11. The EGR cooler 13 provided downstream of the EGR valve 12 and an EGR control device (not shown) that controls opening and closing of the EGR valve 12 according to the rotational speed and load (fuel injection amount) of the engine 1 are provided. . In a state where the EGR device 10 is operating, the EGR valve 12 is opened, and the EGR gas is recirculated from the exhaust side to the supply side through the EGR passage 11. At this time, the EGR gas passes through the EGR cooler 13 and exchanges heat with the engine coolant.

エンジン冷却水を循環させるための冷却水回路20は、エンジン1の冷却水出口1Aおよびラジエータ21の冷却水入口21Aを連通させる吐出流路22と、ラジエータ21の冷却水出口21Bおよびエンジン1の冷却水入口1Bを連通させる戻り流路23と、各流路22,23を連通させるバイパス流路24とを備えている。さらに、吐出流路22において、バイパス流路24の分岐部分には、公知の例えばワックス式の第1サーモスタット25が設けられている。戻り流路23において、バイパス流路24の合流部分の下流側には、これも公知のウォータポンプ26が設けられている。   The cooling water circuit 20 for circulating the engine cooling water includes a discharge flow path 22 that connects the cooling water outlet 1A of the engine 1 and the cooling water inlet 21A of the radiator 21, the cooling water outlet 21B of the radiator 21, and the cooling of the engine 1. A return channel 23 for communicating the water inlet 1B and a bypass channel 24 for communicating the channels 22, 23 are provided. Further, in the discharge channel 22, a known first wax-type thermostat 25, for example, is provided at a branch portion of the bypass channel 24. In the return channel 23, a known water pump 26 is also provided on the downstream side of the joining portion of the bypass channel 24.

ここで、第1サーモスタット25は、エンジン1から吐出したエンジン冷却水が所定温度T1以下の低温の場合には、エンジン冷却水の流れをバイパス流路24側に切り替え、所定温度T1を越えた場合にラジエータ21側に切り替えるように機能する。この切り替えは、エンジン1が始動してからのエンジン冷却水を所定温度T1まで早期に上昇させるためであり、排気ガス中の白煙排出防止や、摩耗損失低減、シリンダブロック内での凝縮水の発生防止を目的としている。   Here, the first thermostat 25 switches the flow of the engine cooling water to the bypass flow path 24 side when the engine cooling water discharged from the engine 1 has a low temperature equal to or lower than the predetermined temperature T1, and exceeds the predetermined temperature T1. It functions to switch to the radiator 21 side. This switching is for quickly raising the engine cooling water after the engine 1 is started to the predetermined temperature T1, preventing white smoke in the exhaust gas, reducing wear loss, and condensate water in the cylinder block. The purpose is to prevent outbreaks.

加えて、本実施形態での冷却水回路20は、EGRクーラ13での熱交換用の回路でもあり、次の構成を備えている。すなわち、戻り流路23において、ウォータポンプ26の下流側には分岐部23Aが設けられ、この分岐部23AとEGRクーラ13の冷却水入口13Aとがクーラ側分岐流路27で連通している。また、吐出流路22において、第1サーモスタット25の上流には合流部22Aが設けられ、この合流部22AとEGRクーラ13の冷却水室に設けられた冷却水出口13Bとが出口側冷却水流路28で連通している。従って、本実施形態では、前記吐出流路22、戻り流路23、クーラ側分岐流路27、出口側冷却水流路28を含んで、クーラ循環流路29が形成されている。このクーラ循環流路29を通してEGRクーラ13を通るエンジン冷却水が循環する。   In addition, the cooling water circuit 20 in the present embodiment is also a circuit for heat exchange in the EGR cooler 13 and has the following configuration. That is, in the return flow path 23, a branch portion 23 </ b> A is provided on the downstream side of the water pump 26, and the branch portion 23 </ b> A and the cooling water inlet 13 </ b> A of the EGR cooler 13 communicate with each other through the cooler side branch flow path 27. Further, in the discharge flow path 22, a merging portion 22 </ b> A is provided upstream of the first thermostat 25, and the merging portion 22 </ b> A and the cooling water outlet 13 </ b> B provided in the cooling water chamber of the EGR cooler 13 are connected to the outlet side cooling water flow path. 28. Therefore, in this embodiment, the cooler circulation channel 29 is formed including the discharge channel 22, the return channel 23, the cooler side branch channel 27, and the outlet side cooling water channel 28. Engine cooling water passing through the EGR cooler 13 is circulated through the cooler circulation passage 29.

