JP4734163B2 - Coated substrate and method for producing the same - Google Patents

Coated substrate and method for producing the same Download PDF

Info

Publication number
JP4734163B2
JP4734163B2 JP2006122593A JP2006122593A JP4734163B2 JP 4734163 B2 JP4734163 B2 JP 4734163B2 JP 2006122593 A JP2006122593 A JP 2006122593A JP 2006122593 A JP2006122593 A JP 2006122593A JP 4734163 B2 JP4734163 B2 JP 4734163B2
Authority
JP
Japan
Prior art keywords
layer
paint
resin
coating
pigment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006122593A
Other languages
Japanese (ja)
Other versions
JP2007290294A (en
Inventor
武寛 高橋
篤史 小室
郁也 井上
浩平 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006122593A priority Critical patent/JP4734163B2/en
Publication of JP2007290294A publication Critical patent/JP2007290294A/en
Application granted granted Critical
Publication of JP4734163B2 publication Critical patent/JP4734163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は,高い拡散反射率と密着性を有する被覆基材とその製造方法に関する。   The present invention relates to a coated substrate having high diffuse reflectance and adhesion and a method for producing the same.

照明器具,AV機器,電子機器,モバイル機器,液晶テレビ,プラズマディスプレイ等は,可視光線を発することで,周囲を明るくする,光信号を伝える,もしくは光画像を映し出す等の機能を有している。これらの機器では,反射板を設けて,この反射板に光を反射させることで,光の輝度を向上させる,光の方向を変える等を行っているものもある。そのため,反射板に光が反射したときに光量低下を避けるために,反射板表面には高い可視光線反射率が要求される。従来,反射板表面の反射率を高める手段として,金属を研磨して鏡面にする,反射率の高い白色系の塗料を塗装する等が行われていた。また,新日本製鐵(株)カタログ「ビューコート(登録商標)」には,予め白色塗料を塗布した照明器具反射板用プレコート鋼板等も公開されている。   Lighting equipment, AV equipment, electronic equipment, mobile equipment, liquid crystal televisions, plasma displays, etc. have functions such as brightening the surroundings, transmitting optical signals, or projecting optical images by emitting visible light. . Some of these devices are provided with a reflecting plate and reflect light to the reflecting plate to improve the luminance of light or change the direction of light. For this reason, in order to avoid a decrease in the amount of light when light is reflected on the reflecting plate, a high visible light reflectance is required on the reflecting plate surface. Conventionally, as means for increasing the reflectivity of the reflector surface, metal has been polished into a mirror surface, or a white paint with high reflectivity has been applied. In addition, in the catalog “View Coat (registered trademark)” of Nippon Steel Corp., a pre-coated steel plate for a reflector for a lighting fixture in which a white paint is applied in advance is also disclosed.

また,特許文献1では,基材フィルムの片表面に金属薄膜層,無機微粒子を含有する樹脂層を順次積層し,当該金属薄皮膜層がアルミニウムからなり,無機微粒子を含有する樹脂層を構成する無機微粒子の屈折率nと同層を構成する樹脂の屈折率nとがn−n≧0.4とすることで,液晶表示装置の反射板として優れた光反射フィルムの技術が開示されている。さらに,特許文献2では,液晶ディスプレイのバックパネル用として,アルミニウム板上に,樹脂100質量部に対して酸化チタン顔料150〜300質量部を含有する膜厚50〜100μmの下塗り層と,該下塗り層上に,樹脂100質量部に対して酸化チタン顔料を100〜250質量部を含有し,光沢が15以下で,且つ膜厚10〜30μmの上塗り層を形成させた液晶ディスプレイのバックパネル用の高拡散反射塗装金属板の技術が開示されている。 In Patent Document 1, a metal thin film layer and a resin layer containing inorganic fine particles are sequentially laminated on one surface of a base film, and the metal thin film layer is made of aluminum to constitute a resin layer containing inorganic fine particles. by the refractive index n b of the resin constituting the same layer and the refractive index n f of the inorganic fine particles with n f -n b ≧ 0.4, technology of excellent light reflective film as a reflector of liquid crystal display device It is disclosed. Further, in Patent Document 2, for a back panel of a liquid crystal display, an undercoat layer having a film thickness of 50 to 100 μm containing 150 to 300 parts by mass of a titanium oxide pigment with respect to 100 parts by mass of a resin on an aluminum plate, and the undercoat For a back panel of a liquid crystal display comprising 100 to 250 parts by mass of a titanium oxide pigment with respect to 100 parts by mass of a resin, and having a gloss of 15 or less and an overcoat layer having a thickness of 10 to 30 μm. Techniques for highly diffuse reflective metal sheets are disclosed.

特開平10−730号公報JP-A-10-730 特開2002−172735号公報JP 2002-172735 A

しかし,近年では,照明器具反射板や液晶ディスプレイ等の電気製品に用いる反射板は,電気製品の構造やデザインが複雑化し,これに伴い,反射板も様々な形状に成形加工して使用するニーズが高まってきている。ところが,上記の特許文献1に記載された技術のように基材にフィルムを用いた場合は,予め金属薄皮膜層や無機微粒子を含有する樹脂層を積層させたフィルムを目的の形状に成形することは困難であり,予めフィルムを目的の形状に成形した後に金属薄皮膜層や無機微粒子を含有する樹脂層を積層させる必要がある。しかしながら,反射板の成形形状が複雑な場合,加工部分で被膜を均一膜厚で積層させることが困難である。一方,特許文献2に記載された技術では,下塗り層と上塗り層をアルミニウム板上に予め塗布させた後に成形加工することはできるが,一般的なプレコート塗装ラインでの塗装では,1回で当該膜厚の下塗り層(50〜100μm)を塗装することは非常に困難であり,2回以上の重ね塗りが必要となるため,生産性が低い等の欠点があった。   However, in recent years, reflectors used in electrical appliances such as lighting fixture reflectors and liquid crystal displays have become more complex in structure and design of electrical appliances. Is growing. However, when a film is used as a substrate as in the technique described in Patent Document 1, a film in which a thin metal film layer and a resin layer containing inorganic fine particles are laminated in advance is formed into a desired shape. This is difficult, and it is necessary to laminate a thin metal film layer and a resin layer containing inorganic fine particles after the film is previously formed into a desired shape. However, when the shape of the reflecting plate is complicated, it is difficult to laminate the coating film at a uniform thickness in the processed portion. On the other hand, in the technique described in Patent Document 2, the undercoating layer and the overcoating layer can be preliminarily applied on the aluminum plate and then molded. However, in a general pre-coating line, the coating can be performed once. It is very difficult to coat the undercoat layer (50 to 100 μm) with a film thickness, and there are disadvantages such as low productivity because two or more overcoats are required.

したがって,電気製品の構造上やデザイン上の理由で,反射板を成形加工して使用しなければならないこと,反射板の生産性を考えると,特許文献1や特許文献2等に記載された反射板を使用することは困難であり,従来の予め白色塗料を塗布した照明器具反射板用プレコート鋼板等を使用しなければならなかった。   Therefore, in view of the structure and design of electrical products, the reflector must be molded and used, and considering the productivity of the reflector, the reflection described in Patent Document 1, Patent Document 2, etc. It is difficult to use a plate, and it has been necessary to use a conventional pre-coated steel plate for a reflector for a luminaire that has been previously coated with a white paint.

本発明は,上記現状に鑑み,基材に対し一般的なプレコート塗装ライン1パスの塗装により被覆層を形成することで,高い拡散反射率および密着性を有する被覆基材及びその製造方法を提供することを目的としている。   In view of the above-described situation, the present invention provides a coated base material having high diffuse reflectance and adhesion and a method for manufacturing the same by forming a coating layer on the base material by one pass of a general precoat coating line. The purpose is to do.

発明者らは,鋭意検討した結果,白色顔料をバインダーに対し非常に高い濃度で含有する層を形成する等の方法で,被覆層中に空隙を有する層を少なくとも一層形成し,被覆層内で白色顔料−バインダー界面だけではなく,白色顔料−バインダー界面より屈折率差が大きく反射率が高い白色顔料−空気界面,さらに,樹脂−空気界面でも光を反射させることで,高い拡散反射率が得ることを見出し,かつ,プライマー層に再加熱流動性樹脂を含有することで高い密着性を発現できることを見出し,かかる知見を基に本発明を完成させたものであって,本発明がその要旨とするのは以下のとおりである。   As a result of intensive studies, the inventors formed at least one layer having voids in the coating layer by a method such as forming a layer containing a white pigment at a very high concentration with respect to the binder. High diffuse reflectance is obtained by reflecting light not only at the white pigment-binder interface, but also at the white pigment-air interface and the resin-air interface, which have a higher refractive index difference and higher reflectance than the white pigment-binder interface. And has found that high adhesion can be expressed by including a reheat flowable resin in the primer layer, and has completed the present invention based on such knowledge. It is as follows.

(1) 基材の少なくとも一部に,少なくとも二層以上の複数層からなる被覆層を有し,前記被覆層は,少なくとも白色顔料を固形分体積濃度で74〜90%含有する高顔料濃度層を一層有し,前記高顔料濃度層の下層に再加熱流動性樹脂を含有するプライマー層を有することを特徴とする,被覆基材。
(2) 前記高顔料濃度層と前記プライマー層との間に,3μm以上の顔料濃度勾配がある層を有することを特徴とする,(1)記載の被覆基材。
(3) 基材の少なくとも一部に,少なくとも二層以上の複数層からなる被覆層を有し,前記被覆層は,少なくともバインダーと白色顔料とを含み,かつ,前記白色顔料を固形分体積濃度で74〜90%含有することで前記被覆層の空隙率が5vol%以上35vol%未満となる低密度層を一層有し,前記低密度層の下層に再加熱流動性樹脂を含有するプライマー層を有することを特徴とする,被覆基材。
(4) 前記低密度層と前記プライマー層との間に,3μm以上の顔料濃度勾配がある層を有することを特徴とする,(3)記載の被覆基材。
(5) 基材の少なくとも一部に,少なくとも二層以上の複数層からなる被覆層を有し,前記被覆層は,少なくともバインダーと白色顔料を含み,かつ,前記白色顔料を固形分体積濃度で74〜90%含有することで前記被覆層断面の空隙率が面積で3%以上45%未満となる低密度層を一層有し,前記低密度層の下層に再加熱流動性樹脂を含有するプライマー層を有することを特徴とする,被覆基材。
(6) 前記低密度層と前記プライマー層との間に,3μm以上の顔料濃度勾配がある層を有することを特徴とする,(5)記載の被覆基材。
(7) 上塗り層として,白色顔料を0〜35vol%含有する膜厚10μm以下の層を有することを特徴とする,(1),(3)又は(5)に記載の被覆基材。
(8) 上塗り層として,シリカ,炭酸カルシウム,硫酸バリウム,酸化亜鉛,タルクおよび樹脂ビーズからなる群より選択された少なくとも一種類を0〜80vol%含有する膜厚10μm以下の層を有することを特徴とする,(1),(3)又は(5)に記載の被覆基材。
(9) 前記基材は,金属板であることを特徴とする,(1),(3)又は(5)に記載の被覆基材。
(10) 基材表面の少なくとも一部に再加熱流動性樹脂を含有する塗料を塗装して焼き付けた後,白色顔料を固形分体積で74〜90%含有する塗料を塗装して焼き付けることを特徴とする,被覆基材の製造方法。
(11) (1)〜(9)のいずれかに記載の被覆基材を使用した電子機器。
(1) A high pigment concentration layer having at least part of a substrate and a coating layer composed of at least two or more layers, wherein the coating layer contains at least a white pigment in a solid content volume concentration of 74 to 90%. And a primer layer containing a reheat fluid resin in the lower layer of the high pigment concentration layer.
(2) The coated substrate according to (1), wherein a layer having a pigment concentration gradient of 3 μm or more is provided between the high pigment concentration layer and the primer layer.
(3) At least part of the base material has a coating layer composed of at least two or more layers, the coating layer contains at least a binder and a white pigment, and the white pigment has a solid content volume concentration. further has a low density layer porosity of the coating layer is less than 5 vol% or more 35 vol% in by containing 74 to 90%, a primer layer containing a reheat fluid resin in the lower layer of the low-density layer A coated substrate, characterized by comprising:
(4) The coated substrate according to (3), wherein a layer having a pigment concentration gradient of 3 μm or more is provided between the low density layer and the primer layer.
(5) At least part of the substrate has a coating layer composed of at least two or more layers, and the coating layer contains at least a binder and a white pigment, and the white pigment is in solid volume concentration. A primer having a low density layer in which the porosity of the cross section of the coating layer is 3% or more and less than 45% by containing 74 to 90%, and a reheat fluid resin is contained in the lower layer of the low density layer A coated substrate, characterized in that it has a layer.
(6) The coated substrate according to (5), wherein a layer having a pigment concentration gradient of 3 μm or more is provided between the low density layer and the primer layer.
(7) The coated base material according to (1), (3), or (5), wherein the overcoat layer has a layer having a thickness of 10 μm or less containing 0 to 35 vol% of a white pigment.
(8) The overcoat layer has a layer having a thickness of 10 μm or less containing 0 to 80 vol% of at least one selected from the group consisting of silica, calcium carbonate, barium sulfate, zinc oxide, talc and resin beads. The coated substrate according to (1), (3) or (5).
(9) The coated substrate according to (1), (3) or (5), wherein the substrate is a metal plate.
(10) A paint containing a reheatable fluid resin is applied and baked on at least a part of the surface of the substrate, and then a paint containing 74 to 90% of solid pigment in solid volume is applied and baked. A method for producing a coated substrate.
(11) An electronic device using the coated substrate according to any one of (1) to (9).

