JP2007262765A - Sound absorbing material and sound absorbing panel - Google Patents

Sound absorbing material and sound absorbing panel Download PDF

Info

Publication number
JP2007262765A
JP2007262765A JP2006089678A JP2006089678A JP2007262765A JP 2007262765 A JP2007262765 A JP 2007262765A JP 2006089678 A JP2006089678 A JP 2006089678A JP 2006089678 A JP2006089678 A JP 2006089678A JP 2007262765 A JP2007262765 A JP 2007262765A
Authority
JP
Japan
Prior art keywords
sound absorbing
absorbing material
sound
plate
sound absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006089678A
Other languages
Japanese (ja)
Inventor
Tatsuya Heiko
達也 平工
Takao Nakatani
隆雄 中谷
顕吾 ▲高▼橋
Kengo Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2006089678A priority Critical patent/JP2007262765A/en
Publication of JP2007262765A publication Critical patent/JP2007262765A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sound absorbing material which is good in sound absorbing properties and ventilation performance, and excellent in immersion-proof performance, and to provide a sound absorbing panel. <P>SOLUTION: The sound absorbing material 1 is formed of a plate member 2 having a plurality of through holes 3 with a diameter of 30 μm or less perforated therein in a plate thickness direction. Alternatively the sound absorbing material is formed of a plate member having a plurality of through holes with a diameter of 30 μm or more and 400 μm or less perforated therein in a plate thickness direction, and makes one surface thereof water repellent. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、吸音材及び吸音パネルに関するものである。   The present invention relates to a sound absorbing material and a sound absorbing panel.

近年、ホールやアウトリウム等の公共空間を設計する際には、採光性や換気性を確保するために、屋外との境界をガラス等の透明素材からなるパネル体で仕切り、かつパネル体自体に開閉機構を設ける等の設計が多く採用されている。ところで、ホールやアウトリウム等の内部においては、音が反響しやすいという特性があり、この反響音の発生を防止するために、パネル体を吸音パネルで構成する場合がある。   In recent years, when designing public spaces such as halls and outliums, in order to ensure daylighting and ventilation, the boundary with the outside is partitioned by a panel body made of a transparent material such as glass, and the panel body itself Many designs such as an open / close mechanism are adopted. By the way, there is a characteristic that sound is likely to reverberate inside a hall, an outerium or the like, and in order to prevent the occurrence of this reverberating sound, the panel body may be constituted by a sound absorbing panel.

吸音パネルの例としては、透明の板状部材に貫通孔が設けられてなる吸音材と、板ガラス等の無孔板とが所定の間隔を空けて相対配置されてなる吸音パネルが知られている。この吸音パネルにおいては、吸音材と無孔板との間に背後空気層が設けられ、この背後空気層と吸音材の貫通孔とが連通されており、このような構成によって所謂ヘルムホルツ共鳴構造が形成されている。そして、この吸音パネルをホールやアウトリウム等に設置する際には、吸音材を屋内側に配置させるとともに板ガラス等の無孔板を屋外側に配置させるようにしている。   As an example of the sound absorbing panel, there is known a sound absorbing panel in which a sound absorbing material in which a through-hole is provided in a transparent plate-shaped member and a non-porous plate such as a plate glass are disposed at a predetermined interval. . In this sound absorbing panel, a back air layer is provided between the sound absorbing material and the non-porous plate, and the back air layer and the through hole of the sound absorbing material are communicated with each other, so that the so-called Helmholtz resonance structure is formed. Is formed. And when installing this sound-absorbing panel in a hall | hole, an outerium, etc., the sound-absorbing material is arrange | positioned indoors, and non-porous boards, such as plate glass, are arrange | positioned on the outdoor side.

更に、吸音パネルの別の例としては、板状部材に貫通孔が設けられてなる吸音材を2枚用意し、各吸音材同士を所定の間隔を空けて相対配置させた吸音パネルも知られている(特許文献1)。
特開2005−173398号公報
Furthermore, as another example of the sound absorbing panel, there is also known a sound absorbing panel in which two sound absorbing materials each having a plate-like member provided with a through hole are prepared, and the respective sound absorbing materials are disposed with a predetermined interval therebetween. (Patent Document 1).
JP 2005-173398 A

吸音材と板ガラス等の無孔板とからなる上記の吸音パネルにおいては、吸音材に設けられる貫通孔の大きさが数ミリメートル程度であるため、板ガラスを開放することで換気性能は確保されるものの、降雨時には吸音材に設けた貫通孔から雨水が入り込んでしまうという問題があった。また、貫通孔が雨水で満たされてしまうと、所定の吸音特性が得られない虞があった。   In the above-mentioned sound absorbing panel composed of a sound absorbing material and a non-porous plate such as a plate glass, the size of the through hole provided in the sound absorbing material is about several millimeters, so that ventilation performance is ensured by opening the plate glass. When raining, there is a problem that rainwater enters through a through hole provided in the sound absorbing material. Further, if the through hole is filled with rainwater, there is a possibility that a predetermined sound absorption characteristic cannot be obtained.

また、2枚の吸音材が組み合わせて構成された上記の吸音パネルにおいても、吸音材に設けられる貫通孔の大きさが数ミリメートル程度であるため、換気性能は確保されるものの、降雨時には吸音材に設けた貫通孔から雨水が入り込んでしまうという問題があった。また、貫通孔が雨水で満たされてしまうと、所定の吸音特性が得られない虞があった。   Also, in the above-mentioned sound absorbing panel configured by combining two sound absorbing materials, the size of the through hole provided in the sound absorbing material is about several millimeters, so that the ventilation performance is ensured, but the sound absorbing material at the time of rain There was a problem that rainwater entered from the through hole provided in the. Further, if the through hole is filled with rainwater, there is a possibility that a predetermined sound absorption characteristic cannot be obtained.

本発明は、上記事情に鑑みてなされたものであって、吸音特性及び換気性能が十分であり、かつ耐浸水性に優れた吸音材及び吸音パネルを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a sound absorbing material and a sound absorbing panel that have sufficient sound absorption characteristics and ventilation performance and are excellent in water resistance.

上記の目的を達成するために、本発明は以下の構成を採用した。
本発明の吸音材は、板厚方向に沿って直径30μm以下の複数の貫通孔が設けられた板状部材からなることを特徴とする。
また本発明の吸音材は、板厚方向に沿って直径30μm以上400μm以下の複数の貫通孔が設けられた板状部材からなり、前記板状部材の一面側に撥水処理が施されていることを特徴とする。
本発明の吸音材においては、前記板状部材が透光性材料から構成されていることが好ましい。
In order to achieve the above object, the present invention employs the following configuration.
The sound absorbing material of the present invention is characterized by comprising a plate-like member provided with a plurality of through holes having a diameter of 30 μm or less along the plate thickness direction.
Further, the sound absorbing material of the present invention is composed of a plate-like member provided with a plurality of through holes having a diameter of 30 μm or more and 400 μm or less along the plate thickness direction, and water repellent treatment is performed on one surface side of the plate-like member. It is characterized by that.
In the sound-absorbing material of the present invention, it is preferable that the plate-like member is made of a translucent material.

貫通孔の直径が30μm以下とされた上記の吸音材によれば、貫通孔の直径が十分に小さいので、降雨などによって吸音材に雨水が降り注がれた場合でも貫通孔を通して板状部材の一面側から他面側に雨水が浸水する虞がない。
また、貫通孔の直径が30μm以上400μm以下とされた上記の吸音材によれば、一面側に撥水処理が施されているので、貫通孔の直径が比較的大きいものの、降雨などによって吸音材に雨水が降り注がれた場合でも撥水処理の効果によって、板状部材の一面側から他面側に雨水が浸水する虞がない。
また、上記のいずれの吸音材においても、貫通孔を通して換気を行うことが可能になっている。
更に、上記の吸音材によれば、前記板状部材が透光性材料から構成されているので、採光性を確保することが可能である。
According to the above sound absorbing material in which the diameter of the through hole is 30 μm or less, since the diameter of the through hole is sufficiently small, even when rainwater is poured into the sound absorbing material due to rain or the like, There is no risk of rainwater infiltrating from one side to the other.
Further, according to the above-described sound absorbing material in which the diameter of the through hole is 30 μm or more and 400 μm or less, since the water repellent treatment is performed on the one surface side, the sound absorbing material has a relatively large diameter of the through hole, but is rained or the like. Even when rainwater is poured onto the plate, there is no possibility of rainwater infiltrating from one side of the plate member to the other side due to the effect of the water repellent treatment.
In any of the above sound absorbing materials, ventilation can be performed through the through hole.
Furthermore, according to the above sound absorbing material, since the plate-like member is made of a translucent material, it is possible to ensure daylighting.

次に、本発明の吸音パネルは、板厚方向に沿って複数の貫通孔が設けられた板状部材からなる一方の吸音材と、板厚方向に沿って直径30μm以下の複数の貫通孔が設けられた板状部材からなる他方の吸音材とが、所定の間隔を空けて相対配置されてなり、前記一方の吸音材に対して前記他方の吸音材が屋外に面して設置されるものであることを特徴とする。
また、本発明の吸音パネルは、板厚方向に沿って複数の貫通孔が設けられた板状部材からなる一方の吸音材と、板厚方向に沿って直径30μm以上400μm以下の複数の貫通孔が設けられるとともに一面側に撥水処理がなされた板状部材からなる別の吸音材とが、所定の間隔を空けて相対配置されてなり、前記一方の吸音材に対して前記別の吸音材が屋外に面して設置されるとともに前記撥水処理がされた前記一面が屋外側に向けられるものであることを特徴とする。
更に、本発明の吸音パネルは、透光性材料からなる無孔板と、板厚方向に沿って直径30μm以下の複数の貫通孔が設けられた板状部材からなる吸音材とが、所定の間隔を空けて相対配置されてなり、前記吸音材に対して前記無孔板が屋外に面して設置されるものであることを特徴とする。
更にまた、本発明の吸音パネルは、透光性材料からなる無孔板と、板厚方向に沿って直径30μm以上400μm以下の複数の貫通孔が設けられるとともに一面側に撥水処理がなされた板状部材からなる吸音材とが、所定の間隔を空けて相対配置されてなり、前記吸音材に対して前記無孔板が屋外に面して設置されるとともに前記吸音材の前記撥水処理が施された前記一面が屋外側に向けられるものであることを特徴とする。
上記の各吸音パネルにおいては、前記の各板状部材が透光性材料から構成されていることが好ましい。
また、上記の各吸音パネルにおいては、前記無孔板に開閉機構が備えられていることが好ましい。
Next, the sound-absorbing panel of the present invention has one sound-absorbing material composed of a plate-like member provided with a plurality of through-holes along the plate thickness direction, and a plurality of through-holes with a diameter of 30 μm or less along the plate thickness direction. The other sound-absorbing material composed of the provided plate-like member is disposed relative to each other with a predetermined interval, and the other sound-absorbing material is installed facing the outside with respect to the one sound-absorbing material. It is characterized by being.
The sound absorbing panel of the present invention includes a sound absorbing material made of a plate-like member provided with a plurality of through holes along the plate thickness direction, and a plurality of through holes having a diameter of 30 μm or more and 400 μm or less along the plate thickness direction. And another sound-absorbing material made of a plate-like member having a water-repellent treatment on one side thereof, and are arranged relative to each other at a predetermined interval, and the other sound-absorbing material with respect to the one sound-absorbing material Is installed facing the outside, and the one surface subjected to the water repellent treatment is directed to the outdoor side.
Furthermore, the sound absorbing panel of the present invention includes a non-porous plate made of a translucent material and a sound absorbing material made of a plate-like member provided with a plurality of through holes having a diameter of 30 μm or less along the plate thickness direction. The non-perforated plate is disposed facing the outside with respect to the sound absorbing material.
Furthermore, the sound-absorbing panel of the present invention is provided with a non-perforated plate made of a translucent material and a plurality of through-holes having a diameter of 30 μm or more and 400 μm or less along the thickness direction and a water repellent treatment on one side. A sound absorbing material made of a plate-like member is disposed relative to each other at a predetermined interval, and the non-perforated plate is installed facing the sound absorbing material outdoors, and the water repellent treatment of the sound absorbing material is performed. The one surface that has been subjected to is directed to the outdoor side.
In each of the above sound absorbing panels, it is preferable that each of the plate-like members is made of a translucent material.
Moreover, in each said sound-absorbing panel, it is preferable that the non-porous plate is provided with an opening / closing mechanism.

上記の吸音パネルによれば、吸音材同士または吸音材と無孔板を対向配置することで、吸音材同士または吸音材と無孔板との間に空気層が設けられる。これにより、吸音材の貫通孔と空気層とによって所謂ヘルムホルツ共鳴器が構成され、吸音特性を大幅に向上できる。
また、屋外側に直径30μm以下の複数の貫通孔が設けられてなる他方の吸音材が配置されるか、または、屋外側に直径30μm以上400μm以下の複数の貫通孔が設けられるとともに一面側に撥水処理がなされた別の吸音材が配置されることで、降雨などによって吸音材に雨水が降り注がれた場合でも吸音材の一面側から他面側に雨水が浸水する虞がない。
更に、屋外側に透光性材料からなる板状の無孔板が配置され、屋内側には上記のいずれかの吸音材が配置された場合において、屋外側の無孔板が開閉機構によって開放された場合であっても、屋内側に設置された吸音材によって雨水の浸入が阻止される。
According to the above sound absorbing panel, the air absorbing layer is provided between the sound absorbing materials or between the sound absorbing material and the non-porous plate by arranging the sound absorbing materials or the sound absorbing material and the non-porous plate to face each other. Thereby, a so-called Helmholtz resonator is constituted by the through-hole and the air layer of the sound absorbing material, and the sound absorbing characteristics can be greatly improved.
In addition, the other sound absorbing material in which a plurality of through holes having a diameter of 30 μm or less are provided on the outdoor side, or a plurality of through holes having a diameter of 30 μm or more and 400 μm or less are provided on the outdoor side and on one surface side. By arranging another sound absorbing material that has been subjected to water repellent treatment, there is no possibility of rainwater infiltrating from one side of the sound absorbing material to the other side even when rainwater is poured into the sound absorbing material due to rain or the like.
Furthermore, when a plate-like non-porous plate made of a translucent material is arranged on the outdoor side and any of the above sound absorbing materials is arranged on the indoor side, the non-porous plate on the outdoor side is opened by an opening / closing mechanism. Even in such a case, the infiltration of rainwater is prevented by the sound absorbing material installed on the indoor side.

以上説明したように、本発明の吸音材及び吸音パネルによれば、吸音特性及び換気性能が十分であり、かつ耐浸水性に優れた吸音材及び吸音パネルを提供できる。
また、本発明の吸音材及び吸音パネルは、ホール、アウトリウム、鉄道の駅、空港のロビー等の公共空間や、事務所、住宅等を建設する際の建設資材として利用可能である。特に、壁材、屋根材、ドア材等に用いることができる。
As described above, according to the sound absorbing material and the sound absorbing panel of the present invention, it is possible to provide a sound absorbing material and a sound absorbing panel that have sufficient sound absorbing characteristics and ventilation performance and are excellent in water resistance.
Further, the sound absorbing material and sound absorbing panel of the present invention can be used as a construction material when constructing public spaces such as halls, outliums, railway stations, airport lobbies, offices, houses and the like. In particular, it can be used for wall materials, roof materials, door materials and the like.

以下、本発明の実施の形態を図面を参照して説明する。尚、以下の説明において参照する図は、吸音材、吸音パネル及び吸音材の製造方法を説明するためのものであり、図示される各部の大きさや厚さや寸法等は、実際の吸音材等の寸法関係とは異なる場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The drawings referred to in the following description are for explaining the sound absorbing material, the sound absorbing panel, and the method of manufacturing the sound absorbing material. The size, thickness, dimensions, etc. of each part shown in the drawings are the same as those of the actual sound absorbing material, etc. It may be different from the dimensional relationship.

「吸音材」
(吸音材の第1の例)
本実施形態の吸音材の第1の例について図面を参照して説明する。図1には本例の吸音材の斜視図を示し、図2には本例の吸音材の断面模式図を示す。
図1に示すように、本例の吸音材1は、透光性材料で構成された板状部材2からなるものであって、後述する製造方法によって製造されてなるものである。この板状部材2は、板状部材の外面となる各面のなかで最も大きな面積を有する一面2a及び他面2bを有している。一面2a及び他面2bは、板状部材2の厚み方向に沿って相互に対向している。この一面2a及び他面2bには、図2に示すように直径30μm以下の複数の貫通孔3…が設けられている。また、板状部材2の材質は、後述するように、感光性のガラス材から構成されている。
"Sound absorbing material"
(First example of sound absorbing material)
A first example of the sound absorbing material of this embodiment will be described with reference to the drawings. FIG. 1 shows a perspective view of the sound absorbing material of this example, and FIG. 2 shows a schematic sectional view of the sound absorbing material of this example.
As shown in FIG. 1, the sound-absorbing material 1 of this example is composed of a plate-like member 2 made of a translucent material, and is manufactured by a manufacturing method described later. This plate-like member 2 has one surface 2a and the other surface 2b having the largest area among the respective surfaces that are the outer surfaces of the plate-like member. The one surface 2 a and the other surface 2 b are opposed to each other along the thickness direction of the plate-like member 2. The one surface 2a and the other surface 2b are provided with a plurality of through holes 3 having a diameter of 30 μm or less as shown in FIG. Moreover, the material of the plate-shaped member 2 is comprised from the photosensitive glass material so that it may mention later.

板状部材2の厚みtは、後述するように貫通孔3…の開口率にもよるが、0.5mm以上2mm以下の範囲が好ましい。尚、板状部材2の厚みtは貫通孔3の板厚方向の長さに相当する。板状部材2の厚みt(貫通孔の長さ)が0.5mm以上であれば、板状部材2自体の強度が低下することなく、また吸音特性が低下することもなく好適である。また、板状部材2の厚みt(貫通孔の長さ)が2mm以下であれば、重量が増して施工性を損なうこともなく、また吸音特性が低下することもない。 The thickness t 1 of the plate-like member 2 is preferably in the range of 0.5 mm or more and 2 mm or less, although it depends on the opening ratio of the through holes 3 as described later. The thickness t 1 of the plate-like member 2 corresponds to the length of the through hole 3 in the plate thickness direction. If the thickness t 1 (length of the through hole) of the plate-like member 2 is 0.5 mm or more, it is preferable that the strength of the plate-like member 2 itself is not lowered and the sound absorption characteristics are not lowered. Further, (length of the through-hole) plate-like member 2 in the thickness t 1 is equal to 2mm or less, without damaging the workability increased weight, but also the sound absorbing property is not lowered.

貫通孔3は、図2に示すように、板状部材2の厚み方向に沿って延在し、板状部材2を貫通している。貫通孔3の平面視形状は、円形であることが好ましいが、楕円形でも良く、四角形でも良く、角が曲面となる多角形でも良い。貫通孔3の直径d(楕円形の場合は長径、四角形、角が曲面となる四角形の場合は対角線の長さ)は、30μm以下の範囲が好ましく、5μm以上30μm以下の範囲がより好ましい。
また、貫通孔3の直径dは各貫通孔毎に均一でも良く、30μm以下の範囲で各貫通孔毎に異なっていても良い。
貫通孔3の直径dが30μmを超えると、吸音材1に雨水等が降り注がれた場合に、貫通孔3に雨水が容易に侵入してしまうので好ましくない。
As shown in FIG. 2, the through hole 3 extends along the thickness direction of the plate-like member 2 and penetrates the plate-like member 2. The through hole 3 preferably has a circular shape in plan view, but may have an elliptical shape, a rectangular shape, or a polygonal shape with curved corners. The diameter d 1 of the through-hole 3 (long diameter in the case of an ellipse, square, or diagonal length in the case of a square having a curved surface) is preferably in the range of 30 μm or less, and more preferably in the range of 5 μm to 30 μm.
The diameter d 1 of the through-hole 3 may also uniform for each through hole, may be different for each through-hole in the range of 30 [mu] m.
When the diameter d 1 of the through hole 3 exceeds 30 μm, it is not preferable because rain water easily enters the through hole 3 when rain water or the like is poured into the sound absorbing material 1.

また、貫通孔3の平面視形状及び大きさは、板状部材2の厚み方向に沿って一定であることが好ましいが、板状部材2の厚み方向に沿って大きさが徐々に変化してもよい。即ち、図2に示す貫通孔3は、いずれもその平面視形状及び大きさが板状部材2の厚み方向に沿って一定であり、貫通孔3の壁面3aが一面2a及び他面2bに対して直交する関係にあるが、貫通孔3の壁面がテーパー面であっても良い。
また、各貫通孔3…は、均等な間隔を空けて、平面視格子状または千鳥格子状に配列されることが好ましい。各貫通孔同士のピッチは、後述する貫通孔の開口率に対応させて設定すればよい。
Further, the shape and size of the through-hole 3 in plan view are preferably constant along the thickness direction of the plate-like member 2, but the size gradually changes along the thickness direction of the plate-like member 2. Also good. That is, each of the through holes 3 shown in FIG. 2 has a constant shape and size in plan view along the thickness direction of the plate-like member 2, and the wall surface 3a of the through hole 3 is in relation to the one surface 2a and the other surface 2b. However, the wall surface of the through hole 3 may be a tapered surface.
Moreover, it is preferable that each through-hole 3 ... is arranged in the planar view lattice shape or the staggered lattice shape at equal intervals. What is necessary is just to set the pitch of each through-hole corresponding to the aperture ratio of the through-hole mentioned later.

次に、貫通孔3…の開口率σの好ましい範囲を、板状部材2の厚みtと、貫通孔の直径dと、吸音材1の要求される最大吸音率αmaxとの関係から説明する。
本例の吸音材1に要求される最大吸音率αmaxは、好ましくは50%以上、より好ましくは70%以上、最も好ましくは90%以上である。ここで、最大吸音率αmaxとは、所謂垂直入射吸音率であって10Hz〜10000Hzの周波数帯域において極大となる吸音率である。すなわち、最大吸音率αmaxが50%以上とは、10Hz〜10000Hzの周波数帯域における垂直入射吸音率の極大値が50%以上ということである。本例の吸音材1では、少なくとも最大吸音率αmaxが50%以上であることが望ましい。最大吸音率αmaxが50%を下回ると、吸音材としては望ましくない。
Next, a preferable range of the opening ratio σ 1 of the through holes 3... Is a relationship between the thickness t 1 of the plate-like member 2, the diameter d 1 of the through holes, and the maximum sound absorption coefficient α max required for the sound absorbing material 1. It explains from.
The maximum sound absorption coefficient α max required for the sound absorbing material 1 of this example is preferably 50% or more, more preferably 70% or more, and most preferably 90% or more. Here, the maximum sound absorption coefficient α max is a so-called normal incidence sound absorption coefficient, which is a maximum sound absorption coefficient in a frequency band of 10 Hz to 10000 Hz. That is, the maximum sound absorption coefficient α max of 50% or more means that the maximum value of the normal incident sound absorption coefficient in the frequency band of 10 Hz to 10000 Hz is 50% or more. In the sound absorbing material 1 of this example, it is desirable that at least the maximum sound absorption coefficient α max is 50% or more. When the maximum sound absorption coefficient α max is less than 50%, it is not desirable as a sound absorbing material.

また、板状部材2の厚みtは、上述した通り0.5mm以上2mm以下の範囲が好ましい。更に貫通孔の直径dは上述した通り30μm以下が好ましい。
上記の厚みt及び直径dの範囲において、50%以上の最大吸音率αmaxを確保するには、貫通孔3…の開口率σを15%以上にすれば良い。また、70%以上の最大吸音率αmaxを確保するには、開口率σを20%以上にすれば良い。更に、90%以上の最大吸音率αmaxを確保するには、開口率σを35%以上にすれば良い。開口率σがこれらの範囲から外れると、所望とする最大吸音率αmaxが得られない。また、開口率σの上限は80%以下にすることが、降雨時の雨水の侵入を防止できるとともに吸音材1の機械的強度を向上できる点で好ましい。
Further, the thickness t 1 of the plate-like member 2 is preferably in the range of 0.5 mm to 2 mm as described above. Furthermore diameter d 1 of the through hole is preferably as follows 30μm described above.
In order to ensure a maximum sound absorption coefficient α max of 50% or more in the range of the thickness t 1 and the diameter d 1 , the opening ratio σ 1 of the through holes 3. In order to secure the maximum sound absorption coefficient α max of 70% or more, the aperture ratio σ 1 may be set to 20% or more. Furthermore, in order to secure the maximum sound absorption coefficient α max of 90% or more, the aperture ratio σ 1 may be set to 35% or more. If the aperture ratio σ 1 is out of these ranges, the desired maximum sound absorption coefficient α max cannot be obtained. Moreover, it is preferable that the upper limit of the aperture ratio σ 1 is 80% or less from the viewpoint that rainwater can be prevented from entering during rain and the mechanical strength of the sound absorbing material 1 can be improved.

尚、貫通孔3…の開口率σとは、一面2aまたは他面2bの面積に対する貫通孔3…の開口面積の割合である。開口率σは、後述する製造方法において、感光ガラスを露光する際のマスクの形状を調整することにより制御できる。 The opening ratio σ 1 of the through holes 3 is the ratio of the opening area of the through holes 3 to the area of the one surface 2a or the other surface 2b. The aperture ratio σ 1 can be controlled by adjusting the shape of the mask when exposing the photosensitive glass in the manufacturing method described later.

上記の吸音材1は、音源位置に対して一面2aまたは他面2bが対向するように配置することが望ましい。吸音材1の音源位置と反対側の面は空気層に接しており、この空気層と吸音材1の貫通孔3…とが連通して所謂ヘルムホルツ共鳴器が構成され、これにより吸音性能が得られる。
ヘルムホルツ共鳴器の吸音性能は、板状部材2の厚みt(貫通孔の長さ)、貫通孔3の直径d、貫通孔3…同士の間隔及び貫通孔3…の開口率σ等により決定されるので、吸音しようとする音の周波数等の音響特性に合わせて最大の吸音率が得られるように、上述した最適範囲の中で適宜設定すればよい。
The sound absorbing material 1 is preferably arranged so that the one surface 2a or the other surface 2b faces the sound source position. The surface of the sound absorbing material 1 opposite to the sound source position is in contact with the air layer, and the air layer and the through holes 3 of the sound absorbing material 1 communicate with each other to form a so-called Helmholtz resonator, thereby obtaining sound absorbing performance. It is done.
The sound absorption performance of the Helmholtz resonator includes the thickness t 1 (length of the through hole) of the plate-like member 2, the diameter d 1 of the through hole 3, the interval between the through holes 3, the opening ratio σ 1 of the through holes 3, and the like. Therefore, it may be set as appropriate within the optimum range described above so that the maximum sound absorption rate can be obtained in accordance with acoustic characteristics such as the frequency of the sound to be absorbed.

次に、本例の吸音材の製造方法について説明する。
本例の吸音材1は、板状部材となる感光性ガラス上に所定のパターンを有するマスクを密着させ、このマスク上から紫外線を照射して感光性ガラスを露光し、感光性ガラス内に露光部分に対応する潜像を形成する潜像形成工程と、潜像形成工程後の処理ガラスを熱処理し、露光部分を結晶化させる結晶化工程と、結晶化工程後の処理ガラスをエッチング処理し、結晶化した露光部分を溶解除去し表裏貫通せしめる溶解工程とを経ることによって製造できる。また、溶解工程後に、処理ガラスを研磨する工程を加えても良い。以下、各工程について詳細に説明する。
Next, the manufacturing method of the sound absorbing material of this example will be described.
In the sound absorbing material 1 of this example, a mask having a predetermined pattern is brought into close contact with a photosensitive glass serving as a plate-like member, and the photosensitive glass is exposed by irradiating ultraviolet rays from the mask, and is exposed in the photosensitive glass. A latent image forming step for forming a latent image corresponding to the portion, a heat treatment of the processed glass after the latent image forming step, a crystallization step for crystallizing the exposed portion, and a processing glass after the crystallization step are etched. The crystallized exposed portion can be manufactured by dissolving and removing and passing through the front and back. Moreover, you may add the process of grind | polishing process glass after a melt | dissolution process. Hereinafter, each step will be described in detail.

(潜像形成工程)
潜像形成工程では、先ず、出発材料として感光性ガラスを用意する。この感光性ガラスは透光性材料であり、最終的には本例の吸音材1の板状部材2となる。この感光性ガラスは、感光性成分を含有し、感光性を示すものであればいずれでも使用できるが、例えば重量%で、SiO:55〜85%、Al:2〜20%、LiO:5〜15%、SiO+Al+LiO>85%を基本成分とし、Au:0.001〜0.05%、Ag:0.001〜0.5%、CuO:0.001〜1%を感光性金属成分とし、さらにCeO2:0.001〜0.2%を光増感剤として含有する感光性ガラスを用いるのが好ましい。
(Latent image forming process)
In the latent image forming step, first, photosensitive glass is prepared as a starting material. This photosensitive glass is a translucent material, and finally becomes the plate-like member 2 of the sound absorbing material 1 of this example. This photosensitive glass contains any photosensitive component and can be used as long as it exhibits photosensitivity, but for example, by weight, SiO 2 : 55 to 85%, Al 2 O 3 : 2 to 20%, Li 2 O: 5 to 15%, SiO 2 + Al 2 O 3 + Li 2 O> 85% as basic components, Au: 0.001 to 0.05%, Ag: 0.001 to 0.5%, Cu 2 It is preferable to use photosensitive glass containing O: 0.001 to 1% as a photosensitive metal component and further containing CeO2: 0.001 to 0.2% as a photosensitizer.

また、この感光性ガラスのパターン形成のために用いられるマスクとしては、所定のパターンを有し、かつ感光性ガラスに密着し、感光性ガラスの選択的露光を可能にするものであれば、いかなるものでも使用できるが、例えば、透明な薄板ガラスにクロム膜からなるパターンを形成しマスクとしたものを用いることもできる。 このマスクの上記感光性ガラス上に密着させ、マクス上から露光すると、露光部分に感光性金属(Ag、Au等)の粒子からなる核が生成し潜像が形成される。この露光手段として、例えば水銀ランプ、水銀−キセノンランプ等を用いて紫外線を所定時間(例えば10秒〜2分)照射することが好ましい。
また、マスクに形成されたパターンによって、本例の吸音材1の貫通孔3…の直径d及び配列並びに開口率σが決定されるので、マスクに形成するパターンは、上述した直径d、開口率σの範囲を考慮して設計することが望ましい。
In addition, as a mask used for forming the pattern of the photosensitive glass, any mask may be used as long as it has a predetermined pattern and is in close contact with the photosensitive glass to enable selective exposure of the photosensitive glass. Although a thing can also be used, for example, a mask made by forming a pattern made of a chromium film on a transparent thin glass sheet can be used. When the mask is brought into close contact with the photosensitive glass and exposed from above the mask, nuclei composed of particles of photosensitive metal (Ag, Au, etc.) are generated in the exposed portion, and a latent image is formed. As this exposure means, it is preferable to irradiate ultraviolet rays for a predetermined time (for example, 10 seconds to 2 minutes) using, for example, a mercury lamp, a mercury-xenon lamp or the like.
Further, since the diameter d 1 and the arrangement and the aperture ratio σ 1 of the through holes 3 of the sound absorbing material 1 of this example are determined by the pattern formed on the mask, the pattern formed on the mask has the diameter d 1 described above. It is desirable to design in consideration of the range of the aperture ratio σ 1 .

(結晶化工程)
結晶化工程では、先の潜像形成工程で得られた、潜像を形成したガラスを熱処理する。この熱処理は好ましくは550℃〜610℃の温度で行なわれる。この温度範囲が好ましい理由は、550℃未満では温度が低すぎて熱処理の効果がなく、また610℃を超える温度では収縮が起こり寸法精度が低下するからである。またこの熱処理の時間は30分〜5時間とすることが好ましい。
この熱処理により、上記露光部分(潜像)内に存在する感光性金属の粒子を核としてリチウムメタシリケート結晶が成長する。このリチウムメタシリケート結晶は酸に容易に溶解するという性質を有しているので、後続の溶解工程におけるエッチングを円滑に行なうことができる。
(Crystallization process)
In the crystallization process, the glass on which the latent image is formed, obtained in the previous latent image forming process, is heat-treated. This heat treatment is preferably performed at a temperature of 550 ° C to 610 ° C. The reason why this temperature range is preferable is that if the temperature is lower than 550 ° C., the temperature is too low to have the effect of heat treatment, and if the temperature exceeds 610 ° C., shrinkage occurs and the dimensional accuracy decreases. The heat treatment time is preferably 30 minutes to 5 hours.
By this heat treatment, lithium metasilicate crystal grows with the photosensitive metal particles present in the exposed portion (latent image) as nuclei. Since this lithium metasilicate crystal has the property of being easily dissolved in an acid, etching in the subsequent dissolution process can be performed smoothly.

(溶解工程)
溶解工程では、結晶化工程で得られたガラスを、例えば希弗化水素酸でエッチングして露光部分の酸易溶性リチウムメタシリケート結晶を溶解除去することにより、表裏貫通せしめて貫通孔3…を形成する。希弗化水素酸の濃度や温度、エッチング時間等は、用いられるガラスの種類、厚さに応じて適宜決定される。なお希弗化水素酸に代えてNHHF、NaHF、KHT及びKSiF等のFを含む塩を酸に溶解した液をエッチング液として用いてもよい。
(Dissolution process)
In the melting step, the glass obtained in the crystallization step is etched with, for example, dilute hydrofluoric acid to dissolve and remove the acid-soluble lithium metasilicate crystal in the exposed portion, thereby penetrating the front and back to form the through holes 3. Form. The concentration, temperature, etching time, etc. of dilute hydrofluoric acid are appropriately determined according to the type and thickness of the glass used. Instead of dilute hydrofluoric acid, a solution obtained by dissolving a salt containing F such as NH 4 HF 2 , NaHF 2 , KHT 2, and K 2 SiF 6 in an acid may be used as an etching solution.

(研磨工程)
研磨工程では、溶解工程で得られたガラスの片面または両面を研磨する。この研磨は、貫通孔のエッジ部をシャープにし、寸法精度を高めるために行われる。
以上の各工程を経ることによって、本例の吸音材1が得られる。
(Polishing process)
In the polishing step, one or both sides of the glass obtained in the melting step are polished. This polishing is performed in order to sharpen the edge portion of the through hole and increase the dimensional accuracy.
The sound absorbing material 1 of this example is obtained through the above steps.

以上説明したように、本例の吸音材1によれば、板状部材2の板厚方向に沿って直径30μm以下の複数の貫通孔3…が設けられているので、貫通孔3…の直径dが十分に小さく、板状部材2の一面2a側から他面2b側に雨水が浸水する虞がない。
また、貫通孔を通して換気を行うことが可能である。
更に、貫通孔の開口率σ、板状部材2の厚みtを上記の範囲で適宜設定することによって、少なくとも50%以上の最大吸音率αmaxが確保され、同時に雨水等の侵入が防止されるともに換気性能が確保される。また板状部材2を透光性材料から構成することで、採光性にも優れたものとなる。
As described above, according to the sound-absorbing material 1 of this example, the plurality of through-holes 3 with a diameter of 30 μm or less are provided along the thickness direction of the plate-like member 2. d 1 is sufficiently small, and there is no possibility of rainwater infiltrating from the one surface 2 a side to the other surface 2 b side of the plate-like member 2.
It is also possible to ventilate through the through hole.
Further, by appropriately setting the opening ratio σ 1 of the through hole and the thickness t 1 of the plate-like member 2 within the above ranges, a maximum sound absorption coefficient α max of at least 50% or more is secured, and at the same time, intrusion of rainwater or the like is prevented. Ventilation performance is ensured. Moreover, it becomes what was excellent also in the daylighting property by comprising the plate-shaped member 2 from a translucent material.

(吸音材の第2の例)
次に、吸音材の第2の例について説明する。
本例の吸音材は、第1の吸音材1と同様に、透光性材料で構成された板状部材からなり、後述する製造方法によって製造されてなるものである。板状部材には、その板厚方向に沿って直径30μm以上400μm以下の複数の貫通孔が設けられている。また、板状部材の材質は、第1の例と同様に、感光性ガラスから構成されている。また、板状部材の一面には、撥水処理が施されている。
(Second example of sound absorbing material)
Next, a second example of the sound absorbing material will be described.
The sound absorbing material of this example is made of a plate-like member made of a translucent material, like the first sound absorbing material 1, and is manufactured by a manufacturing method described later. The plate-like member is provided with a plurality of through holes having a diameter of 30 μm or more and 400 μm or less along the thickness direction. Further, the material of the plate-like member is made of photosensitive glass as in the first example. Further, one surface of the plate member is subjected to water repellent treatment.

本例における板状部材の厚みtは、後述するように貫通孔の直径d及び貫通孔の開口率σによって変動するが、概ね、0.5mm以上5mm以下の範囲で適宜設定することが好ましい。特に、板状部材の厚みtは、貫通孔の直径dによってその好ましい範囲が変動するので、貫通孔の直径dとの関係で適宜設定することが望ましい。尚、板状部材の厚みtは貫通孔の板厚方向の長さに相当する。板状部材の厚みt(貫通孔の長さ)が0.5mm以上であれば、板状部材自体の強度が低下することなく、また吸音特性が低下することもなく好適である。また、板状部材の厚みt(貫通孔の長さ)が5mm以下であれば、重量が増して施工性を損なうこともなく、また吸音特性が低下することもない。 The thickness t 2 of the plate-like member in this example varies depending on the diameter d 2 of the through hole and the opening ratio σ 2 of the through hole as will be described later, but is appropriately set in a range of approximately 0.5 mm to 5 mm. Is preferred. In particular, the thickness t 2 of the plate member, because the preferred range by the diameter d 2 of the holes is varied, it is desirable to suitably set in relation to the diameter d 2 of the through hole. The thickness t 2 of the plate-like member corresponds to the length of the plate thickness direction of the through hole. If the thickness t 2 (length of the through hole) of the plate member is 0.5 mm or more, it is preferable that the strength of the plate member itself does not decrease and the sound absorption characteristics do not decrease. Further, (length of the through-hole) plate-like member having a thickness t 2 is equal to 5mm or less, without damaging the workability increased weight, but also the sound absorbing property is not lowered.

本例における貫通孔は、第1の例の場合と同様に、板状部材の厚み方向に沿って延在し、板状部材を貫通している。貫通孔の平面視形状は、円形であることが好ましいが、楕円形でも良く、四角形でも良く、角が曲面となる多角形でも良い。貫通孔の直径d(楕円形の場合は長径、四角形、角が曲面となる四角形の場合は対角線の長さ)は、30μm以上400μm以下の範囲が好ましい。
また、貫通孔の直径dは各貫通孔毎に均一にして最大吸音率の大きさをしても良いし、30〜400μmの範囲で各貫通孔毎に異ならせて最大吸音率の周波数を広く分散させても良い。
貫通孔の直径dが30μm未満になると、後述する撥水処理において貫通孔が埋まってしまう虞があるので好ましくなく、貫通孔の直径dが400μmを超えると、吸音材に雨水等が降り注がれた場合に、貫通孔に雨水が容易に侵入してしまうので好ましくない。
The through-hole in this example extends along the thickness direction of the plate-like member and penetrates the plate-like member, as in the first example. The shape of the through hole in plan view is preferably a circle, but may be an ellipse, a quadrangle, or a polygon having a curved corner. The diameter d 2 of the through hole (in the case of an ellipse, a long diameter, a quadrangle, and in the case of a quadrangle whose corner is a curved surface, the length of a diagonal line) is preferably in the range of 30 μm to 400 μm.
Further, to the diameter d 2 of the through hole may be the size of the maximum sound absorption coefficient and uniform for each through hole, the frequency of the maximum sound-absorbing rate different for each through-hole in the range of 30~400μm It may be widely dispersed.
If the diameter d 2 of the through hole is less than 30 [mu] m, it is not preferable because there is a fear that filled the holes in the water-repellent treatment to be described later, the diameter d 2 of the through hole is greater than 400 [mu] m, rainwater down to sound absorbing material When poured, it is not preferable because rainwater easily enters the through hole.

また、貫通孔の平面視形状及び大きさは、第1の例と同様に、板状部材の厚み方向に沿って一定であることが好ましいが、板状部材の厚み方向に沿って大きさが徐々に変化してもよい。また、各貫通孔は、均等な間隔を空けて、平面視格子状または千鳥格子状に配列されることが好ましい。各貫通孔同士のピッチは、後述する貫通孔の開口率に対応させて設定すればよい。   Further, the shape and size of the through hole in plan view are preferably constant along the thickness direction of the plate-like member, as in the first example, but the size along the thickness direction of the plate-like member is small. It may change gradually. Moreover, it is preferable that the through holes are arranged in a lattice pattern or a staggered pattern in plan view with an equal interval. What is necessary is just to set the pitch of each through-hole corresponding to the aperture ratio of the through-hole mentioned later.

次に、貫通孔の開口率σの好ましい範囲を、板状部材2の厚みtと、貫通孔の直径dと、吸音材1の要求される最大吸音率αmaxとの関係から説明する。
本例の吸音材に要求される最大吸音率αmaxは、第1の例と同様に、好ましくは50%以上、より好ましくは70%以上、最も好ましくは90%以上である。最大吸音率αmaxが50%を下回ると、吸音材として望ましくない。
Next, a preferable range of the aperture ratio σ 2 of the through hole will be described from the relationship between the thickness t 2 of the plate-like member 2, the diameter d 2 of the through hole, and the maximum sound absorption coefficient α max required for the sound absorbing material 1. To do.
The maximum sound absorption coefficient α max required for the sound absorbing material of this example is preferably 50% or more, more preferably 70% or more, and most preferably 90% or more, as in the first example. When the maximum sound absorption coefficient α max is less than 50%, it is not desirable as a sound absorbing material.

また、板状部材2の厚みtは、上述した通り0.5mm以上5mm以下の範囲で適宜設定することが好ましい。更に貫通孔の直径dは上述した通り30μm以上400μm以下の範囲で適宜設定することが好ましい。
本例の吸音材においては、貫通孔の直径dによって、開口率σ及び板状部材の厚みtの好ましい範囲が変動するので、以下に、貫通孔の直径d、開口率σ及び板状部材の厚みtの関係について、貫通孔の直径dの範囲を分割しつつ説明する。
The thickness t 2 of the plate-like member 2 is preferably set as appropriate in a range of less than 5mm as 0.5mm or more as described above. Furthermore diameter d 2 of the through holes is preferably set as appropriate in a range of less than 400μm as 30μm or above.
In the sound-absorbing material of the present embodiment, the diameter d 2 of the through hole, so the preferred range of the thickness t 2 of the aperture ratio sigma 2 and the plate-shaped member is varied, below, the diameter d 2 of the through hole, the aperture ratio sigma 2 The relationship between the thickness t 2 of the plate-like member will be described while dividing the range of the diameter d 2 of the through hole.

(貫通孔の直径dが30〜50μmの場合)
貫通孔の直径dが30〜50μmの場合には、板状部材の厚みtを0.5〜2mmの範囲に設定することが好ましい。また、これら直径d及び厚みtの範囲において、50%以上の最大吸音率αmaxを確保するには、貫通孔の開口率σを5.0%以上にすれば良い。また、70%以上の最大吸音率αmaxを確保するには、開口率σを8.0%以上にすれば良い。更に、90%以上の最大吸音率αmaxを確保するには、開口率σを15%以上にすれば良い。開口率σがこれらの範囲から外れると、所望とする最大吸音率αmaxが得られない。また、直径dが30〜50μmの場合において、開口率σの上限を80%以下とすることが、降雨時の雨水の侵入を防止できるともに吸音材の機械的強度を向上できる点で好ましい。
(If the diameter d 2 of the through hole is 30 to 50 [mu] m)
When the diameter d 2 of the through hole is 30 to 50 μm, it is preferable to set the thickness t 2 of the plate-like member in the range of 0.5 to 2 mm. Further, in order to ensure a maximum sound absorption coefficient α max of 50% or more in the range of the diameter d 2 and the thickness t 2 , the through hole opening ratio σ 2 may be set to 5.0% or more. In order to secure the maximum sound absorption coefficient α max of 70% or more, the aperture ratio σ 2 may be set to 8.0% or more. Furthermore, in order to ensure the maximum sound absorption coefficient α max of 90% or more, the aperture ratio σ 2 may be set to 15% or more. If the aperture ratio σ 2 is out of these ranges, the desired maximum sound absorption coefficient α max cannot be obtained. In addition, when the diameter d 2 is 30 to 50 μm, it is preferable that the upper limit of the aperture ratio σ 2 is 80% or less from the viewpoint of preventing rainwater from entering during rain and improving the mechanical strength of the sound absorbing material. .

(貫通孔の直径dが50〜80μmの場合)
貫通孔の直径dが50〜80μmの場合には、板状部材の厚みtを1mm〜2mmの範囲に設定することが好ましい。また、これら直径d及び厚みtの範囲において、50%以上の最大吸音率αmaxを確保するには、貫通孔の開口率σを少なくとも4.0%以上にすれば良い。また、70%以上の最大吸音率αmaxを確保するには、開口率σを少なくとも6.0%以上にすれば良い。更に、90%以上の最大吸音率αmaxを確保するには、開口率σを少なくとも11%以上にすれば良い。
更に、直径dが50〜80μmの場合には、板状部材の厚みtを0.5〜1mmの範囲に設定しても良い。この場合には、50%以上の最大吸音率αmaxを確保するために貫通孔の開口率σを2.0%以上にすれば良く、70%以上の最大吸音率αmaxを確保するためには開口率σを3.0%以上にすれば良く、90%以上の最大吸音率αmaxを確保するためには開口率σを6%以上にすればよい。
開口率σがこれらの範囲から外れると、所望とする最大吸音率αmaxが得られない。また、直径dが50〜80μmの場合において、開口率σの上限を80%以下とすることが、降雨時の雨水の侵入を防止できるともに吸音材の機械的強度を向上できる点で好ましい。
(If the diameter d 2 of the through hole is 50 to 80 [mu] m)
When the diameter d 2 of the through hole is 50 to 80 μm, it is preferable to set the thickness t 2 of the plate-like member in the range of 1 mm to 2 mm. Further, in order to ensure a maximum sound absorption coefficient α max of 50% or more in the range of the diameter d 2 and the thickness t 2 , the through hole opening ratio σ 2 may be set to at least 4.0% or more. In order to secure a maximum sound absorption coefficient α max of 70% or more, the aperture ratio σ 2 may be set to at least 6.0% or more. Furthermore, in order to secure the maximum sound absorption coefficient α max of 90% or more, the aperture ratio σ 2 may be set to at least 11% or more.
Further, if the diameter d 2 of 50~80μm may set the thickness t 2 of the plate-like member in a range of 0.5 to 1 mm. In this case, in order to ensure the maximum sound absorption coefficient α max of 50% or more, the aperture ratio σ 2 of the through hole may be set to 2.0% or more, and in order to ensure the maximum sound absorption coefficient α max of 70% or more. Therefore, the aperture ratio σ 2 may be set to 3.0% or more, and the aperture ratio σ 2 may be set to 6% or more in order to ensure the maximum sound absorption coefficient α max of 90% or more.
If the aperture ratio σ 2 is out of these ranges, the desired maximum sound absorption coefficient α max cannot be obtained. When the diameter d 2 is 50 to 80 μm, it is preferable that the upper limit of the aperture ratio σ 2 is 80% or less from the viewpoint of preventing rainwater from entering during rain and improving the mechanical strength of the sound absorbing material. .

(貫通孔の直径dが80〜100μmの場合)
貫通孔の直径dが80〜100μmの場合には、板状部材の厚みtを2mm〜5mmの範囲に設定することが好ましい。また、これら直径d及び厚みtの範囲において、50%以上の最大吸音率αmaxを確保するには、貫通孔の開口率σを少なくとも5.0%以上にすれば良い。また、70%以上の最大吸音率αmaxを確保するには、開口率σを少なくとも10%以上にすれば良い。更に、90%以上の最大吸音率αmaxを確保するには、開口率σを少なくとも15%以上にすればよい。
更に、直径dが80〜100μmの場合には、板状部材の厚みtを0.5〜2mmの範囲に設定しても良い。この場合には、50%以上の最大吸音率αmaxを確保するために貫通孔の開口率σを1.0%以上にすれば良く、70%以上の最大吸音率αmaxを確保するためには開口率σを2.5%以上にすれば良く、90%以上の最大吸音率αmaxを確保するためには開口率σを4.0%以上にすればよい。
開口率σがこれらの範囲から外れると、所望とする最大吸音率αmaxが得られない。また、直径dが80〜100μmの場合において、開口率σの上限を80%以下とすることが、降雨時の雨水の侵入を防止できるともに吸音材の機械的強度を向上できる点で好ましい。
(If the diameter d 2 of the through hole is 80 to 100)
When the diameter d 2 of the through hole is 80 to 100 μm, it is preferable to set the thickness t 2 of the plate-like member in the range of 2 mm to 5 mm. Further, in order to ensure a maximum sound absorption coefficient α max of 50% or more in the range of the diameter d 2 and the thickness t 2 , the through hole opening ratio σ 2 may be at least 5.0% or more. In order to secure the maximum sound absorption coefficient α max of 70% or more, the aperture ratio σ 2 may be set to at least 10% or more. Furthermore, in order to ensure the maximum sound absorption coefficient α max of 90% or more, the aperture ratio σ 2 may be set to at least 15% or more.
Further, when the diameter d 2 is 80 to 100 μm, the thickness t 2 of the plate-like member may be set in a range of 0.5 to 2 mm. In this case, in order to ensure the maximum sound absorption coefficient α max of 50% or more, the aperture ratio σ 2 of the through hole may be set to 1.0% or more, and in order to ensure the maximum sound absorption coefficient α max of 70% or more. Therefore, the aperture ratio σ 2 may be set to 2.5% or more, and the aperture ratio σ 2 may be set to 4.0% or more to secure the maximum sound absorption coefficient α max of 90% or more.
If the aperture ratio σ 2 is out of these ranges, the desired maximum sound absorption coefficient α max cannot be obtained. When the diameter d 2 is 80 to 100 μm, it is preferable that the upper limit of the aperture ratio σ 2 is 80% or less from the viewpoint of preventing rainwater from entering during rain and improving the mechanical strength of the sound absorbing material. .

(貫通孔の直径dが100〜200μmの場合)
貫通孔の直径dが100〜200μmの場合には、板状部材の厚みtを2mm〜5mmの範囲に設定することが好ましい。また、これら直径d及び厚みtの範囲において、50%以上の最大吸音率αmaxを確保するには、貫通孔の開口率σを少なくとも1.0%以上にすれば良い。また、70%以上の最大吸音率αmaxを確保するには、開口率σを少なくとも3.0%以上にすれば良い。更に、90%以上の最大吸音率αmaxを確保するには、開口率σを少なくとも4.0%以上にすれば良い。
更に、貫通孔の直径dが100〜200μmの場合には、板状部材の厚みtを0.5〜2mmの範囲に設定しても良い。この場合には、50%以上の最大吸音率αmaxを確保するために貫通孔の開口率σを0.3%以上にすれば良く、70%以上の最大吸音率αmaxを確保するためには開口率σを0.5〜90%にすれば良く、90%以上の最大吸音率αmaxを確保するためには開口率σを1.0〜60%にすればよい。
開口率σがこれらの範囲から外れると、所望とする最大吸音率αmaxが得られない。また、直径dが100〜200μmの場合において、開口率σの上限を少なくとも80%以下にすることが、降雨時の雨水の侵入を防止できるともに吸音材の機械的強度を向上できる点で好ましい。
(If the diameter d 2 of the through holes of 100-200 [mu] m)
When the diameter d 2 of the through hole is 100~200μm, it is preferable to set the thickness t 2 of the plate-like member in a range of 2 mm to 5 mm. Further, in order to ensure a maximum sound absorption coefficient α max of 50% or more in the range of the diameter d 2 and the thickness t 2 , the through hole opening ratio σ 2 may be at least 1.0% or more. In order to secure the maximum sound absorption coefficient α max of 70% or more, the aperture ratio σ 2 may be set to at least 3.0% or more. Furthermore, in order to secure the maximum sound absorption coefficient α max of 90% or more, the aperture ratio σ 2 may be set to at least 4.0% or more.
Furthermore, the diameter d 2 of the through hole in the case of 100~200μm may set the thickness t 2 of the plate-like member in a range of 0.5 to 2 mm. In this case, in order to ensure the maximum sound absorption coefficient α max of 50% or more, the opening ratio σ 2 of the through hole may be set to 0.3% or more, and in order to ensure the maximum sound absorption coefficient α max of 70% or more. The aperture ratio σ 2 may be set to 0.5 to 90%, and the aperture ratio σ 2 may be set to 1.0 to 60% in order to secure the maximum sound absorption coefficient α max of 90% or more.
If the aperture ratio σ 2 is out of these ranges, the desired maximum sound absorption coefficient α max cannot be obtained. Further, when the diameter d 2 is 100 to 200 μm, setting the upper limit of the aperture ratio σ 2 to at least 80% can prevent the intrusion of rainwater during rain and improve the mechanical strength of the sound absorbing material. preferable.

(貫通孔の直径dが200〜400μmの場合)
貫通孔の直径dが200〜400μmの場合には、板状部材の厚みtを0.5〜5mmの範囲に設定することが好ましい。また、これら直径d及び厚みtの範囲において、50%以上の最大吸音率αmaxを確保するには、貫通孔の開口率σを0.2〜70%にすれば良い。また、70%以上の最大吸音率αmaxを確保するには、開口率σを0.3〜60%にすれば良い。更に、90%以上の最大吸音率αmaxを確保するには、開口率σを0.5〜30%にすれば良い。開口率σがこれらの範囲から外れると、所望とする最大吸音率αmaxが得られない。
(If the diameter d 2 of the through hole is 200 to 400)
When the diameter d 2 of the through hole is 200 to 400 μm, it is preferable to set the thickness t 2 of the plate-like member in the range of 0.5 to 5 mm. Further, in order to ensure a maximum sound absorption coefficient α max of 50% or more in the range of the diameter d 2 and the thickness t 2 , the through hole opening ratio σ 2 may be set to 0.2 to 70%. In order to secure the maximum sound absorption coefficient α max of 70% or more, the aperture ratio σ 2 may be set to 0.3 to 60%. Furthermore, in order to ensure the maximum sound absorption coefficient α max of 90% or more, the aperture ratio σ 2 may be set to 0.5 to 30%. If the aperture ratio σ 2 is out of these ranges, the desired maximum sound absorption coefficient α max cannot be obtained.

次に、板状部材の一面には、上述のように撥水処理が施される。撥水処理としては、ポリ4フッ化エチレン等のフッ素樹脂製の微粒子をフッ素系ワニスとともに塗布する方法や、ポリ4フッ化エチレン等のフッ素樹脂製の微粒子が分散されてなる電解メッキ浴を用意し、板状部材の一面に対して電界メッキを行う方法を例示できる。また、一般的な撥水スプレー等を塗布しても効果はある。いずれの場合にも、板状部材の一面に、フッ素樹脂製の微粒子が固着される。撥水処理後の一面に対する水の接触角は100°以上が好ましく、120°以上がより好ましく、150°以上が最も好ましい。固着量が増大するにつれて撥水性が向上するが、固着量が過剰になると吸音材の透光性が低下するので、透光性を損なわない範囲で固着量を制御することが望ましい。   Next, one surface of the plate-like member is subjected to water repellent treatment as described above. For water-repellent treatment, a method of applying fluorine resin fine particles such as polytetrafluoroethylene together with a fluorine-based varnish, and an electrolytic plating bath in which fluorine resin fine particles such as polytetrafluoroethylene are dispersed are prepared. And the method of performing electroplating with respect to one surface of a plate-shaped member can be illustrated. Also, applying a general water repellent spray or the like is effective. In any case, fluororesin fine particles are fixed to one surface of the plate-like member. The contact angle of water with respect to one surface after the water repellent treatment is preferably 100 ° or more, more preferably 120 ° or more, and most preferably 150 ° or more. The water repellency improves as the fixing amount increases. However, since the light-transmitting property of the sound-absorbing material decreases when the fixing amount becomes excessive, it is desirable to control the fixing amount within a range that does not impair the light-transmitting property.

上記の吸音材は、第1の例と同様に、屋内の音源位置に対して板状部材の他面が対向するように配置し、撥水処理が施された板状部材の一面は屋外に面するように配置することが望ましい。吸音材の音源位置と反対側の面は空気層に接しており、この空気層と吸音材の貫通孔とが連通して所謂ヘルムホルツ共鳴器が構成され、これにより吸音性能が得られる。
ヘルムホルツ共鳴器の吸音性能は、板状部材の厚みt(貫通孔の長さ)、貫通孔の直径d、貫通孔同士の間隔及び貫通孔の開口率σ等により決定されるので、吸音しようとする音の周波数等の音響特性に合わせて最大の吸音率が得られるように、上述した最適範囲の中で適宜設定すればよい。
As in the first example, the sound absorbing material is disposed so that the other surface of the plate member faces the indoor sound source position, and one surface of the plate member subjected to the water repellent treatment is outdoors. It is desirable to arrange so that it faces. The surface of the sound absorbing material opposite to the sound source position is in contact with the air layer, and the air layer and the through hole of the sound absorbing material communicate with each other to form a so-called Helmholtz resonator, thereby obtaining sound absorbing performance.
Since the sound absorption performance of the Helmholtz resonator is determined by the thickness t 2 (length of the through hole) of the plate-like member, the diameter d 2 of the through holes, the interval between the through holes, the opening ratio σ 2 of the through holes, etc. What is necessary is just to set suitably in the optimal range mentioned above so that the maximum sound absorption rate may be obtained according to acoustic characteristics, such as the frequency of the sound to absorb sound.

次に、本例の吸音材の製造方法について説明する。
本例の吸音材は、板状部材となる感光性ガラス上に所定のパターンを有するマスクを密着させ、このマスク上から紫外線を照射して感光性ガラスを露光し、感光性ガラス内に露光部分に対応する潜像を形成する潜像形成工程と、潜像形成工程後の処理ガラスを熱処理し、露光部分を結晶化させる結晶化工程と、結晶化工程後の処理ガラスをエッチング処理し、結晶化した露光部分を溶解除去し表裏貫通せしめる溶解工程と、撥水処理工程とを経ることによって製造することができる。また、溶解工程後に、処理ガラスを研磨する工程を加えても良い。
潜像形成工程、結晶化工程、溶解工程及び研磨工程については、第1の例と同様なので詳細な説明は省略し、ここでは撥水処理について説明する。
Next, the manufacturing method of the sound absorbing material of this example will be described.
The sound-absorbing material of this example is obtained by bringing a mask having a predetermined pattern into close contact with a photosensitive glass serving as a plate-like member, exposing the photosensitive glass by irradiating ultraviolet rays from the mask, and exposing the exposed portion in the photosensitive glass. A latent image forming process for forming a latent image corresponding to the above, a crystallization process for crystallizing an exposed portion by heat-treating the processed glass after the latent image forming process, an etching process for the processed glass after the crystallization process, and a crystal It can be manufactured through a dissolution process in which the exposed exposed portion is dissolved and removed so as to penetrate the front and back surfaces and a water repellent treatment process. Moreover, you may add the process of grind | polishing process glass after a melt | dissolution process.
Since the latent image forming step, the crystallization step, the dissolving step, and the polishing step are the same as in the first example, a detailed description thereof will be omitted, and the water repellent treatment will be described here.

(撥水処理)
撥水工程では、溶解工程または研磨工程後の処理ガラスに対して撥水処理を施す。本例では、次の2つの方法のうちのいずれかの方法で撥水処理を施すことができる。
第1の方法では、まず、ポリ4フッ化エチレン等のフッ素樹脂からなる微粒子がフッ素系ワニスに分散されてなるフッ素系塗料を調製する。このようなフッ素系塗料としては、例えば、東栄電気工業(株)製のHIREC100等を用いることができる。フッ素系塗料中のフッ素樹脂からなる微粒子は、平均粒径が4μm程度のものがよい。
次に、調製されたフッ素系塗料を、公知の塗布手段によって、処理ガラスの一面に塗布する。塗布後には乾燥を行ってフッ素系塗料を完全に乾かす。これにより、処理ガラスの一面に、フッ素樹脂製の微粒子が固着されて撥水処理がなされる。この撥水処理によって処理されたガラスの一面における水の接触角度は120°程度になる。
(Water repellent treatment)
In the water repellent process, a water repellent process is performed on the treated glass after the melting process or the polishing process. In this example, the water repellent treatment can be performed by one of the following two methods.
In the first method, first, a fluorine-based paint in which fine particles made of a fluorine resin such as polytetrafluoroethylene are dispersed in a fluorine-based varnish is prepared. As such a fluorine-based paint, for example, HIREC 100 manufactured by Toei Electric Industry Co., Ltd. can be used. The fine particles made of a fluororesin in the fluorine-based paint preferably have an average particle size of about 4 μm.
Next, the prepared fluorine-based paint is applied to one surface of the treated glass by a known application means. After application, dry the fluorine-based paint completely. As a result, the fluororesin fine particles are fixed to one surface of the treated glass, and the water repellent treatment is performed. The contact angle of water on one surface of the glass treated by this water repellent treatment is about 120 °.

また、撥水工程の第2の方法では、まず、メッキ基礎液を調製する。メッキ基礎液は例えば、スルファミン酸ニッケル350gと、塩化ニッケル45gと、ホウ酸40gとを1Lの水で溶解することによって調製する。メッキ基礎液の液温は45℃程度にする。次に、ポリ4フッ化エチレン等のフッ素樹脂からなる平均粒径が4μm程度の微粉末55gを、界面活性剤が1g/100mlの濃度で添加された水25mlに投入して分散させる。この分散液に、先に調製したメッキ基礎液を混合することによって電界浴を調製する。電界浴の温度は45℃程度にする。尚、分散液の界面活性剤としては例えば、カチオン系のパーフルオロアルキルアンモニウム塩(商品名:メガファックF−150(大日本インキ化学)等を用いることができる。   In the second method of the water repellent process, first, a plating base solution is prepared. The plating base solution is prepared, for example, by dissolving 350 g of nickel sulfamate, 45 g of nickel chloride, and 40 g of boric acid with 1 L of water. The temperature of the plating base solution is about 45 ° C. Next, 55 g of fine powder having an average particle diameter of about 4 μm made of a fluororesin such as polytetrafluoroethylene is introduced and dispersed in 25 ml of water to which a surfactant is added at a concentration of 1 g / 100 ml. An electric field bath is prepared by mixing the previously prepared plating base solution with this dispersion. The temperature of the electric field bath is about 45 ° C. As the surfactant for the dispersion, for example, a cationic perfluoroalkylammonium salt (trade name: Megafac F-150 (Dainippon Ink Chemical Co., Ltd.)) can be used.

次に、この電界浴を用いて、処理ガラスに対して電界メッキを行う。電界メッキを行う際には、電流密度を3〜5A/cm程度に設定することが望ましい。
以上の手順によって、処理ガラスの一面に、フッ素樹脂製の微粒子が固着されて撥水処理がなされる。この撥水処理によって処理されたガラスの一面における水の接触角度は150°程度になる。
また撥水処理として、一般的な撥水性スプレーを吹きつけても良く、この場合の水の接触角度は100°程度になる。
以上の各工程を経ることによって、本例の吸音材が得られる。
Next, electrolytic plating is performed on the treated glass using this electric field bath. When performing electroplating, it is desirable to set the current density to about 3 to 5 A / cm 2 .
By the above procedure, the fluororesin fine particles are fixed to one surface of the treated glass, and the water repellent treatment is performed. The contact angle of water on one surface of the glass treated by this water repellent treatment is about 150 °.
Further, as a water repellent treatment, a general water repellent spray may be sprayed, and the contact angle of water in this case is about 100 °.
The sound absorbing material of this example is obtained through the above steps.

以上説明したように、本例の吸音材によれば、一面側に撥水処理が施されているので、貫通孔の直径が30〜400μmの範囲であって比較的大きいものの、降雨などによって吸音材に雨水が降り注がれた場合でも撥水処理の効果によって、板状部材の一面側から他面側に雨水が浸水する虞がない。
また、貫通孔を通して換気を行うことが可能である。
更に、貫通孔の開口率σ、板状部材の厚みtを上記の範囲で適宜設定することによって、少なくとも50%以上の最大吸音率αmaxが確保され、同時に雨水等の侵入が防止されるともに換気性能が確保される。また板状部材を透光性材料から構成することで、採光性にも優れたものとなる。
As described above, according to the sound-absorbing material of this example, the water-repellent treatment is performed on one surface side, so the diameter of the through hole is in the range of 30 to 400 μm and is relatively large, but the sound-absorbing material is caused by rain or the like. Even when rainwater pours into the material, there is no possibility of rainwater infiltrating from one side of the plate member to the other side due to the effect of the water repellent treatment.
It is also possible to ventilate through the through hole.
Furthermore, by appropriately setting the aperture ratio σ 2 of the through hole and the thickness t 2 of the plate-like member within the above ranges, a maximum sound absorption coefficient α max of at least 50% is secured, and at the same time, intrusion of rainwater or the like is prevented. And ventilation performance is ensured. Moreover, it becomes what was excellent in the daylighting property by comprising a plate-shaped member from a translucent material.

「吸音材パネル」
次に、上記の吸音材を備えた吸音パネルについて、図3〜図6を参照して説明する。
(吸音パネルの第1例)
図3には、吸音パネルの第1例を断面模式図で示す。
図3に示す吸音パネル10は、複数の貫通孔が設けられた板状部材からなる吸音材11(一方の吸音材)と、第1の例の吸音材1(他方の吸音材)とを所定の間隔を空けて相互に対向配置させて構成されてなるものである。吸音材1、11を離間して配置させることによって、吸音材1、11の間に空気層12が形成される。吸音材1、11の間に空気層12が設けられることで吸音材1、11の各貫通孔と空気層12とが連通され、これにより所謂ヘルムホルツ共鳴器が構成される。これにより、吸音特性を大幅に向上できる。
吸音材1、11の間隔m、換言すると空気層12の厚みは、5mm以上1000mm以下の範囲が好ましく、50mm以上500mm以下の範囲がより好ましい。空気層12の厚みがこの範囲から外れると、良好な吸音特性が得られない。
"Sound Absorbing Material Panel"
Next, a sound absorbing panel including the above sound absorbing material will be described with reference to FIGS.
(First example of sound absorbing panel)
FIG. 3 is a schematic cross-sectional view of a first example of a sound absorbing panel.
The sound absorbing panel 10 shown in FIG. 3 has a sound absorbing material 11 (one sound absorbing material) made of a plate-like member provided with a plurality of through holes and a sound absorbing material 1 (the other sound absorbing material) of the first example as a predetermined. Are arranged so as to face each other with an interval of. By arranging the sound absorbing materials 1 and 11 apart from each other, an air layer 12 is formed between the sound absorbing materials 1 and 11. By providing the air layer 12 between the sound absorbing materials 1 and 11, the through holes of the sound absorbing materials 1 and 11 and the air layer 12 are communicated with each other, thereby forming a so-called Helmholtz resonator. Thereby, a sound absorption characteristic can be improved significantly.
The distance m 1 between the sound absorbing materials 1 and 11, in other words, the thickness of the air layer 12 is preferably in the range of 5 mm to 1000 mm, and more preferably in the range of 50 mm to 500 mm. If the thickness of the air layer 12 is out of this range, good sound absorption characteristics cannot be obtained.

一方の吸音材11に設けられた貫通孔の直径は特に限定されないが、一例として、前述の第1または第2の吸音材における貫通孔の直径と同じ程度(30μm以下または30〜400μm)に設定しても良い。また、貫通孔の開口率や吸音材の板厚については、貫通孔の直径に応じて、前述の第1または第2の吸音材の場合と同様に設定すればよい。また、一方の吸音材11の材質は、他方の吸音材と同様に感光性ガラス等の透光性材料で構成すればよい。   Although the diameter of the through-hole provided in one sound-absorbing material 11 is not specifically limited, As an example, it sets to the same grade (30 micrometers or less or 30-400 micrometers) as the diameter of the through-hole in the above-mentioned 1st or 2nd sound-absorbing material. You may do it. Moreover, what is necessary is just to set similarly to the case of the above-mentioned 1st or 2nd sound-absorbing material according to the diameter of a through-hole about the aperture ratio of a through-hole, and the plate | board thickness of a sound-absorbing material. Further, the material of one sound absorbing material 11 may be composed of a light-transmitting material such as photosensitive glass, like the other sound absorbing material.

本例の吸音パネル10をホールやアウトリウムの壁材として設置する場合には、他方の吸音材1を屋外側に設置するとともに一方の吸音材11を屋内側に設置することが望ましい。
屋外側に設置する吸音材1には、直径30μm以下の複数の貫通孔が設けられており、水が貫通孔に入り込みにくい程度に直径が十分に小さいので、降雨などによって吸音材1に雨水が降り注がれた場合でも、貫通孔を通して雨水が屋内側に入り込む虞がない。また、両方の吸音材1、11にそれぞれ貫通孔が設けられているので、換気性を確保することもできる。更に、両方の吸音材1、11が透光性材料で構成されているので、採光性も確保できる。
When the sound absorbing panel 10 of this example is installed as a wall material for a hall or an outerium, it is desirable to install the other sound absorbing material 1 on the outdoor side and one sound absorbing material 11 on the indoor side.
The sound absorbing material 1 installed on the outdoor side is provided with a plurality of through holes having a diameter of 30 μm or less, and the diameter is sufficiently small to prevent water from entering the through holes. Even if it is poured down, there is no possibility that rainwater will enter the indoor side through the through hole. In addition, since the sound absorbing materials 1 and 11 are provided with through holes, ventilation can be ensured. Furthermore, since both the sound-absorbing materials 1 and 11 are made of a translucent material, it is possible to secure daylighting.

(吸音パネルの第2例)
図4には、吸音パネルの第2例を断面模式図で示す。
図4に示す吸音パネル20は、複数の貫通孔が設けられた板状部材からなる吸音材11(一方の吸音材)と、第2の例の吸音材21(他方の吸音材)とを所定の間隔を空けて相互に対向配置させて構成されてなるものである。吸音材11、21を離間して配置させることによって、吸音材11、21の間に空気層22が形成される。吸音材11、21の間に空気層22が設けられることで吸音材11、21の各貫通孔と空気層22とが連通され、これにより所謂ヘルムホルツ共鳴器が構成される。これにより、吸音特性を大幅に向上できる。
吸音材11、21の間隔m、換言すると空気層22の厚みは、5mm以上1000mm以下の範囲が好ましく、50mm以上500mm以下の範囲がより好ましい。空気層22の厚みがこの範囲から外れると、良好な吸音特性が得られない。
(Second example of sound absorbing panel)
FIG. 4 is a schematic cross-sectional view of a second example of the sound absorbing panel.
The sound absorbing panel 20 shown in FIG. 4 includes a sound absorbing material 11 (one sound absorbing material) made of a plate-like member provided with a plurality of through holes and a sound absorbing material 21 (the other sound absorbing material) of the second example. Are arranged so as to face each other with an interval of. By arranging the sound absorbing materials 11 and 21 apart from each other, an air layer 22 is formed between the sound absorbing materials 11 and 21. By providing the air layer 22 between the sound absorbing materials 11 and 21, the through holes of the sound absorbing materials 11 and 21 and the air layer 22 are communicated with each other, thereby forming a so-called Helmholtz resonator. Thereby, a sound absorption characteristic can be improved significantly.
The distance m 2 between the sound absorbing materials 11 and 21, in other words, the thickness of the air layer 22 is preferably in the range of 5 mm to 1000 mm, and more preferably in the range of 50 mm to 500 mm. If the thickness of the air layer 22 is out of this range, good sound absorption characteristics cannot be obtained.

他方の吸音材21には、その一面21a側に撥水処理がなされてフッ素樹脂21bが固着されている。この他方の吸音材21を一方の吸音材11に対して対向配置させる際には、撥水処理された一面21aが一方の吸音材11側と反対側を向くように配置することが好ましい。   The other sound absorbing material 21 is subjected to water repellent treatment on one surface 21a side, and a fluororesin 21b is fixed thereto. When the other sound absorbing material 21 is disposed opposite to the one sound absorbing material 11, it is preferable that the one surface 21a subjected to the water repellent treatment is disposed so as to face the side opposite to the one sound absorbing material 11.

また、一方の吸音材11は、吸音パネルの第1の例における説明と同様に、貫通孔の直径は特に限定されず、一例として、前述の第1または第2の吸音材における貫通孔の直径と同じ程度(30μm以下または30〜400μm)に設定すればよい。また、貫通孔の開口率や吸音材の板厚についても、貫通孔の直径に応じて、前述の第1または第2の吸音材の場合と同様に設定すればよい。材質についても、他方の吸音材21と同様に感光性ガラス等の透光性材料で構成すればよい。   Further, as in the first example of the sound absorbing panel, the one sound absorbing material 11 is not particularly limited in the diameter of the through hole, and as an example, the diameter of the through hole in the first or second sound absorbing material described above. And the same degree (30 μm or less or 30 to 400 μm). Moreover, what is necessary is just to set similarly to the case of the above-mentioned 1st or 2nd sound-absorbing material also about the aperture ratio of a through-hole, and the plate | board thickness of a sound-absorbing material according to the diameter of a through-hole. The material may be made of a light-transmitting material such as photosensitive glass as with the other sound absorbing material 21.

本例の吸音パネル20をホールやアウトリウムの壁材として設置する場合には、他方の吸音材21を屋外側に設置するとともに一方の吸音材11を屋内側に設置することが望ましい。このように設置することで、他方の吸音材21の撥水処理が施された一面21aが屋外に面した状態で設置される。
屋外側に設置する吸音材21には、一面21aに撥水処理が施されているので、貫通孔の直径が30〜400μmの範囲であって比較的大きいものの、撥水処理の効果によって水が貫通孔に入り込みづらくなっているので、降雨などによって吸音材21に雨水が降り注がれた場合でも、貫通孔を通して雨水が屋内側に入り込む虞がない。また、両方の吸音材11、21にそれぞれ貫通孔が設けられているので、換気性を確保することもできる。更に、両方の吸音材11、21が透光性材料で構成されているので、採光性も確保できる。
When the sound absorbing panel 20 of this example is installed as a wall material for a hall or an outlium, it is desirable to install the other sound absorbing material 21 on the outdoor side and install the one sound absorbing material 11 on the indoor side. By installing in this way, the other sound absorbing material 21 is installed in a state where the one surface 21a subjected to the water repellent treatment faces the outdoors.
Since the sound absorbing material 21 installed on the outdoor side has a water repellent treatment on one surface 21a, the diameter of the through-hole is in the range of 30 to 400 μm and is relatively large, but water is repelled by the effect of the water repellent treatment. Since it is difficult to enter the through-hole, there is no possibility that rainwater enters the indoor side through the through-hole even when rainwater is poured onto the sound absorbing material 21 due to rain or the like. In addition, since the sound absorbing materials 11 and 21 are provided with through holes, ventilation can be ensured. Furthermore, since both the sound absorbing materials 11 and 21 are made of a translucent material, it is possible to secure daylighting.

(吸音パネルの第3例)
図5には、吸音パネルの第3例を断面模式図で示す。
図5に示す吸音パネル30は、透光性材料からなる無孔板31と、第1の例の吸音材1とを所定の間隔を空けて相互に対向配置させて構成されてなるものである。無孔板31及び吸音材1を離間して配置させることによって、無孔板31と吸音材1の間に空気層32が形成される。空気層32が設けられることで吸音材1の貫通孔と空気層32とが連通され、これにより所謂ヘルムホルツ共鳴器が構成される。これにより、吸音特性を大幅に向上できる。
無孔板31と吸音材1の間隔m、換言すると空気層32の厚みは、5mm以上1000mm以下の範囲が好ましく、50mm以上500mm以下の範囲がより好ましい。空気層32の厚みがこの範囲から外れると、良好な吸音特性が得られない。
(Third example of sound absorbing panel)
In FIG. 5, the 3rd example of a sound absorption panel is shown with a cross-sectional schematic diagram.
The sound absorbing panel 30 shown in FIG. 5 is configured by disposing a non-porous plate 31 made of a translucent material and the sound absorbing material 1 of the first example so as to face each other at a predetermined interval. . By arranging the non-porous plate 31 and the sound absorbing material 1 apart from each other, an air layer 32 is formed between the non-porous plate 31 and the sound absorbing material 1. By providing the air layer 32, the through-hole of the sound absorbing material 1 and the air layer 32 are communicated with each other, thereby forming a so-called Helmholtz resonator. Thereby, a sound absorption characteristic can be improved significantly.
The distance m 3 between the non-porous plate 31 and the sound absorbing material 1, in other words, the thickness of the air layer 32 is preferably in the range of 5 mm to 1000 mm, and more preferably in the range of 50 mm to 500 mm. If the thickness of the air layer 32 is out of this range, good sound absorption characteristics cannot be obtained.

透光性材料からなる板状の無孔板31としては、貫通孔を有しない板状の透光性の部材であれば特に限定されないが、例えば板ガラスなどが良い。この無孔板31には、開閉機構が取り付けられることが望ましい。開閉機構としては、例えば板ガラス(無孔板)をアルミサッシなどの窓枠材に嵌め込んで開閉機構付きの窓材とすればよい。
また、本例の吸音パネル30をホールやアウトリウムの壁材として設置する場合には、無孔板31を屋外側に設置するとともに吸音材1を屋内側に設置することが望ましい。
The plate-like non-perforated plate 31 made of a light-transmitting material is not particularly limited as long as it is a plate-like light-transmitting member having no through-hole, and for example, plate glass or the like is preferable. It is desirable that an opening / closing mechanism is attached to the non-perforated plate 31. As the opening / closing mechanism, for example, a plate glass (non-porous plate) may be fitted into a window frame material such as an aluminum sash to form a window material with an opening / closing mechanism.
In addition, when the sound absorbing panel 30 of this example is installed as a wall material for a hall or an outerium, it is desirable to install the non-perforated plate 31 on the outdoor side and the sound absorbing material 1 on the indoor side.

上述の開閉機構によって無孔板31からなる窓材が開放されると、外気が吸音材1にまで導入され、この吸音材1には上述のように直径30μm以下の複数の貫通孔が設けられているので、貫通孔を介して外気が屋内側に導入される。このようにして本例の吸音パネル30では換気性を確保することができる。
また、屋内側に設置される吸音材1には、直径30μm以下の複数の貫通孔が設けられており、水が入り込みにくい程度に貫通孔の直径が十分に小さくなっている。従って、例えば換気を確保するために、上述の開閉機構によって無孔板31からなる窓材が開放された状態で、降雨などによって吸音材1に雨水が降り注がれた場合でも、貫通孔を通して雨水が屋内側に入り込む虞がない。
更に、無孔板31と吸音材1の両方が透光性材料で構成されているので、採光性も確保できる。
When the window member made of the non-perforated plate 31 is opened by the opening / closing mechanism described above, the outside air is introduced to the sound absorbing material 1, and the sound absorbing material 1 is provided with a plurality of through holes having a diameter of 30 μm or less as described above. Therefore, outside air is introduced into the indoor side through the through hole. Thus, the sound absorption panel 30 of this example can ensure ventilation.
Further, the sound absorbing material 1 installed on the indoor side is provided with a plurality of through holes having a diameter of 30 μm or less, and the diameter of the through holes is sufficiently small to prevent water from entering. Therefore, for example, in order to ensure ventilation, even when rainwater is poured into the sound absorbing material 1 due to rain or the like in a state where the window material made of the non-perforated plate 31 is opened by the above-described opening and closing mechanism, it passes through the through hole. There is no risk of rainwater entering the indoor side.
Furthermore, since both the non-perforated plate 31 and the sound absorbing material 1 are made of a translucent material, it is possible to secure daylighting.

(吸音パネルの第4例)
図6には、吸音パネルの第4例を断面模式図で示す。
図6に示す吸音パネル40は、透光性材料からなる無孔板31と、第2の例の吸音材21とを所定の間隔を空けて相互に対向配置させて構成されてなるものである。無孔板31及び吸音材21を離間して配置させることによって、無孔板31と吸音材21の間に空気層41が形成される。空気層41が設けられることで吸音材21の貫通孔と空気層41とが連通され、これにより所謂ヘルムホルツ共鳴器が構成される。これにより、吸音特性を大幅に向上できる。
無孔板31と吸音材1の間隔m、換言すると空気層41の厚みは、5mm以上1000mm以下の範囲が好ましく、50mm以上500mm以下の範囲がより好ましい。空気層41の厚みがこの範囲から外れると、良好な吸音特性が得られない。
(Fourth example of sound absorbing panel)
In FIG. 6, the 4th example of a sound absorption panel is shown with a cross-sectional schematic diagram.
The sound absorbing panel 40 shown in FIG. 6 is configured by disposing a non-porous plate 31 made of a translucent material and the sound absorbing material 21 of the second example so as to face each other with a predetermined interval. . By arranging the non-porous plate 31 and the sound absorbing material 21 apart from each other, an air layer 41 is formed between the non-porous plate 31 and the sound absorbing material 21. By providing the air layer 41, the through-hole of the sound absorbing material 21 and the air layer 41 are communicated with each other, thereby forming a so-called Helmholtz resonator. Thereby, a sound absorption characteristic can be improved significantly.
The distance m 4 between the non-porous plate 31 and the sound absorbing material 1, in other words, the thickness of the air layer 41 is preferably in the range of 5 mm to 1000 mm, and more preferably in the range of 50 mm to 500 mm. If the thickness of the air layer 41 is out of this range, good sound absorption characteristics cannot be obtained.

透光性材料からなる板状の無孔板31としては、吸音パネルの第3例と同様に、貫通孔を有しない板状の透光性の部材であれば特に限定されず、例えば板ガラスなどが良い。この無孔板31には、第3例と同様な開閉機構が取り付けられることが望ましい。
また、本例の吸音パネル40をホールやアウトリウムの壁材として設置する場合には、無孔板31を屋外側に設置するとともに吸音材21を屋内側に設置することが望ましい。また、無孔板31に対して吸音材21を配置する際には、吸音材21の撥水処理が施された一面21aが屋外側(無孔板側)に向くようにすると良い。
The plate-like non-porous plate 31 made of a light-transmitting material is not particularly limited as long as it is a plate-like light-transmitting member having no through holes, as in the third example of the sound absorbing panel. Is good. It is desirable that an opening / closing mechanism similar to that in the third example is attached to the non-perforated plate 31.
Moreover, when installing the sound absorbing panel 40 of this example as a wall material of a hall | hole or an outlium, it is desirable to install the non-perforated plate 31 on the outdoor side and install the sound absorbing material 21 on the indoor side. Further, when the sound absorbing material 21 is disposed with respect to the non-perforated plate 31, it is preferable that the one surface 21 a on which the water-repellent treatment of the sound absorbing material 21 is performed faces the outdoor side (non-perforated plate side).

上述の開閉機構によって無孔板31からなる窓材が開放されると、外気が吸音材21にまで導入され、この吸音材21には上述のように直径30μm〜400μmの複数の貫通孔が設けられているので、貫通孔を介して外気が屋内側に導入される。このようにして本例の吸音パネル40では換気性を確保することができる。
また、屋内側に設置される吸音材21には、その一面21aに撥水処理が施されているので、貫通孔の直径が30〜400μmの範囲であって比較的大きいにもかかわらず、撥水処理の効果によって水が貫通孔に入り込みづらくなっている。従って、例えば換気を確保するために、上述の開閉機構によって無孔板31からなる窓材が開放された状態で、降雨などによって吸音材21に雨水が降り注がれた場合でも、貫通孔を通して雨水が屋内側に入り込む虞がない。
更に、無孔板31と吸音材21の両方が透光性材料で構成されているので、採光性も確保できる。
When the window material comprising the non-perforated plate 31 is opened by the opening / closing mechanism described above, outside air is introduced to the sound absorbing material 21, and the sound absorbing material 21 is provided with a plurality of through holes having a diameter of 30 μm to 400 μm as described above. Therefore, outside air is introduced into the indoor side through the through hole. In this way, the sound absorbing panel 40 of this example can ensure ventilation.
In addition, the sound absorbing material 21 installed on the indoor side has a water repellent treatment on one surface 21a, so that the diameter of the through hole is in the range of 30 to 400 μm and is relatively large. It is difficult for water to enter the through hole due to the effect of water treatment. Therefore, for example, in order to ensure ventilation, even when rainwater is poured on the sound absorbing material 21 due to rain or the like in a state where the window member made of the non-perforated plate 31 is opened by the above-described opening and closing mechanism, it passes through the through hole. There is no risk of rainwater entering the indoor side.
Furthermore, since both the non-porous plate 31 and the sound absorbing material 21 are made of a translucent material, it is possible to secure daylighting.

「実験例1(直径30μmの貫通孔の場合の吸音特性)」
透明の感光性ガラス基板上に所定のパターンを有するマスクを密着させ、このマスク上から紫外線を照射して感光性ガラスを露光し、感光性ガラス内に露光部分に対応する潜像を形成した。次に、潜像形成後の処理ガラスを600℃1時間の条件で熱処理して、露光部分を結晶化させた。次に、結晶化後の処理ガラスをエッチングし、結晶化した露光部分を溶解除去し表裏貫通せしめて貫通孔を形成した。このようにして各種の吸音材を製造した。
“Experimental example 1 (sound absorption characteristics in the case of a through hole having a diameter of 30 μm)”
A mask having a predetermined pattern was brought into close contact with a transparent photosensitive glass substrate, and the photosensitive glass was exposed by irradiating ultraviolet rays from the mask to form a latent image corresponding to the exposed portion in the photosensitive glass. Next, the processed glass after the latent image formation was heat-treated at 600 ° C. for 1 hour to crystallize the exposed portion. Next, the treated glass after crystallization was etched to dissolve and remove the crystallized exposed portions and penetrated the front and back surfaces to form through holes. In this way, various sound absorbing materials were manufactured.

吸音材の板厚は0.5〜5mmとし、貫通孔の直径は30μmとし、貫通孔を60°の相対角度をもって千鳥格子状に配置した。貫通孔のピッチは35〜150μmとした。   The thickness of the sound absorbing material was 0.5 to 5 mm, the diameter of the through holes was 30 μm, and the through holes were arranged in a staggered pattern with a relative angle of 60 °. The pitch of the through holes was 35 to 150 μm.

得られた各種の吸音材について、垂直入射吸音特性を測定して、最大吸音率αmaxを測定した。結果を表1及び図7に示す。表1には、貫通孔のピッチに対応する開口率を併せて示す。また、図7には、開口率と最大吸音率αmaxとの関係を示す。 With respect to the obtained various sound absorbing materials, the normal incident sound absorption characteristics were measured, and the maximum sound absorption coefficient α max was measured. The results are shown in Table 1 and FIG. Table 1 also shows the aperture ratio corresponding to the pitch of the through holes. FIG. 7 shows the relationship between the aperture ratio and the maximum sound absorption coefficient α max .

Figure 2007262765
Figure 2007262765

表1及び図7に示すように、貫通孔の直径が30μmの場合には、どの板厚の吸音材についても、開口率が増大するに従って、最大吸音率αmaxが上昇する傾向にあることがわかる。 As shown in Table 1 and FIG. 7, when the diameter of the through hole is 30 μm, the maximum sound absorption coefficient α max tends to increase as the aperture ratio increases for any sound absorbing material of any thickness. Recognize.

また表1に示すように、板厚が0.5mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を15%以上にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を20%以上にすれば良く、90%以上の最大吸音率αmaxを確保するには開口率を35%以上にすれば良いことがわかる。 Further, as shown in Table 1, when the plate thickness is 0.5 mm, the aperture ratio should be 15% or more in order to ensure the maximum sound absorption coefficient α max of 50% or more, and the maximum sound absorption coefficient of 70% or more. if the aperture ratio is 20% or more to ensure the alpha max well, it can be seen that the aperture ratio to ensure maximum sound absorption coefficient alpha max of 90% or more may be 35% or more.

次に、板厚が0.7mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を20%以上にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を32%以上にすれば良く、90%以上の最大吸音率αmaxを確保するには開口率を66%以上にすれば良いことがわかる。 Next, when the plate thickness is 0.7 mm, in order to ensure the maximum sound absorption coefficient α max of 50% or more, the aperture ratio may be set to 20% or more, and the maximum sound absorption coefficient α max of 70% or more is ensured. It is understood that the aperture ratio should be 32% or more, and the aperture ratio should be 66% or more to ensure the maximum sound absorption coefficient α max of 90% or more.

次に、板厚が1mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を32%以上にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を50%以上にすれば良いことがわかる。
次に、板厚が2mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を66%以上にすれば良いことがわかる。
Next, in the plate thickness of 1 mm, to ensure maximum sound absorption coefficient alpha max of 50% or more may be the aperture ratio over 32%, to ensure maximum sound absorption coefficient alpha max of 70% or more It can be seen that the aperture ratio should be 50% or more.
Next, it can be seen that when the plate thickness is 2 mm, the aperture ratio should be 66% or more in order to secure the maximum sound absorption coefficient α max of 50% or more.

また、表1に示すように、板厚が2mmを超えると、50%以上の最大吸音率が得られないことがわかる。   Further, as shown in Table 1, it can be seen that when the plate thickness exceeds 2 mm, a maximum sound absorption rate of 50% or more cannot be obtained.

「実験例2(直径50μmの貫通孔の場合の吸音特性)」
吸音材の板厚を0.5〜5mmとし、貫通孔の直径は50μmとし、貫通孔を60°の相対角度をもって千鳥格子状に配置し、貫通孔のピッチを60〜250μmとした以外は実験例1と同様にして、各種の吸音材を製造した。
“Experimental example 2 (sound absorption characteristics in the case of a through hole having a diameter of 50 μm)”
The thickness of the sound absorbing material is 0.5 to 5 mm, the diameter of the through holes is 50 μm, the through holes are arranged in a staggered pattern with a relative angle of 60 °, and the pitch of the through holes is 60 to 250 μm. Various sound absorbing materials were manufactured in the same manner as in Experimental Example 1.

得られた各種の吸音材について、垂直入射吸音特性を測定して、最大吸音率αmaxを測定した。結果を表2及び図8に示す。表2には、貫通孔のピッチに対応する開口率を併せて示す。また、図8には、開口率と最大吸音率αmaxとの関係を示す。 With respect to the obtained various sound absorbing materials, the normal incident sound absorption characteristics were measured, and the maximum sound absorption coefficient α max was measured. The results are shown in Table 2 and FIG. Table 2 also shows the aperture ratio corresponding to the pitch of the through holes. FIG. 8 shows the relationship between the aperture ratio and the maximum sound absorption coefficient α max .

Figure 2007262765
Figure 2007262765

表2及び図8に示すように、貫通孔の直径が50μmの場合には、板厚が0.5mmのように開口率の上昇に伴って最大吸音率αmaxがピークを示すものもあるが、それ以外については開口率が増大するに従って、最大吸音率αmaxが上昇する傾向にあることがわかる。 As shown in Table 2 and FIG. 8, when the diameter of the through hole is 50 μm, the maximum sound absorption coefficient α max may peak as the aperture ratio increases, such as the plate thickness of 0.5 mm. In other cases, the maximum sound absorption coefficient α max tends to increase as the aperture ratio increases.

また表2に示すように、板厚が0.5mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を5%以上にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を8.8%以上にすれば良く、90%以上の最大吸音率αmaxを確保するには開口率を15.7%以上にすれば良いことがわかる。 As shown in Table 2, when the plate thickness is 0.5 mm, the aperture ratio should be 5% or more to ensure the maximum sound absorption coefficient α max of 50% or more, and the maximum sound absorption coefficient of 70% or more. if to ensure alpha max is the numerical aperture more than 8.8% better, it can be seen that the aperture ratio to ensure maximum sound absorption coefficient alpha max of 90% or more may be more than 15.7%.

次に、板厚が1mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を10%以上にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を17%以上にすれば良く、90%以上の最大吸音率αmaxを確保するには開口率を29%以上にすれば良いことがわかる。 Next, in the plate thickness of 1 mm, to ensure maximum sound absorption coefficient alpha max of 50% or more may be the aperture ratio 10% or more, to ensure maximum sound absorption coefficient alpha max of 70% or more It can be seen that the aperture ratio should be 17% or more, and the aperture ratio should be 29% or more to ensure the maximum sound absorption coefficient α max of 90% or more.

次に、板厚が2mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を19%以上にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を28%以上にすれば良く、90%以上の最大吸音率αmaxを確保するには開口率を62%以上にすれば良いことがわかる。
次に、板厚が5mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を62%以上にすれば良いことがわかる。
Next, in the plate thickness of 2 mm, to ensure maximum sound absorption coefficient alpha max of 50% or more may be the aperture ratio over 19%, to ensure maximum sound absorption coefficient alpha max of 70% or more It can be seen that the aperture ratio should be 28% or higher, and the aperture ratio should be 62% or higher in order to secure the maximum sound absorption coefficient α max of 90% or higher.
Next, it can be seen that when the plate thickness is 5 mm, the aperture ratio should be 62% or more in order to secure the maximum sound absorption coefficient α max of 50% or more.

「実験例3(直径80μmの貫通孔の場合の吸音特性)」
吸音材の板厚を0.5〜5mmとし、貫通孔の直径は80μmとし、貫通孔を60°の相対角度をもって千鳥格子状に配置し、貫通孔のピッチを95〜700μmとした以外は実験例1と同様にして、各種の吸音材を製造した。
得られた各種の吸音材について、垂直入射吸音特性を測定して、最大吸音率αmaxを測定した。結果を表3及び図9に示す。
“Experimental example 3 (sound absorption characteristics in the case of a through hole with a diameter of 80 μm)”
The thickness of the sound absorbing material is 0.5 to 5 mm, the diameter of the through holes is 80 μm, the through holes are arranged in a staggered pattern with a relative angle of 60 °, and the pitch of the through holes is 95 to 700 μm. Various sound absorbing materials were manufactured in the same manner as in Experimental Example 1.
With respect to the obtained various sound absorbing materials, the normal incident sound absorption characteristics were measured, and the maximum sound absorption coefficient α max was measured. The results are shown in Table 3 and FIG.

Figure 2007262765
Figure 2007262765

表3及び図9に示すように、板厚が0.5〜1mmの範囲では、開口率の上昇に伴って最大吸音率αmaxがピークを示し、その後、最大吸音率αmaxが低下する傾向にある。一方、板厚が2〜5mmの範囲では、開口率が増大するに従って最大吸音率αmaxが上昇する傾向にあることがわかる。 As shown in Table 3 and FIG. 9, when the plate thickness is in the range of 0.5 to 1 mm, the maximum sound absorption rate α max shows a peak as the aperture ratio increases, and thereafter the maximum sound absorption rate α max tends to decrease. It is in. On the other hand, when the plate thickness is in the range of 2 to 5 mm, the maximum sound absorption coefficient α max tends to increase as the aperture ratio increases.

また表3に示すように、板厚が0.5mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を1.9〜65%にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を3〜38%にすれば良く、90%以上の最大吸音率αmaxを確保するには開口率を5%〜22%にすれば良いことがわかる。 As shown in Table 3, when the plate thickness is 0.5 mm, the aperture ratio should be 1.9 to 65% in order to ensure the maximum sound absorption coefficient α max of 50% or more, and 70% or more. to ensure maximum sound absorption coefficient alpha max may be an aperture ratio from 3 to 38%, that may be the aperture ratio to ensure maximum sound absorption coefficient alpha max of 90% at 5% to 22% Recognize.

次に、板厚が1mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を3.8%以上にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を6%以上にすれば良く、90%以上の最大吸音率αmaxを確保するには開口率を11〜41%にすれば良いことがわかる。 Next, in the plate thickness of 1 mm, to ensure maximum sound absorption coefficient alpha max of 50% or more may be an aperture ratio than 3.8%, to ensure maximum sound absorption coefficient alpha max of 70% It is understood that the aperture ratio should be 6% or more, and the aperture ratio should be 11 to 41% to ensure the maximum sound absorption coefficient α max of 90% or more.

次に、板厚が2mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を8.5%以上にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を14%以上にすれば良く、90%以上の最大吸音率αmaxを確保するには開口率を23%以上にすれば良いことがわかる。 Next, in the plate thickness of 2 mm, to ensure maximum sound absorption coefficient alpha max of 50% or more may be an aperture ratio than 8.5%, to ensure maximum sound absorption coefficient alpha max of 70% It can be seen that the aperture ratio should be 14% or more, and the aperture ratio should be 23% or more to ensure the maximum sound absorption coefficient α max of 90% or more.

次に、板厚が5mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を18%以上にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を32%以上にすれば良く、90%以上の最大吸音率αmaxを確保するには開口率を57%以上にすれば良いことがわかる。 Next, in the plate thickness of 5 mm, to ensure maximum sound absorption coefficient alpha max of 50% or more may be an aperture ratio of 18% or more, to ensure maximum sound absorption coefficient alpha max of 70% or more It can be seen that the aperture ratio should be 32% or more, and the aperture ratio should be 57% or more to ensure the maximum sound absorption coefficient α max of 90% or more.

「実験例4(直径100μmの貫通孔の場合の吸音特性)」
吸音材の板厚を0.5〜5mmとし、貫通孔の直径は100μmとし、貫通孔を60°の相対角度をもって千鳥格子状に配置し、貫通孔のピッチを120〜2000μmとした以外は実験例1と同様にして、各種の吸音材を製造した。
得られた各種の吸音材について、垂直入射吸音特性を測定して、最大吸音率αmaxを測定した。結果を表4及び図10に示す。
“Experimental example 4 (sound absorption characteristics in the case of a through hole having a diameter of 100 μm)”
The thickness of the sound absorbing material is 0.5 to 5 mm, the diameter of the through holes is 100 μm, the through holes are arranged in a staggered pattern with a relative angle of 60 °, and the pitch of the through holes is 120 to 2000 μm. Various sound absorbing materials were manufactured in the same manner as in Experimental Example 1.
With respect to the obtained various sound absorbing materials, the normal incident sound absorption characteristics were measured, and the maximum sound absorption coefficient α max was measured. The results are shown in Table 4 and FIG.

Figure 2007262765
Figure 2007262765

表4及び図10に示すように、板厚が0.5〜2mの範囲では、開口率の上昇に伴って最大吸音率αmaxがピークを示し、その後、最大吸音率αmaxが低下する傾向にあることがわかる。一方、板厚が5mmのものは、開口率が増大するに従って最大吸音率αmaxが上昇する傾向にあることがわかる。 As shown in Table 4 and FIG. 10, when the plate thickness is in the range of 0.5 to 2 m, the maximum sound absorption rate α max shows a peak as the aperture ratio increases, and then the maximum sound absorption rate α max tends to decrease. You can see that On the other hand, when the plate thickness is 5 mm, the maximum sound absorption rate α max tends to increase as the aperture ratio increases.

また表4に示すように、板厚が0.5mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を1.2〜42%にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を2.5〜26%にすれば良く、90%以上の最大吸音率αmaxを確保するには開口率を3.7〜14%にすれば良いことがわかる。
次に、板厚が1mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を1.2%以上にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を4〜50%以上にすれば良く、90%以上の最大吸音率αmaxを確保するには開口率を7.3〜28%にすれば良いことがわかる。
As shown in Table 4, when the plate thickness is 0.5 mm, the aperture ratio should be 1.2 to 42% in order to ensure the maximum sound absorption coefficient α max of 50% or more, and 70% or more. to ensure maximum sound absorption coefficient alpha max may be an aperture ratio from 2.5 to 26%, to ensure maximum sound absorption coefficient alpha max 90% or more if the aperture ratio from 3.7 to 14% I know it ’s good.
Next, in the plate thickness of 1 mm, to ensure maximum sound absorption coefficient alpha max of 50% or more may be an aperture ratio than 1.2%, to ensure maximum sound absorption coefficient alpha max of 70% It is understood that the aperture ratio should be 4 to 50% or more, and the aperture ratio should be 7.3 to 28% to ensure the maximum sound absorption coefficient α max of 90% or more.

次に、板厚が2mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を5%以上にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を7.5%以上にすれば良く、90%以上の最大吸音率αmaxを確保するには開口率を15〜54%にすれば良いことがわかる。
次に、板厚が5mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を12.1%以上にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を20%以上にすれば良く、90%以上の最大吸音率αmaxを確保するには開口率を35%以上にすれば良いことがわかる。
Next, in the plate thickness of 2 mm, to ensure maximum sound absorption coefficient alpha max of 50% or more may be the aperture ratio 5% or more, to ensure maximum sound absorption coefficient alpha max of 70% or more It can be seen that the aperture ratio should be 7.5% or more, and the aperture ratio should be 15 to 54% in order to ensure the maximum sound absorption coefficient α max of 90% or more.
Next, in the plate thickness of 5 mm, to ensure more than 50% of the maximum sound absorption coefficient alpha max it may be an aperture ratio than 12.1%, to ensure maximum sound absorption coefficient alpha max of 70% It is understood that the aperture ratio should be 20% or more, and the aperture ratio should be 35% or more to ensure the maximum sound absorption coefficient α max of 90% or more.

「実験例5(直径200μmの貫通孔の場合の吸音特性)」
吸音材の板厚を0.5〜10mmとし、貫通孔の直径は200μmとし、貫通孔を60°の相対角度をもって千鳥格子状に配置し、貫通孔のピッチを230〜4000μmとした以外は実験例1と同様にして、各種の吸音材を製造した。
得られた各種の吸音材について、垂直入射吸音特性を測定して、最大吸音率αmaxを測定した。結果を表5及び図11に示す。
“Experimental example 5 (sound absorption characteristics in the case of a through hole having a diameter of 200 μm)”
The thickness of the sound absorbing material is 0.5 to 10 mm, the diameter of the through holes is 200 μm, the through holes are arranged in a staggered pattern with a relative angle of 60 °, and the pitch of the through holes is 230 to 4000 μm. Various sound absorbing materials were manufactured in the same manner as in Experimental Example 1.
With respect to the obtained various sound absorbing materials, the normal incident sound absorption characteristics were measured, and the maximum sound absorption coefficient α max was measured. The results are shown in Table 5 and FIG.

Figure 2007262765
Figure 2007262765

表5及び図11に示すように、いずれの板厚の吸音材においても、開口率の上昇に伴って最大吸音率αmaxがピークを示し、その後、最大吸音率αmaxが低下する傾向にあることがわかる。 As shown in Table 5 and FIG. 11, in any sound absorbing material having any thickness, the maximum sound absorption coefficient α max shows a peak as the aperture ratio increases, and thereafter the maximum sound absorption coefficient α max tends to decrease. I understand that.

また表5に示すように、板厚が0.5mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を0.2〜11%にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を0.4〜6%にすれば良く、90%以上の最大吸音率αmaxを確保するには開口率を1〜3%にすれば良いことがわかる。 Further, as shown in Table 5, when the plate thickness is 0.5 mm, the aperture ratio should be 0.2 to 11% to ensure the maximum sound absorption coefficient α max of 50% or more, and 70% or more. to ensure maximum sound absorption coefficient alpha max may be an aperture ratio from 0.4 to 6%, it may be be the aperture ratio to ensure maximum sound absorption coefficient alpha max of 90% to 1-3% I understand.

次に、板厚が1mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を0.5〜22%にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を1〜14%にすれば良く、90%以上の最大吸音率αmaxを確保するには開口率を2〜7%にすれば良いことがわかる。
次に、板厚が2mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を1〜42%にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を3〜20%にすれば良く、90%以上の最大吸音率αmaxを確保するには開口率を3%〜13%にすれば良いことがわかる。
Next, in the plate thickness of 1 mm, to ensure maximum sound absorption coefficient alpha max of 50% or more may be an aperture ratio from 0.5 to 22%, ensuring maximum sound absorption coefficient alpha max of 70% It can be seen that the aperture ratio should be 1 to 14%, and the aperture ratio should be 2 to 7% to ensure the maximum sound absorption coefficient α max of 90% or more.
Next, in the plate thickness of 2 mm, the aperture ratio to ensure maximum sound absorption coefficient alpha max of 50% or more may be in the 1-42%, to ensure maximum sound absorption coefficient alpha max of 70% It is understood that the aperture ratio should be 3 to 20%, and the aperture ratio should be 3% to 13% to ensure the maximum sound absorption coefficient α max of 90% or more.

次に、板厚が5mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を2%以上にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を5〜65%にすれば良く、90%以上の最大吸音率αmaxを確保するには開口率を10%〜35%にすれば良いことがわかる。
次に、板厚が10mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を6%以上にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を11%以上にすれば良く、90%以上の最大吸音率αmaxを確保するには開口率を18%以上にすれば良いことがわかる。
Next, in the plate thickness of 5 mm, to ensure maximum sound absorption coefficient alpha max of 50% or more may be the aperture ratio equal to 2 percent, to ensure maximum sound absorption coefficient alpha max of 70% or more It can be seen that the aperture ratio should be 5 to 65%, and the aperture ratio should be 10% to 35% to ensure the maximum sound absorption coefficient α max of 90% or more.
Next, in the plate thickness of 10 mm, to ensure maximum sound absorption coefficient alpha max of 50% or more may be an aperture ratio than 6%, to ensure maximum sound absorption coefficient alpha max of 70% or more It can be seen that the aperture ratio should be 11% or more, and the aperture ratio should be 18% or more to ensure the maximum sound absorption coefficient α max of 90% or more.

「実験例6(直径400μmの貫通孔の場合の吸音特性)」
吸音材の板厚を1〜10mmとし、貫通孔の直径は400μmとし、貫通孔を60°の相対角度をもって千鳥格子状に配置し、貫通孔のピッチを500〜10000μmとした以外は実験例1と同様にして、各種の吸音材を製造した。
得られた各種の吸音材について、垂直入射吸音特性を測定して、最大吸音率αmaxを測定した。結果を表6及び図12に示す。
“Experimental example 6 (sound absorption characteristics in the case of a through hole having a diameter of 400 μm)”
Experimental example except that the thickness of the sound absorbing material is 1 to 10 mm, the diameter of the through holes is 400 μm, the through holes are arranged in a staggered pattern with a relative angle of 60 °, and the pitch of the through holes is 500 to 10,000 μm. In the same manner as in Example 1, various sound absorbing materials were produced.
With respect to the obtained various sound absorbing materials, the normal incident sound absorption characteristics were measured, and the maximum sound absorption coefficient α max was measured. The results are shown in Table 6 and FIG.

Figure 2007262765
Figure 2007262765

表6及び図12に示すように、いずれの板厚の吸音材においても、開口率の上昇に伴って最大吸音率αmaxがピークを示し、その後、最大吸音率αmaxが低下する傾向にあることがわかる。 As shown in Table 6 and FIG. 12, in any sound absorbing material of any thickness, the maximum sound absorption coefficient α max shows a peak as the aperture ratio increases, and thereafter the maximum sound absorption coefficient α max tends to decrease. I understand that.

また表6に示すように、いずれの板厚の吸音材においても、開口率の上昇に伴って最大吸音率αmaxがピークを示し、その後、最大吸音率αmaxが低下する傾向にあることがわかる。 In addition, as shown in Table 6, in any sound absorbing material of any thickness, the maximum sound absorption coefficient α max peaks as the aperture ratio increases, and thereafter the maximum sound absorption coefficient α max tends to decrease. Recognize.

次に、板厚が1mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を0.1〜6%にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を0.2〜3%にすれば良く、90%以上の最大吸音率αmaxを確保するには開口率を0.5〜2%にすれば良いことがわかる。
次に、板厚が2mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を0.3〜11.6%にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を0.4〜7%にすれば良く、90%以上の最大吸音率αmaxを確保するには開口率を1〜4%にすれば良いことがわかる。
Next, in the plate thickness of 1 mm, to ensure maximum sound absorption coefficient alpha max of 50% or more may be an aperture ratio from 0.1 to 6%, ensure maximum sound absorption coefficient alpha max of 70% It can be seen that the aperture ratio should be 0.2-3%, and the aperture ratio should be 0.5-2% to ensure a maximum sound absorption coefficient α max of 90% or more.
Next, in the plate thickness of 2 mm, to ensure maximum sound absorption coefficient alpha max of 50% or more may be an aperture ratio from 0.3 to 11.6%, 70% or more of the maximum sound absorption coefficient alpha max It can be seen that the aperture ratio should be 0.4 to 7% in order to ensure the above, and the aperture ratio should be 1 to 4% in order to ensure the maximum sound absorption coefficient α max of 90% or more.

次に、板厚が5mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を0.8〜29%以上にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を1.5〜15%にすれば良く、90%以上の最大吸音率αmaxを確保するには開口率を2.5%〜9%にすれば良いことがわかる。
次に、板厚が10mmの場合において、50%以上の最大吸音率αmaxを確保するには開口率を1.5〜56%以上にすれば良く、70%以上の最大吸音率αmaxを確保するには開口率を3〜30%にすれば良く、90%以上の最大吸音率αmaxを確保するには開口率を5〜18%にすれば良いことがわかる。
Next, in the plate thickness of 5 mm, to ensure maximum sound absorption coefficient alpha max of 50% or more may be the aperture ratio over 0.8 to 29%, a maximum sound absorption coefficient alpha max of 70% It can be seen that the aperture ratio should be 1.5 to 15% to ensure, and the aperture ratio should be 2.5% to 9% to ensure the maximum sound absorption coefficient α max of 90% or more.
Next, in the plate thickness of 10 mm, to ensure maximum sound absorption coefficient alpha max of 50% or more may be the aperture ratio over 1.5 to 56%, a maximum sound absorption coefficient alpha max of 70% It can be seen that the aperture ratio should be 3 to 30% to ensure, and the aperture ratio should be 5 to 18% to ensure the maximum sound absorption coefficient α max of 90% or more.

「実験例7(吸音特性の評価)」
吸音材の板厚を1mmとし、貫通孔の直径は70μmとし、貫通孔を60°の相対角度をもって千鳥格子状に配置し、貫通孔のピッチを120μmとし、開口率を40%とした以外は実験例1と同様にして実験例7の吸音材を製造した。
"Experimental example 7 (evaluation of sound absorption characteristics)"
The thickness of the sound absorbing material is 1 mm, the diameter of the through holes is 70 μm, the through holes are arranged in a staggered pattern with a relative angle of 60 °, the pitch of the through holes is 120 μm, and the aperture ratio is 40%. Produced the sound absorbing material of Experimental Example 7 in the same manner as Experimental Example 1.

次に、実験例7の吸音材の垂直入射吸音特性を伝送関数法(ISO10534−2準拠)により測定した。具体的には、実験例7の吸音材を、長さ400mm、内径40mmの中空円筒状の音響管の一端部に配置し、背後空気層を200mmとした。尚、背後空気層の吸音材とは反対側の面は剛体とした。また、音響管の他端にはスピーカーを配置した。更に、音響管の一端と他端との間には、2本のマイクロホンを所定の間隔を空けて設置した。スピーカーとマイクロホンはそれぞれ、計測用の演算装置に接続した。このようにして、伝送関数法(ISO10534−2準拠)による垂直入射吸音特性の測定装置を構成した。
そして、スピーカーからある帯域をもった音を音響管内に放射し、管内に備えられた2つのマイクロホン間の伝送関数を測定し、この伝送関数を元に垂直入射吸音特性率を算出した。
垂直入射吸音率の測定結果を図13に示す。尚、図13には、文献(Dah-you Maa,"Potential of microperforated panel absorber",J.Acount.Soc.Am.,Vol.104,No.5,November,1998)に開示されている最大吸音率の計算方法に従って計算した垂直入射吸音率の計算値も併せて示す。
Next, the normal incident sound absorption characteristics of the sound absorbing material of Experimental Example 7 were measured by the transfer function method (ISO 10534-2 compliant). Specifically, the sound absorbing material of Experimental Example 7 was disposed at one end of a hollow cylindrical acoustic tube having a length of 400 mm and an inner diameter of 40 mm, and the back air layer was 200 mm. The surface of the back air layer opposite to the sound absorbing material was a rigid body. A speaker is disposed at the other end of the acoustic tube. Further, two microphones were installed at a predetermined interval between one end and the other end of the acoustic tube. Each speaker and microphone was connected to a computing device for measurement. In this way, a measurement apparatus for normal incident sound absorption characteristics by the transfer function method (based on ISO 10534-2) was configured.
Then, a sound having a certain band from the speaker was radiated into the acoustic tube, a transmission function between two microphones provided in the tube was measured, and a normal incidence sound absorption characteristic ratio was calculated based on this transmission function.
The measurement result of the normal incidence sound absorption coefficient is shown in FIG. FIG. 13 shows the maximum sound absorption disclosed in the literature (Dah-you Maa, “Potential of microperforated panel absorber”, J. Account. Soc. Am., Vol. 104, No. 5, November, 1998). The calculated value of the normal incidence sound absorption coefficient calculated according to the rate calculation method is also shown.

図13に示すように、計算値に対して実測値が良く一致しており、優れた吸音特性が得られていることがわかる。   As shown in FIG. 13, the measured values are in good agreement with the calculated values, indicating that excellent sound absorption characteristics are obtained.

「実験例8及び9(吸音特性の評価)」
吸音材の板厚を0.5mmとし、貫通孔の直径は30μmとし、貫通孔を60°の相対角度をもって千鳥格子状に配置し、貫通孔のピッチを45μmとし、開口率を40%とした以外は実験例1と同様にして実験例8の吸音材を製造したと仮定した。
また、吸音材の板厚を5mmとし、貫通孔の直径は400μmとし、貫通孔を60°の相対角度をもって千鳥格子状に配置し、貫通孔のピッチを1.2mmとし、開口率を10%とした以外は実験例1と同様にして実験例9の吸音材を製造したと仮定した。
"Experimental Examples 8 and 9 (Evaluation of sound absorption characteristics)"
The thickness of the sound absorbing material is 0.5 mm, the diameter of the through holes is 30 μm, the through holes are arranged in a staggered pattern with a relative angle of 60 °, the pitch of the through holes is 45 μm, and the aperture ratio is 40%. It was assumed that the sound absorbing material of Experimental Example 8 was manufactured in the same manner as Experimental Example 1 except that.
The plate thickness of the sound absorbing material is 5 mm, the diameter of the through holes is 400 μm, the through holes are arranged in a staggered pattern with a relative angle of 60 °, the pitch of the through holes is 1.2 mm, and the aperture ratio is 10 It was assumed that the sound-absorbing material of Experimental Example 9 was manufactured in the same manner as Experimental Example 1 except that the percentage was changed to%.

そして、実験例7と同様にして、上記の各吸音材の垂直入射吸音率を測定したと仮定した。各吸音パネルの垂直入射吸音率と周波数との関係の計算結果を図14及び図15に示す。尚、図14及び図15における計算値は、文献(Dah-you Maa,"Potential of microperforated panel absorber",J.Acount.Soc.Am.,Vol.104,No.5,November,1998)に開示されている最大吸音率の計算方法に従って計算したものである。   Then, in the same manner as in Experimental Example 7, it was assumed that the normal incident sound absorption coefficient of each of the above sound absorbing materials was measured. 14 and 15 show the calculation results of the relationship between the normal incident sound absorption coefficient and the frequency of each sound absorbing panel. 14 and 15 are disclosed in the literature (Dah-you Maa, “Potential of microperforated panel absorber”, J. Account. Soc. Am., Vol. 104, No. 5, November, 1998). It is calculated according to the calculation method of the maximum sound absorption coefficient.

図14に示すように、実験例8の吸音材は、垂直入射吸音率(最大吸音率)が0.89程度を示しており、良好な吸音特性を示す可能性があることがわかる。また、貫通孔の直径が30μmであるので、撥水処理なしでも雨水等の侵入を防止できるものと考えられる。
次に図15に示すように、実験例9の吸音材は、垂直入射吸音率(最大吸音率)が0.87程度を示しており、良好な吸音特性を示す可能性があることがわかる。また、貫通孔の直径が400μmであるので、雨水等が侵入する可能性があるが、吸音材の一面に撥水処理を施すことで雨水等の侵入を防止できるものと考えられる。
As shown in FIG. 14, the sound absorbing material of Experimental Example 8 has a normal incident sound absorption coefficient (maximum sound absorption coefficient) of about 0.89, indicating that there is a possibility of exhibiting good sound absorption characteristics. Further, since the diameter of the through hole is 30 μm, it is considered that intrusion of rainwater or the like can be prevented without water repellent treatment.
Next, as shown in FIG. 15, the sound absorbing material of Experimental Example 9 has a normal incident sound absorption coefficient (maximum sound absorption coefficient) of about 0.87, which indicates that there is a possibility of exhibiting good sound absorption characteristics. In addition, since the diameter of the through hole is 400 μm, rainwater or the like may enter, but it is considered that rainwater or the like can be prevented by performing water repellent treatment on one surface of the sound absorbing material.

「実験例10〜13(吸音特性の評価)」
(実験例10)
吸音材の板厚を0.5mmとし、貫通孔の直径は30μmとし、貫通孔を60°の相対角度をもって千鳥格子状に配置し、貫通孔のピッチを45μmとし、開口率を40%とした以外は実験例1と同様にして2枚の吸音材を製造した。
次に、得られた2枚の吸音材を対向配置させて200mm厚の空気層を吸音材同士の間に設けることにより、実験例10の吸音パネルを製造した。
“Experimental Examples 10 to 13 (Evaluation of Sound Absorption Characteristics)”
(Experimental example 10)
The thickness of the sound absorbing material is 0.5 mm, the diameter of the through holes is 30 μm, the through holes are arranged in a staggered pattern with a relative angle of 60 °, the pitch of the through holes is 45 μm, and the aperture ratio is 40%. Except that, two sound absorbing materials were produced in the same manner as in Experimental Example 1.
Next, the sound absorbing panel of Experimental Example 10 was manufactured by arranging the two sound absorbing materials obtained so as to face each other and providing a 200 mm thick air layer between the sound absorbing materials.

(実験例11)
また、吸音材の板厚を5mmとし、貫通孔の直径は400μmとし、貫通孔を60°の相対角度をもって千鳥格子状に配置し、貫通孔のピッチを1.2mmとし、開口率を10%とした以外は実験例1と同様にして2枚の吸音材を製造した。
次に、得られた2枚の吸音材を対向配置させて200mm厚の空気層を吸音材同士の間に設けることにより、実験例11の吸音パネルを製造した。
(Experimental example 11)
The plate thickness of the sound absorbing material is 5 mm, the diameter of the through holes is 400 μm, the through holes are arranged in a staggered pattern with a relative angle of 60 °, the pitch of the through holes is 1.2 mm, and the aperture ratio is 10 Two sound absorbing materials were produced in the same manner as in Experimental Example 1 except that the percentage was changed to%.
Next, the sound absorbing panel of Experimental Example 11 was manufactured by disposing the two sound absorbing materials obtained so as to face each other and providing an air layer having a thickness of 200 mm between the sound absorbing materials.

(実験例12)
また、吸音材の板厚を5mmとし、貫通孔の直径は400μmとし、貫通孔を60°の相対角度をもって千鳥格子状に配置し、貫通孔のピッチを1.2mmとし、開口率を10%とした以外は実験例1と同様にして音源側の吸音材を製造した。
また、吸音材の板厚を0.5mmとし、貫通孔の直径は30μmとし、貫通孔を60°の相対角度をもって千鳥格子状に配置し、貫通孔のピッチを45μmとし、開口率を40%とした以外は実験例1と同様にして屋外側の吸音材を製造した。
上記の音源側の吸音材と屋外側の吸音材を、200mmの空気層を介して対向配置させた。このようにして実験例12の吸音パネルを製造した。
(Experimental example 12)
The plate thickness of the sound absorbing material is 5 mm, the diameter of the through holes is 400 μm, the through holes are arranged in a staggered pattern with a relative angle of 60 °, the pitch of the through holes is 1.2 mm, and the aperture ratio is 10 The sound-absorbing material on the sound source side was manufactured in the same manner as in Experimental Example 1 except that the percentage was changed to%.
The plate thickness of the sound absorbing material is 0.5 mm, the diameter of the through holes is 30 μm, the through holes are arranged in a staggered pattern with a relative angle of 60 °, the pitch of the through holes is 45 μm, and the aperture ratio is 40 The sound absorbing material on the outdoor side was produced in the same manner as in Experimental Example 1 except that the percentage was changed to%.
The sound-absorbing material on the sound source side and the sound-absorbing material on the outdoor side are arranged to face each other through a 200 mm air layer. Thus, the sound absorbing panel of Experimental Example 12 was manufactured.

(実験例13)
また、吸音材の板厚を5mmとし、貫通孔の直径は400μmとし、貫通孔を60°の相対角度をもって千鳥格子状に配置し、貫通孔のピッチを1.2mmとし、開口率を10%とした以外は実験例1と同様にして音源側の吸音材を製造した。
また、吸音材の板厚を0.5mmとし、貫通孔の直径は30μmとし、貫通孔を60°の相対角度をもって千鳥格子状に配置し、貫通孔のピッチを0.1mmとし、開口率を8%とした以外は実験例1と同様にして屋外側の吸音材を製造した。
上記の音源側の吸音材と屋外側の吸音材を、200mmの空気層を介して対向配置させた。このようにして実験例13の吸音パネルを製造した。
(Experimental example 13)
The plate thickness of the sound absorbing material is 5 mm, the diameter of the through holes is 400 μm, the through holes are arranged in a staggered pattern with a relative angle of 60 °, the pitch of the through holes is 1.2 mm, and the aperture ratio is 10 The sound-absorbing material on the sound source side was manufactured in the same manner as in Experimental Example 1 except that the percentage was changed to%.
The plate thickness of the sound absorbing material is 0.5 mm, the diameter of the through holes is 30 μm, the through holes are arranged in a staggered pattern with a relative angle of 60 °, the pitch of the through holes is 0.1 mm, and the aperture ratio The sound absorbing material on the outdoor side was produced in the same manner as in Experimental Example 1 except that the content was 8%.
The sound-absorbing material on the sound source side and the sound-absorbing material on the outdoor side are arranged to face each other through a 200 mm air layer. Thus, the sound absorbing panel of Experimental Example 13 was manufactured.

そして、実験例7と同様にして、実験例10〜13の各吸音パネルの垂直入射吸音率を測定した。各吸音パネルの垂直入射吸音率と周波数との関係を図16〜図19に示す。   In the same manner as in Experimental Example 7, the normal incident sound absorption coefficient of each of the sound absorbing panels of Experimental Examples 10 to 13 was measured. The relationship between the normal incident sound absorption coefficient and the frequency of each sound absorbing panel is shown in FIGS.

図16に示すように、実験例10の吸音パネルは、垂直入射吸音率(最大吸音率)が0.95程度を示しており、良好な吸音特性を示すことがわかる。また、貫通孔の直径が30μmであるので、撥水処理なしでも雨水等の侵入を防止できるものと考えられる。
次に図17に示すように、実験例11の吸音パネルは、垂直入射吸音率(最大吸音率)が0.87程度を示しており、良好な吸音特性を示すことがわかる。また、貫通孔の直径が400μmであるので、雨水等が侵入する可能性があるが、吸音材の一面に撥水処理を施すことで雨水等の侵入を防止できるものと考えられる。
As shown in FIG. 16, the sound absorption panel of Experimental Example 10 has a normal incident sound absorption coefficient (maximum sound absorption coefficient) of about 0.95, which indicates that the sound absorption characteristics are good. Further, since the diameter of the through hole is 30 μm, it is considered that intrusion of rainwater or the like can be prevented without water repellent treatment.
Next, as shown in FIG. 17, the sound absorption panel of Experimental Example 11 has a normal incident sound absorption coefficient (maximum sound absorption coefficient) of about 0.87, which indicates that the sound absorption characteristics are good. In addition, since the diameter of the through hole is 400 μm, rainwater or the like may enter, but it is considered that rainwater or the like can be prevented by performing water repellent treatment on one surface of the sound absorbing material.

次に、図18に示すように、実験例12の吸音パネルは、垂直入射吸音率(最大吸音率)が0.93程度を示しており、良好な吸音特性を示すことがわかる。また、屋外側の吸音材の貫通孔の直径が30μmであるので、撥水処理なしでも雨水等の侵入を防止できるものと考えられる。
次に図19に示すように、実験例13の吸音パネルは、垂直入射吸音率(最大吸音率)が0.89程度を示しており、良好な吸音特性を示すことがわかる。また、屋外側の吸音材の貫通孔の直径が30μmであるので、撥水処理なしでも雨水等の侵入を防止できるものと考えられる。
Next, as shown in FIG. 18, the sound absorption panel of Experimental Example 12 has a normal incident sound absorption coefficient (maximum sound absorption coefficient) of about 0.93, which indicates that the sound absorption characteristics are good. Moreover, since the diameter of the through-hole of the sound absorbing material on the outdoor side is 30 μm, it is considered that intrusion of rainwater or the like can be prevented without water repellent treatment.
Next, as shown in FIG. 19, the sound absorption panel of Experimental Example 13 has a normal incident sound absorption coefficient (maximum sound absorption coefficient) of about 0.89, which indicates that the sound absorption characteristics are good. Moreover, since the diameter of the through-hole of the sound absorbing material on the outdoor side is 30 μm, it is considered that intrusion of rainwater or the like can be prevented without water repellent treatment.

「実験例14(撥水性評価)」
吸音材の板厚を0.5〜1mmとし、貫通孔の径は0〜404μmとし、貫通孔を60°の相対角度をもって千鳥格子状に配置し、貫通孔のピッチを20〜100μmとし、開口率を10〜45%とした以外は実験例1と同様にして各種の吸音材を製造した。また、一部の吸音材に対しては、撥水処理を行った。撥水処理の手順としては、まず、スルファミン酸ニッケル350gと、塩化ニッケル45gと、ホウ酸40gとを1Lの水で溶解することによって液温が45℃のメッキ基礎液を調製した。次にポリ4フッ化エチレンからなる平均粒径が4μm程度の微粉末55gを、界面活性剤が1g/100mlの濃度で添加された水25mlに投入して分散させた。この分散液に、先に調製したメッキ基礎液を混合することによって電界浴を調製した。電界浴の温度は45℃程度にした。次に、この電界浴を用いて、電流密度3〜5A/cm程度の条件で、吸音材に対して電界メッキを行った。このようにして撥水処理を行った。撥水処理によって処理された吸音材の一面における水の接触角度は150°程度であった。なお、水の接触角度とは、図20の模式図に示すように、一面上に水滴を付着させたときの、水滴の一面近傍における接線と、一面とのなす角度をいう。
“Experimental Example 14 (Water Repellency Evaluation)”
The thickness of the sound absorbing material is 0.5 to 1 mm, the diameter of the through holes is 0 to 404 μm, the through holes are arranged in a staggered pattern with a relative angle of 60 °, and the pitch of the through holes is 20 to 100 μm. Various sound-absorbing materials were produced in the same manner as in Experimental Example 1 except that the aperture ratio was 10 to 45%. Some of the sound absorbing materials were subjected to water repellent treatment. As a procedure for the water repellent treatment, first, a plating base solution having a liquid temperature of 45 ° C. was prepared by dissolving 350 g of nickel sulfamate, 45 g of nickel chloride, and 40 g of boric acid with 1 L of water. Next, 55 g of fine powder made of polytetrafluoroethylene having an average particle diameter of about 4 μm was added to 25 ml of water to which a surfactant was added at a concentration of 1 g / 100 ml, and dispersed. An electric field bath was prepared by mixing the plating base solution prepared previously with this dispersion. The temperature of the electric field bath was about 45 ° C. Next, using this electric field bath, electric field plating was performed on the sound-absorbing material under conditions of a current density of about 3 to 5 A / cm 2 . In this way, the water repellent treatment was performed. The contact angle of water on one surface of the sound absorbing material treated by the water repellent treatment was about 150 °. Note that the contact angle of water means an angle formed by a tangent line in the vicinity of one surface of the water drop and the one surface when the water droplet is attached to the one surface as shown in the schematic diagram of FIG.

次に図21に示すように、得られた各種の吸音材を水平に設置し、各吸音材の一面上に内径が80mmの中空円柱体を載置し、中空円柱体の中空部に水を入れた。水は、各吸音材の一面と反対側の他面から水が漏れ出さない程度まで入れた。このときの水柱の高さを測定した。結果を表7及び図22に示す。   Next, as shown in FIG. 21, the various sound absorbing materials obtained were installed horizontally, a hollow cylindrical body having an inner diameter of 80 mm was placed on one surface of each sound absorbing material, and water was poured into the hollow portion of the hollow cylindrical body. I put it in. Water was added to such an extent that water did not leak from the other side opposite to one side of each sound absorbing material. The height of the water column at this time was measured. The results are shown in Table 7 and FIG.

Figure 2007262765
Figure 2007262765

表7及び図22に示すように、撥水処理を施さなかった吸音材については、貫通孔の直径が30μmの場合に水柱の高さが40mm程度になっており、実際に吸音材を屋外に面して設置した場合でも、雨水の耐浸水性が十分に発揮されると予測される。一方、撥水処理を施さず、かつ貫通孔の直径が43〜630μmの吸音材については、水柱の高さが0〜20mm程度になっており、雨水の耐浸水性が不十分であると考えられる。   As shown in Table 7 and FIG. 22, the sound absorbing material that was not subjected to the water repellent treatment had a water column height of about 40 mm when the diameter of the through hole was 30 μm. Even if it is installed facing it, it is expected that rainwater will be fully resistant to rainwater. On the other hand, regarding the sound absorbing material that is not subjected to water repellent treatment and the diameter of the through hole is 43 to 630 μm, the height of the water column is about 0 to 20 mm, and it is considered that the water resistance to rainwater is insufficient. It is done.

また、表7及び図22に示すように、撥水処理を施した吸音材については、貫通孔の直径が9〜404μmの範囲で水柱の高さが60〜2000mm程度になっており、雨水の耐浸水性が十分に発揮されると予測される。   In addition, as shown in Table 7 and FIG. 22, the sound absorbing material subjected to the water repellent treatment has a through hole diameter of 9 to 404 μm and a water column height of about 60 to 2000 mm. It is predicted that the water resistance will be sufficiently exerted.

図1は、本発明の実施形態である吸音材の第1の例を示す斜視図である。FIG. 1 is a perspective view showing a first example of a sound absorbing material according to an embodiment of the present invention. 図2は、図1の吸音材の部分断面模式図である。FIG. 2 is a partial cross-sectional schematic view of the sound absorbing material of FIG. 図3は、本発明の実施形態である吸音パネルの第1の例を示す断面模式図である。FIG. 3 is a schematic cross-sectional view showing a first example of a sound absorbing panel according to an embodiment of the present invention. 図4は、本発明の実施形態である吸音パネルの第2の例を示す断面模式図である。FIG. 4 is a schematic cross-sectional view showing a second example of the sound absorbing panel according to the embodiment of the present invention. 図5は、本発明の実施形態である吸音パネルの第3の例を示す断面模式図である。FIG. 5 is a schematic cross-sectional view showing a third example of the sound absorbing panel according to the embodiment of the present invention. 図6は、本発明の実施形態である吸音パネルの第4の例を示す断面模式図である。FIG. 6 is a schematic cross-sectional view showing a fourth example of the sound absorbing panel according to the embodiment of the present invention. 図7は、実験例1における吸音材の最大吸音率と開口率との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the maximum sound absorption coefficient and the aperture ratio of the sound absorbing material in Experimental Example 1. 図8は、実験例2における吸音材の最大吸音率と開口率との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the maximum sound absorption coefficient and the aperture ratio of the sound absorbing material in Experimental Example 2. 図9は、実験例3における吸音材の最大吸音率と開口率との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the maximum sound absorption coefficient and the aperture ratio of the sound absorbing material in Experimental Example 3. 図10は、実験例4における吸音材の最大吸音率と開口率との関係を示すグラフである。FIG. 10 is a graph showing the relationship between the maximum sound absorption coefficient and the aperture ratio of the sound absorbing material in Experimental Example 4. 図11は、実験例5における吸音材の最大吸音率と開口率との関係を示すグラフである。FIG. 11 is a graph showing the relationship between the maximum sound absorption coefficient and the aperture ratio of the sound absorbing material in Experimental Example 5. 図12は、実験例6における吸音材の最大吸音率と開口率との関係を示すグラフである。FIG. 12 is a graph showing the relationship between the maximum sound absorption coefficient and the aperture ratio of the sound absorbing material in Experimental Example 6. 図13は、実験例7における吸音材の垂直入射吸音率と音の周波数との関係を示すグラフである。FIG. 13 is a graph showing the relationship between the normal incident sound absorption coefficient of the sound absorbing material and the sound frequency in Experimental Example 7. 図14は、実験例8における吸音材の垂直入射吸音率と音の周波数との関係を示すグラフである。FIG. 14 is a graph showing the relationship between the normal incident sound absorption coefficient of the sound absorbing material and the sound frequency in Experimental Example 8. 図15は、実験例9における吸音材の垂直入射吸音率と音の周波数との関係を示すグラフである。FIG. 15 is a graph showing the relationship between the normal incident sound absorption coefficient of the sound absorbing material and the sound frequency in Experimental Example 9. 図16は、実験例10における吸音パネルの垂直入射吸音率と音の周波数との関係を示すグラフである。FIG. 16 is a graph showing the relationship between the normal incident sound absorption coefficient of the sound absorbing panel and the sound frequency in Experimental Example 10. 図17は、実験例11における吸音パネルの垂直入射吸音率と音の周波数との関係を示すグラフである。FIG. 17 is a graph showing the relationship between the normal incident sound absorption coefficient of the sound absorbing panel and the sound frequency in Experimental Example 11. 図18は、実験例12における吸音パネルの垂直入射吸音率と音の周波数との関係を示すグラフである。FIG. 18 is a graph showing the relationship between the normal incident sound absorption coefficient of the sound absorbing panel and the sound frequency in Experimental Example 12. 図19は、実験例13における吸音パネルの垂直入射吸音率と音の周波数との関係を示すグラフである。FIG. 19 is a graph showing the relationship between the normal incident sound absorption coefficient of the sound absorbing panel and the sound frequency in Experimental Example 13. 図20は、吸音材の一面上における水の接触角度を説明するための模式図である。FIG. 20 is a schematic diagram for explaining a contact angle of water on one surface of the sound absorbing material. 図21は、実験例10における水柱の高さの測定方法を説明するための断面模式図である。FIG. 21 is a schematic cross-sectional view for explaining a method for measuring the height of a water column in Experimental Example 10. 図22は、吸音材の貫通孔の孔径と水柱の高さとの関係を示すグラフである。FIG. 22 is a graph showing the relationship between the diameter of the through hole of the sound absorbing material and the height of the water column.

符号の説明Explanation of symbols

1、11、21…吸音材、2a、21a…一面、2…板状部材、3…貫通孔、10、20、30、40…吸音パネル、31…無孔板、12、22、32、41…空気層

DESCRIPTION OF SYMBOLS 1, 11, 21 ... Sound-absorbing material, 2a, 21a ... One side, 2 ... Plate-shaped member, 3 ... Through-hole 10, 20, 30, 40 ... Sound-absorbing panel, 31 ... Non-hole board, 12, 22, 32, 41 ... Air layer

Claims (9)

板厚方向に沿って直径30μm以下の複数の貫通孔が設けられた板状部材からなることを特徴とする吸音材。   A sound-absorbing material comprising a plate-like member provided with a plurality of through-holes having a diameter of 30 μm or less along the thickness direction. 板厚方向に沿って直径30μm以上400μm以下の複数の貫通孔が設けられた板状部材からなり、前記板状部材の一面側に撥水処理が施されていることを特徴とする吸音材。   A sound absorbing material comprising a plate-like member provided with a plurality of through-holes having a diameter of 30 μm or more and 400 μm or less along a plate thickness direction, wherein one surface side of the plate-like member is subjected to water repellent treatment. 前記板状部材が透光性材料から構成されていることを特徴とする請求項1または請求項2に記載の吸音材。   The sound absorbing material according to claim 1, wherein the plate-like member is made of a translucent material. 板厚方向に沿って複数の貫通孔が設けられた板状部材からなる一方の吸音材と、板厚方向に沿って直径30μm以下の複数の貫通孔が設けられた板状部材からなる他方の吸音材とが、所定の間隔を空けて相対配置されてなり、前記一方の吸音材に対して前記他方の吸音材が屋外に面して設置されるものであることを特徴とする吸音パネル。   One sound-absorbing material composed of a plate-like member provided with a plurality of through-holes along the plate thickness direction and the other composed of a plate-like member provided with a plurality of through-holes having a diameter of 30 μm or less along the plate thickness direction A sound-absorbing panel, wherein the sound-absorbing material is disposed relative to each other at a predetermined interval, and the other sound-absorbing material is installed facing the outside with respect to the one sound-absorbing material. 板厚方向に沿って複数の貫通孔が設けられた板状部材からなる一方の吸音材と、板厚方向に沿って直径30μm以上400μm以下の複数の貫通孔が設けられるとともに一面側に撥水処理がなされた板状部材からなる別の吸音材とが、所定の間隔を空けて相対配置されてなり、前記一方の吸音材に対して前記別の吸音材が屋外に面して設置されるとともに前記撥水処理がされた前記一面が屋外側に向けられるものであることを特徴とする吸音パネル。   One sound-absorbing material composed of a plate-like member provided with a plurality of through holes along the plate thickness direction, and a plurality of through holes having a diameter of 30 μm or more and 400 μm or less along the plate thickness direction and water repellent on one side Another sound-absorbing material made of a plate-like member that has been processed is disposed relative to each other at a predetermined interval, and the other sound-absorbing material is installed facing the outside with respect to the one sound-absorbing material. The sound absorbing panel is characterized in that the one surface subjected to the water repellent treatment is directed to the outdoor side. 透光性材料からなる無孔板と、板厚方向に沿って直径30μm以下の複数の貫通孔が設けられた板状部材からなる吸音材とが、所定の間隔を空けて相対配置されてなり、前記吸音材に対して前記無孔板が屋外に面して設置されるものであることを特徴とする吸音パネル。   A non-porous plate made of a translucent material and a sound absorbing material made of a plate-like member provided with a plurality of through-holes having a diameter of 30 μm or less along the thickness direction are relatively arranged at a predetermined interval. The sound absorbing panel is characterized in that the non-porous plate is installed facing the outdoors with respect to the sound absorbing material. 透光性材料からなる無孔板と、板厚方向に沿って直径30μm以上400μm以下の複数の貫通孔が設けられるとともに一面側に撥水処理がなされた板状部材からなる吸音材とが、所定の間隔を空けて相対配置されてなり、前記吸音材に対して前記無孔板が屋外に面して設置されるとともに前記吸音材の前記撥水処理が施された前記一面が屋外側に向けられるものであることを特徴とする吸音パネル。   A non-porous plate made of a translucent material, and a sound absorbing material made of a plate-like member provided with a plurality of through holes having a diameter of 30 μm or more and 400 μm or less along the plate thickness direction and subjected to water repellent treatment on one surface side The non-perforated plate is installed facing the outside with respect to the sound absorbing material, and the one surface subjected to the water-repellent treatment of the sound absorbing material is on the outdoor side. A sound-absorbing panel characterized by being directed. 前記の各板状部材が透光性材料から構成されていることを特徴とする請求項4ないし請求項7のいずれかに記載の吸音パネル。   The sound absorbing panel according to any one of claims 4 to 7, wherein each of the plate-like members is made of a translucent material. 前記無孔板に開閉機構が備えられていることを特徴とする請求項6または請求項7に記載の吸音パネル。

The sound absorbing panel according to claim 6 or 7, wherein the non-perforated plate is provided with an opening / closing mechanism.

JP2006089678A 2006-03-29 2006-03-29 Sound absorbing material and sound absorbing panel Pending JP2007262765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006089678A JP2007262765A (en) 2006-03-29 2006-03-29 Sound absorbing material and sound absorbing panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006089678A JP2007262765A (en) 2006-03-29 2006-03-29 Sound absorbing material and sound absorbing panel

Publications (1)

Publication Number Publication Date
JP2007262765A true JP2007262765A (en) 2007-10-11

Family

ID=38636010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006089678A Pending JP2007262765A (en) 2006-03-29 2006-03-29 Sound absorbing material and sound absorbing panel

Country Status (1)

Country Link
JP (1) JP2007262765A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059658A (en) * 2008-09-02 2010-03-18 Tomoegawa Paper Co Ltd Member for sound absorbing structure and sound absorbing structure
JP2011521300A (en) * 2008-05-22 2011-07-21 スリーエム イノベイティブ プロパティズ カンパニー Multilayer sound absorbing structure including mesh layer
WO2012009976A1 (en) * 2010-07-22 2012-01-26 Yao Qingyun Sound source mute board
WO2013054902A1 (en) * 2011-10-14 2013-04-18 株式会社神戸製鋼所 Translucent sound-absorbing panel
JP2013139709A (en) * 2013-04-17 2013-07-18 Tomoegawa Paper Co Ltd Component for sound absorption structure, and sound absorption structure
WO2015142978A1 (en) * 2014-03-20 2015-09-24 Corning Incorporated Transparent sound absorbing panels
WO2015157878A1 (en) * 2014-04-18 2015-10-22 姚庆云 Sound source muting plate
WO2018085249A1 (en) * 2016-11-04 2018-05-11 Corning Incorporated Micro-perforated panel systems, applications, and methods of making micro-perforated panel systems
WO2018139516A1 (en) * 2017-01-26 2018-08-02 太陽化学株式会社 Sound absorbing material
JPWO2017169133A1 (en) * 2016-03-29 2019-01-31 富士フイルム株式会社 Earmuff
WO2020180912A1 (en) * 2019-03-04 2020-09-10 Corning Incorporated Micro-perforated panel systems, applications, and methods of making micro-perforated panel systems
CN113646166A (en) * 2019-03-31 2021-11-12 康宁股份有限公司 Transparent sound absorber-diffuser and method
WO2022004273A1 (en) * 2020-07-01 2022-01-06 株式会社Lixil Building material
US11254087B2 (en) * 2017-04-26 2022-02-22 Corning Incorporated Micro-perforated glass laminates and methods of making the same

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196298A (en) * 1981-05-28 1982-12-02 Matsushita Electric Works Ltd Arrangement of sound absorbing board
JPS5866998A (en) * 1981-10-17 1983-04-21 立道 有年 Perforated sound absorbing sheet
JPH0217868Y2 (en) * 1984-12-18 1990-05-18
JPH06298014A (en) * 1993-04-19 1994-10-25 Kasai Kogyo Co Ltd Soundproof member for vehicle
JPH08144390A (en) * 1994-11-16 1996-06-04 Sanyo Kogyo Kk Structure of translucent sound absorbing panel
JPH08510020A (en) * 1993-05-11 1996-10-22 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ. Sound absorbing glass building parts or transparent synthetic glass building parts
JPH09268524A (en) * 1996-04-02 1997-10-14 Yamazaki Sansho Kk Assembly structure of daylighting and sound-absorbing panel
JP2993370B2 (en) * 1994-05-30 1999-12-20 ヤマハ株式会社 Sound absorbing decorative board
JP2003041528A (en) * 2001-07-31 2003-02-13 Mitsubishi Heavy Ind Ltd Sound absorbing structure
JP2003076372A (en) * 2001-09-06 2003-03-14 Sasakura Engineering Co Ltd Sound absorbing panel
JP2003532127A (en) * 1999-05-06 2003-10-28 ファイスト・オートモーティブ・ゲーエムベーハー・ウント・コンパニー・カーゲー Soundproof element, use of the soundproof element and method of manufacturing the soundproof element
JP2005173398A (en) * 2003-12-12 2005-06-30 Nakanishi Metal Works Co Ltd Sound absorbing device
JP2005273273A (en) * 2004-03-24 2005-10-06 Nakanishi Metal Works Co Ltd Acoustic panel and sound absorbing/sound insulating device
JP2005338795A (en) * 2004-04-30 2005-12-08 Kobe Steel Ltd Porous sound absorbing structure
JP2007100394A (en) * 2005-10-04 2007-04-19 Univ Of Yamanashi Sound absorbing panel

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196298A (en) * 1981-05-28 1982-12-02 Matsushita Electric Works Ltd Arrangement of sound absorbing board
JPS5866998A (en) * 1981-10-17 1983-04-21 立道 有年 Perforated sound absorbing sheet
JPH0217868Y2 (en) * 1984-12-18 1990-05-18
JPH06298014A (en) * 1993-04-19 1994-10-25 Kasai Kogyo Co Ltd Soundproof member for vehicle
JPH08510020A (en) * 1993-05-11 1996-10-22 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ. Sound absorbing glass building parts or transparent synthetic glass building parts
JP2993370B2 (en) * 1994-05-30 1999-12-20 ヤマハ株式会社 Sound absorbing decorative board
JPH08144390A (en) * 1994-11-16 1996-06-04 Sanyo Kogyo Kk Structure of translucent sound absorbing panel
JPH09268524A (en) * 1996-04-02 1997-10-14 Yamazaki Sansho Kk Assembly structure of daylighting and sound-absorbing panel
JP2003532127A (en) * 1999-05-06 2003-10-28 ファイスト・オートモーティブ・ゲーエムベーハー・ウント・コンパニー・カーゲー Soundproof element, use of the soundproof element and method of manufacturing the soundproof element
JP2003041528A (en) * 2001-07-31 2003-02-13 Mitsubishi Heavy Ind Ltd Sound absorbing structure
JP2003076372A (en) * 2001-09-06 2003-03-14 Sasakura Engineering Co Ltd Sound absorbing panel
JP2005173398A (en) * 2003-12-12 2005-06-30 Nakanishi Metal Works Co Ltd Sound absorbing device
JP2005273273A (en) * 2004-03-24 2005-10-06 Nakanishi Metal Works Co Ltd Acoustic panel and sound absorbing/sound insulating device
JP2005338795A (en) * 2004-04-30 2005-12-08 Kobe Steel Ltd Porous sound absorbing structure
JP2007100394A (en) * 2005-10-04 2007-04-19 Univ Of Yamanashi Sound absorbing panel

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521300A (en) * 2008-05-22 2011-07-21 スリーエム イノベイティブ プロパティズ カンパニー Multilayer sound absorbing structure including mesh layer
JP2010059658A (en) * 2008-09-02 2010-03-18 Tomoegawa Paper Co Ltd Member for sound absorbing structure and sound absorbing structure
WO2012009976A1 (en) * 2010-07-22 2012-01-26 Yao Qingyun Sound source mute board
WO2013054902A1 (en) * 2011-10-14 2013-04-18 株式会社神戸製鋼所 Translucent sound-absorbing panel
JP2013087433A (en) * 2011-10-14 2013-05-13 Kobe Steel Ltd Translucent sound absorption panel
CN103874801A (en) * 2011-10-14 2014-06-18 株式会社神户制钢所 Translucent sound-absorbing panel
JP2013139709A (en) * 2013-04-17 2013-07-18 Tomoegawa Paper Co Ltd Component for sound absorption structure, and sound absorption structure
US20200370293A1 (en) * 2014-03-20 2020-11-26 Corning Incorporated Transparent sound absorbing panels
CN106414353A (en) * 2014-03-20 2017-02-15 康宁股份有限公司 Transparent sound absorbing panels
WO2015142978A1 (en) * 2014-03-20 2015-09-24 Corning Incorporated Transparent sound absorbing panels
WO2015157878A1 (en) * 2014-04-18 2015-10-22 姚庆云 Sound source muting plate
JPWO2017169133A1 (en) * 2016-03-29 2019-01-31 富士フイルム株式会社 Earmuff
WO2018085249A1 (en) * 2016-11-04 2018-05-11 Corning Incorporated Micro-perforated panel systems, applications, and methods of making micro-perforated panel systems
CN110049956A (en) * 2016-11-04 2019-07-23 康宁公司 Microperforated panel system, application and the method for manufacturing microperforated panel system
US11608291B2 (en) 2016-11-04 2023-03-21 Corning Incorporated Micro-perforated panel systems, applications, and methods of making micro-perforated panel systems
WO2018139516A1 (en) * 2017-01-26 2018-08-02 太陽化学株式会社 Sound absorbing material
US11254087B2 (en) * 2017-04-26 2022-02-22 Corning Incorporated Micro-perforated glass laminates and methods of making the same
WO2020180912A1 (en) * 2019-03-04 2020-09-10 Corning Incorporated Micro-perforated panel systems, applications, and methods of making micro-perforated panel systems
CN113646166A (en) * 2019-03-31 2021-11-12 康宁股份有限公司 Transparent sound absorber-diffuser and method
WO2022004273A1 (en) * 2020-07-01 2022-01-06 株式会社Lixil Building material

Similar Documents

Publication Publication Date Title
JP2007262765A (en) Sound absorbing material and sound absorbing panel
US20200370293A1 (en) Transparent sound absorbing panels
US11608291B2 (en) Micro-perforated panel systems, applications, and methods of making micro-perforated panel systems
JP6480638B2 (en) Soundproof structure, opening structure, cylindrical structure, window member and partition member
US11257473B2 (en) Soundproof structure and opening structure
CN201679416U (en) Sound-absorbing and ventilating window
JPH0325108A (en) Sound absorbing wall structure
JP2007225436A (en) Measuring method of acoustic transmission characteristic of plate body
US20220148550A1 (en) Micro-perforated panel systems, applications, and methods of making micro-perforated panel systems
CN109741725A (en) A kind of acoustic metamaterial and its micro-processing method with broad band low frequency silencing function
CN202467572U (en) Ventilation sound proof window
Struiksma et al. Sound absorbing glass: Transparent solution for poor acoustics of monumental spaces
WO2021086709A1 (en) Micro-perforated glass laminates with controlled hole shape, applications thereof, and methods of making micro-perforated glass laminates
JP2008233792A (en) Perforated plate sound absorbing body and method for manufacturing the same
JP2012077332A (en) Method of forming base part on metal substrate by etching
CN110058183B (en) Method for extracting small hole magnetization coefficient
KR102159114B1 (en) Surface treatment process for magnesium parts and magnesium parts treated by using the same
CN115573529A (en) L-shaped indoor double-layer sound absorption body with ultramicropore structure
JP2009150932A (en) Sound absorbing body and its manufacturing method
CN114439125A (en) Ventilation sound barrier structure and wall body
KR200339929Y1 (en) The sound absorption construction of soundproof a wall for a express highway
JP2010209631A (en) Columnar tube with holes
Lee The Effect of Shading Louvers and Compact Silencers as Noise Barriers in a Ventilated Double Skin Façade
JPWO2019044589A1 (en) Soundproof structure and soundproof structure
STOJILJKOVIC et al. THE APPLICATION OF LOW ENERGY BUILDING TECHNOLOGIES, PASSIVE VENTILATION AND DAY-LIGHTING IN ACOUSTICAL DESIGN

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101012