この際、出口側冷却水流路28は、上流側流路28Aと下流側流路28Bとで構成され、さらに、上流側流路28Aが2つに分岐している。つまり、途中にオリフィス28Cが設けられている感温室側分岐流路28D、およびオリフィスが設けられていない主流路28Eであり、感温室側分岐流路28Dの方が主流路28Eよりも流路抵抗が大きくなっている。そして、これらの上下流路28A,28Bの間には、例えばワックス式の第2サーモスタット30が設けられている。   At this time, the outlet side cooling water flow path 28 includes an upstream flow path 28A and a downstream flow path 28B, and the upstream flow path 28A is further branched into two. That is, the temperature sensitive side branch flow path 28D provided with an orifice 28C in the middle and the main flow path 28E provided with no orifice, and the temperature sensitive side branch flow path 28D has a flow resistance higher than that of the main flow path 28E. Is getting bigger. A wax-type second thermostat 30 is provided between the upper and lower flow paths 28A and 28B, for example.

この第2サーモスタット30は、EGRクーラ13での熱交換後のエンジン冷却水が感温室側分岐流路28Dを通して流入する感温室31と、主流路28Eを通して流入する主流入室32と、下流側流路28Bと連通した吐出室33とを備えている。感温室31内には、流入したエンジン冷却水と接触する感温部34が設けられている。感温部34には、主流入室32内に突出した円筒状のガイド部35が設けられ、このガイド部35内にはロッド36が出没可能に配置され、ロッド36の先端には吐出室33内で移動する弁部材37が固定されている。   The second thermostat 30 includes a temperature sensing greenhouse 31 into which engine cooling water after heat exchange in the EGR cooler 13 flows in through the temperature sensing side branching channel 28D, a main inflow chamber 32 into which the engine cooling water flows in through the main channel 28E, and a downstream channel. A discharge chamber 33 communicating with 28B is provided. A temperature sensing unit 34 is provided in the temperature sensing chamber 31 to be in contact with the flowing engine cooling water. The temperature sensing part 34 is provided with a cylindrical guide part 35 projecting into the main inflow chamber 32, and a rod 36 is disposed in the guide part 35 so as to be able to protrude and retract. The valve member 37 that moves is fixed.

つまり、ロッド36は、感温部34に接触したエンジン冷却水の温度に応じて出没するのであり、エンジン冷却水が所定温度T2以下の低温の場合には、弁部材37を付勢する圧縮ばね38により感温部34側に戻され、閉じた状態とされる。この状態では、弁部材37は主流入室32と吐出室33との仕切部分に設けられた弁座37Aに当接し、各室32,33の連通開口37Bを閉じる(図中の1点鎖線)。一方、エンジン冷却水が所定温度T2を超えた場合、その温度に応じた感温部34内のワックスの膨張による体積変化に伴ってロッド36が突出するため、弁部材37が圧縮ばね38のばね力に抗して弁座37Aを離れ、連通開口37Bを開放する(図中の実線)。この結果、主流入室32と吐出室33、ひいては第2サーモスタット30の下流側とが連通する。   That is, the rod 36 appears and disappears in accordance with the temperature of the engine coolant that has contacted the temperature sensing portion 34. When the engine coolant is at a low temperature equal to or lower than the predetermined temperature T2, the compression spring that biases the valve member 37. It is returned to the temperature sensing unit 34 side by 38 and is in a closed state. In this state, the valve member 37 abuts on a valve seat 37A provided in a partition portion between the main inflow chamber 32 and the discharge chamber 33, and closes the communication opening 37B of each chamber 32, 33 (one-dot chain line in the figure). On the other hand, when the engine coolant exceeds the predetermined temperature T2, the rod 36 protrudes along with the volume change due to the expansion of the wax in the temperature sensing portion 34 according to the temperature, so that the valve member 37 is a spring of the compression spring 38. The valve seat 37A is left against the force and the communication opening 37B is opened (solid line in the figure). As a result, the main inflow chamber 32 communicates with the discharge chamber 33, and thus the downstream side of the second thermostat 30.