本発明により,比較的薄い膜厚で高い密着性と高い拡散反射率を兼ね備えた被覆基材が得られるようになった。それにより,これまで連続塗装ラインの塗装では達成できなかった高拡散反射率を,連続塗装ラインの塗装による被覆層でも達成できるようになった。その結果,高拡散反射率が求められ,白色フィルム作成しそれを貼り付けるといった二つの工程により作成したものが主に用いられていた用途の反射板についても,連続塗装ラインでの基材への直接塗装という一つの工程で製造できるようになり,工程の省略ができる。したがって,本発明は極めて産業上の価値の高い発明であると言える。   According to the present invention, it is possible to obtain a coated base material having both high adhesion and high diffuse reflectance with a relatively thin film thickness. As a result, it has become possible to achieve high diffuse reflectance that could not be achieved with a continuous coating line, even with a coating layer that has been applied to a continuous coating line. As a result, high diffuse reflectance is required, and reflectors for applications that were mainly used in two processes, such as making a white film and pasting it, can be applied to substrates in a continuous coating line. It becomes possible to manufacture in one process called direct painting, and the process can be omitted. Therefore, it can be said that the present invention is an extremely industrial invention.

以下,本発明について詳細に説明する。本発明では,白色顔料をバインダーに対し非常に高い濃度で含有する層を形成する方法で,被覆層中に空隙を有する層を少なくとも一層形成することで,被覆層内で,白色顔料−バインダー界面による反射だけではなく,白色顔料−バインダー界面より屈折率差が大きく反射率が高い白色顔料−空気界面での反射に加え,さらに樹脂−空気界面でも反射をさせることで,高い拡散反射率を得ると同時に,下層にプライマーを形成することで高い密着性を両立することに成功した。
The present invention will be described in detail below. In the present invention, the white pigment in a way that form a layer containing at very high concentrations relative to the binder, a layer having voids in the coating layer by at least one layer formed by the coating layer, the white pigment - Not only the reflection at the binder interface, but also the reflection at the white pigment-air interface, which has a higher refractive index difference than the white pigment-binder interface and has a higher reflectivity, and also reflects at the resin-air interface, resulting in a high diffuse reflectance. At the same time, we succeeded in achieving both high adhesion by forming a primer in the lower layer.

高い拡散反射率を得るには,白色顔料をバインダーに対し非常に高い濃度で含有する高顔料濃度層又は空隙を有する低密度層を少なくとも一層有する必要がある。   In order to obtain a high diffuse reflectance, it is necessary to have at least one high pigment concentration layer containing a white pigment at a very high concentration relative to the binder or a low density layer having voids.

高顔料濃度層には,白色顔料を固形分体積濃度で74〜90%含有する必要がある。白色顔料の固形分体積濃度が74%未満で十分な拡散反射率を得るためには,被覆層の厚膜化が必要になる場合があり,白色顔料の固形分体積濃度が90%超では,被覆層が脆くなり,共に取り扱いが難しくなるためである。
In the high pigment concentration layer, it is necessary to contain 74 to 90% of white pigment in solid volume concentration. For solid volume concentration of the white pigment to obtain a sufficient diffuse reflectance is less than 74%, when thickening of the coating layer needs to ing there is, solid volume concentration of the white pigment is 90% In this case, the coating layer becomes brittle and both are difficult to handle.

また,低密度層中の空隙率は,5vol%以上35vol%未満,又は,層断面の面積率で3%以上45%未満であると良い。なお,5以上35vol%未満の空隙率を有する被覆層断面をSEM(走査型電子顕微鏡)で観察すると,研磨による被覆層のダレを考慮すると,凡そ3〜45%の間に入る。空隙率が5vol%未満では,十分な拡散反射率が得るために,被覆層の厚膜化が必要になり,35vol%以上では,被覆層が脆くなり,共に取り扱いが難しくなるためである。   The porosity in the low-density layer is preferably 5 vol% or more and less than 35 vol%, or the area ratio of the layer cross section is 3% or more and less than 45%. In addition, when the cross section of the coating layer having a porosity of 5 or more and less than 35 vol% is observed with an SEM (scanning electron microscope), it takes approximately 3 to 45% in consideration of sagging of the coating layer due to polishing. This is because if the porosity is less than 5 vol%, a sufficient diffuse reflectance is obtained, so that it is necessary to increase the thickness of the coating layer, and if it is 35 vol% or more, the coating layer becomes fragile and difficult to handle.

このような空隙率を有する被覆層は,白色顔料を固形分体積濃度で74〜90%含有する組成物から形成することができる。白色顔料が理想的な球状で,隙間無く六方最密構造で並んでいる場合,白色顔料の占める体積は約74vol%である。そのため,白色顔料体積/バインダー体積が74/26より大きくなると,均一に白色顔料,バインダーが分布していたとしても,白色顔料の隙間がバインダーで満たされず,空隙が形成される。白色顔料体積/バインダー体積が74/26より大きな組成のものを溶剤で希釈して,塗料化しているものを塗布,焼き付けした場合は,塗料の状態では,白色顔料の間にバインダーと溶剤が満たされているが,焼き付け時に溶剤が揮発する過程で空隙が形成される
The coating layer having such a porosity can be formed from a composition containing 74 to 90% of a white pigment in solid content volume concentration. When white pigments are ideally spherical and are arranged in a hexagonal close-packed structure with no gaps, the volume occupied by the white pigment is about 74 vol%. Therefore, when the white pigment volume / binder volume is larger than 74/26, even if the white pigment and the binder are uniformly distributed, the gap between the white pigments is not filled with the binder, and voids are formed. When a white pigment volume / binder volume composition larger than 74/26 is diluted with a solvent, and a paint is applied and baked, the binder and solvent are filled between the white pigment in the paint state. However, voids are formed in the process of solvent volatilization during baking .

顔料として用いる白色顔料の平均粒径は,小さい方が同一体積では表面積が広くなり,反射界面が広くなることになるため,拡散反射率も高くなるが,顔料の粒径が小さくなり過ぎると,長い波長の光の透過してしまう。本発明の高い拡散反射率を有する被覆基材は,主に可視光を反射することを目的としているため,人の目の感度が高いとされている波長域の拡散反射率が高いことが重要である。人の目は,個人差はあるものの380〜780nmの波長の光を感受することができ,その感度のピークは555nm付近にある。そのため,555nmを中心とした波長の光を強く反射する必要がある。そのため,なるべく反射界面を広くし,可視光を強く反射するには,白色顔料の平均粒径を200〜400nmとすると好ましく,さらに好ましくは250〜350nmのものが良い。ここでの白色顔料の平均粒径は,確認したい部分を電子顕微鏡により10,000倍で観察し,視野中に映し出される白色顔料の内,数で粒径の小さい方から20%と大きい方から5%を除いた残りの白色顔料の粒径の相加平均値である。   The average particle size of the white pigment used as the pigment is smaller, because the surface area becomes larger at the same volume and the reflective interface becomes wider, so that the diffuse reflectance increases, but if the pigment particle size becomes too small, Long wavelength light is transmitted. Since the coated base material having a high diffuse reflectance of the present invention is mainly intended to reflect visible light, it is important that the diffuse reflectance in the wavelength region where the sensitivity of the human eye is high is high. It is. The human eye can sense light with a wavelength of 380 to 780 nm, although there are individual differences, and the peak of the sensitivity is in the vicinity of 555 nm. Therefore, it is necessary to strongly reflect light having a wavelength centered at 555 nm. Therefore, in order to make the reflection interface as wide as possible and reflect visible light strongly, the average particle diameter of the white pigment is preferably 200 to 400 nm, more preferably 250 to 350 nm. The average particle size of the white pigment is observed at 10,000 times with an electron microscope at the portion to be confirmed, and the white pigment projected in the field of view is from the smallest one with the smallest particle size to 20%. It is the arithmetic mean value of the particle size of the remaining white pigment excluding 5%.

白色顔料の成分としては,特に限定されるものでは無いが,粉末を2mm以上の厚さに押し固めたものを色彩計で測定した場合のJIS Z 8729に規格されたL値が,90以上になるものであると特に好ましく,酸化チタン,炭酸カルシウム,硫酸バリウム,酸化亜鉛,カオリン,タルク等が挙げられ,さらにこれらを混合したものでも良い。これらの白色顔料の中でも,ルチル型の酸化チタンは,屈折率が高く,白色顔料−バインダー界面における反射率を高めることができ好ましい。また,ルチル型酸化チタンに,シリカ,アルミナ,ジルコニア,酸化亜鉛,酸化アンチモン,有機物等でコーティングを施したものを使用しても良い。具体的には,一般に公知の酸化チタン,例えば,石原産業社製「タイペーク(登録商標)」シリーズ,富士チタン社製「TA」シリーズ,テイカ社製「TITANIX(登録商標)」シリーズ等を用いることができる。本発明におけるルチル型酸化チタンは,何れも同様ものを用いれば良い。なお,本発明による被覆基材は光の反射を目的としており,強い光を受けるため,アナターゼ型の酸化チタンは,光触媒活性が高く,バインダー樹脂を分解する恐れがあるので,なるべく用いない方が良い。 The component of the white pigment is not particularly limited, but the L * value specified in JIS Z 8729 is 90 or more when measured with a colorimeter after pressing the powder to a thickness of 2 mm or more. It is particularly preferable that it is a material such as titanium oxide, calcium carbonate, barium sulfate, zinc oxide, kaolin, talc, etc., and a mixture of these may be used. Among these white pigments, rutile-type titanium oxide is preferable because it has a high refractive index and can increase the reflectance at the white pigment-binder interface. Further, rutile type titanium oxide coated with silica, alumina, zirconia, zinc oxide, antimony oxide, organic matter or the like may be used. Specifically, generally known titanium oxides, for example, “Taipaque (registered trademark)” series manufactured by Ishihara Sangyo Co., Ltd., “TA” series manufactured by Fuji Titanium Co., Ltd., “TITANIX (registered trademark)” series manufactured by Teika Corporation, etc. Can do. Any rutile type titanium oxide in the present invention may be used. The coated substrate according to the present invention is intended to reflect light and receives strong light, so anatase-type titanium oxide has high photocatalytic activity and may decompose the binder resin. good.

バインダーとしては,特に限定されるものではなく,ポリエステル樹脂,ウレタン樹脂,アクリル樹脂,エポキシ樹脂,メラミン樹脂,塩化ビニル樹脂,フッ素樹脂,シリコーン樹脂等を用いることができ,有機樹脂の場合,熱可塑タイプ,熱硬化タイプのいずれのタイプであっても良い。これらの樹脂は,必要に応じて数種のものを併用しても良い。これらの樹脂は,種類,樹脂の分子量,樹脂のガラス転移温度(Tg)によっても,皮膜の性能,例えば,加工性,加工密着性,皮膜硬度等が異なるため,特に規定するものではないが,必要に応じて適宜選定する必要がある。また,架橋剤を用いて樹脂を硬化させるタイプのものは,架橋剤の種類や添加量,架橋反応時の触媒の種類や触媒添加量によっても,皮膜の性能,例えば,加工性,加工密着性,皮膜硬度等が異なるため,特に規定するものではないが,必要に応じて適宜選定する必要がある。これらの樹脂は,固体のものを熱溶融したり,有機溶剤に溶解して用いたり,粉砕して粉体にして用いることができる。また,水溶性のものや,水分散したエマルジョンタイプのものでも良い。これらは,いずれも市販のタイプのものを使用することができる。   The binder is not particularly limited, and polyester resin, urethane resin, acrylic resin, epoxy resin, melamine resin, vinyl chloride resin, fluororesin, silicone resin, and the like can be used. Either type or thermosetting type may be used. Several kinds of these resins may be used in combination as required. These resins are not particularly specified because the film performance, for example, workability, work adhesion, film hardness, etc., varies depending on the type, molecular weight of the resin, and glass transition temperature (Tg) of the resin. It is necessary to select appropriately as required. In addition, the type of resin that cures using a cross-linking agent can also improve film performance, such as processability and work adhesion, depending on the type and amount of the cross-linking agent and the type and amount of catalyst added during the cross-linking reaction. However, because the film hardness is different, it is not particularly specified, but it is necessary to select it as necessary. These resins can be used by melting a solid one by heat, dissolving it in an organic solvent, or pulverizing it into a powder. Also, water-soluble or water-dispersed emulsion types may be used. Any of these commercially available types can be used.

発明者らがこれまでに得た知見では,フッ素系樹脂を含むものであると,より反射性が向上し,より好ましい。フッ素系樹脂は,一般に公知の他の樹脂と比べて屈折率が低いため,屈折率の高い白色顔料と組み合わせるとバインダー樹脂と白色顔料との屈折率差が大きくなり,これらの界面で光がより反射し易くなる。また,光による劣化に強いと言う点でも,光を反射することを目的とする材料としては好ましい。   According to the knowledge obtained by the inventors so far, it is more preferable that the fluorine-containing resin is contained because the reflectivity is further improved. Fluorine-based resins generally have a lower refractive index than other known resins, so when combined with a white pigment with a high refractive index, the difference in refractive index between the binder resin and the white pigment increases, and more light is transmitted at these interfaces. It becomes easy to reflect. In addition, it is preferable as a material for reflecting light because it is resistant to deterioration by light.

フッ素樹脂としては,何れも特に限定されるものではないが,ポリフルオロエチレン系のポリテトラフルオロエチレン,ポリトリフルオロエチレン,ポリジフルオロエチレンや,ポリヘキサフルオロプロピレン,ポリバーフロロアルキルビニルエーテル構造を分子鎖中に持つものであれば良く,これらの構造やビニルエーテル,ビニルエステル等との共重合体であったり,アクリル樹脂をブレンドしたものであっても良い。   The fluororesins are not particularly limited, but polyfluoroethylene-based polytetrafluoroethylene, polytrifluoroethylene, polydifluoroethylene, polyhexafluoropropylene, and poly (fluoroalkyl) vinyl ether structures are molecular chains. Any material may be used as long as it is contained therein, and it may be a copolymer of these structures, vinyl ether, vinyl ester, or the like, or a blend of acrylic resin.

