JP2007261192A - Light-reflective coated metal sheet - Google Patents

Light-reflective coated metal sheet Download PDF

Info

Publication number
JP2007261192A
JP2007261192A JP2006091813A JP2006091813A JP2007261192A JP 2007261192 A JP2007261192 A JP 2007261192A JP 2006091813 A JP2006091813 A JP 2006091813A JP 2006091813 A JP2006091813 A JP 2006091813A JP 2007261192 A JP2007261192 A JP 2007261192A
Authority
JP
Japan
Prior art keywords
light
reflective
titanium oxide
coating film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006091813A
Other languages
Japanese (ja)
Inventor
Tetsuya Igarashi
哲也 五十嵐
Takeshi Watase
岳史 渡瀬
Yasuo Hirano
康雄 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006091813A priority Critical patent/JP2007261192A/en
Publication of JP2007261192A publication Critical patent/JP2007261192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-reflective coated metal sheet having a uniform light-reflective performance and a high reflectance in the visible light region of a wavelength of 400 to 700 nm and useful as a reflector of an illuminating unit and a back-light reflector or the like of an LCD television. <P>SOLUTION: The light-reflective coated metal sheet coated with a light-reflective coating having a bilayer structure consisting of two or more layers. The outermost surface layer of the light-reflective coating comprises a first light-reflective layer wherein the content of a white pigment substantially composed of anatase type titanium oxide is 30 to 70 mass%, while the lower layer side of the top-most surface layer is composed of a second light-reflective layer wherein the content of the white pigment substantially composed of rutile type titanium dioxide is 30 to 70 mass%, thereby attaining a uniform light-reflective performance and a high reflectance in the visible light region. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光反射性に優れた塗装金属板に関し、詳細には、可視光線の反射が均一で且つ優れた反射率を有し、照明器具の反射板や液晶テレビのバックライト反射板などとして有用な光反射性塗装金属板に関するものである。   The present invention relates to a coated metal plate excellent in light reflectivity, and in particular, has a uniform and excellent reflectivity for visible light, and is used as a reflector for lighting fixtures or a backlight reflector for liquid crystal televisions. The present invention relates to a useful light-reflective coated metal plate.

照明器具の反射板や液晶テレビのバックライト反射板などには、消費電力の低減やエネルギー効率の観点から、可視光領域(400〜700nm)の全波長領域で高い反射率を示す反射板が求められており、これらの用途に金属板を適用する場合は、白色顔料として可視光線の吸収が少なく屈折率の高い酸化チタンを含む光反射性塗料を金属板に塗布して用いている。   For reflectors of lighting fixtures and backlight reflectors of liquid crystal televisions, reflectors that exhibit high reflectivity in the entire wavelength region of the visible light region (400 to 700 nm) are required from the viewpoint of reducing power consumption and energy efficiency. When a metal plate is applied to these uses, a light-reflecting paint containing titanium oxide having a low absorption of visible light and a high refractive index is applied to the metal plate as a white pigment.

ところで、酸化チタンにはルチル型とアナターゼ型の2種類があり、両者の反射特性をみると、ルチル型酸化チタンは、波長500〜700nmの光に対する反射性は高いが波長400nm近傍の光に対する反射性は低く、一方アナターゼ型酸化チタンは、波長400nm近傍の光に対する反射性は高いが波長500〜700nmの光に対する反射性が低い。この様なことから、屋内外で照明用反射板や液晶用反射板などに利用されているのは、可視光の広い波長領域で高い反射率を示すルチル型であり、アナターゼ型は殆ど利用されていない。また、アナターゼ型の酸化チタンは光触媒活性を有しており、これを白色顔料として使用した場合、ビヒクル成分として有機質樹脂を用いた時にその光劣化を助長することも懸念され、こうしたことも、アナターゼ型酸化チタンが白色顔料とし嫌われる理由の1つになっていると考えられる。   By the way, there are two types of titanium oxide, a rutile type and an anatase type. Looking at the reflection characteristics of both, rutile type titanium oxide is highly reflective to light having a wavelength of 500 to 700 nm, but is reflective to light having a wavelength of around 400 nm. On the other hand, anatase-type titanium oxide has high reflectivity with respect to light in the vicinity of a wavelength of 400 nm, but low reflectivity with respect to light with a wavelength of 500 to 700 nm. For this reason, it is the rutile type that shows high reflectivity in a wide wavelength region of visible light, and the anatase type is mostly used for lighting reflectors and liquid crystal reflectors indoors and outdoors. Not. In addition, anatase-type titanium oxide has photocatalytic activity, and when this is used as a white pigment, there is a concern that when an organic resin is used as a vehicle component, its photodegradation is promoted. This is considered to be one of the reasons why type titanium oxide is disliked as a white pigment.

一方、照明用では更なるエネルギー効率向上のため、また液晶用では発現する色彩・色調の拡大や鮮明度の向上に対応するため、光反射板についても更なる高機能化が求められている。こうした状況の下で、最近の高機能化ニーズに対応していくには、反射率の向上に加えて、反射特性に偏りがなく、可視光線の全領域で均一な反射特性を示すもの(即ち、400〜700nmの波長領域における光反射率が全体的に高く且つ反射率に差がないもの)が求められる。   On the other hand, in order to further improve the energy efficiency for lighting, and to respond to the expansion of color and color tone and the improvement of sharpness that are manifested for liquid crystals, there is a demand for further enhancement of the functionality of the light reflector. Under these circumstances, in order to respond to the recent needs for higher functionality, in addition to the improvement in reflectivity, there is no bias in the reflection characteristics, and the reflection characteristics are uniform over the entire visible light region (ie, , The light reflectance in the wavelength region of 400 to 700 nm is generally high and there is no difference in reflectance).