そして、感温室31および吐出室33は、連通流路39を介して連通している。従って、主流入室32と吐出室33とが弁部材37で塞がれているときでも、感温室31は常時、吐出室33、ひいては第2サーモスタット30の下流側と連通しているのであり、吐出室33には常に、ラジエータ21の下流からEGRクーラ13側に分岐したエンジン冷却水(感温室側分岐流路28Dを通るために流量は僅かである)が感温室31を介して吐出室33に流入し、出口側冷却水流路28を通してエンジン1側の吐出流路22に戻ることになる。   The sensitive room 31 and the discharge chamber 33 communicate with each other via a communication channel 39. Therefore, even when the main inflow chamber 32 and the discharge chamber 33 are closed by the valve member 37, the sensitive greenhouse 31 is always in communication with the discharge chamber 33 and thus the downstream side of the second thermostat 30. In the chamber 33, engine cooling water branched from the downstream side of the radiator 21 to the EGR cooler 13 side (the flow rate is small because it passes through the temperature-sensitive greenhouse side branch flow path 28 </ b> D) enters the discharge chamber 33 via the temperature-sensitive room 31. It flows in and returns to the discharge flow path 22 on the engine 1 side through the outlet-side cooling water flow path 28.

なお、第2サーモスタット30での動作に係る所定温度T2とは、EGRクーラ13に流入する僅かなエンジン冷却水が過剰に高くなるのを防止できるように設定された温度であり、第1サーモスタット25での所定温度T1とは異なっていてよい。   The predetermined temperature T2 related to the operation of the second thermostat 30 is a temperature set so as to prevent a slight amount of engine coolant flowing into the EGR cooler 13 from becoming excessively high. The first thermostat 25 It may be different from the predetermined temperature T1.

以下には、エンジン冷却水の温度が低い場合の流れを図2に基づいて説明し、高い場合の流れを図3に基づいて説明する。   Below, the flow when the temperature of the engine coolant is low will be described based on FIG. 2, and the flow when the temperature is high will be described based on FIG.

図2において、エンジン始動直後のようにエンジン冷却水が所定温度T1以下の場合には、第1サーモスタット25により、第1サーモスタット25からラジエータ21側の吐出流路22が遮断される(図中の点線)。このため、エンジン1から吐出したエンジン冷却水は、ラジエータ21を通らずにバイパス流路24を流れ、その大部分は戻り流路23をそのまま流れてエンジン1に戻る。   In FIG. 2, when the engine cooling water is equal to or lower than the predetermined temperature T1 immediately after the engine is started, the first thermostat 25 blocks the discharge flow path 22 on the radiator 21 side from the first thermostat 25 (in the figure). dotted line). For this reason, the engine coolant discharged from the engine 1 flows through the bypass flow path 24 without passing through the radiator 21, and most of it flows through the return flow path 23 as it is and returns to the engine 1.

また、エンジン冷却水が低温であり、所定温度T2以下である場合には、第2サーモスタット30は閉じられているので、感温室側分岐流路28Dを通してのみ流れるようになる。このため、EGRクーラ13には出口側冷却水流路28で規制される僅かな流量のエンジン冷却水が流入し、第2サーモスタットを通して吐出流路22の合流部22Aに戻ることになる。従って、EGRクーラ13には、低温のエンジン冷却水が大量に流入することはないため、EGRガスからクーラ側分岐流路27、次いで出口側冷却水流路28を流れるEGRクーラ13の冷媒である分岐されたエンジン冷却水に流入する冷却水単位流量当たりの熱流入が増えるため、適正な温度範囲内に短時間で上昇させることができて、EGRクーラ13内ではEGRガスからの凝縮水を生じにくくできる。しかも、この段階でEGRクーラ13に流入するエンジン冷却水は、ラジエータ21を通らないため、その温度を効率よく上昇させることができる。   Further, when the engine cooling water is at a low temperature and is equal to or lower than the predetermined temperature T2, the second thermostat 30 is closed, so that it flows only through the temperature-sensitive greenhouse side branch flow path 28D. For this reason, the engine coolant having a slight flow rate regulated by the outlet-side coolant channel 28 flows into the EGR cooler 13 and returns to the junction 22A of the discharge channel 22 through the second thermostat. Accordingly, since a large amount of low-temperature engine coolant does not flow into the EGR cooler 13, the EGR cooler 13, which is a refrigerant of the EGR cooler 13, flows from the EGR gas through the cooler-side branch passage 27 and then the outlet-side coolant passage 28. Since the heat inflow per unit flow rate of the cooling water flowing into the engine cooling water is increased, it can be raised within an appropriate temperature range in a short time, and the EGR cooler 13 is unlikely to generate condensed water from the EGR gas. it can. Moreover, since the engine coolant flowing into the EGR cooler 13 does not pass through the radiator 21 at this stage, the temperature can be increased efficiently.