具体的には,旭硝子社製「ルミフロン(登録商標)」,日本ペイント社製「デュフロン(登録商標)」,3M社製「ダイオニン」,大日本インキ化学工業社製「フルオネート(登録商標)」,ダイキン社製「ゼッフル(登録商標)」,東亞合成社製「ザフロン(登録商標)」等を用いることができる。フッ化ビニリデン単独重合体の場合は,アクリル樹脂と混合して用いるのが一般的である。また,これらの樹脂は,必要に応じて一般に公知の架橋剤,例えば,イソシアネートやメラミン樹脂で架橋させても良い。イソシアネートも,一般に市販されているもの,例えば,住化バイエル社製「スミジュール(登録商標)」,「デスモジュール(登録商標)」シリーズ,三井武田ケミカル社製「タケネート(登録商標)」シリーズ等を使用することができる。メラミン樹脂も,一般に市販されているもの,例えば,三井サイテック社製「サイメル(登録商標)」,「マイコート(登録商標)」シリーズ,大日本インキ化学工業社製「ベッカミン(登録商標)」,「スーパーベッカミン(登録商標)」シリーズ等を使用することができる。   Specifically, "Lumiflon (registered trademark)" manufactured by Asahi Glass Co., Ltd., "Duflon (registered trademark)" manufactured by Nippon Paint Co., Ltd., "Dionin" manufactured by 3M Company, "Fluonate (registered trademark)" manufactured by Dainippon Ink & Chemicals, Inc. “Zephle (registered trademark)” manufactured by Daikin, “Zaflon (registered trademark)” manufactured by Toagosei Co., Ltd., and the like can be used. In the case of a vinylidene fluoride homopolymer, it is generally mixed with an acrylic resin. These resins may be crosslinked with a generally known crosslinking agent such as isocyanate or melamine resin as required. Isocyanates are also commercially available, such as “Sumijoule (registered trademark)”, “Desmodule (registered trademark)” series manufactured by Sumika Bayer, and “Takenate (registered trademark)” series manufactured by Mitsui Takeda Chemical Co., Ltd. Can be used. Melamine resins are also commercially available, for example, “Cymel (registered trademark)” manufactured by Mitsui Cytec, “My Coat (registered trademark)” series, “Beccamin (registered trademark)” manufactured by Dainippon Ink and Chemicals, The “Super Becamine (registered trademark)” series and the like can be used.

また,本発明で主樹脂とは,被覆層のバインダーとなる成分のうち質量比で50%以上であるものをいう。これらの樹脂が主成分であるかどうかは,赤外分光,核磁気共鳴スペクトル,質量分析等を組み合わせることで確認することができる。   In the present invention, the main resin means a component that is 50% or more by mass ratio among the components that serve as the binder of the coating layer. Whether these resins are the main component can be confirmed by combining infrared spectroscopy, nuclear magnetic resonance spectrum, mass spectrometry and the like.

顔料,バインダー,空隙の体積濃度は,次のようにして測定することができる。一つは,まず,測定目的の層のみを削り取る。削り取った面積A1及び深さD1から塗膜の体積V1をV1=A1×D1として求める。次に,削り取った被覆層を500℃で1時間加熱し,バインダー成分を分解させる。残った部分を顔料と考えることができる。その顔料の体積Vp1を液体に浸漬する等の方法で測定しても良いが,その質量Mp1を測定し,その顔料の一般的な密度Dp1(ルチル型酸化チタン顔料の密度は3800〜4200kg・m−3程度なので,ルチル型酸化チタン顔料の密度であれば4000kg・m−3として計算)から,Vp1=Mp1÷Dp1(kg・m−3)として求めても良い。このように求めた塗膜の体積V1,顔料の体積Vp1から,顔料の体積濃度Cp1は,Cp1=Vp1÷V1×100(vol%)として求めることができる。また,バインダーの体積も同様の方法で求めることができる。まず,削り取った被覆層の質量M1と顔料の質量Mp1からバインダーの質量Mb1をMb1=M1−Mp1と求める。バインダーの主成分を分析し,バインダー主成分の一般的な密度Db1から,バインダーの体積Vb1をVb1=Mb1÷Db1(kg・m−3)として求める。バインダーの体積濃度Cb1は,Cb1=Vb1÷V1×100(vol%)として求めることができ,空隙の濃度C1は,C1=100−(Cp1+Cb1)として求めることができる。 The volume concentration of the pigment, binder, and void can be measured as follows. First, scrape only the layer for measurement. From the scraped area A1 and depth D1, the volume V1 of the coating film is determined as V1 = A1 × D1. Next, the shaved coating layer is heated at 500 ° C. for 1 hour to decompose the binder component. The remaining part can be considered as a pigment. The volume Vp1 of the pigment may be measured by a method such as immersing in a liquid, but the mass Mp1 is measured, and the general density Dp1 of the pigment (the density of the rutile titanium oxide pigment is 3800 to 4200 kg · m since extent -3, if the density of rutile titanium oxide pigment from the calculation) as 4000 kg · m -3, or may be obtained as Vp1 = Mp1 ÷ Dp1 (kg · m -3). From the volume V1 of the coating film thus obtained and the volume Vp1 of the pigment, the volume concentration Cp1 of the pigment can be obtained as Cp1 = Vp1 ÷ V1 × 100 (vol%). Further, the volume of the binder can be obtained by the same method. First, the mass Mb1 of the binder is determined as Mb1 = M1−Mp1 from the mass M1 of the shaved coating layer and the mass Mp1 of the pigment. The main component of the binder is analyzed, and the volume Vb1 of the binder is determined as Vb1 = Mb1 / Db1 (kg · m −3 ) from the general density Db1 of the binder main component. The volume concentration Cb1 of the binder can be obtained as Cb1 = Vb1 ÷ V1 × 100 (vol%), and the void concentration C1 can be obtained as C1 = 100− (Cp1 + Cb1).

もう一つは,被覆面に対して垂直な面で被覆基材をカットし,その断面を光学顕微鏡,電子顕微鏡で被覆層の膜厚T2を確認するか,まず,被覆基材の厚さをマイクロメータで測定し,その後,被覆層を剥離して,再度,同じ場所の厚さをマイクロメータで測定し,その差から求める等の方法で確認する。次に,任意の面積A2だけ被覆層を剥離する。剥離した被覆層をるつぼで500℃,1時間加熱する。残った灰分に含まれる顔料の質量Mp2を求める。被覆層の体積V2(=A2×T2)中の顔料の体積Vp2を顔料の一般的な密度Dp2からVp2=Mp2÷Dp2(kg・m−3)として計算することができる。このように求めた被覆層の体積,顔料の体積から,被覆層全体の平均顔料の濃度Cp2は,Cp2=Vp2÷V2×100(vol%)と求めることができる。バインダー,空隙の体積濃度も先述の方法同様に求めることができる。 The other is to cut the coated substrate at a plane perpendicular to the coated surface and check the thickness T2 of the coated layer with an optical microscope or an electron microscope. Measure with a micrometer, then peel off the coating layer, and again measure the thickness at the same location with a micrometer and confirm by the method of obtaining the difference. Next, the coating layer is peeled by an arbitrary area A2. The peeled coating layer is heated in a crucible at 500 ° C. for 1 hour. The mass Mp2 of the pigment contained in the remaining ash is determined. The volume Vp2 of the pigment in the volume V2 (= A2 × T2) of the coating layer can be calculated as Vp2 = Mp2 ÷ Dp2 (kg · m −3 ) from the general density Dp2 of the pigment. From the volume of the coating layer and the volume of the pigment thus obtained, the average pigment concentration Cp2 of the entire coating layer can be obtained as Cp2 = Vp2 ÷ V2 × 100 (vol%). The volume concentration of the binder and voids can be determined in the same manner as described above.

次に,被覆層の膜厚方向の元素分布を確認する。GDS(グロー放電発光分光分析装置)や,被覆基材を被覆層断面が見えるように埋め込み研磨し,被覆層断面のEMPA(電子線マイクロアナライザ)等で確認する。この方法により,その元素分布と先に求めた平均顔料濃度,平均バインダー濃度,平均空隙濃度から,各深さ,各層における顔料・バインダー・空隙濃度及び濃度傾斜を確認することができる。   Next, the element distribution in the film thickness direction of the coating layer is confirmed. GDS (glow discharge emission spectroscopic analyzer) or a coating substrate is embedded and polished so that the cross section of the coating layer can be seen, and confirmed by EMPA (electron beam microanalyzer) etc. of the cross section of the coating layer. By this method, the depth, the pigment / binder / void density and the concentration gradient in each layer can be confirmed from the element distribution and the average pigment concentration, average binder concentration, and average void concentration obtained previously.

いずれの方法でも有機分の加熱分解による有機分と無機分の質量比の確認はTG(熱重量分析)によって行っても良い。   In any method, confirmation of the mass ratio of the organic component to the inorganic component by thermal decomposition of the organic component may be performed by TG (thermogravimetric analysis).

また,空隙濃度は次のように測定しても良い。まず,被覆基材の質量を測定する。次に,被覆基材をシリコンオイル中に浸漬し,空隙中にシリコンオイルが浸透し易いように,そのままデシケータ中で減圧する。シリコンオイルを浸透させた被覆基材の質量を測定し,空隙に浸透したシリコンオイルの質量Msを求め,それから浸透したシリコンオイルの体積Vsを調べる。高顔料濃度層又は低密度層が均一で,厚さ面積が分かっているものであれば,高顔料濃度層又は低密度層の厚さと面積から高顔料濃度層又は低密度層の体積V3を求め,(浸透したシリコンオイルの体積Vs/高顔料濃度層又は低密度層の体積V3)から空隙率を求めることができる。空隙率が連続的に変化しているものであれば,断面を電子顕微鏡で観察し,空隙が存在する厚さを確認する。その厚さと被覆層の面積から空隙を含有する被覆層の体積V4を求め,浸透したシリコンオイルの体積Vs/被覆層の体積V4から高顔料濃度層又は低密度層の平均空隙濃度C3を求める。次に,空隙を含有する厚さ内での空隙分布率を被覆層断面をSEM観察する等の方法で確認する。空隙分布と平均空隙濃度をかけることで,部分での空隙濃度,空隙濃度勾配を求めることができる。   Further, the void concentration may be measured as follows. First, the mass of the coated substrate is measured. Next, the coated substrate is immersed in silicon oil, and the pressure is reduced in a desiccator as it is so that the silicon oil can easily penetrate into the gap. The mass of the coated base material infiltrated with silicon oil is measured, the mass Ms of silicon oil that has permeated into the voids is determined, and the volume Vs of the infiltrated silicon oil is then determined. If the high pigment concentration layer or low density layer is uniform and the thickness area is known, the volume V3 of the high pigment concentration layer or low density layer is obtained from the thickness and area of the high pigment concentration layer or low density layer. , (Volume Vs of infiltrated silicone oil / volume V3 of high pigment concentration layer or low density layer), the porosity can be determined. If the porosity is continuously changing, observe the cross section with an electron microscope to confirm the thickness of the void. The volume V4 of the coating layer containing voids is obtained from the thickness and the area of the coating layer, and the average void density C3 of the high pigment concentration layer or the low density layer is obtained from the volume Vs of the permeated silicon oil / volume V4 of the coating layer. Next, the void distribution ratio within the thickness containing voids is confirmed by a method such as SEM observation of the cross section of the coating layer. By multiplying the void distribution and the average void concentration, the void concentration and void concentration gradient in the part can be obtained.

また,空隙の幅の平均値は,同様に断面を見た場合,白色顔料の平均サイズの10分の1から10倍程度である微細な空隙であると好ましい。   Further, the average value of the width of the voids is preferably a fine void that is about 1/10 to 10 times the average size of the white pigment when the cross section is similarly seen.

しかし,これら高顔料濃度層又は低密度層単独では,加工成型を施すと十分な密着性の確保が難しい場合があるが,密着性を高くすることで,加工成型が可能になり,用途が大きく広がる。ここで密着性が高いとは,JIS K 5400に規定された碁盤目法で完全に剥離する枡が一つも無い状態(評価点数が6点以上)のことを言う。   However, with these high pigment concentration layers or low density layers alone, it may be difficult to secure sufficient adhesion when processed and molded, but by increasing the adhesion, it becomes possible to process and mold the application. spread. Here, high adhesion means a state in which there is no flaw completely peeled by the cross cut method defined in JIS K 5400 (the evaluation score is 6 points or more).

密着性を高くする方法として,高顔料濃度層又は低密度層の下層に再加熱流動性樹脂を含有したプライマー層を形成することにより密着性を高めることができる。再加熱流動性樹脂をプライマー層に有すると,その柔軟性から高顔料濃度層又は低密度層にかかる応力を分散し易く,密着性が確保し易い。また,高顔料濃度層又は低密度層とプライマー層との間に顔料濃度勾配を有する部分があると高い密着性を確保し易く,さらに好ましい。高顔料濃度層又は低密度層とプライマー層との間が完全に分かれていると,その界面に応力が集中する傾向があり,その近傍で高顔料濃度層又は低密度層が破壊され,剥離が生じ易くなる恐れがある。これに対して顔料濃度勾配があると,応力の集中が起きず,高顔料濃度層又は低密度層の破壊が生じ難い。顔料濃度勾配を有する部分の厚さは,少しでもあれば全く無いものより高い密着性が確保できるので,特に限定されるものではないが,3μm以上あると応力が緩和され易く好ましい。ただし,顔料濃度勾配層があまり厚過ぎると,高顔料濃度層又は低密度層による高拡散反射率の効果が低くなってしまうため,全膜厚の3分の1程度までになるようにした方が良い。   As a method for increasing the adhesion, the adhesion can be enhanced by forming a primer layer containing a reheat fluid resin in the lower layer of the high pigment concentration layer or the low density layer. When the reheat fluid resin is included in the primer layer, the stress applied to the high pigment concentration layer or the low density layer is easily dispersed due to its flexibility, and adhesion is easily secured. Further, it is more preferable to have a portion having a pigment concentration gradient between the high pigment concentration layer or the low density layer and the primer layer, since it is easy to ensure high adhesion. When the high pigment concentration layer or the low density layer is completely separated from the primer layer, stress tends to concentrate on the interface, and the high pigment concentration layer or the low density layer is destroyed in the vicinity, and peeling occurs. There is a risk that it is likely to occur. On the other hand, when there is a pigment concentration gradient, stress concentration does not occur, and the high pigment concentration layer or the low density layer hardly breaks. The thickness of the portion having the pigment concentration gradient is not particularly limited because it can secure a higher adhesion than the one having no gradient at all, but it is preferably 3 μm or more because the stress is easily relaxed. However, if the pigment concentration gradient layer is too thick, the effect of high diffuse reflectance by the high pigment concentration layer or low density layer will be reduced, so that it should be about one third of the total film thickness. Is good.

ここで,再加熱流動性樹脂とは,一度焼き付け硬化した後も,再加熱により流動性を再発現する樹脂のことである。例えば,その樹脂で作成したフィルムの温度−弾性率曲線を取ると,樹脂が分解しない230℃で10分までの加熱であれば,再加熱してもゴム状領域を示さない。再加熱流動性樹脂としては,基本的に熱可塑性の樹脂であれば良いが,樹脂の種類としては特に限定されるものではなく,ポリエステル樹脂,ウレタン樹脂,アクリル樹脂,エポキシ樹脂,メラミン樹脂,塩化ビニル樹脂,フッ素樹脂,シリコーン樹脂等を用いることができ,これらの樹脂は,必要に応じて数種のものを併用しても良い。これらの樹脂は,種類,樹脂の分子量,樹脂のガラス転移温度(Tg)によっても,皮膜の性能,例えば,加工性,加工密着性,皮膜硬度等が異なるため,特に規定するものではないが,必要に応じて適宜選定する必要がある。また,架橋タイプの樹脂をブレンドして,再加熱時の流動性を制御しても良い。   Here, the reheat fluid resin is a resin that reappears fluidity by reheating even after being baked and cured. For example, when the temperature-elastic modulus curve of a film made of the resin is taken, if it is heated up to 10 minutes at 230 ° C. where the resin does not decompose, no rubber-like region is shown even if reheated. The reheat flowable resin may basically be a thermoplastic resin, but the type of resin is not particularly limited, and is not limited to polyester resin, urethane resin, acrylic resin, epoxy resin, melamine resin, chloride resin. A vinyl resin, a fluorine resin, a silicone resin, or the like can be used, and these resins may be used in combination of several kinds as necessary. These resins are not particularly specified because the film performance, for example, workability, work adhesion, film hardness, etc., varies depending on the type, molecular weight of the resin, and glass transition temperature (Tg) of the resin. It is necessary to select appropriately as required. Moreover, the fluidity | liquidity at the time of reheating may be controlled by blending a crosslinking type resin.

また,プライマー層によっても拡散反射率を高めたい場合は,プライマー層にも白色顔料を含有している方が好ましい。ただし,高顔料濃度層のように顔料濃度が高いと柔軟性,密着性が確保し難いので,顔料濃度は体積比で35%以下にすると良い。このときの白色顔料としては,特に限定されるものではないが,被覆層中に空隙を形成しない場合は,顔料の屈折率が拡散反射率に及ぼす影響が大きいため,ルチル型酸化チタンを使用すると好ましい。   Also, when it is desired to increase the diffuse reflectance even with the primer layer, it is preferable that the primer layer also contains a white pigment. However, if the pigment concentration is high as in the high pigment concentration layer, it is difficult to ensure flexibility and adhesion, so the pigment concentration should be 35% or less by volume. The white pigment at this time is not particularly limited. However, when no voids are formed in the coating layer, the effect of the refractive index of the pigment on the diffuse reflectance is great. preferable.

高顔料濃度層又は低密度層には,上塗り層を有していた方が好ましい。単純に高拡散反射率と言う観点のみで見るのであれば,上塗り層は必要ないが,高顔料濃度層又は低密度層は,無機リッチであるため脆く,ルチル型酸化チタン濃度が高い場合は非常に表面が汚染され易い。ここで言う汚染とは,高顔料濃度層又は低密度層の表面を金属で擦ると鉛筆で書いたように黒く着色してしまう現象のことで,これは,ルチル型酸化チタンが十分に樹脂に覆われず,硬いルチル型酸化チタンが被覆層の表面に露出されているため,金属が磨耗しているものと考えられる。上塗り層形成の目的は,高顔料濃度層又は低密度層の保護と,金属磨耗の抑制にある。そのため,上塗り層には,ルチル型酸化チタンのように硬い顔料はあまり多く混和しない方が良く,最大で体積比にして35%以下にした方が良い。膜厚については,高拡散反射率を狙った層ではないため,あまり厚い必要は無く,15μm以下程度が好ましく,特に拡散反射率が低い層を形成する場合は,高顔料濃度層又は低密度層の拡散反射率を生かすためには10μm以下にした方が良い。ただし,薄過ぎると高顔料濃度層又は低密度層の保護が十分にできないため,1μm以上はあった方が好ましく,安定した保護力を得るには3μm以上にした方が良い。   The high pigment concentration layer or the low density layer preferably has an overcoat layer. If you look only at the viewpoint of high diffuse reflectance, the topcoat layer is not necessary, but the high pigment concentration layer or low density layer is inorganic-rich and brittle, and it is extremely difficult when the rutile titanium oxide concentration is high. The surface is easily contaminated. The contamination referred to here is a phenomenon in which the surface of a high pigment concentration layer or a low density layer is colored black as written with a pencil when it is rubbed with a metal. It is considered that the metal is worn because the hard rutile titanium oxide is not covered and exposed on the surface of the coating layer. The purpose of the overcoat layer is to protect the high pigment concentration layer or the low density layer and to suppress metal wear. For this reason, it is better not to mix too much hard pigment such as rutile titanium oxide in the overcoat layer, and it is better to make the volume ratio 35% or less at maximum. The film thickness is not a layer aiming at high diffuse reflectance, so it is not necessary to be too thick, and is preferably about 15 μm or less. Particularly when a layer having low diffuse reflectance is formed, a high pigment concentration layer or a low density layer is used. In order to take advantage of the diffuse reflectance, it is better to set it to 10 μm or less. However, if it is too thin, the high pigment concentration layer or the low density layer cannot be sufficiently protected. Therefore, the thickness is preferably 1 μm or more, and 3 μm or more is preferable for obtaining a stable protective force.

もし,上塗り層に顔料を多量に混和するのであれば,顔料としてはルチル型酸化チタンよりも硬度が低いものを選択した方が良く,接触する可能性の高い金属よりモース硬度が低いものであれば,いずれも特に限定されるものではないが,シリカ,炭酸カルシウム,硫酸バリウム,酸化亜鉛,タルク,樹脂ビーズ等を用いることができる。これらの顔料であれば,固形分体積濃度で80%にしても金属磨耗による黒色の着色は殆ど起きない。   If a large amount of pigment is mixed in the overcoat layer, it is better to select a pigment that has a lower hardness than rutile titanium oxide, and a Mohs hardness that is lower than a metal that is likely to come into contact. For example, silica, calcium carbonate, barium sulfate, zinc oxide, talc, resin beads and the like can be used, although none is particularly limited. With these pigments, black coloring due to metal wear hardly occurs even if the solid content volume concentration is 80%.

また,シリカや樹脂ビーズは,上塗り層の光沢低減のために,ルチル型酸化チタンと共に混和しても良い。光沢が低いと,均一に光を反射でき好ましい。   Silica and resin beads may be mixed with rutile titanium oxide to reduce the gloss of the overcoat layer. A low gloss is preferable because it can reflect light uniformly.

上塗り層用の樹脂としては,いずれも特に限定されるものではないが,高顔料濃度層又は低密度層用の樹脂として例示したものを使用しても良い。また,高拡散反射率と言う観点だけでなく,光による劣化を防止すると言う観点からもフッ素樹脂を使用すると良い。フッ素樹脂としても特に限定されるものではないが,高顔料濃度層又は低密度層用に例示したものを使用しても良い。   The resin for the topcoat layer is not particularly limited, but those exemplified as the resin for the high pigment concentration layer or the low density layer may be used. Moreover, it is good to use a fluororesin not only from the viewpoint of high diffuse reflectance but also from the viewpoint of preventing deterioration due to light. The fluororesin is not particularly limited, but those exemplified for the high pigment concentration layer or the low density layer may be used.

本発明の密着性に優れ,高い拡散反射率を有する被覆基材は次のようにして作成することができる。基材の少なくとも一部に,プライマー層として,再加熱流動性樹脂を含有した塗料を塗装し,焼き付けする。その上に,ルチル型酸化チタンを固形分体積比にして60〜90%含有する塗料を塗装し,焼き付ける。さらに,必要に応じて上塗り層を塗装により形成する。   The coated substrate having excellent adhesion and high diffuse reflectance according to the present invention can be prepared as follows. A paint containing a reheat fluid resin is applied and baked on at least a part of the base material as a primer layer. On top of this, a paint containing rutile titanium oxide in a solid content volume ratio of 60 to 90% is applied and baked. Furthermore, if necessary, an overcoat layer is formed by painting.

通常のプライマーであれば,このような方法で複数層を積層しても,プライマー層と高顔料濃度層又は低密度層が完全に分かれてしまい,十分な密着性が確保し難いが,プライマー層に再加熱流動性樹脂を含有することで,一度は硬化したプライマー層が,高顔料濃度層又は低密度層の焼き付け時に再流動し,高顔料濃度層又は低密度層に樹脂が浸透して,高い密着性が得られる。   In the case of a normal primer, even if a plurality of layers are laminated by such a method, the primer layer and the high pigment concentration layer or the low density layer are completely separated, and it is difficult to ensure sufficient adhesion. By containing the reheat flowable resin in the primer layer, once cured, the primer layer reflows during baking of the high pigment concentration layer or the low density layer, and the resin penetrates into the high pigment concentration layer or the low density layer, High adhesion can be obtained.

塗装方法は,特に限定されるものではなく,ロール塗工,ローラーカーテン塗工,カーテンフロー塗工,エアスプレー塗工,刷毛塗り塗工,ダイコーター塗工,浸漬塗工,インクジェット塗工等の通常の方法が挙げられる。   The coating method is not particularly limited, and roll coating, roller curtain coating, curtain flow coating, air spray coating, brush coating coating, die coater coating, dip coating, ink jet coating, etc. The usual method is mentioned.

本発明の被覆基材の基材としては,いずれも特に限定されるものではないが,金属板を用いると,基材へ被覆層を形成した後に加工成型が容易であり好ましい。金属板としてもいずれも特に限定されるものではないが,鋼板,ステンレス板,アルミ板,亜鉛板,銅板,また,これらの合金板等が挙げられ,さらにこれらの金属板上にめっき処理した金属が挙げられる。この内,鋼板上にめっき処理した例として,溶融亜鉛めっき鋼板,電気亜鉛めっき鋼板,合金化溶融亜鉛めっき鋼板,アルミめっき鋼板,アルミ−亜鉛合金めっき鋼板,亜鉛−アルミ−マグネシウム合金めっき鋼板,亜鉛−アルミ−マグネシウム−シリコン合金めっき鋼板,亜鉛−マグネシウム合金めっき鋼板,錫めっき鋼板,鉛めっき鋼板,クロムめっき鋼板等の各種めっき鋼板等が挙げられる。また,これら金属板に,化成処理を施したものに処理を施すこともできる。化成処理には,一般に公知の化成処理,例えば,塗布クロメート処理,電解クロメート処理,リン酸亜鉛処理や近年開発されている6価クロムを含まないクロメートフリー処理等を使用することができる。   The base material of the coated base material of the present invention is not particularly limited, but it is preferable to use a metal plate because it is easy to form after forming the coating layer on the base material. Any of the metal plates is not particularly limited, and examples thereof include steel plates, stainless steel plates, aluminum plates, zinc plates, copper plates, and alloy plates thereof, and further, metal plated on these metal plates. Is mentioned. Of these, examples of plating treatment on steel sheets include hot dip galvanized steel sheets, electrogalvanized steel sheets, alloyed hot dip galvanized steel sheets, aluminum plated steel sheets, aluminum-zinc alloy plated steel sheets, zinc-aluminum-magnesium alloy plated steel sheets, zinc -Various plated steel sheets such as aluminum-magnesium-silicon alloy-plated steel sheet, zinc-magnesium alloy-plated steel sheet, tin-plated steel sheet, lead-plated steel sheet, and chromium-plated steel sheet. In addition, these metal plates can be subjected to chemical conversion treatment. For the chemical conversion treatment, generally known chemical conversion treatments such as coating chromate treatment, electrolytic chromate treatment, zinc phosphate treatment, and recently developed chromate-free treatment containing no hexavalent chromium can be used.

本発明による被覆基材を組み込んだ電気電子機器では,この被覆基材が可視光域で高い拡散反射率を持つため,同一光源の場合はこれまでよりも明るく,これまでより光源の数を少なくしたり,投入電力を少なくしたりしても,これまでと同等の明るさを確保することができる。このような特性を生かすことができる電気電子機器は,何れも特に限定されるものではなく,照明器具,電飾,AV機器,モバイル機器,各種ディスプレイ等が挙げられるが,液晶ディスプレイのバックライト反射板,照明反射板,内飾看板内の反射板等に用いると良い。   In electrical and electronic equipment incorporating the coated substrate according to the present invention, this coated substrate has a high diffuse reflectance in the visible light region, so that the same light source is brighter than before, and the number of light sources is smaller than before. Even if the input power is reduced, it is possible to ensure the same brightness as before. There are no particular limitations on the electrical and electronic equipment that can make use of these characteristics, and examples include lighting equipment, electrical decoration, AV equipment, mobile equipment, and various displays. It is good to use for a board, an illumination reflector, a reflector in an interior signboard, etc.

実施例に基づき,本発明をさらに説明する。
まず,評価方法について説明する。
The invention will be further described on the basis of examples.
First, the evaluation method will be described.

1) 顔料濃度
被覆基材を被覆層断面が見えるように埋め込み研磨し,それをSEMにより10,000倍で観察し,顔料濃度が最も高い層が形成されている深さを確認した。確認した深さの被覆層を一定体積削り取り,その内の樹脂分を加熱分解し,その残分を酸化チタンとし,その密度を4g/cmとして酸化チタンの体積を求め,顔料濃度を求めた。その値が60%未満であった場合は「基準未満」,60〜90%であった場合は「基準内」,90%超であった場合は「基準超」とした。
1) Pigment concentration The coated substrate was embedded and polished so that the cross section of the coating layer could be seen, and observed by SEM at 10,000 times to confirm the depth at which the layer with the highest pigment concentration was formed. A certain volume of the coating layer with the confirmed depth was scraped, the resin content therein was thermally decomposed, the remainder was titanium oxide, the density was 4 g / cm 3 , the volume of titanium oxide was determined, and the pigment concentration was determined. . When the value was less than 60%, it was “less than the reference”, when it was 60 to 90%, “within the reference”, and when it was more than 90%, it was “over the reference”.