ところが、白色顔料としてルチル型酸化チタンを用いた従来の光反射性塗膜では、塗膜を厚くすることで反射率の向上には対応できるものの、可視光全波長領域で均一な反射特性は得られ難く、しかも厚膜化による塗料コストの増大も経済的な負担となる。   However, the conventional light-reflective coating using rutile titanium oxide as a white pigment can cope with the improvement in reflectance by increasing the thickness of the coating, but uniform reflection characteristics are obtained in all visible light wavelength regions. In addition, the increase in coating cost due to the thick film is an economic burden.

ちなみに特許文献1には、高拡散反射塗装金属板として、ルチル型酸化チタンを塗膜中に含有させて液晶用反射板に適用する例が示されている。しかしこの塗膜は、ルチル型酸化チタンの特性である400nm近傍の光吸収により反射率が低くなるため、可視光全領域で均一な光反射特性を得ることができない。また400nm近傍に吸収があると、反射率を低下させるばかりか青色の発色を妨げる原因になる。   Incidentally, Patent Document 1 shows an example in which rutile-type titanium oxide is contained in a coating film as a highly diffuse reflective coating metal plate and applied to a reflective plate for liquid crystal. However, since this coating film has a low reflectance due to light absorption in the vicinity of 400 nm, which is a characteristic of rutile-type titanium oxide, uniform light reflection characteristics cannot be obtained in the entire visible light region. Absorption near 400 nm not only lowers the reflectivity but also prevents blue color development.

こうした問題の改善策として、単純にルチル型とアナターゼ型の酸化チタンを併用することが考えられる。ところがこの方法では、波長400nm近傍の光反射率を若干改善できるものの、顕著な改善効果は得られない。併用系では、アナターゼ型酸化チタンの特徴である波長400nm近傍の高い反射率が十分に活かしきれず、光反射率の改善効果が不十分になるばかりか、反射率の均一性も不十分になる。   As a remedy for such problems, it is conceivable to simply use a rutile type and anatase type titanium oxide in combination. However, this method can slightly improve the light reflectivity in the vicinity of the wavelength of 400 nm, but cannot provide a significant improvement effect. In the combined use system, the high reflectance near the wavelength of 400 nm, which is a feature of anatase-type titanium oxide, cannot be fully utilized, and not only the effect of improving the light reflectance is insufficient, but also the uniformity of the reflectance is insufficient. .

また特許文献2には、ルチル型酸化チタンによる光吸収で低下する波長400nm近傍の光反射率を補うため、蛍光剤を添加することが記載されている。しかしこの方法は反射率の向上には有効と思われるが、反射特性の制御が困難で反射率の均一性を高めることはできない。しかも蛍光剤は高価であるため、コスト面から実用上の適用範囲は自ずと制限される。
特開2002−172735号公報 特開2003−73624号公報
Patent Document 2 describes that a fluorescent agent is added in order to compensate for the light reflectance in the vicinity of a wavelength of 400 nm, which is reduced by light absorption by rutile-type titanium oxide. However, although this method seems to be effective for improving the reflectance, it is difficult to control the reflection characteristics and the uniformity of the reflectance cannot be improved. Moreover, since the fluorescent agent is expensive, its practical application range is naturally limited from the viewpoint of cost.
JP 2002-172735 A JP 2003-73624 A

本発明は上記の様な事情に着目してなされたものであって、蛍光剤を使用することなく、ルチル型酸化チタンの欠点である波長400nm近傍の光反射率を向上させ、可視光の全波長領域で均一な光反射率を示すと共に、同程度の膜厚でルチル型酸化チタン含有単独塗膜よりも優れた光反射率を示す光反射性塗装金属板を提供することにある。   The present invention has been made paying attention to the above-described circumstances, and without using a fluorescent agent, improves the light reflectivity in the vicinity of a wavelength of 400 nm, which is a defect of rutile titanium oxide, An object of the present invention is to provide a light-reflecting coated metal plate that exhibits a uniform light reflectance in the wavelength region and has a light reflectance superior to that of a rutile-type titanium oxide-containing single coating film with a similar film thickness.

上記課題を解決することのできた本発明に係る光反射性塗装金属板は、2層以上の複層構造を有する光反射性塗膜で被覆された光反射性塗装金属板であって、光反射性塗膜の最表層は、実質的にアナターゼ型酸化チタンのみからなる白色顔料の含有量が30〜70質量%である第1光反射層からなり、該最表層の下層側は、実質的にルチル型酸化チタンのみからなる白色顔料の含有量が30〜70質量%である第2光反射層で構成されているところに特徴を有している。   The light-reflective coated metal plate according to the present invention that has solved the above problems is a light-reflective coated metal plate coated with a light-reflective coating film having a multilayer structure of two or more layers, The outermost layer of the protective coating film is composed of a first light reflecting layer having a white pigment content of substantially 30 to 70% by mass substantially consisting of only anatase-type titanium oxide, and the lower layer side of the outermost layer is substantially It is characterized in that it is composed of a second light reflecting layer having a white pigment content of 30 to 70% by mass consisting only of rutile titanium oxide.