さらに、エンジン1が稼動し続け、エンジン冷却水の温度が上昇すると、EGRクーラ13に流入する僅かなエンジン冷却水は、EGRガスによる加熱により一層高温となり、EGRクーラ13や第2サーモスタット30が悪影響を受ける可能性がある。しかし、本実施形態では、EGRクーラ13での熱交換後のエンジン冷却水が所定温度T2を越えると、図3に示すように、第2サーモスタット30が開放するから、エンジン冷却水が主流路28Eを通して戻ることとなる。こうすることで、EGRクーラ13から出口側冷却水流路28からに流れるエンジン冷却水の流量が増し、EGRクーラ13や第2サーモスタット30を通るエンジン冷却水の温度が適正な温度範囲まで下がる。このため、それらEGRクーラ13や第2サーモスタット30に対する影響をなくすことができるうえ、EGRクーラ13内では、適正な温度でEGRガスを確実に冷却できる。   Further, when the engine 1 continues to operate and the temperature of the engine cooling water rises, a slight amount of engine cooling water flowing into the EGR cooler 13 becomes even higher due to heating by the EGR gas, and the EGR cooler 13 and the second thermostat 30 are adversely affected. There is a possibility of receiving. However, in the present embodiment, when the engine cooling water after heat exchange in the EGR cooler 13 exceeds the predetermined temperature T2, the second thermostat 30 is opened as shown in FIG. Will return through. By doing so, the flow rate of the engine cooling water flowing from the EGR cooler 13 to the outlet side cooling water flow path 28 is increased, and the temperature of the engine cooling water passing through the EGR cooler 13 and the second thermostat 30 is lowered to an appropriate temperature range. For this reason, the influence on the EGR cooler 13 and the second thermostat 30 can be eliminated, and the EGR gas can be reliably cooled at an appropriate temperature in the EGR cooler 13.

図3において、エンジン1の連続稼動により、エンジン冷却水の温度が上昇し、所定温度T1を越えると、第1サーモスタット25の切り替え動作により、バイパス流路24側への流れが少なくなるか全く遮断され(図中の点線)、エンジン1から吐出したエンジン冷却水はラジエータ21を通るように流れる。従って、EGRクーラ13に流入するエンジン冷却水の温度が適正に維持され、引き続き適正な温度でEGRガスを冷却することになる。なお、第1、第2サーモスタット25,30での所定温度T1,T2の設定によっては、第2サーモスタット30が開放する以前に、第1サーモスタット25での切り替えが生じるようにし、ラジエータ21側にエンジン冷却水を流すことも可能である。   In FIG. 3, when the engine coolant temperature rises due to continuous operation of the engine 1 and exceeds a predetermined temperature T1, the flow to the bypass passage 24 side is reduced or completely blocked by the switching operation of the first thermostat 25. The engine coolant discharged from the engine 1 flows through the radiator 21 (dotted line in the figure). Therefore, the temperature of the engine coolant flowing into the EGR cooler 13 is properly maintained, and the EGR gas is subsequently cooled at an appropriate temperature. Depending on the setting of the predetermined temperatures T1 and T2 at the first and second thermostats 25 and 30, the first thermostat 25 may be switched before the second thermostat 30 is opened, and the engine 21 is connected to the radiator 21 side. It is also possible to flow cooling water.