2) 空隙率
まず,被覆基材の質量を測定し,次に,被覆基材をシリコンオイル中に浸漬し,空隙中にシリコンオイルが浸透しやすいように,そのままデシケータ中で減圧し,シリコンオイルを浸透させた被覆基材の質量を測定した。シリコンオイル浸透前後の質量差から,空隙に浸透したシリコンオイルの質量Msを求め,それから浸透したシリコンオイルの体積Vsを調べた。次に,被覆層断面を電子顕微鏡で観察し,空隙が存在する厚さを確認した。その厚さと被覆層の面積とから空隙を含有する被覆層の体積V4を求め,浸透したシリコンオイルの体積Vs/被覆層の体積V4から,高顔料濃度層または低密度層の平均空隙濃度C3を求めた。次に,断面の電子顕微鏡画像から空隙を含有する厚さ内での空隙分布率を確認し,空隙分布率と平均空隙濃度をかけることで,空隙率,空隙率勾配を求めた。この方法で求めた空隙率が5%未満であった場合は「基準未満」,5〜35%であった場合は「基準内」,35%超であった場合は「基準超」とした。
2) Porosity First, measure the mass of the coated substrate, then immerse the coated substrate in silicone oil, and reduce the pressure in a desiccator as it is so that the silicone oil can easily penetrate into the void. The mass of the coated base material impregnated with was measured. From the mass difference before and after the silicon oil permeation, the mass Ms of the silicon oil that permeated into the voids was determined, and the volume Vs of the silicon oil that permeated was examined. Next, the cross section of the coating layer was observed with an electron microscope, and the thickness at which voids existed was confirmed. The volume V4 of the coating layer containing voids is obtained from the thickness and the area of the coating layer, and the average void density C3 of the high pigment concentration layer or the low density layer is calculated from the volume Vs of the silicon oil that has penetrated / the volume V4 of the coating layer. Asked. Next, the void distribution ratio within the thickness containing voids was confirmed from the electron microscope image of the cross section, and the void ratio and void ratio gradient were obtained by multiplying the void distribution ratio and the average void concentration. When the porosity determined by this method was less than 5%, it was “less than the reference”, when it was 5 to 35%, “within the reference”, and when it was more than 35%, it was “exceeded the reference”.

3) 断面の空隙率
被覆基材を被覆層断面が見えるように埋め込み研磨し,それをSEMにより10,000倍で観察し,空隙が面積にして3%未満であったものは「基準未満」,3〜45%であったものは「基準内」,45%超であったものは「基準超」とした。
3) Porosity of the cross section The coated substrate is embedded and polished so that the cross section of the coating layer can be seen, and it is observed with a SEM at a magnification of 10,000 times. , 3-45% was "within the standard", and more than 45% was "over the standard".

4) 顔料濃度傾斜
空隙率同様にSEMにより10,000倍で被覆層断面を観察して,顔料の平面分布率が20%以上連続的に変化している部分が厚さにして3μm以上あった場合は,顔料濃度傾斜「有り」とし,3μm未満であった場合は「無し」とした。
4) Inclination of pigment concentration Similar to the void ratio, the cross section of the coating layer was observed at 10,000 times by SEM. In this case, the pigment concentration gradient was “present”, and when it was less than 3 μm, it was “not present”.

5) 拡散反射率測定
島津製作所社製の分光光度計「UV265」に,積分球反射付属装置を取り付けたものを用いた。基準板としては硫酸バリウム粉末を押し固めたものを用い,人が明るいと感じる色である緑色に対応する波長である555nmにおけるの拡散反射率を求め,95%以上の値を示したものは「○」,95%未満を値を示したものを「×」とした。
5) Diffuse reflectance measurement A spectrophotometer “UV265” manufactured by Shimadzu Corporation and equipped with an integrating sphere reflection accessory device was used. The reference plate is a compacted barium sulfate powder. The diffuse reflectance at 555 nm, the wavelength corresponding to green, which is a color that humans perceive, is obtained. “○” indicates that the value is less than 95%.

6) 照明器具の照度測定
図1に実験装置の概要を記載する。木製の箱(1)の中に市販の蛍光灯照明器具(2)を取り付け,蛍光灯(3)から30cm離れた箇所に市販の照度計(4)を設置し,照度を測定した。反射板(5)は,新日本製鐵(株)カタログ「ビューコート(登録商標)」に紹介されている白色塗料を塗布した照明器具反射板用プレコート鋼板で作成した反射板(以下,既存の反射板と称す)の照度を測定し,それに対して作製した被覆基材を用いて作成した反射板を取り付けたときの照度を測定した。そして,既存の反射板で測定した時の照度と作製した被覆基材の反射板で測定したときの照度から,照度変化率=([作製した被覆基材による反射板での照度]−[既存の反射板での照度])×100/[既存の反射板での照度]と定義し,照度変化率が15%以上の場合「○」,照度変化率が5%以上15%未満の場合「△」,照度変化率が5%未満の場合「×」として評価した。なお,本実験では,16形ランプ出力16Wの蛍光灯を用いた。
6) Illuminance measurement of lighting equipment Fig. 1 shows the outline of the experimental apparatus. A commercially available fluorescent lamp illuminator (2) was mounted in a wooden box (1), a commercially available illuminometer (4) was installed at a location 30 cm away from the fluorescent lamp (3), and the illuminance was measured. The reflector (5) is a reflector made of pre-coated steel plate for lighting fixture reflectors coated with white paint introduced in the catalog “View Coat (registered trademark)” of Nippon Steel Corporation The illuminance of the reflection plate was measured, and the illuminance when the reflection plate prepared using the coated base material was attached was measured. And, from the illuminance when measured with the existing reflector and the illuminance when measured with the reflector of the produced coated substrate, the illuminance change rate = ([illuminance on the reflector with the produced coated substrate] − [existing Illuminance at the reflector plate]) × 100 / [illuminance at the existing reflector plate], when the illuminance change rate is 15% or more, “◯”, when the illuminance change rate is 5% or more and less than 15%, “△”, when the illuminance change rate was less than 5%, it was evaluated as “x”. In this experiment, a fluorescent lamp with a 16-type lamp output of 16 W was used.

7) 密着性の評価
JIS K 5400に規格された付着性の評価試験である碁盤目法を実施し,評価点数が6点以上のものは「○」,それより低いものは「×」とした。
7) Evaluation of adhesion The cross-cut method, which is an evaluation test for adhesion according to JIS K 5400, was implemented. .

8) 加熱時樹脂物性
被覆基材の被覆層に四角くカットを入れ,それを水銀に浸漬し,基材をアマルガム化することで被覆層を基材から剥離した。被覆層の弾性率は20〜230℃までの温度依存性をRheometrics社製の粘弾性測定装置Minimat2000で測定し,ゴム状領域を示すものは「非再加熱流動型」,ゴム状領域を示さず軟化するものは「再加熱流動型」とした。
8) Resin physical properties during heating A square cut was made in the coating layer of the coated substrate, which was immersed in mercury, and the substrate was amalgamated to peel the coating layer from the substrate. The elastic modulus of the coating layer was measured by a Rheometrics viscoelasticity measuring device Minimat 2000 with a temperature dependence of 20 to 230 ° C., and the rubber-like region was shown as “non-reheated fluid type”, without showing the rubber-like region. What was softened was a “reheated fluid type”.

次に,供試材について説明する。
被覆基材の基材には,電気亜鉛めっき鋼板にクロメート処理を施したものを用いた。
Next, the test material will be explained.
As the base material of the coated base material, a galvanized steel sheet subjected to chromate treatment was used.

被覆層のバインダー樹脂には,フッ素樹脂,ポリエステル樹脂,アクリル樹脂を用いた。まず,再加熱流動性樹脂を含むクリアとして,フッ素系再加熱流動性樹脂クリア塗料1,フッ素系再加熱流動性樹脂クリア塗料2,ポリエステル系再加熱流動性樹脂クリア塗料1,ポリエステル系再加熱流動性樹脂クリア塗料2,アクリル系再加熱流動性樹脂クリア塗料1,アクリル系再加熱流動性樹脂クリア塗料2,また,非再加熱流動性樹脂として,フッ素系熱硬化樹脂クリア塗料,ポリエステル系熱硬化樹脂クリア塗料,アクリル系熱硬化樹脂クリア塗料をそれぞれ作成した。再加熱流動性樹脂は,フッ素樹脂やポリエステル樹脂,アクリル樹脂のような主樹脂に対してイソシアネートやメラミン等の架橋剤を通常より少なく混和し,主樹脂の官能基の内,架橋剤と反応しない部分が多くなるようにすることで作成した。次に,それぞれのクリア塗料の調合方法を述べる。   Fluorine resin, polyester resin, and acrylic resin were used as the binder resin for the coating layer. First, as a clear containing reheat fluid resin, fluorine reheat fluid resin clear paint 1, fluorine reheat fluid resin clear paint 2, polyester reheat fluid resin clear paint 1, polyester reheat fluid Resin clear paint 2, acrylic reheat fluid resin clear paint 1, acrylic reheat fluid resin clear paint 2, non-reheat fluid resin, fluorine thermosetting resin clear paint, polyester thermosetting Resin clear paint and acrylic thermosetting resin clear paint were prepared respectively. Reheating fluidity resin mixes less than usual crosslinking agents such as isocyanate and melamine with main resins such as fluororesin, polyester resin, and acrylic resin, and does not react with the crosslinking agent among the functional groups of the main resin. Created by increasing the number of parts. Next, the preparation method of each clear paint is described.

フッ素系熱硬化樹脂クリア塗料は,フッ素樹脂として,市販の三フッ化エチレン系樹脂である旭硝子社製「ルミフロン(登録商標)LF552」を用い,架橋剤には市販のHDI(ヘキサメチレンジイソシアネート)をベースとしたブロック化イソシアネートである住化バイエルウレタン社製「スミジュール(登録商標)BL3175」をOH:NCO=1:1等量で混合し,さらに,三井武田ケミカル社製反応触媒「TK−1」を樹脂固形質量分に対して0.05質量%添加して作成した。   Fluorine-based thermosetting resin clear paint uses “Lumiflon (registered trademark) LF552” manufactured by Asahi Glass Co., Ltd., which is a commercially available ethylene trifluoride resin as the fluorine resin, and commercially available HDI (hexamethylene diisocyanate) as the crosslinking agent. “Sumijoule (registered trademark) BL3175” manufactured by Sumika Bayer Urethane Co., Ltd., which is a blocked isocyanate, was mixed in an equivalent amount of OH: NCO = 1: 1, and further, a reaction catalyst “TK-1” manufactured by Mitsui Takeda Chemical Co., Ltd. was used. Was added at 0.05% by mass relative to the resin solid mass.

フッ素系再加熱流動性樹脂クリア塗料1は,フッ素樹脂として,市販の三フッ化エチレン系樹脂である旭硝子社製「ルミフロン(登録商標)LF552」を用い,架橋剤には市販のHDI(ヘキサメチレンジイソシアネート)をベースとしたブロック化イソシアネートである住化バイエルウレタン社製「スミジュール(登録商標)BL3175」をOH:NCO=3:1で混合し,さらに,三井武田ケミカル社製反応触媒「TK−1」を樹脂固形質量分に対して0.05質量%添加して作成した。   Fluorine-based reheat flowable resin clear coating 1 uses “Lumiflon (registered trademark) LF552” manufactured by Asahi Glass Co., Ltd., which is a commercially available ethylene trifluoride resin, as the fluororesin, and commercially available HDI (hexamethylene) as the crosslinking agent. “Sumijoule (registered trademark) BL3175” manufactured by Sumika Bayer Urethane Co., Ltd., which is a blocked isocyanate based on diisocyanate), was mixed at OH: NCO = 3: 1, and further a reaction catalyst “TK- 1 "was added to the resin solid mass to add 0.05% by mass.

フッ素系再加熱流動性樹脂クリア塗料2は,市販の三フッ化エチレン系樹脂である旭硝子社製「ルミフロン(登録商標)LF552」をそのまま用いた。   As the fluorine-based reheat flowable resin clear coating 2, “Lumiflon (registered trademark) LF552” manufactured by Asahi Glass Co., Ltd., which is a commercially available ethylene trifluoride resin, was used as it was.

ポリエステル系熱硬化樹脂クリア塗料は,ポリエステル樹脂として,市販の有機溶剤可溶型/非晶性ポリエステル樹脂である東洋紡績社製「バイロン(登録商標)GK140」を有機溶剤(ソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したもの)に溶解したものを用い,架橋剤には市販のヘキサ−メトキシ−メチル化メラミンである三井サイテック社製の「サイメル(登録商標)303」をポリエステル樹脂の固形分100質量部に対して15質量部添加し,更に,市販の酸性触媒である三井サイテック社製の「キャタリスト(登録商標)6003B」を0.5質量部添加して作成した。   Polyester-based thermosetting resin clear paint is a commercially available organic solvent-soluble / amorphous polyester resin, “Byron (registered trademark) GK140” manufactured by Toyobo Co., Ltd., and an organic solvent (Solvesso 150 and cyclohexanone). (Mixed in a mass ratio of 1: 1) and a commercially available hexa-methoxy-methylated melamine, “Cymel (registered trademark) 303” manufactured by Mitsui Cytec Co., Ltd. 15 mass parts was added with respect to 100 mass parts of solid content, and also 0.5 mass parts of "Catalyst (registered trademark) 6003B" manufactured by Mitsui Cytec Co., Ltd., which is a commercially available acidic catalyst, was added.

ポリエステル系再加熱流動性樹脂クリア塗料1は,ポリエステル樹脂として,市販の有機溶剤可溶型/非晶性ポリエステル樹脂である東洋紡績社製「バイロン(登録商標)GK140」を有機溶剤(ソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したもの)に溶解したものを用い,架橋剤には市販のヘキサ−メトキシ−メチル化メラミンである三井サイテック社製の「サイメル(登録商標)303」をポリエステル樹脂の固形分100質量部に対して3量部添加し,さらに,市販の酸性触媒である三井サイテック社製の「キャタリスト(登録商標)6003B」を0.5質量部添加して作成した。   The polyester-based reheat flowable resin clear paint 1 is a commercially available organic solvent-soluble / amorphous polyester resin “Byron (registered trademark) GK140” manufactured by Toyobo Co., Ltd. (Mixed with cyclohexanone in a mass ratio of 1: 1), and the cross-linking agent is commercially available hexa-methoxy-methylated melamine, “Cymel (registered trademark) 303” manufactured by Mitsui Cytec. 3 parts by weight was added to 100 parts by weight of the solid content of the polyester resin, and 0.5 parts by weight of “Catalyst (registered trademark) 6003B” manufactured by Mitsui Cytec Co., Ltd., which is a commercially available acid catalyst, was added. .

ポリエステル系再加熱流動性樹脂クリア塗料2は,ポリエステル樹脂として,市販の有機溶剤可溶型/非晶性ポリエステル樹脂である東洋紡績社製「バイロン(登録商標)GK140」を有機溶剤(ソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したもの)に溶解して作成した。   The polyester-based reheat flowable resin clear paint 2 is made of Toyobo Co., Ltd. “Byron (registered trademark) GK140” which is a commercially available organic solvent-soluble / amorphous polyester resin as a polyester resin. It was prepared by dissolving in cyclohexanone in a mass ratio of 1: 1).

アクリル系熱硬化樹脂クリア塗料は,アクリル樹脂として,市販のアクリル樹脂である日本触媒化学工業社製「アロセット(登録商標)5535」を用い,架橋剤には市販のヘキサメチレンジイソシアネートのイソシアヌレート体のオキシムブロック体である住友バイエルウレタン社製「デスモジュール(登録商標)BL3175」をOH:NCO=1:1等量で混合し,硬化触媒としてジブチルチンジラウレートを樹脂固形質量分に対して0.025質量%添加して作成した。   The acrylic thermosetting resin clear paint uses “Alloset (registered trademark) 5535” manufactured by Nippon Shokubai Kagaku Kogyo Co., Ltd., which is a commercially available acrylic resin, and a commercially available hexamethylene diisocyanate isocyanurate as an acrylic resin. “Desmodule (registered trademark) BL3175” manufactured by Sumitomo Bayer Urethane Co., Ltd., which is an oxime block, is mixed in an equivalent amount of OH: NCO = 1: 1, and dibutyltin dilaurate as a curing catalyst is 0.025 based on the resin solid mass. It was prepared by adding mass%.

アクリル系再加熱流動性樹脂クリア塗料1は,アクリル樹脂として,市販のアクリル樹脂である日本触媒化学工業社製「アロセット(登録商標)5535」を用い,架橋剤には市販のヘキサメチレンジイソシアネートのイソシアヌレート体のオキシムブロック体である住友バイエルウレタン社製「デスモジュール(登録商標)BL3175」をOH:NCO=3:1等量で混合し,硬化触媒としてジブチルチンジラウレートを樹脂固形質量分に対して0.025質量%添加して,作成した。   The acrylic reheat flowable resin clear paint 1 uses “Alloset (registered trademark) 5535” manufactured by Nippon Shokubai Chemical Industry Co., Ltd., which is a commercially available acrylic resin, as the acrylic resin, and a commercially available hexamethylene diisocyanate isocyanate. “Desmodur (registered trademark) BL3175” manufactured by Sumitomo Bayer Urethane Co., Ltd., which is an oxime block body, is mixed in an equivalent amount of OH: NCO = 3: 1, and dibutyltin dilaurate as a curing catalyst is added to the resin solid mass. It was prepared by adding 0.025% by mass.

アクリル系再加熱流動性樹脂クリア塗料2は,市販のアクリル樹脂である日本触媒化学工業社製「アロセット(登録商標)5535」を用いた。   As the acrylic reheat fluid resin clear coating 2, “Alloset (registered trademark) 5535” manufactured by Nippon Shokubai Chemical Industry Co., Ltd., which is a commercially available acrylic resin, was used.

白色顔料には,ルチル型酸化チタンである石原産業社製「タイペーク(登録商標)CR95」を用いた。   As the white pigment, “TYPEQUE (registered trademark) CR95” manufactured by Ishihara Sangyo Co., Ltd., which is rutile titanium oxide, was used.

その他の顔料として,シリカ(富士シリシア化学社製の「サイシリア(登録商標)」)を用いた。   Silica (“Cycilia (registered trademark)” manufactured by Fuji Silysia Chemical Ltd.) was used as another pigment.

(実施例1)
実施例1では,プライマー層は,フッ素系再加熱流動性樹脂クリア塗料1を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系熱硬化樹脂クリア塗料を用いて,固形分体積比で,ルチル型酸化チタンを75%で混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温230℃で焼き付けた。
Example 1
In Example 1, the primer layer was prepared using a fluorine-based reheat fluidity resin clear paint 1 and a primer layer solid content volume ratio of 25% rutile titanium oxide. Add a mixture of Solvesso 150 and cyclohexanone at a mass ratio of 1: 1 until it becomes, and paint the substrate with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using a polyester-based thermosetting resin clear paint, the paint is prepared by mixing rutile titanium oxide at a solid content volume ratio of 75%, and the mass ratio of Solvesso 150 and cyclohexanone until the viscosity becomes coatable. The mixture was added 1: 1, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 230 ° C.

(実施例2)
実施例2では,プライマー層は,フッ素系再加熱流動性樹脂クリア塗料2を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系熱硬化樹脂クリア塗料を用いて,塗膜固形分体積比で,ルチル型酸化チタンを75%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 2)
In Example 2, the primer layer was prepared using a fluorine-based reheat fluid resin clear paint 2 and the primer layer was mixed in a volume ratio of 25% rutile type titanium oxide to prepare a paint with a viscosity that can be applied. Add a mixture of Solvesso 150 and cyclohexanone at a mass ratio of 1: 1 until it becomes, and paint the substrate with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using a polyester-based thermosetting resin clear paint, 75% rutile type titanium oxide is blended in the coating film solids volume ratio, and the solvent is dissolved in sorbeso 150 and cyclohexanone until the viscosity becomes coatable. A mixture with a ratio of 1: 1 was added, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 230 ° C.

(実施例3)
実施例3では,プライマー層は,ポリエステル系再加熱流動性樹脂クリア塗料1を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系熱硬化樹脂クリア塗料を用いて,塗膜固形分体積比で,ルチル型酸化チタンを75%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 3)
In Example 3, the primer layer was prepared by using polyester-based reheat fluidity resin clear paint 1 and mixing the paint by mixing 25% rutile titanium oxide at a primer layer solid content volume ratio, so that the viscosity can be applied. Add a mixture of Solvesso 150 and cyclohexanone at a mass ratio of 1: 1 until it becomes, and paint the substrate with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using a polyester-based thermosetting resin clear paint, 75% rutile type titanium oxide is blended in the coating film solids volume ratio, and the solvent is dissolved in sorbeso 150 and cyclohexanone until the viscosity becomes coatable. A mixture with a ratio of 1: 1 was added, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 230 ° C.

(実施例4)
実施例4では,プライマー層は,ポリエステル系再加熱流動性樹脂クリア塗料2を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系熱硬化樹脂クリア塗料を用いて,塗膜固形分体積比で,ルチル型酸化チタンを75%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温230℃で焼き付けた。
Example 4
In Example 4, the primer layer was prepared by using polyester-based reheat fluidity resin clear paint 2 and mixing the paint by mixing 25% rutile titanium oxide at a primer layer solid content volume ratio so that the viscosity can be applied. Add a mixture of Solvesso 150 and cyclohexanone at a mass ratio of 1: 1 until it becomes, and paint the substrate with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using a polyester-based thermosetting resin clear paint, 75% rutile type titanium oxide is blended in the coating film solids volume ratio, and the solvent is dissolved in sorbeso 150 and cyclohexanone until the viscosity becomes coatable. A mixture with a ratio of 1: 1 was added, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 230 ° C.

(実施例5)
実施例5では,プライマー層は,アクリル系再加熱流動性樹脂クリア塗料1を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系熱硬化樹脂クリア塗料を用いて,塗膜固形分体積比で,ルチル型酸化チタンを75%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 5)
In Example 5, the primer layer was prepared by using an acrylic reheat fluid resin clear paint 1 and mixing the paint by mixing 25% rutile titanium oxide at a primer layer solid content volume ratio so that the viscosity can be applied. Add a mixture of Solvesso 150 and cyclohexanone at a mass ratio of 1: 1 until it becomes, and paint the substrate with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using a polyester-based thermosetting resin clear paint, 75% rutile type titanium oxide is blended in the coating film solids volume ratio, and the solvent is dissolved in sorbeso 150 and cyclohexanone until the viscosity becomes coatable. A mixture with a ratio of 1: 1 was added, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 230 ° C.

(実施例6)
実施例6では,プライマー層は,アクリル系再加熱流動性樹脂クリア塗料2を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系熱硬化樹脂クリア塗料を用いて,塗膜固形分体積比で,ルチル型酸化チタンを75%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 6)
In Example 6, the primer layer was prepared by using an acrylic reheat fluid resin clear paint 2 and mixing the paint by mixing 25% rutile titanium oxide at a primer layer solid content volume ratio so that the viscosity can be applied. Add a mixture of Solvesso 150 and cyclohexanone at a mass ratio of 1: 1 until it becomes, and paint the substrate with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using a polyester-based thermosetting resin clear paint, 75% rutile type titanium oxide is blended in the coating film solids volume ratio, and the solvent is dissolved in sorbeso 150 and cyclohexanone until the viscosity becomes coatable. A mixture with a ratio of 1: 1 was added, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 230 ° C.

(実施例7)
実施例7では,プライマー層は,フッ素系再加熱流動性樹脂クリア塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系熱硬化樹脂クリア塗料を用いて,塗膜固形分体積比で,ルチル型酸化チタンを75%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 7)
In Example 7, the primer layer was formed by coating the base material with a bar coat so that the film thickness after baking the fluorine-based reheat flowable resin clear paint was 15 μm and baking at a maximum plate temperature of 210 ° C. . Next, using a polyester-based thermosetting resin clear paint, 75% rutile type titanium oxide is blended in the coating film solids volume ratio, and the solvent is dissolved in sorbeso 150 and cyclohexanone until the viscosity becomes coatable. A mixture with a ratio of 1: 1 was added, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 230 ° C.

(実施例8)
実施例8では,プライマー層は,フッ素系再加熱流動性樹脂クリア塗料1を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,フッ素系熱硬化樹脂クリア塗料を用いて,塗膜固形分体積比で,ルチル型酸化チタンを75%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 8)
In Example 8, the primer layer was prepared using a fluorine-based reheat fluidity resin clear paint 1 and the primer layer was mixed in a volume ratio of 25% rutile type titanium oxide to prepare a paint with a viscosity that can be applied. Add a mixture of Solvesso 150 and cyclohexanone at a mass ratio of 1: 1 until it becomes, and paint the substrate with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using fluorine-based thermosetting resin clear paint, the paint is prepared by mixing 75% rutile titanium oxide at a coating film solids volume ratio. Mass of Solvesso 150 and cyclohexanone until the viscosity becomes coatable. A mixture with a ratio of 1: 1 was added, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 230 ° C.

(実施例9)
実施例9では,プライマー層は,フッ素系再加熱流動性樹脂クリア塗料1を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,アクリル系熱硬化樹脂クリア塗料を用いて,塗膜固形分体積比で,ルチル型酸化チタンを75%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温230℃で焼き付けた。
Example 9
In Example 9, the primer layer was prepared using a fluorine-based reheat fluidity resin clear paint 1 and mixed with a primer layer solid content volume ratio of 25% rutile-type titanium oxide to prepare a paint with a viscosity that can be applied. Add a mixture of Solvesso 150 and cyclohexanone at a mass ratio of 1: 1 until it becomes, and paint the substrate with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using acrylic thermosetting resin clear paint, 75% rutile-type titanium oxide is blended at a coating film solids volume ratio, and sorbeso 150 and cyclohexanone are mixed in a mass until the viscosity becomes coatable. A mixture with a ratio of 1: 1 was added, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 230 ° C.

(実施例10)
実施例10では,プライマー層は,フッ素系再加熱流動性樹脂クリア塗料1を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系再加熱流動性樹脂クリア塗料1を用い,塗膜の固形分体積比で,ルチル型酸化チタンを75%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 10)
In Example 10, the primer layer was prepared using a fluorine-based reheat fluid resin clear paint 1 and mixed with a 25% rutile-type titanium oxide at a primer layer solid content volume ratio to prepare a viscosity that can be applied. Add a mixture of Solvesso 150 and cyclohexanone at a mass ratio of 1: 1 until it becomes, and paint the substrate with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using polyester-based reheat flowable resin clear paint 1 and mixing the paint with 75% rutile titanium oxide at a solid volume ratio of the coating film, Solvesso 150 and cyclohexanone until the viscosity becomes coatable. Was added to the base material by bar coating so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 230 ° C.

(実施例11)
実施例11では,プライマー層は,フッ素系再加熱流動性樹脂クリア塗料1を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系再加熱流動性樹脂クリア塗料2を用い,塗膜の固形分体積比で,ルチル型酸化チタンを75%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 11)
In Example 11, the primer layer was prepared using a fluorine-based reheat fluidity resin clear paint 1 and the primer layer had a solid content volume ratio of 25% rutile type titanium oxide mixed to prepare a paint, so that the viscosity could be applied. Add a mixture of Solvesso 150 and cyclohexanone at a mass ratio of 1: 1 until it becomes, and paint the substrate with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using polyester-based reheat flowable resin clear paint 2 and mixing the paint with 75% rutile titanium oxide at a solid volume ratio of the coating film, solvesso 150 and cyclohexanone until the viscosity becomes coatable. Was added to the base material by bar coating so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 230 ° C.

(実施例12)
実施例12では,プライマー層は,フッ素系再加熱流動性樹脂クリア塗料1を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系熱硬化樹脂クリア塗料を用いて,塗膜固形分の体積比で,ルチル型酸化チタンを75%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に,上塗り層としてフッ素系熱硬化樹脂クリア塗料を用い,上塗り層固形分の体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 12)
In Example 12, the primer layer was prepared using a fluorine-based reheat fluidity resin clear paint 1 and mixed with a 25% rutile-type titanium oxide in a primer layer solid content volume ratio so that the viscosity can be applied. Add a mixture of Solvesso 150 and cyclohexanone at a mass ratio of 1: 1 until it becomes, and paint the substrate with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using a polyester-based thermosetting resin clear paint, 75% rutile titanium oxide is mixed in a volume ratio of the solid content of the coating, and the paint is prepared, and Solvesso 150 and cyclohexanone are mixed until the viscosity becomes coatable. A material mixed at a mass ratio of 1: 1 was added, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 210 ° C. On top of that, fluorinated thermosetting resin clear paint is used as the overcoat layer, and the paint is prepared by mixing 25% rutile titanium oxide at a volume ratio of the solid content of the overcoat layer. A mixture of cyclohexanone at a mass ratio of 1: 1 was added, the paint was applied to the substrate with a blade coater so that the film thickness after baking was 5 μm, and baked at a maximum plate temperature of 230 ° C.

(実施例13)
実施例13では,プライマー層は,フッ素系再加熱流動性樹脂クリア塗料1を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系熱硬化樹脂クリア塗料を用いて,塗膜固形分体積比で,ルチル型酸化チタンを75%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。さらに,その上に,上塗り層として,フッ素系熱硬化樹脂クリア塗料を用いて,上塗り層固形分体積比で,ルチル型酸化チタンを25%,シリカを5%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 13)
In Example 13, the primer layer was prepared using a fluorine-based reheat fluidity resin clear coating 1 and mixed with a 25% rutile-type titanium oxide in a primer layer solid content volume ratio so that the viscosity can be applied. Add a mixture of Solvesso 150 and cyclohexanone at a mass ratio of 1: 1 until it becomes, and paint the substrate with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using a polyester-based thermosetting resin clear paint, 75% rutile type titanium oxide is blended in the coating film solids volume ratio, and the solvent is dissolved in sorbeso 150 and cyclohexanone until the viscosity becomes coatable. A mixture with a ratio of 1: 1 was added, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 210 ° C. In addition, a fluorine-based thermosetting resin clear paint is used as the overcoat layer, and the paint is prepared by mixing 25% rutile titanium oxide and 5% silica in the solid content volume ratio of the overcoat layer. Add a mixture of Solvesso 150 and cyclohexanone at a mass ratio of 1: 1 until the viscosity is as high as possible, and paint the substrate with a blade coater so that the film thickness after baking is 5 μm. Bake at a temperature of 230 ° C.

(実施例14)
実施例14では,プライマー層は,フッ素系再加熱流動性樹脂クリア塗料1を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系熱硬化樹脂クリア塗料を用いて,塗膜固形分体積比で,ルチル型酸化チタンを75%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に上塗り層として,フッ素系熱硬化樹脂クリア塗料を用いて,上塗り層固形分体積比で,シリカを50%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 14)
In Example 14, the primer layer was prepared using a fluorine-based reheat fluid resin clear paint 1 and mixed with a 25% rutile-type titanium oxide in a primer layer solid content volume ratio so that the viscosity can be applied. Add a mixture of Solvesso 150 and cyclohexanone at a mass ratio of 1: 1 until it becomes, and paint the substrate with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using a polyester-based thermosetting resin clear paint, 75% rutile type titanium oxide is blended in the coating film solids volume ratio, and the solvent is dissolved in sorbeso 150 and cyclohexanone until the viscosity becomes coatable. A mixture with a ratio of 1: 1 was added, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 210 ° C. On top of that, as a top coat layer, a fluoro-thermosetting resin clear paint is used, and the paint is blended by mixing 50% of silica in a solid content volume ratio of the top coat layer. Solvesso 150 and cyclohexanone are mixed until the viscosity becomes coatable. A material mixed at a mass ratio of 1: 1 was added, and the paint was applied to the substrate with a blade coater so that the film thickness after baking was 5 μm, and baked at a maximum plate temperature of 230 ° C.

(実施例15)
実施例15では,プライマー層は,フッ素系再加熱流動性樹脂クリア塗料1を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系熱硬化樹脂クリア塗料を用いて,塗膜固形分体積比で,ルチル型酸化チタンを75%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に上塗り層として,ポリエステル系熱硬化樹脂クリア塗料を用いて,上塗り層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 15)
In Example 15, the primer layer was prepared using a fluorine-based reheat fluid resin clear paint 1 and the primer layer was mixed in a volume ratio of 25% of rutile titanium oxide to a viscosity that can be applied. Add a mixture of Solvesso 150 and cyclohexanone at a mass ratio of 1: 1 until it becomes, and paint the substrate with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using a polyester-based thermosetting resin clear paint, 75% rutile type titanium oxide is blended in the coating film solids volume ratio, and the solvent is dissolved in sorbeso 150 and cyclohexanone until the viscosity becomes coatable. A mixture with a ratio of 1: 1 was added, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 210 ° C. On top of that, as a top coat layer, a polyester thermosetting resin clear paint is used, and in a solid content volume ratio of the top coat layer, 25% of rutile type titanium oxide is mixed to prepare a paint, and Solvesso 150 is applied until the viscosity becomes coatable. A mixture of cyclohexanone at a mass ratio of 1: 1 was added, the paint was applied to the substrate with a blade coater so that the film thickness after baking was 5 μm, and baked at a maximum plate temperature of 230 ° C.

(実施例16)
実施例16では,プライマー層は,フッ素系再加熱流動性樹脂クリア塗料1を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系熱硬化樹脂クリア塗料を用いて,塗膜固形分体積比で,ルチル型酸化チタンを75%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に上塗り層として,アクリル系熱硬化樹脂クリア塗料を用いて,上塗り層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 16)
In Example 16, the primer layer was prepared using a fluorine-based reheat fluid resin clear paint 1 and mixed with a 25% rutile type titanium oxide in a primer layer solid content volume ratio so that the viscosity of the primer layer can be applied. Add a mixture of Solvesso 150 and cyclohexanone at a mass ratio of 1: 1 until it becomes, and paint the substrate with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using a polyester-based thermosetting resin clear paint, 75% rutile type titanium oxide is blended in the coating film solids volume ratio, and the solvent is dissolved in sorbeso 150 and cyclohexanone until the viscosity becomes coatable. A mixture with a ratio of 1: 1 was added, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 210 ° C. On top of that, as an overcoat layer, acrylic thermosetting resin clear paint is used, and in the topcoat layer solid content volume ratio, 25% of rutile type titanium oxide is mixed to prepare a paint, and Solvesso 150 is applied until the viscosity becomes coatable. A mixture of cyclohexanone at a mass ratio of 1: 1 was added, the paint was applied to the substrate with a blade coater so that the film thickness after baking was 5 μm, and baked at a maximum plate temperature of 230 ° C.

(実施例17)
実施例17では,プライマー層は,フッ素系再加熱流動性樹脂クリア塗料1を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系熱硬化樹脂クリア塗料を用いて,塗膜固形分体積比で,ルチル型酸化チタンを75%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に上塗り層として,フッ素系熱硬化樹脂クリア塗料を焼き付け後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 17)
In Example 17, the primer layer was prepared using a fluorine-based reheat fluid resin clear paint 1 and the primer layer was mixed in a volume ratio of 25% rutile type titanium oxide to prepare a paint with a viscosity that can be applied. Add a mixture of Solvesso 150 and cyclohexanone at a mass ratio of 1: 1 until it becomes, and paint the substrate with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using a polyester-based thermosetting resin clear paint, 75% rutile type titanium oxide is blended in the coating film solids volume ratio, and the solvent is dissolved in sorbeso 150 and cyclohexanone until the viscosity becomes coatable. A mixture with a ratio of 1: 1 was added, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 210 ° C. On top of that, as a top coat layer, a fluoro-thermosetting resin clear paint was applied to the substrate with a blade coater so that the film thickness after baking was 5 μm, and baked at a maximum plate temperature of 230 ° C.

(実施例18)
実施例18では,プライマー層は,フッ素系再加熱流動性樹脂クリア塗料1を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系熱硬化樹脂クリア塗料を用いて,塗膜固形分体積比で,ルチル型酸化チタンを75%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に上塗り層として,フッ素系熱硬化樹脂クリア塗料を用いて,上塗り層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が10μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 18)
In Example 18, the primer layer was prepared using a fluorine-based reheat fluid resin clear paint 1 and mixed with a 25% rutile type titanium oxide in a primer layer solid content volume ratio so that the viscosity of the primer layer can be applied. Add a mixture of Solvesso 150 and cyclohexanone at a mass ratio of 1: 1 until it becomes, and paint the substrate with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using a polyester-based thermosetting resin clear paint, 75% rutile type titanium oxide is blended in the coating film solids volume ratio, and the solvent is dissolved in sorbeso 150 and cyclohexanone until the viscosity becomes coatable. A mixture with a ratio of 1: 1 was added, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 210 ° C. On top of that, using a fluorine-based thermosetting resin clear paint as the top coat layer, blending the paint with 25% rutile titanium oxide at a solid content volume ratio of the top coat layer, A mixture of cyclohexanone at a mass ratio of 1: 1 was added, the paint was applied to the substrate with a blade coater so that the film thickness after baking was 10 μm, and baked at a maximum plate temperature of 230 ° C.

(実施例19
実施例19では,プライマー層は,フッ素系再加熱流動性樹脂クリア塗料1を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系熱硬化樹脂クリア塗料を用いて,塗膜固形分体積比で,ルチル型酸化チタンを90%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 19 )
In Example 19 , the primer layer was prepared using a fluorine-based reheat fluid resin clear paint 1 and the primer layer was mixed in a volume ratio of 25% rutile type titanium oxide to prepare a paint viscosity. Add a mixture of Solvesso 150 and cyclohexanone at a mass ratio of 1: 1 until it becomes, and paint the substrate with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using a polyester-based thermosetting resin clear paint, 90% rutile-type titanium oxide was blended in the coating film solids volume ratio, and sorbeso 150 and cyclohexanone were massed until the viscosity became coatable. A mixture with a ratio of 1: 1 was added, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 230 ° C.

(実施例20
実施例20では,プライマー層は,フッ素系再加熱流動性樹脂クリア塗料1を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系熱硬化樹脂クリア塗料を用いて,塗膜固形分体積比で,ルチル型酸化チタンを75%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に,上塗り層としてフッ素系熱硬化樹脂クリア塗料を用い,上塗り層固形分体積比で,ルチル型酸化チタンを35%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 20 )
In Example 20 , the primer layer was prepared using a fluorine-based reheat fluidity resin clear paint 1 and mixed with a 25% rutile-type titanium oxide in a primer layer solid content volume ratio. Add a mixture of Solvesso 150 and cyclohexanone at a mass ratio of 1: 1 until it becomes, and paint the substrate with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using a polyester-based thermosetting resin clear paint, 75% rutile type titanium oxide is blended in the coating film solids volume ratio, and the solvent is dissolved in sorbeso 150 and cyclohexanone until the viscosity becomes coatable. A mixture with a ratio of 1: 1 was added, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 210 ° C. On top of that, a fluorine-based thermosetting resin clear paint is used as the top coat layer, and the paint is prepared by mixing 35% rutile titanium oxide with a solid content volume ratio of the top coat layer, and Solvesso 150 and cyclohexanone until the viscosity becomes coatable. Was added to the base material with a blade coater so that the film thickness after baking was 5 μm and baked at a maximum plate temperature of 230 ° C.

(実施例21
実施例21では,プライマー層は,フッ素系再加熱流動性樹脂クリア塗料1を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系熱硬化樹脂クリア塗料を用いて,塗膜固形分体積比で,ルチル型酸化チタンを75%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に上塗り層として,フッ素系熱硬化樹脂クリア塗料を用いて,上塗り層固形分体積比で,シリカを80%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 21 )
In Example 21 , the primer layer was prepared using a fluorine-based reheat fluidity resin clear coating 1 and the primer layer was mixed in a volume ratio of 25% rutile-type titanium oxide so that the viscosity could be applied. Add a mixture of Solvesso 150 and cyclohexanone at a mass ratio of 1: 1 until it becomes, and paint the substrate with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using a polyester-based thermosetting resin clear paint, 75% rutile type titanium oxide is blended in the coating film solids volume ratio, and the solvent is dissolved in sorbeso 150 and cyclohexanone until the viscosity becomes coatable. A mixture with a ratio of 1: 1 was added, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 210 ° C. On top of that, as a top coat layer, fluorine-based thermosetting resin clear paint is used, and in the solid content volume ratio of the top coat layer, 80% of silica is mixed to prepare a paint, and Solvesso 150 and cyclohexanone are mixed until the viscosity becomes coatable. A material mixed at a mass ratio of 1: 1 was added, and the paint was applied to the substrate with a blade coater so that the film thickness after baking was 5 μm, and baked at a maximum plate temperature of 230 ° C.

(比較例1)
比較例1では,プライマー層は,フッ素系熱硬化性樹脂クリア塗料1を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系熱硬化樹脂クリア塗料を用いて,塗膜固形分体積比で,ルチル型酸化チタンを75%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温230℃で焼き付けた。
(Comparative Example 1)
In Comparative Example 1, the primer layer has a viscosity capable of being applied by blending 25% of rutile titanium oxide with a primer layer solid content volume ratio using the fluorine-based thermosetting resin clear paint 1 and mixing the paint. Add a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 until the coating is applied to the base material with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using a polyester-based thermosetting resin clear paint, 75% rutile type titanium oxide is blended in the coating film solids volume ratio, and the solvent is dissolved in sorbeso 150 and cyclohexanone until the viscosity becomes coatable. A mixture with a ratio of 1: 1 was added, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 230 ° C.

(比較例2)
比較例2では,プライマー層は,ポリエステル系熱硬化性樹脂クリア塗料1を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系熱硬化樹脂クリア塗料を用いて,塗膜固形分体積比で,ルチル型酸化チタンを75%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温230℃で焼き付けた。
(Comparative Example 2)
In Comparative Example 2, the primer layer is a polyester thermosetting resin clear coating 1, and the primer layer has a solid volume ratio of 25% of rutile titanium oxide mixed to prepare a coating material, which has a viscosity that can be applied. Add a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 until the coating is applied to the base material with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using a polyester-based thermosetting resin clear paint, 75% rutile type titanium oxide is blended in the coating film solids volume ratio, and the solvent is dissolved in sorbeso 150 and cyclohexanone until the viscosity becomes coatable. A mixture with a ratio of 1: 1 was added, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 230 ° C.

(比較例3)
比較例3では,プライマー層は,アクリル系熱硬化性樹脂クリア塗料1を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系熱硬化樹脂クリア塗料を用いて,塗膜固形分体積比で,ルチル型酸化チタンを75%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温230℃で焼き付けた。
(Comparative Example 3)
In Comparative Example 3, the primer layer has an acrylic thermosetting resin clear paint 1 and has a primer layer solid content volume ratio of 25% rutile titanium oxide mixed to prepare a paint and can be applied with a viscosity. Add a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 until the coating is applied to the base material with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using a polyester-based thermosetting resin clear paint, 75% rutile type titanium oxide is blended in the coating film solids volume ratio, and the solvent is dissolved in sorbeso 150 and cyclohexanone until the viscosity becomes coatable. A mixture with a ratio of 1: 1 was added, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 230 ° C.

(比較例4)
比較例4では,プライマー層は,フッ素系再加熱流動性樹脂クリア塗料1を用いて,プライマー層固形分体積比で,ルチル型酸化チタンを25%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が15μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けて形成した。次に,ポリエステル系熱硬化樹脂クリア塗料を用い,塗膜固形分体積比で,ルチル型酸化チタンを40%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加え,その塗料を焼き付け後の膜厚が30μmになるようにバーコートで基材に塗装し,最高到達板温230℃で焼き付けた。
(Comparative Example 4)
In Comparative Example 4, the primer layer was prepared using a fluorine-based reheat fluid resin clear paint 1 and the primer layer was mixed in a volume ratio of 25% rutile-type titanium oxide so that the viscosity could be applied. Add a mixture of Solvesso 150 and cyclohexanone at a mass ratio of 1: 1 until it becomes, and paint the substrate with a bar coat so that the film thickness after baking is 15 μm. Formed by baking. Next, using polyester-based thermosetting resin clear paint, the paint is blended by mixing 40% rutile titanium oxide in a volume ratio of the solid content of the paint film, and the mass ratio of Solvesso 150 and cyclohexanone until the viscosity becomes coatable. The mixture was added 1: 1, and the paint was applied to the substrate with a bar coat so that the film thickness after baking was 30 μm, and baked at a maximum plate temperature of 230 ° C.

各実施例及び比較例の拡散反射率測定結果と照明器具の照度測定結果を表1に示した。   Table 1 shows the diffuse reflectance measurement results and the illuminance measurement results of the lighting fixtures of the examples and comparative examples.

Figure 0004734163
Figure 0004734163


実施例1〜22については,いずれも基材から二層目の顔料濃度,空隙率が基準以内で,プライマー層と二層目の間に顔料濃度に傾斜がある部分が認められた。また,拡散反射率,照度,密着性についても基準以上の性能を示し,加熱時樹脂物性については,再加熱流動型の物性を示した。   In Examples 1 to 22, the pigment concentration and porosity of the second layer from the substrate were within the standard, and a portion where the pigment concentration was inclined between the primer layer and the second layer was observed. In addition, the diffuse reflectance, illuminance, and adhesion were above the standard, and the resin property during heating was a reheat fluid type.

比較例1〜3では,いずれも基材から二層目の顔料濃度,空隙率が基準以内で,プライマー層と二層目の間に顔料濃度に傾斜がある部分が認められ,拡散反射率,照度,については基準以上の性能を示したが,密着性が基準未満の性能を示し,加熱時樹脂物性については,加熱硬化型の物性を示した。   In Comparative Examples 1 to 3, the pigment concentration and porosity of the second layer from the base material are all within the standard, and there is a portion where the pigment concentration is inclined between the primer layer and the second layer, diffuse reflectance, In terms of illuminance, the performance was above the standard, but the adhesion was below the standard, and the resin properties during heating were of the thermosetting type.

比較例4については,基材から二層目の顔料濃度,空隙率が基準未満で,プライマー層と二層目の間に顔料濃度に傾斜がある部分は認められ,密着性は基準以上の性能を示したが,拡散反射率,照度,については基準未満の性能を示した。   For Comparative Example 4, the pigment concentration and porosity of the second layer from the base material were less than the standard, and there was a slope in the pigment concentration between the primer layer and the second layer, and the adhesion was a performance above the standard. However, the diffuse reflectance and illuminance were below the standard.

加熱時の樹脂の物性については,比較例4以外は,基材から二層目の層の引っ張り弾性率が低いため,プライマー層の樹脂の影響を強く受けたが,比較例4は,基材から二層目の層の引張弾性率がプライマー層よりも高かったため,その影響が強く出た。   Regarding the physical properties of the resin at the time of heating, except for Comparative Example 4, the tensile modulus of the second layer from the base material was low, so it was strongly influenced by the resin of the primer layer. Therefore, the tensile modulus of the second layer was higher than that of the primer layer.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明はかかる例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明の各実施例および比較例において使用した照度測定装置の模式図である。It is a schematic diagram of the illumination intensity measuring apparatus used in each Example and comparative example of this invention.

符号の説明Explanation of symbols

1 木の箱
2 照明器具
3 蛍光灯
4 照度計
5 反射板
DESCRIPTION OF SYMBOLS 1 Wooden box 2 Lighting fixture 3 Fluorescent lamp 4 Illuminance meter 5 Reflector

Claims (11)

基材の少なくとも一部に,少なくとも二層以上の複数層からなる被覆層を有し,
前記被覆層は,少なくとも白色顔料を固形分体積濃度で74〜90%含有する高顔料濃度層を一層有し,前記高顔料濃度層の下層に再加熱流動性樹脂を含有するプライマー層を有することを特徴とする,被覆基材。
At least part of the substrate has a coating layer composed of at least two or more layers,
The coating layer has a high pigment concentration layer containing at least 74 to 90% of a white pigment in solid content volume concentration, and a primer layer containing a reheat fluid resin under the high pigment concentration layer. A coated substrate characterized by
前記高顔料濃度層と前記プライマー層との間に,3μm以上の顔料濃度勾配がある層を有することを特徴とする,請求項1記載の被覆基材。   The coated substrate according to claim 1, further comprising a layer having a pigment concentration gradient of 3 μm or more between the high pigment concentration layer and the primer layer. 基材の少なくとも一部に,少なくとも二層以上の複数層からなる被覆層を有し,
前記被覆層は,少なくともバインダーと白色顔料とを含み,かつ,前記白色顔料を固形分体積濃度で74〜90%含有することで前記被覆層の空隙率が5vol%以上35vol%未満となる低密度層を一層有し,前記低密度層の下層に再加熱流動性樹脂を含有するプライマー層を有することを特徴とする,被覆基材。
At least part of the substrate has a coating layer composed of at least two or more layers,
The coating layer contains at least a binder and a white pigment, and contains the white pigment in a solid content volume concentration of 74 to 90%, whereby the porosity of the coating layer is 5 vol% or more and less than 35 vol%. A coated base material comprising a single layer, and a primer layer containing a reheat fluid resin under the low density layer.
前記低密度層と前記プライマー層との間に,3μm以上の顔料濃度勾配がある層を有することを特徴とする,請求項3記載の被覆基材。   The coated substrate according to claim 3, further comprising a layer having a pigment concentration gradient of 3 µm or more between the low density layer and the primer layer. 基材の少なくとも一部に,少なくとも二層以上の複数層からなる被覆層を有し,
前記被覆層は,少なくともバインダーと白色顔料を含み,かつ,前記白色顔料を固形分体積濃度で74〜90%含有することで前記被覆層断面の空隙率が面積で3%以上45%未満となる低密度層を一層有し,前記低密度層の下層に再加熱流動性樹脂を含有するプライマー層を有することを特徴とする,被覆基材。
At least part of the substrate has a coating layer composed of at least two or more layers,
The coating layer contains at least a binder and a white pigment, and contains the white pigment in a solid content volume concentration of 74 to 90%, whereby the porosity of the cross section of the coating layer is 3% or more and less than 45% in area. A coated base material comprising a low-density layer, and a primer layer containing a reheat flowable resin under the low-density layer.
前記低密度層と前記プライマー層との間に,3μm以上の顔料濃度勾配がある層を有することを特徴とする,請求項5記載の被覆基材。   The coated substrate according to claim 5, further comprising a layer having a pigment concentration gradient of 3 μm or more between the low density layer and the primer layer. 上塗り層として,白色顔料を0〜35vol%含有する膜厚10μm以下の層を有することを特徴とする,請求項1,3又は5に記載の被覆基材。   The coated base material according to claim 1, 3 or 5, wherein the overcoat layer has a layer having a thickness of 10 µm or less containing 0 to 35 vol% of a white pigment. 上塗り層として,シリカ,炭酸カルシウム,硫酸バリウム,酸化亜鉛,タルクおよび樹脂ビーズからなる群より選択された少なくとも一種類を0〜80vol%含有する膜厚10μm以下の層を有することを特徴とする,請求項1,3又は5に記載の被覆基材。   As the overcoat layer, it has a layer having a thickness of 10 μm or less containing 0 to 80 vol% of at least one selected from the group consisting of silica, calcium carbonate, barium sulfate, zinc oxide, talc and resin beads, The coated substrate according to claim 1, 3 or 5. 前記基材は,金属板であることを特徴とする,請求項1,3又は5に記載の被覆基材。   The coated substrate according to claim 1, 3 or 5, wherein the substrate is a metal plate. 基材表面の少なくとも一部に再加熱流動性樹脂を含有する塗料を塗装して焼き付けた後,白色顔料を固形分体積で74〜90%含有する塗料を塗装して焼き付けることを特徴とする,被覆基材の製造方法。 A paint containing a reheatable flowable resin is applied and baked on at least a part of the surface of the base material, and then a paint containing 74 to 90% of solid pigment in solid volume is applied and baked. A method for producing a coated substrate. 請求項1〜9のいずれかに記載の被覆基材を使用した電子機器。
The electronic device using the coating base material in any one of Claims 1-9.
JP2006122593A 2006-04-26 2006-04-26 Coated substrate and method for producing the same Active JP4734163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006122593A JP4734163B2 (en) 2006-04-26 2006-04-26 Coated substrate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006122593A JP4734163B2 (en) 2006-04-26 2006-04-26 Coated substrate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007290294A JP2007290294A (en) 2007-11-08
JP4734163B2 true JP4734163B2 (en) 2011-07-27

Family

ID=38761394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006122593A Active JP4734163B2 (en) 2006-04-26 2006-04-26 Coated substrate and method for producing the same

Country Status (1)

Country Link
JP (1) JP4734163B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7374605B2 (en) * 2019-04-08 2023-11-07 日鉄鋼板株式会社 Dressing material and method for inactivating bacteria or viruses
JP7114656B2 (en) * 2020-07-09 2022-08-08 株式会社豊田中央研究所 Exhaust gas purification catalyst

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254558A (en) * 2001-02-28 2002-09-11 Mitsubishi Kagaku Sanshi Corp Laminate
JP2002258020A (en) * 2001-02-19 2002-09-11 Three M Innovative Properties Co Reflecting sheet and reflecting film
JP2004157409A (en) * 2002-11-07 2004-06-03 Mitsui Chemicals Inc Reflector, illuminator and display device using the same
WO2004076172A1 (en) * 2003-02-25 2004-09-10 Nippon Steel Corporation Precoated metal plate for reflection plate
JP2004358743A (en) * 2003-06-03 2004-12-24 Nippon Steel Corp High gloss precoated metal sheet having excellent corrosion resistance in processed part
JP2005316158A (en) * 2004-04-28 2005-11-10 Nippon Steel Corp Visible light reflection plate, and electric and electronic equipment incorporating the same
JP2006330488A (en) * 2005-05-27 2006-12-07 Asahi Glass Co Ltd Liquid crystal display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07308988A (en) * 1994-05-19 1995-11-28 Nippon Steel Corp Organic coating metal plate with adhesive properties
JP3901775B2 (en) * 1996-12-10 2007-04-04 三菱製紙株式会社 Light reflection sheet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002258020A (en) * 2001-02-19 2002-09-11 Three M Innovative Properties Co Reflecting sheet and reflecting film
JP2002254558A (en) * 2001-02-28 2002-09-11 Mitsubishi Kagaku Sanshi Corp Laminate
JP2004157409A (en) * 2002-11-07 2004-06-03 Mitsui Chemicals Inc Reflector, illuminator and display device using the same
WO2004076172A1 (en) * 2003-02-25 2004-09-10 Nippon Steel Corporation Precoated metal plate for reflection plate
WO2004076173A1 (en) * 2003-02-25 2004-09-10 Nippon Steel Corporation Reflector-use precoat metal plate
JP2004358743A (en) * 2003-06-03 2004-12-24 Nippon Steel Corp High gloss precoated metal sheet having excellent corrosion resistance in processed part
JP2005316158A (en) * 2004-04-28 2005-11-10 Nippon Steel Corp Visible light reflection plate, and electric and electronic equipment incorporating the same
JP2006330488A (en) * 2005-05-27 2006-12-07 Asahi Glass Co Ltd Liquid crystal display device

Also Published As

Publication number Publication date
JP2007290294A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
TWI252162B (en) Precoated metal sheet for light reflectors
US9933550B2 (en) Coated metal material and method of production of same
JP4616651B2 (en) Coating material having high diffuse reflectance and method for producing the same
JP2008145942A (en) Light diffusing reflective material, method of manufacturing the same, and electronic component
JP4969893B2 (en) Coated substrate and method for producing the same
JP4897109B2 (en) Painted metal and its manufacturing method
JP5384928B2 (en) Paint for coated metal plate, painted metal plate and method for producing painted metal plate
JP4734163B2 (en) Coated substrate and method for producing the same
JP4685685B2 (en) Coated substrate and method for producing the same
JP2005157296A (en) Reflection member of surface light source and manufacturing method and use thereof
JP4324096B2 (en) Painted metal plate with excellent reflectivity and formability and method for producing the same
JP5906226B2 (en) Paint for coated metal plate, painted metal plate and method for producing painted metal plate
JP2006258849A (en) Resin coated metallic plate superior in light reflectivity
JP2007290293A (en) Coated base material having high diffusion reflectivity and its manufacturing method
CN100528551C (en) Reflector-use precoat metal plate
JP5195689B2 (en) Painted metal plate
JP2006264120A (en) Coated white metal sheet having high light reflection property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4734163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350