本発明の上記塗装金属板において、その特徴がより効果的に発揮されるのは、前記第1光反射層の膜厚が10〜60μmで、前記第2光反射層の膜厚が10μm以上であるものである。また本発明では、上記複層構造の光反射性塗膜の上に透明の表面保護皮膜を形成し、反射塗膜としての耐久性を高めたものも、好ましい実施形態となる。   In the coated metal plate of the present invention, the characteristics are more effectively exhibited when the thickness of the first light reflecting layer is 10 to 60 μm and the thickness of the second light reflecting layer is 10 μm or more. There is something. Moreover, in this invention, what formed the transparent surface protective film on the light reflective coating film of the said multilayer structure, and improved the durability as a reflective coating film also becomes preferable embodiment.

本発明によれば、金属板表面に形成される光反射性塗膜を、酸化チタン主体の白色顔料を含む2層構造以上の多層塗膜で構成し、最表層側は、第1光反射層として短波長の光反射性に優れたアナターゼ型酸化チタン主体の反射層とし、その下層側は、第2光反射層として長波長の光反射性に優れたルチル型酸化チタン主体の反射層とすることで、可視光全波長領域の光を効率よく反射し、均一で且つ優れた光反射特性を示す塗装金属板を提供できる。   According to the present invention, the light reflective coating film formed on the surface of the metal plate is composed of a multilayer coating film having a two or more layer structure containing a white pigment mainly composed of titanium oxide, and the outermost layer side is the first light reflecting layer. As a second light reflecting layer, a reflective layer mainly composed of rutile titanium oxide and having a long wavelength light reflectivity is used as the second light reflecting layer. Thus, it is possible to provide a coated metal plate that efficiently reflects light in the entire wavelength region of visible light and exhibits uniform and excellent light reflection characteristics.

酸化チタンを含有する塗膜に光が当たると、塗膜を構成するビヒクル成分(樹脂)と酸化チタンの光屈折率の違いによって酸化チタン界面で光の反射が起こり、樹脂および酸化チタンを透過する光は一部吸収される。従って、光吸収が少ない場合は反射率が高まり、光吸収が多くなると反射率は低下する。また、光は波長が短いほど塗膜を通過する際の減衰量が大きく、塗膜の奥深くまで到達できないため、例えば400nm近傍の短い波長の光は、塗膜最表層の反射特性に影響を受け易いと考えられる。逆に長波長の光は塗膜の奥深くまで到達するため、一定深さの塗膜内部における反射特性に影響を受け易いと考えられる。   When light is applied to a coating film containing titanium oxide, light is reflected at the titanium oxide interface due to the difference in the refractive index between the vehicle component (resin) constituting the coating film and titanium oxide, and the resin and titanium oxide are transmitted. Part of the light is absorbed. Therefore, the reflectance increases when light absorption is low, and the reflectance decreases when light absorption increases. In addition, the shorter the wavelength, the greater the amount of attenuation when passing through the coating film, and the light cannot reach deep into the coating film. For example, light having a short wavelength near 400 nm is affected by the reflection characteristics of the outermost layer of the coating film. It is considered easy. On the other hand, since long wavelength light reaches deep inside the coating film, it is considered that it is easily affected by the reflection characteristics inside the coating film at a certain depth.

そこで本発明者らは、塗膜全体として反射率を平均的に高めるには、塗膜を2層以上の複層構造とし、表層側には短波長の光をより多く反射する白色顔料を配合し、その下層側には、表層側を通過した長波長の光をより多く反射する白色顔料を配合すれば、それらの相互補完作用により塗膜全体として反射率が平均的に高められるのではないかと考えた。そして、こうした考えを塗膜全体としての光反射率の均一性向上に生かすべく研究を重ねた結果、上記本発明の塗膜構成に想到した。   Therefore, in order to improve the average reflectance of the coating film as a whole, the inventors have a multilayer structure of two or more layers, and a white pigment that reflects more short-wavelength light is blended on the surface layer side. However, if a white pigment that reflects more of the long-wavelength light that has passed through the surface layer side is added to the lower layer side, the reflectance of the coating film as a whole cannot be increased on average due to their mutual complementation. I thought. And as a result of repeating research to make use of this idea to improve the uniformity of the light reflectance of the entire coating film, the inventors have arrived at the coating film configuration of the present invention.

即ち本発明の光反射性塗装金属板は、上記の様に白色顔料として酸化チタンを含む2層以上からなる積層構造の光反射性塗膜を有しており、該反射性塗膜の最表層側は、実質的にアナターゼ型酸化チタンのみからなる白色顔料の含有量が30〜70質量である第1光反射層とし、該最表層の下層側は、実質的にルチル型酸化チタンのみからなる白色顔料の含有量が30〜70質量%である第2光反射層によって構成されている。   That is, the light-reflective coated metal plate of the present invention has a light-reflective coating film having a laminated structure composed of two or more layers containing titanium oxide as a white pigment as described above, and is the outermost layer of the reflective coating film. The side is a first light reflecting layer having a white pigment content of substantially 30 to 70 mass consisting essentially of only anatase-type titanium oxide, and the lower layer side of the outermost layer is substantially composed only of rutile-type titanium oxide. It is comprised by the 2nd light reflection layer whose content of a white pigment is 30-70 mass%.

本発明では、上記の様に光反射性の複層塗膜を構成する白色顔料として酸化チタンの使用を規定している。これは、酸化チタンは他の白色顔料、例えば酸化亜鉛や硫酸バリウム、炭酸カルシウム、酸化セリウムなどに比べて価格の割には光反射性や白色度が高く、光反射性の白色顔料として適していることによる。しかも酸化チタンは、上記の様に結晶構造によってアナターゼ型とルチル型に分類され、夫々の光反射特性、特に波長による光の反射率と吸収率が異なっており、本発明で意図する光反射性塗膜の複層化による光反射特性の均一化に最も適しているからである。   In the present invention, the use of titanium oxide is defined as the white pigment constituting the light-reflective multilayer coating as described above. This is because titanium oxide has higher light reflectivity and whiteness than other white pigments such as zinc oxide, barium sulfate, calcium carbonate, and cerium oxide, and is suitable as a light reflective white pigment. It depends on Moreover, titanium oxide is classified into anatase type and rutile type according to the crystal structure as described above, and each has different light reflection characteristics, in particular, light reflectivity and absorptance according to wavelength, and the light reflectivity intended in the present invention. This is because it is most suitable for making the light reflection characteristics uniform by making the coating film into multiple layers.

そして最表層側の白色顔料を、実質的にアナターゼ型酸化チタンのみとし且つその含有量を30〜70質量%に定めたのは、可視光線の低波長領域である400nm近傍の光を効果的に反射させるためであり、30質量%未満では低波長域の光に対する反射率が不十分となり、全波長域で均一な光反射率を確保するという本発明の目的が果たせなくなる。低波長域の光をより確実に反射させる上でより好ましい最表層側のアナターゼ型酸化チタン含量は40質量%以上、更に好ましくは45質量%以上である。但し、最表層に占めるアナターゼ型酸化チタンの含有量が多過ぎると、全反射率が低下すると共に、最表層塗膜のビヒクル成分含量が不足気味となって塗膜特性(特に耐衝撃特性や耐引掻き性、耐久性など)が低下してくるので、多くとも70質量%、より好ましくは65質量%程度までに止めるのがよい。   The reason why the white pigment on the outermost layer side is substantially only anatase-type titanium oxide and the content thereof is set to 30 to 70% by mass is that light in the vicinity of 400 nm, which is a low wavelength region of visible light, is effectively used. The reason for this is to reflect, and if it is less than 30% by mass, the reflectance for light in the low wavelength region becomes insufficient, and the object of the present invention to ensure uniform light reflectance in the entire wavelength region cannot be achieved. The content of anatase-type titanium oxide on the outermost layer side is more preferably 40% by mass or more, and still more preferably 45% by mass or more, in order to more reliably reflect light in the low wavelength region. However, if the content of the anatase-type titanium oxide in the outermost layer is too large, the total reflectivity is lowered and the vehicle component content of the outermost layer coating is insufficient, resulting in coating properties (especially impact resistance and resistance). (Scratchability, durability, etc.) are reduced, so it is preferable to stop at most 70% by mass, more preferably about 65% by mass.

また、該最表層の厚さは、波長が400nm近傍の光を効果的に反射しつつ、450nm程度以上、700nmレベルまでの波長域の光は十分に透過し得る様、10μmから60μmの範囲に納まる様に調整するのがよい。ちなみに、表層の厚さが薄過ぎると400nm近傍の反射率が不十分となり、逆に厚くし過ぎても、400nm近傍の光反射率が飽和に達してそれ以上に向上しなくなるばかりか、450〜700nmの光吸収率が増大して該長波長域の反射率が低下し、結果的に光反射率も低下する。よって、アナターゼ型酸化チタン主体の最表層部の厚さは10〜60μmの範囲、より好ましくは20〜40μmの範囲とするのがよい。   The thickness of the outermost layer is in the range of 10 μm to 60 μm so that light in the wavelength range from about 450 nm to 700 nm can be sufficiently transmitted while effectively reflecting light having a wavelength in the vicinity of 400 nm. It is good to adjust it to fit. Incidentally, if the thickness of the surface layer is too thin, the reflectance near 400 nm becomes insufficient, and conversely, if the surface layer is too thick, the light reflectance near 400 nm reaches saturation and does not further improve. The light absorptance at 700 nm is increased, the reflectance in the long wavelength region is lowered, and as a result, the light reflectance is also lowered. Therefore, the thickness of the outermost layer portion mainly composed of anatase-type titanium oxide is in the range of 10 to 60 μm, more preferably in the range of 20 to 40 μm.

また、該最表層の下層側に形成される第2光反射層は、上記最表層を透過してきた450〜700nmの可視光線に対して十分な光反射率を確保できるよう、白色顔料の主体をルチル型酸化チタンとすると共に、その含有量を30〜70質量%の範囲内とし且つ少なくとも10μmの厚さを確保する。ちなみに、該下層側のルチル型酸化チタン含量が30質量%未満では、上記長波長域の光に対して十分な反射率が得られ難くなり、450〜700nm域の光の反射率不足により、やはり可視光全域で均一な光反射率を確保できなくなる。   The second light reflecting layer formed on the lower layer side of the outermost layer is mainly composed of a white pigment so that sufficient light reflectance can be secured for visible light of 450 to 700 nm transmitted through the outermost layer. The rutile type titanium oxide is used, and its content is in the range of 30 to 70% by mass and a thickness of at least 10 μm is ensured. Incidentally, when the rutile-type titanium oxide content on the lower layer side is less than 30% by mass, it is difficult to obtain sufficient reflectance for the light in the long wavelength region, and due to insufficient reflectance of light in the 450 to 700 nm region, A uniform light reflectance cannot be secured over the entire visible light range.

低波長域の光をより確実に反射させる上でより好ましい下層側のルチル型酸化チタン含量は40質量%以上、更に好ましくは45質量%以上である。但し、下層側に占めるルチル型酸化チタンの含有量が多過ぎると、光反射率が低下すると共に、該下層側塗膜のビヒクル(バインダ)成分含量が相対的に不足気味となって塗膜特性(特に耐衝撃特性や耐剥離性など)が低下してくるので、多くとも70質量%、より好ましくは65質量%程度までに止めるのがよい。   The rutile type titanium oxide content on the lower layer side is more preferably 40% by mass or more, and further preferably 45% by mass or more, in order to more reliably reflect light in the low wavelength region. However, if the content of rutile-type titanium oxide in the lower layer side is too large, the light reflectivity is lowered and the vehicle (binder) component content of the lower layer side coating film becomes relatively insufficient, and the coating film characteristics (Especially impact resistance and peel resistance, etc.) are lowered, so it is preferable to stop at most 70% by mass, more preferably about 65% by mass.

また、該下層側の厚さは、450〜700nmの長波長域の光を効果的に反射し得る様、少なくとも10μm以上にすべきであり、反射率の観点からすると厚さの上限は特に存在しないが、経済性を考慮すると60μm程度まで、より一般的には40μm程度までで十分である。   Moreover, the thickness of the lower layer side should be at least 10 μm or more so that light in a long wavelength region of 450 to 700 nm can be effectively reflected, and there is an upper limit of the thickness particularly from the viewpoint of reflectivity. However, in consideration of economy, it is sufficient up to about 60 μm, more generally up to about 40 μm.

上記酸化チタンの粒径は特に制限されないが、より高度で且つ均一な反射率を得る上では、アナターゼ型およびルチル型の如何を問わず、0.1〜0.4μm、好ましくは0.15〜0.35μm、更に好ましくは、0.20〜0.30μmの範囲で極力粒径の揃ったものを使用するのがよい。またこれらの酸化チタンは、バインダー樹脂への分散性を高めるため、アルミナ、シリカ、ジルコニア、或は有機物などで表面処理したものもであってもよい。   The particle diameter of the titanium oxide is not particularly limited. However, in order to obtain a higher and more uniform reflectance, regardless of whether it is anatase type or rutile type, 0.1 to 0.4 μm, preferably 0.15 to It is preferable to use one having a uniform particle size within the range of 0.35 μm, more preferably 0.20 to 0.30 μm. Further, these titanium oxides may be those surface-treated with alumina, silica, zirconia, organic matter, or the like in order to improve dispersibility in the binder resin.

本発明では、上記の様に最表層およびその下層側の光反射層に含まれるアナターゼ型酸化チタンまたはルチル型酸化チタンの含有量を特定範囲に定めており、各層の残部成分は実質的にビヒクル(バインダー)成分であるが、必要に応じてその他の添加剤として、酸化チタン以外の白色顔料その他の体質顔料、紫外線吸収剤、紫外線安定剤、分散剤、粘度調整剤などが含まれていてもよい。   In the present invention, as described above, the content of the anatase type titanium oxide or rutile type titanium oxide contained in the outermost layer and the light reflecting layer on the lower layer side thereof is determined within a specific range, and the remaining components of each layer are substantially the vehicle. Although it is a (binder) component, if necessary, other additives such as white pigments and other extender pigments other than titanium oxide, ultraviolet absorbers, ultraviolet stabilizers, dispersants, viscosity modifiers, etc. may be included. Good.

本発明において、バインダーとして用いる樹脂は、塗料分野で公知の樹脂がいずれも使用でき、例えば、ポリエステル系樹脂、ポリオレフィン系樹脂、ポリアミド系樹脂、フッ素系樹脂、シリコーン系樹脂、エポキシ系樹脂等が挙げられる。これらの中でも好ましいのは、ポリエステル系樹脂、或は変性ポリエステル系樹脂(エポキシ変性ポリエステル系樹脂、フェノール誘導体を骨格に導入したポリエステル系樹脂などの熱硬化性ポリエステル系樹脂または不飽和ポリエステル系樹脂)などが挙げられる。これらの中でも、曲げ加工性などの観点から特に好ましいのはポリエステル系樹脂である。また上記樹脂と共に架橋剤を併用することも可能であり、ポリエステル系樹脂に対して用いられる好ましい架橋剤としてはメラミン樹脂、ウレタン樹脂が例示される。これらの架橋剤は、単独で使用できる他、必要に応じて2種を併用してもよい。   In the present invention, as the resin used as the binder, any resin known in the paint field can be used, and examples thereof include polyester resins, polyolefin resins, polyamide resins, fluorine resins, silicone resins, and epoxy resins. It is done. Among these, polyester resins or modified polyester resins (epoxy-modified polyester resins, thermosetting polyester resins such as polyester resins in which a phenol derivative is introduced into the skeleton, or unsaturated polyester resins) are preferable. Is mentioned. Among these, polyester resins are particularly preferable from the viewpoint of bending workability and the like. Moreover, it is also possible to use a crosslinking agent together with the above resin, and preferred examples of the crosslinking agent used for the polyester-based resin include melamine resin and urethane resin. These crosslinking agents can be used alone or in combination of two as required.

また、本発明で用いられる金属板の種類も特に制限されず、例えば冷延鋼板、熱延鋼板、あるいはステンレス鋼板の如き各種合金鋼板、更には、電気めっき鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、5%Al−Znめっき鋼板、55%Al−Znめっき鋼板、Alめっき鋼板などの各種めっき鋼板、或は更に、Al板やCu板など非鉄金属板などが全て使用可能である。   In addition, the type of the metal plate used in the present invention is not particularly limited, and various alloy steel plates such as cold-rolled steel plate, hot-rolled steel plate, or stainless steel plate, and further, electroplated steel plate, hot-dip galvanized steel plate, alloyed melt Various plated steel sheets such as galvanized steel sheet, 5% Al—Zn plated steel sheet, 55% Al—Zn plated steel sheet and Al plated steel sheet, or non-ferrous metal sheets such as Al plate and Cu plate can all be used.

金属板上に上記の光反射性塗膜を形成するには、バインダー樹脂と白色顔料を含む塗膜形成用塗料を調製し、公知の塗布方法、例えばロールコーター法、スプレー法、カーテンフローコーター法、バーコート法、ディッピング法等を用いて、金属板表面に少なくとも2層以上に塗工すればよい。塗膜形成用塗料が溶剤を含む場合や、バインダー樹脂が熱架橋するタイプの場合は、塗工後に加熱による焼付け処理が行われる。金属板としては、鋼板や各種金属板を用いることができ、めっき処理や、各種公知の下地処理等が施されていても構わない。また光反射性塗膜の上にクリアー塗膜等の公知の保護膜が形成されていてもよい。同様に、上記光反射性塗膜の下層側にも、更に他の白色顔料を含むマスキング層などを設けたり、塗膜密着性改善のための任意の下地塗膜層などを形成したりすることも勿論可能である。   In order to form the above light-reflective coating film on a metal plate, a coating film-forming coating material containing a binder resin and a white pigment is prepared, and a known coating method such as a roll coater method, a spray method, or a curtain flow coater method is used. Using a bar coating method, a dipping method, or the like, it may be applied to at least two layers on the surface of the metal plate. When the paint for forming a coating film contains a solvent or when the binder resin is of a type in which the binder resin is thermally crosslinked, a baking treatment by heating is performed after coating. As the metal plate, a steel plate or various metal plates can be used, and plating treatment, various known ground treatments, or the like may be performed. Moreover, well-known protective films, such as a clear coating film, may be formed on the light reflective coating film. Similarly, on the lower layer side of the light-reflective coating film, a masking layer containing other white pigment may be provided, or an arbitrary undercoat film layer for improving coating film adhesion may be formed. Of course it is possible.

本発明は以上の様に構成されており、最表層にアナターゼ型酸化チタン主体の白色顔料を使用し、その下層側にはルチル型酸化チタン主体の白色顔料を使用することで、400nmから700nm可視光領域における光反射率の均一性を高めることができ、照明器具の反射板として用いた時の品質安定性を高め得る他、液晶のバックライトとして用いた時には、反射率の不均一によってしばしば生じる虹色変色現象を抑えることができ、液晶画面の色調、色彩の拡大や鮮明度の向上などを含めて品質向上に寄与できる。   The present invention is configured as described above, and a white pigment mainly composed of anatase-type titanium oxide is used on the outermost layer, and a white pigment mainly composed of rutile-type titanium oxide is used on the lower layer side, so that it is visible from 400 nm to 700 nm. It can improve the uniformity of light reflectivity in the light region, improve the stability of quality when used as a reflector of lighting equipment, and often occurs due to non-uniform reflectivity when used as a liquid crystal backlight. The rainbow color change phenomenon can be suppressed, and it can contribute to the quality improvement including the color tone of the liquid crystal screen, the expansion of the color and the improvement of the sharpness.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

なお、本発明において、特に波長を限定せずに「反射率」と言うときは、400〜700nmの間を20nm毎に反射率を日本電色工業社製の色差計Σ90で測定し、下記式によって求めた全反射率(全R:%)を意味する。なお、下記式において、R(λ)は波長λでの反射率を示す。
(全)反射率={[R(400)+R(420)+…R(660)+R(680)]+[R(420)+R(440)+…R(680)+R(700)]}×20÷2÷(700−400)
In the present invention, when “reflectance” is referred to without particularly limiting the wavelength, the reflectance is measured with a color difference meter Σ90 manufactured by Nippon Denshoku Industries Co., Ltd. every 20 nm between 400 and 700 nm. Means the total reflectance (total R:%) obtained by In the following formula, R (λ) represents the reflectance at the wavelength λ.
(Total) Reflectivity = {[R (400) + R (420) + ... R (660) + R (680)] + [R (420) + R (440) + ... R (680) + R (700)]} × 20 ÷ 2 ÷ (700-400)

実験例1
厚さ0.8mmの電気亜鉛めっき鋼板に、バーコーターで各層の乾燥塗膜厚が40μmとなる様に下層用の光反射性塗料と上層用の光反射性塗料をそれぞれ2回ずつ塗布し、1回塗り毎に焼付け炉で到達板温が220℃となる様に120秒間焼付けを行って2層構造の光反射性塗膜を形成した。単層構造の塗膜については、それぞれの塗膜を構成する塗料を所定の乾燥膜厚となる様に4回塗りし、1回塗り毎に同様に220℃で120秒間焼付けた。表1に塗膜構成と積層構成を示す。
Experimental example 1
Apply a light-reflective coating for the lower layer and a light-reflective coating for the upper layer twice each to a 0.8 mm thick electrogalvanized steel sheet so that the dry coating thickness of each layer is 40 μm with a bar coater, Each coating was baked for 120 seconds in a baking furnace so that the ultimate plate temperature was 220 ° C. to form a light-reflective coating film having a two-layer structure. About the coating film of single layer structure, the coating material which comprises each coating film was apply | coated 4 times so that it might become a predetermined | prescribed dry film thickness, and it baked at 220 degreeC for 120 second similarly for every application. Table 1 shows the coating film structure and the laminated structure.

バインダー樹脂としては、ポリエステル樹脂(東洋紡績社製の商品名「バイロン29XS」)、架橋剤としてメラミン樹脂(住友化学社製の商品名「スミマールM40−ST」)、ルチル型酸化チタンとしては、石原産業社製の品番「CR−50」、「CR−58」、「CR−60」、アナターゼ型酸化チタンとしては、石原産業社製の品番「A−220」を使用し、溶剤としてシクロヘキサノン、キシレンを用いて各配合比率となる様にバインダー樹脂と酸化チタンを混合してボールミルで十分に混練し、固形分濃度が50〜75%となる様に溶剤で固形分を調整してから塗装に供した。   As a binder resin, a polyester resin (trade name “Byron 29XS” manufactured by Toyobo Co., Ltd.), a melamine resin (trade name “Summar M40-ST” manufactured by Sumitomo Chemical Co., Ltd.) as a crosslinking agent, and as a rutile type titanium oxide, Ishihara The product numbers “CR-50”, “CR-58”, “CR-60” manufactured by Sangyo Co., Ltd. and the product number “A-220” manufactured by Ishihara Sangyo Co., Ltd. are used as the anatase-type titanium oxide, and cyclohexanone and xylene are used as solvents. Mix the binder resin and titanium oxide so that each compounding ratio is achieved, and knead thoroughly with a ball mill. Adjust the solid content with a solvent so that the solid content concentration is 50 to 75%, and then use it for coating. did.

得られた各光反射性塗装金属板について、日本電色工業社製の分光光度計Σ90を用いて、波長400〜700nmの間を20nmの測定ピッチで反射率を測定し、最大値(Rmax)、最小値(Rmin)、平均値(Rave)を求めると共に、ΔR値(=Rmax−Rmin)を求めた。   For each of the obtained light-reflective coated metal plates, the reflectance was measured at a measurement pitch of 20 nm between wavelengths 400 to 700 nm using a spectrophotometer Σ90 manufactured by Nippon Denshoku Industries Co., Ltd., and the maximum value (Rmax) The minimum value (Rmin) and the average value (Rave) were obtained, and the ΔR value (= Rmax−Rmin) was obtained.

結果を表1〜3に示す。尚、表中の「塗膜中の濃度」とは、乾燥塗膜中の各成分の濃度(含有率)を意味し、「塗り分け」とは、反射性塗膜を上層と下層に塗り分けた本発明の塗膜仕様を示し、「単独」とは、アナターゼ型またはルチル型を各々単独で用いた単層塗膜、「混合」とは、アナターゼ型とルチル型の2種類の酸化チタンを混合して用いた単層塗膜、をそれぞれ意味する。   The results are shown in Tables 1-3. The “concentration in the coating film” in the table means the concentration (content ratio) of each component in the dry coating film, and “separation” means that the reflective coating film is separately applied to the upper layer and the lower layer. The coating specification of the present invention is shown, "single" is a single-layer coating using anatase type or rutile type alone, and "mixing" is two types of titanium oxide of anatase type and rutile type. Each single-layer coating film used by mixing is meant.

Figure 2007261192
Figure 2007261192

Figure 2007261192
Figure 2007261192

Figure 2007261192
Figure 2007261192

表1〜3からも明らかな様に、最表層側塗膜と下層側塗膜に塗り分けて複層塗膜構成とした本発明の実施例では、単独もしくは混合塗膜仕様の比較例に比べて、全反射率が高くて且つ反射率の上下差(ΔR)が小さく、均一な光反射率が得られている。なお、照明器具や液晶に用いられる光反射板として全反射率(全R)を1%高めることは、実用上極めて有益なことであり、需要者の要望に沿うものである。   As is clear from Tables 1 to 3, in the examples of the present invention in which the outermost layer side coating film and the lower layer side coating film were separately applied to form a multilayer coating film composition, compared with a comparative example of single or mixed coating film specifications. Thus, the total reflectance is high and the vertical difference (ΔR) of the reflectance is small, and a uniform light reflectance is obtained. It should be noted that increasing the total reflectivity (total R) by 1% as a light reflector used in lighting fixtures and liquid crystals is extremely useful in practice and meets the demands of consumers.

Claims (2)

2層以上の複層構造を有する光反射性塗膜で被覆された光反射性塗装金属板であって、光反射性塗膜の最表層は、実質的にアナターゼ型酸化チタンのみからなる白色顔料の含有量が30〜70質量%である第1光反射層からなり、該最表層の下層側は、実質的にルチル型酸化チタンのみからなる白色顔料の含有量が30〜70質量%である第2光反射層で構成されていることを特徴とする光反射性塗装金属板。   A light-reflecting coated metal plate coated with a light-reflecting coating film having a multilayer structure of two or more layers, wherein the outermost layer of the light-reflecting coating film is substantially composed of only anatase-type titanium oxide The content of the white pigment consisting essentially of rutile titanium oxide is 30 to 70% by mass on the lower layer side of the outermost layer. A light-reflective coated metal plate, characterized by comprising a second light-reflecting layer. 前記第1光反射層の膜厚が10〜60μmであり、前記第2光反射層の膜厚が10μm以上である請求項1に記載の光反射性塗装金属板。   2. The light-reflecting coated metal plate according to claim 1, wherein the first light reflecting layer has a thickness of 10 to 60 μm, and the second light reflecting layer has a thickness of 10 μm or more.
JP2006091813A 2006-03-29 2006-03-29 Light-reflective coated metal sheet Pending JP2007261192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006091813A JP2007261192A (en) 2006-03-29 2006-03-29 Light-reflective coated metal sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006091813A JP2007261192A (en) 2006-03-29 2006-03-29 Light-reflective coated metal sheet

Publications (1)

Publication Number Publication Date
JP2007261192A true JP2007261192A (en) 2007-10-11

Family

ID=38634647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006091813A Pending JP2007261192A (en) 2006-03-29 2006-03-29 Light-reflective coated metal sheet

Country Status (1)

Country Link
JP (1) JP2007261192A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049206A (en) * 2011-08-31 2013-03-14 Pialex Technologies Corp Multifunctional precoated steel sheet
JP2013113872A (en) * 2011-11-25 2013-06-10 Mitsubishi Plastics Inc Reflection film and reflector
US9933550B2 (en) 2008-12-03 2018-04-03 Nippon Steel & Sumitomo Metal Corporation Coated metal material and method of production of same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226024A (en) * 1997-02-18 1998-08-25 Showa Denko Kk High whiteness laminate
JP2001170553A (en) * 1999-12-20 2001-06-26 Nisshin Steel Co Ltd Inorganic coated metal plate excellent in corrosion resistance and antifoulancy, and its manufacturing method
JP2002172735A (en) * 2000-12-06 2002-06-18 Kansai Paint Co Ltd Highly diffusing reflective coated metal panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226024A (en) * 1997-02-18 1998-08-25 Showa Denko Kk High whiteness laminate
JP2001170553A (en) * 1999-12-20 2001-06-26 Nisshin Steel Co Ltd Inorganic coated metal plate excellent in corrosion resistance and antifoulancy, and its manufacturing method
JP2002172735A (en) * 2000-12-06 2002-06-18 Kansai Paint Co Ltd Highly diffusing reflective coated metal panel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9933550B2 (en) 2008-12-03 2018-04-03 Nippon Steel & Sumitomo Metal Corporation Coated metal material and method of production of same
JP2013049206A (en) * 2011-08-31 2013-03-14 Pialex Technologies Corp Multifunctional precoated steel sheet
JP2013113872A (en) * 2011-11-25 2013-06-10 Mitsubishi Plastics Inc Reflection film and reflector

Similar Documents

Publication Publication Date Title
US9933550B2 (en) Coated metal material and method of production of same
AU753724B2 (en) Wavelength selective applied films with glare control
TW200905317A (en) Light reflecting plate, method of manufacturing the same, and light reflecting device
JP2016161917A (en) Transparent heat insulating/shielding member and method for manufacturing the same
WO2014034519A1 (en) Multilayer structure and bonded structure
TW200827419A (en) Anti-UV coating composition and the use thereof
JP2006192660A (en) Coating material having high diffusion reflectivity, and its manufacturing method
TWI299419B (en) Liquid crystal cell substrate and liquid crystal displays
JP2013083722A (en) Light reflection film, method for manufacturing light reflection film and light reflector using the same
JP4962768B2 (en) Light diffusion sheet
JP2008145942A (en) Light diffusing reflective material, method of manufacturing the same, and electronic component
JP2007261192A (en) Light-reflective coated metal sheet
JP5853431B2 (en) Infrared shielding film manufacturing method
JP2008304795A (en) Light reflection plate, its manufacturing method, and light reflection device
JP2008024732A (en) Ultraviolet-absorbing coating and polyester film comprised of the same
JP4969893B2 (en) Coated substrate and method for producing the same
CN201637868U (en) High-reflectivity multi-layer coating
JP4324096B2 (en) Painted metal plate with excellent reflectivity and formability and method for producing the same
JP5024211B2 (en) High reflective metal sheet
JPWO2004097468A1 (en) Reflective sheet for liquid crystal display, manufacturing method thereof, and backlight unit using the reflective sheet
JP4685685B2 (en) Coated substrate and method for producing the same
JP2003073624A (en) Highly reflective coating material and coated metal plate
JP2017189908A (en) Precoated metal plate and method for manufacturing precoated metal plate
JP4734163B2 (en) Coated substrate and method for producing the same
JP4704794B2 (en) Highly reflective metal sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Effective date: 20101025

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

A02 Decision of refusal

Effective date: 20110705

Free format text: JAPANESE INTERMEDIATE CODE: A02