以上説明したように、本実施形態での冷却水回路20中には、従来のような温度センサやソレノイド式の冷却水調整弁に相当するような高価な部品が用いられておらず、構成が簡素で安価であり、かつEGRクーラ13での凝縮水の発生を防止しつつも、EGRガスを確実に冷却できるのである。   As described above, the cooling water circuit 20 in the present embodiment does not use expensive parts corresponding to conventional temperature sensors or solenoid type cooling water regulating valves, and has a configuration. The EGR gas can be reliably cooled while being simple and inexpensive and preventing the generation of condensed water in the EGR cooler 13.

なお、本発明は、前記実施形態に限定されるものではなく、本発明の目的を達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。
例えば、前記実施形態では、ターボ過給機付きのエンジン1について説明したが、エンジンとしてはターボ過給機等が設けられていない無過給タイプであってもよい。
In addition, this invention is not limited to the said embodiment, Other structures etc. which can achieve the objective of this invention are included, The deformation | transformation etc. which are shown below are also contained in this invention.
For example, in the above embodiment, the engine 1 with a turbocharger has been described. However, the engine may be a non-supercharged type in which a turbocharger or the like is not provided.

また、前記実施形態では、エンジン冷却水を循環させるクーラ循環流路29がラジエータ21に向かう吐出流路22や、ラジエータ21からエンジン1に戻る戻り流路23を含んで形成されていたが、ラジエータとは切り離して設けられた専用のクーラ循環流路を用いてもよい。   In the above embodiment, the cooler circulation passage 29 for circulating the engine cooling water is formed including the discharge passage 22 toward the radiator 21 and the return passage 23 returning from the radiator 21 to the engine 1. Alternatively, a dedicated cooler circulation channel provided separately may be used.

そして、前記実施形態では、感温室側分岐流路28Dの流路抵抗を大きくするためにオリフィス28Cが用いられていたが、例えば、主流路28Eに対して感温室側分岐流路28Dの流路径を大幅に小さくする等して流路抵抗大きくしてもよい。   In the above-described embodiment, the orifice 28C is used to increase the flow resistance of the temperature sensitive side branching flow path 28D. For example, the diameter of the temperature sensitive side branching flow path 28D with respect to the main flow path 28E is used. The channel resistance may be increased by significantly reducing

さらに、前記実施形態では、EGRクーラ13をエンジン冷却水で冷却していたが、本発明を定置式の発電装置等に適用する場合などには、冷却水をクーリングタワーや水道水等の外部冷却水源から導いてもよい。   Furthermore, in the said embodiment, although the EGR cooler 13 was cooled with engine cooling water, when applying this invention to a stationary power generation device etc., cooling water is an external cooling water source such as a cooling tower or tap water. You may lead from.

その他、本発明を実施するための最良の構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、かつ、説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。
従って、上記に開示した形状、数量などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、数量などの限定の一部もしくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。
In addition, the best configuration, method, and the like for carrying out the present invention have been disclosed above, but the present invention is not limited to this. That is, the invention has been illustrated and described primarily with respect to particular embodiments, but may be configured for the above-described embodiments without departing from the scope and spirit of the invention. Various modifications can be made by those skilled in the art in terms of quantity, other details, and the like.
Therefore, the description limited to the shape, quantity and the like disclosed above is an example for easy understanding of the present invention, and does not limit the present invention. The description by the name of the member which remove | excluded the limitation of one part or all of such restrictions is included in this invention.

本発明は、ターボ過給機の有無に関わらず、EGR装置付きのエンジンの冷却水回路として適用でき、そのようなエンジンを搭載した建設機械、輸送用トラック、工事用ダンプトラック、自家用車、発電装置等に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be applied as a cooling water circuit of an engine with an EGR device regardless of the presence or absence of a turbocharger, and a construction machine, a transport truck, a construction dump truck, a private car, and a power generation equipped with such an engine. It can be used for devices.

本発明の一実施形態に係る冷却水回路が採用されたエンジン回りの構成を示す模式図。The schematic diagram which shows the structure around the engine by which the cooling water circuit which concerns on one Embodiment of this invention was employ | adopted. エンジン冷却水が所定温度以下の場合を説明するための模式図。The schematic diagram for demonstrating the case where engine cooling water is below predetermined temperature. エンジン冷却水が所定温度を超えた場合を説明するための模式図。The schematic diagram for demonstrating the case where engine cooling water exceeds predetermined temperature.

符号の説明Explanation of symbols

1…エンジン、10…EGR装置、11…EGR通路、13…EGRクーラ、20…冷却水回路、28…出口側冷却水流路、28D…感温室側分岐流路、28E…主流路、29…クーラ循環流路、30…サーモスタットである第2サーモスタット、31…感温室、32…主流入室、37…弁部材、39…連通流路。   DESCRIPTION OF SYMBOLS 1 ... Engine, 10 ... EGR apparatus, 11 ... EGR passage, 13 ... EGR cooler, 20 ... Cooling water circuit, 28 ... Outlet side cooling water channel, 28D ... Sensitive greenhouse side branch channel, 28E ... Main channel, 29 ... Cooler Circulating flow path 30... Second thermostat as thermostat 31. Sensitive greenhouse 32. Main inflow chamber 37 Valve member 39 Communication path.

Claims (2)

エンジンの排気側と吸気側とを連通させて排気ガスの一部を再循環させるEGR通路と、このEGR通路に設けられたEGRクーラとを備えたEGR装置における前記EGRクーラの冷却水回路において、
前記EGRクーラの冷却水回路の下流で、かつ前記EGRクーラの出口側冷却水流路とエンジンからの吐出流路との合流部より上流に設けられ、前記出口側冷却水流路を開閉するサーモスタットと、
前記出口側冷却水流路での前記EGRクーラの冷却水室と前記サーモスタットとの間から分岐して前記サーモスタットの感温室に常時冷却水を流す感温室側分岐流路とを備え、
前記サーモスタットには、前記感温室に流入する冷却水が所定温度以下の場合に前記出口側冷却水流路を遮断し、かつ所定温度を越えた場合に前記出口側冷却水流路を連通させる弁部材が設けられている
ことを特徴とするEGRクーラの冷却水回路。
In the cooling water circuit of the EGR cooler in the EGR device comprising an EGR passage for recirculating a part of the exhaust gas by communicating the exhaust side and the intake side of the engine, and an EGR cooler provided in the EGR passage,
Wherein downstream of the cooling water circuit of the EGR cooler, and provided upstream from the merging portion of the discharge flow path from the outlet side cooling water passage and the engine of the EGR cooler, a thermostat for opening and closing the exit-side cooling water passage ,
A temperature-sensing greenhouse-side branch flow channel that branches from between the cooling water chamber of the EGR cooler and the thermostat in the outlet-side cooling water flow channel and constantly flows cooling water to the temperature-sensitive greenhouse of the thermostat,
The thermostat has a valve member that shuts off the outlet side cooling water flow path when the cooling water flowing into the temperature-sensitive room is equal to or lower than a predetermined temperature and communicates the outlet side cooling water flow path when the temperature exceeds a predetermined temperature. A cooling water circuit for an EGR cooler, which is provided.
請求項1に記載のEGRクーラの冷却水回路において、
前記冷却水はエンジン冷却水である
ことを特徴とするEGRクーラの冷却水回路。
In the cooling water circuit of the EGR cooler according to claim 1,
The cooling water circuit of an EGR cooler, wherein the cooling water is engine cooling water.
JP2005286372A 2005-09-30 2005-09-30 EGR cooler cooling water circuit Expired - Fee Related JP4571897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005286372A JP4571897B2 (en) 2005-09-30 2005-09-30 EGR cooler cooling water circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005286372A JP4571897B2 (en) 2005-09-30 2005-09-30 EGR cooler cooling water circuit

Publications (2)

Publication Number Publication Date
JP2007092718A JP2007092718A (en) 2007-04-12
JP4571897B2 true JP4571897B2 (en) 2010-10-27

Family

ID=37978711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005286372A Expired - Fee Related JP4571897B2 (en) 2005-09-30 2005-09-30 EGR cooler cooling water circuit

Country Status (1)

Country Link
JP (1) JP4571897B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10815867B2 (en) 2018-08-01 2020-10-27 Hyundai Motor Company Control method of cooling system for vehicle
US10890103B2 (en) 2018-08-01 2021-01-12 Hyundai Motor Company Control method of cooling system for vehicle
US10890104B2 (en) 2018-08-01 2021-01-12 Hyundai Motor Company Control method of cooling system for vehicle

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4877057B2 (en) * 2007-05-07 2012-02-15 日産自動車株式会社 Internal combustion engine cooling system device
JP4561817B2 (en) 2007-12-04 2010-10-13 トヨタ自動車株式会社 Internal combustion engine
KR101423780B1 (en) 2008-07-11 2014-07-25 현대자동차주식회사 Cooling system for EGR gas
JP4905421B2 (en) * 2008-08-06 2012-03-28 トヨタ自動車株式会社 Internal combustion engine and control device therefor
JP5742529B2 (en) * 2011-07-19 2015-07-01 トヨタ自動車株式会社 Exhaust gas recirculation device for internal combustion engine
JP5799886B2 (en) * 2012-04-23 2015-10-28 トヨタ自動車株式会社 Control device for cooling system
JP5799887B2 (en) * 2012-04-27 2015-10-28 トヨタ自動車株式会社 Control device for cooling system
WO2013168520A1 (en) 2012-05-09 2013-11-14 日産自動車株式会社 Egr gas cooling device for hybrid vehicle and egr gas cooling method for hybrid vehicle
JP2013256936A (en) * 2012-05-16 2013-12-26 Denso Corp Exhaust recirculating device
JP2015132229A (en) 2014-01-15 2015-07-23 トヨタ自動車株式会社 vehicle
JP2018053720A (en) * 2016-09-26 2018-04-05 いすゞ自動車株式会社 Cooling system for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147291A (en) * 2000-11-09 2002-05-22 Hino Motors Ltd Exhaust gas recirculation device with cooler
JP2003328753A (en) * 2002-05-10 2003-11-19 Nippon Thermostat Co Ltd Electronically controlled thermostat

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147291A (en) * 2000-11-09 2002-05-22 Hino Motors Ltd Exhaust gas recirculation device with cooler
JP2003328753A (en) * 2002-05-10 2003-11-19 Nippon Thermostat Co Ltd Electronically controlled thermostat

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10815867B2 (en) 2018-08-01 2020-10-27 Hyundai Motor Company Control method of cooling system for vehicle
US10890103B2 (en) 2018-08-01 2021-01-12 Hyundai Motor Company Control method of cooling system for vehicle
US10890104B2 (en) 2018-08-01 2021-01-12 Hyundai Motor Company Control method of cooling system for vehicle

Also Published As

Publication number Publication date
JP2007092718A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4571897B2 (en) EGR cooler cooling water circuit
JP4802811B2 (en) Engine coolant circuit
US7299771B2 (en) Coolant valve system for internal combustion engine and method
US20130167784A1 (en) Method for operating a coolant circuit
JP5993759B2 (en) Engine intake cooling system
US20080060592A1 (en) Split Cooling System for an Internal Combustion Engine
US20090120417A1 (en) Exhaust Gas Re-Circulation Apparatus For Internal Combustion Engine
JP2007107522A (en) Cooling system for combustion engine
JP2009216028A (en) Cooling device for internal combustion engine
US7845339B2 (en) Exhaust gas recirculation cooler coolant plumbing configuration
JP2014009617A (en) Cooling device of internal combustion engine
JP2002227646A (en) Engine with egr cooler
JP6007128B2 (en) Exhaust recirculation system cooling system
KR20210074714A (en) Cooling water flow control device of cooling system for vehicle
JP2010164021A (en) Exhaust cooling system
JP5918474B2 (en) EGR device
JP5918475B2 (en) EGR device
KR101989180B1 (en) Intake manifold temperature control device and methods for Exhaust Gas Recirculation system
JPH10325368A (en) Egr gas cooling device
KR100844655B1 (en) Engine system&#39;s cooling apparatus of automobile
CN108291472B (en) Engine cooling device
JP4163985B2 (en) Engine cooling system circuit
JP2017129035A (en) Cooling device
US10815870B2 (en) Control method of cooling system
KR20170061899A (en) Engine warm-up system and method using the exhaust heat recovery device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070705

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees