JP2007260769A - Method for manufacturing side material, method for manufacturing clad material for heat exchanger, and clad material for heat exchanger - Google Patents

Method for manufacturing side material, method for manufacturing clad material for heat exchanger, and clad material for heat exchanger Download PDF

Info

Publication number
JP2007260769A
JP2007260769A JP2006182869A JP2006182869A JP2007260769A JP 2007260769 A JP2007260769 A JP 2007260769A JP 2006182869 A JP2006182869 A JP 2006182869A JP 2006182869 A JP2006182869 A JP 2006182869A JP 2007260769 A JP2007260769 A JP 2007260769A
Authority
JP
Japan
Prior art keywords
side material
manufacturing
clad
heat exchanger
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006182869A
Other languages
Japanese (ja)
Other versions
JP4077850B2 (en
Inventor
Takashi Inaba
隆 稲葉
Akihiro Tsuruno
招弘 鶴野
Toshiki Ueda
利樹 植田
Yoshinori Kato
良則 加藤
Fumihiro Koshigoe
史浩 腰越
Tomohiro Nishimura
友宏 西村
Masaki Tanigawa
正樹 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006182869A priority Critical patent/JP4077850B2/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to EP11006623.0A priority patent/EP2418039B1/en
Priority to HUE11006623A priority patent/HUE030853T2/en
Priority to CA2630296A priority patent/CA2630296C/en
Priority to US12/095,983 priority patent/US8091612B2/en
Priority to BRPI0620033-8A priority patent/BRPI0620033B1/en
Priority to EP11006622.2A priority patent/EP2428305B1/en
Priority to PCT/JP2006/324429 priority patent/WO2007066714A1/en
Priority to EP06834184A priority patent/EP1992441B8/en
Priority to MX2008007376A priority patent/MX2008007376A/en
Priority to EP11006624.8A priority patent/EP2428306B1/en
Priority to MX2012010153A priority patent/MX344820B/en
Priority to MX2012010154A priority patent/MX342649B/en
Priority to CN200680040182.9A priority patent/CN101296774B/en
Priority to HUE11006624A priority patent/HUE026137T2/en
Priority to KR1020087013753A priority patent/KR101016146B1/en
Priority to MX2012010152A priority patent/MX342650B/en
Priority to BR122013031786-4A priority patent/BR122013031786B1/en
Priority to AU2006323722A priority patent/AU2006323722A1/en
Priority to RU2008127879/02A priority patent/RU2388583C2/en
Priority to HUE11006622A priority patent/HUE026886T2/en
Publication of JP2007260769A publication Critical patent/JP2007260769A/en
Application granted granted Critical
Publication of JP4077850B2 publication Critical patent/JP4077850B2/en
Priority to NO20082931A priority patent/NO340462B1/en
Priority to US13/160,884 priority patent/US8210237B2/en
Priority to US13/160,966 priority patent/US8381797B2/en
Priority to US13/239,540 priority patent/US8191609B2/en
Priority to US13/671,065 priority patent/US20130065080A1/en
Priority to NO20170220A priority patent/NO342887B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a side material used for a clad material which is employed in a heat exchanger and excellent in productivity and corrosion resistance, whose side material member is easy to control its surface condition and flatness, and in which adhesion failure is hard to occur, to provide a method for manufacturing a clad material employed in a heat exchanger, and to provide a clad material employed in a heat exchanger. <P>SOLUTION: In a method for manufacturing a side material used for a clad material, which is employed in a heat exchanger and consists of a core material and side materials forming one or more layers superimposed on one or both sides of the core material, at least one layer of the side materials is made of a metal having a constituent composition different from that of the core material. The method includes a melting step of melting a metal for side material, a casting step of casting the metal melted in the melting step to make an ingot for side material, and a slicing step of slicing the ingot to a predetermined thickness, which steps are performed in this order. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、クラッド材、特に、自動車等の熱交換器に用いられる熱交換器用クラッド材(ブレージングシート)に使用される側材の製造方法、熱交換器用クラッド材の製造方法および熱交換器用クラッド材に関する。   The present invention relates to a clad material, in particular, a method for producing a side material used in a clad material for a heat exchanger (brazing sheet) used in a heat exchanger of an automobile or the like, a method for producing a clad material for a heat exchanger, and a clad for a heat exchanger Regarding materials.

一般に、自動車用のインタークーラー、オイルクーラー、ラジエーター、コンデンサー、エバポレーター、ヒーターコア等に用いられる熱交換器用クラッド材は、側材が圧延されて使用されている。
例えば、特許文献1には、従来の一般的な熱交換器用クラッド材の製造方法が以下のように記載されている。まず、芯材用アルミニウム合金、側材(特許文献1では、犠牲陽極材およびろう材)用アルミニウム合金を連続鋳造により溶解、鋳造し、必要に応じて均質化熱処理する。また、側材用アルミニウム合金の鋳塊については、それぞれ所定厚さまで熱間圧延する(図6のS11a、S11b参照、均質化熱処理は均熱と記載する)。ついで、芯材用アルミニウム合金鋳塊(芯材)と、側材用熱間圧延板(側材)を重ね合わせて(図6のS12参照)、常法に従って熱間圧延(クラッド熱延、図6のS13参照)によりクラッド材とする。
特開2005−232507号公報(段落0037、0039、0040)
Generally, a clad material for a heat exchanger used for an intercooler, an oil cooler, a radiator, a condenser, an evaporator, a heater core or the like for an automobile is used by rolling a side material.
For example, Patent Document 1 describes a conventional method for producing a conventional clad material for a heat exchanger as follows. First, an aluminum alloy for a core material and an aluminum alloy for a side material (a sacrificial anode material and a brazing material in Patent Document 1) are melted and cast by continuous casting, and subjected to a homogenization heat treatment as necessary. The ingots of the side material aluminum alloy are each hot-rolled to a predetermined thickness (see S11a and S11b in FIG. 6, and the homogenization heat treatment is described as soaking). Next, the aluminum alloy ingot for the core material (core material) and the hot rolled plate for the side material (side material) are overlapped (see S12 in FIG. 6), and hot rolled (clad hot rolling, FIG. 6 (see S13).
Japanese Patent Laying-Open No. 2005-232507 (paragraphs 0037, 0039, 0040)

しかし、このような従来の一般的なクラッド材の製造方法においては、以下に示す問題があった。
(1)側材として熱間圧延板を使用するため、クラッド材の製造工程が多く、また、熱間圧延の回数が多くなり、生産性が低下するという問題があった。
However, such a conventional general clad material manufacturing method has the following problems.
(1) Since a hot-rolled sheet is used as the side material, there are many manufacturing processes for the clad material, and the number of hot rolling operations is increased, resulting in a decrease in productivity.

(2)芯材用鋳塊はフライス盤等により面削処理されることが多く、その表面は面削加工面である。一方、側材用熱間圧延板は、圧延方向に沿って生じる圧延目が形成されたロール加工面である。したがって、芯材用鋳塊と、側材用熱間圧延板とでは、その表面状態が異なり、両者を重ね合わせてクラッド熱延した際に、芯材と側材との密着不良が生じやすいという問題があった。そして、芯材と側材の密着性を向上させるためには、クラッド熱延において軽圧下での多パス圧延が必要となり、クラッド熱延での生産性が低下することとなる。   (2) The core ingot is often chamfered by a milling machine or the like, and its surface is a chamfered surface. On the other hand, the hot rolled sheet for a side material is a roll processed surface on which rolling marks generated along the rolling direction are formed. Therefore, the ingot for the core material and the hot-rolled sheet for the side material have different surface states, and when the two are overlapped and clad hot rolled, the adhesion between the core material and the side material is likely to occur. There was a problem. And in order to improve the adhesiveness of a core material and a side material, the multipass rolling under a light pressure is needed in a clad hot rolling, and the productivity in a clad hot rolling will fall.

(3)側材として熱間圧延板を使用すると、圧延板の表面状態および平坦度(特に長手方向の平坦度)の制御は圧延ロールのみで行うことになり、また、熱間圧延により圧延板表面に厚い酸化皮膜が形成されるため、表面状態および平坦度の制御が困難であり、芯材と側材との密着不良が防止できないという問題があった。   (3) When a hot rolled sheet is used as a side material, the surface state and flatness of the rolled sheet (particularly the flatness in the longitudinal direction) are controlled only by the rolling roll. Since a thick oxide film is formed on the surface, it is difficult to control the surface state and flatness, and there is a problem that poor adhesion between the core material and the side material cannot be prevented.

(4)芯材と側材との密着不良が生じると、クラッド材の生産性の低下の問題と共に、所定のクラッド率が得られないという問題、合わせてフクレなどの品質異常が発生するという品質低下の問題、さらには、密着不良によって耐食性が低下するという問題も発生する。   (4) The quality that when a poor adhesion between the core material and the side material occurs, the productivity of the clad material decreases, the problem that the predetermined clad rate cannot be obtained, and the quality abnormality such as blistering occurs. The problem of a reduction | decrease and also the problem that corrosion resistance falls by adhesion failure occur also.

本発明は、前記課題に鑑みてなされたものであり、その目的は、生産性に優れ、側材の表面状態および平坦度の制御が容易であり、密着不良が生じにくく、耐食性に優れた熱交換器用クラッド材に使用される側材の製造方法、熱交換器用クラッド材の製造方法および熱交換器用クラッド材を提供することにある。   The present invention has been made in view of the above problems, and its purpose is excellent in productivity, easy control of the surface state and flatness of the side material, less likely to cause poor adhesion, and excellent in corrosion resistance. An object of the present invention is to provide a method for producing a side material used for a clad material for an exchanger, a method for producing a clad material for a heat exchanger, and a clad material for a heat exchanger.

前記課題を解決するため、請求項1の側材の製造方法は、芯材とその片面または両面に重ね合わされた1層以上の側材とからなる熱交換器用クラッド材に使用される前記側材の製造方法であって、前記側材の少なくとも1層が、前記芯材とは成分組成の異なる側材用金属であり、その側材用金属を溶解する溶解工程と、前記溶解工程で溶解された側材用金属を鋳造して側材用鋳塊を製造する鋳造工程と、前記側材用鋳塊を所定厚さにスライスするスライス工程とをこの順に行うことを特徴とする。   In order to solve the above-mentioned problem, the method for producing a side material according to claim 1 is characterized in that the side material used for a clad material for a heat exchanger comprising a core material and one or more side materials superimposed on one or both sides thereof. The at least one layer of the side material is a metal for a side material having a component composition different from that of the core material, and is dissolved in the melting step for dissolving the metal for the side material, and the melting step. A casting process for producing a side material ingot by casting the side material metal and a slicing process for slicing the side material ingot to a predetermined thickness are performed in this order.

このような製造方法によれば、側材用部材としてスライスした側材を使用するため、従来のクラッド材のように熱間圧延によって側材用部材の厚さを減少させる必要がなくなる。これにより、従来に比べて熱間圧延の回数が減少し、作業工程の省略化を図ることができると共に表面状態および平坦度を容易に制御でき、酸化皮膜厚が減少する。   According to such a manufacturing method, since the sliced side material is used as the side material member, it is not necessary to reduce the thickness of the side material member by hot rolling as in the conventional clad material. As a result, the number of hot rolling operations can be reduced as compared with the prior art, the work process can be omitted, the surface state and the flatness can be easily controlled, and the oxide film thickness is reduced.

請求項2の側材の製造方法は、前記スライス工程において、前記側材用鋳塊を、水平に設置されている当該側材用鋳塊の設置面に対し平行にスライスすることを特徴とする。
このような製造方法によれば、スライスの際に生じる切断塊(スライス塊)の自重、形状による変位(例えば、切断塊が倒れようとする力等)の影響が極小化され、スライスされた側材の平坦性が向上し、芯材との密着性が向上する。また、圧着性が向上し、圧着パス数が減少する。
The method for manufacturing a side material according to claim 2 is characterized in that, in the slicing step, the ingot for side material is sliced in parallel with the installation surface of the ingot for side material installed horizontally. .
According to such a manufacturing method, the influence of the weight of the cut lump (slice lump) generated during slicing and displacement due to the shape (for example, the force that the cut lump tries to collapse) is minimized, and the sliced side The flatness of the material is improved, and the adhesion with the core material is improved. In addition, the crimping performance is improved and the number of crimping passes is reduced.

請求項3の側材の製造方法は、前記鋳造工程の後で、かつ、前記スライス工程の前に、鋳造された側材用鋳塊に、更に均質化熱処理を行うことを特徴とする。
このような製造方法によれば、側材用鋳塊の内部応力が除去され、スライスされた側材の平坦性が向上し、芯材との密着性が向上する。また、圧着性が向上し、圧着パス数が減少する。
The method for manufacturing a side material according to claim 3 is characterized in that a homogenized heat treatment is further performed on the cast side material ingot after the casting step and before the slicing step.
According to such a manufacturing method, the internal stress of the side material ingot is removed, the flatness of the sliced side material is improved, and the adhesion with the core material is improved. In addition, the crimping performance is improved and the number of crimping passes is reduced.

請求項4の側材の製造方法は、前記スライス工程の後に、スライスされた所定厚さの側材の表面に、更に表面平滑化処理を行うことを特徴とする。
このような製造方法によれば、側材の表面状態および平坦性が向上し、芯材との密着性が向上する。また、圧着性が向上し、圧着パス数が減少する。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a side material, wherein after the slicing step, a surface smoothing process is further performed on the surface of the sliced side material having a predetermined thickness.
According to such a manufacturing method, the surface state and flatness of the side material are improved, and the adhesion with the core material is improved. In addition, the crimping performance is improved and the number of crimping passes is reduced.

請求項5の側材の製造方法は、前記表面平滑化処理を、切削法、研削法および研磨法から選択された1種以上の方法で行うことを特徴とする。
このような製造方法によれば、側材の表面状態および平坦性が向上し、芯材との密着性が向上する。また、圧着性が向上し、圧着パス数が減少する。
The side material manufacturing method according to claim 5 is characterized in that the surface smoothing treatment is performed by one or more methods selected from a cutting method, a grinding method and a polishing method.
According to such a manufacturing method, the surface state and flatness of the side material are improved, and the adhesion with the core material is improved. In addition, the crimping performance is improved and the number of crimping passes is reduced.

請求項6の側材の製造方法は、前記側材の少なくとも1層が、長手方向1m当たりの平坦度が1mm以下であることを特徴とする。
このような製造方法によれば、平坦度を所定値以下に制御することで、平坦性がより向上し、芯材との密着性がより向上する。また、圧着性がより向上し、圧着パス数が減少する。
The method for producing a side material according to claim 6 is characterized in that at least one layer of the side material has a flatness of 1 mm or less per 1 m in the longitudinal direction.
According to such a manufacturing method, by controlling the flatness to a predetermined value or less, the flatness is further improved and the adhesion with the core material is further improved. In addition, the crimping performance is further improved, and the number of crimping passes is reduced.

請求項7の側材の製造方法は、前記側材の少なくとも1層が、表面粗度が算術平均粗さ(Ra)で0.05〜1.0μmの範囲であることを特徴とする。
このような製造方法によれば、芯材や各側材との間に隙間が形成されにくく、密着性および圧着性がさらに向上する。
The method for producing a side material according to claim 7 is characterized in that at least one layer of the side material has a surface roughness in a range of 0.05 to 1.0 μm in terms of arithmetic average roughness (Ra).
According to such a manufacturing method, it is difficult to form a gap between the core material and each side material, and adhesion and pressure-bonding properties are further improved.

請求項8の側材の製造方法は、前記側材の少なくとも1層が、厚さが10〜250mmであることを特徴とする。
このような製造方法によれば、側材の厚さを特定の範囲に規定することにより、熱交換器用クラッド材のクラッド率が適切に調整される。
The method for manufacturing a side material according to claim 8 is characterized in that at least one layer of the side material has a thickness of 10 to 250 mm.
According to such a manufacturing method, the clad rate of the heat exchanger clad material is appropriately adjusted by defining the thickness of the side material within a specific range.

請求項9の熱交換器用クラッド材の製造方法は、前記記載の製造方法で製造された側材と、前記側材を重ね合わせるための芯材とを準備する準備工程と、前記芯材および前記側材を所定配置に重ね合わせて重ね合わせ材を製造する重ね合わせ工程と、前記重ね合わせ材に均質化熱処理を行う均質化熱処理工程と、前記均質化熱処理工程の後に熱間圧延を行う熱間圧延工程と、前記熱間圧延工程の後に冷間圧延を行う冷間圧延工程とを含むことを特徴とする。   The manufacturing method of the clad material for heat exchangers according to claim 9 includes a preparation step of preparing a side material manufactured by the manufacturing method described above and a core material for superposing the side material, the core material, and the core material A superposition process for manufacturing a superposition material by superposing side materials in a predetermined arrangement, a homogenization heat treatment process for subjecting the superposition material to a homogenization heat treatment, and a hot for performing hot rolling after the homogenization heat treatment process It includes a rolling process and a cold rolling process in which cold rolling is performed after the hot rolling process.

このような製造方法によれば、側材の表面状態および平坦度を容易に制御できるため、芯材に側材を重ね合わせる際に、密着性および圧着性が向上する。そのため、熱間圧延工程において、圧着パス数を減らすことができ、歩留り、生産性が向上する。また、芯材や各側材との間に隙間が形成されにくいため、耐食性が向上する。   According to such a manufacturing method, since the surface state and flatness of the side material can be easily controlled, adhesion and pressure-bonding properties are improved when the side material is superimposed on the core material. Therefore, the number of crimping passes can be reduced in the hot rolling process, and the yield and productivity are improved. Moreover, since a gap is not easily formed between the core material and each side material, the corrosion resistance is improved.

請求項10の熱交換器用クラッド材は、前記の製造方法によって製造されたことを特徴とする。
このような熱交換器用クラッド材によれば、芯材と各側材との密着性および圧着性が向上し、また、芯材や各側材との間に隙間が形成されにくいため、耐食性が向上する。
The clad material for a heat exchanger according to claim 10 is manufactured by the above manufacturing method.
According to such a clad material for a heat exchanger, the adhesion and pressure-bonding property between the core material and each side material are improved, and a gap is not easily formed between the core material and each side material, so that the corrosion resistance is improved. improves.

本発明の請求項1に係る側材の製造方法によれば、側材用部材としてスライスした側材を使用するため、従来のクラッド材のように熱間圧延によって側材用部材の厚さを減少させる必要がなくなり、従来に比べて熱間圧延の回数が減少し、作業工程の省略化を図ることができる。また、表面状態および平坦度を容易に制御でき、酸化皮膜厚が減り、密着不良が生じにくく、耐食性に優れた熱交換器用クラッド材が製造できる。   According to the manufacturing method of the side material according to claim 1 of the present invention, since the sliced side material is used as the side material member, the thickness of the side material member is reduced by hot rolling like a conventional clad material. There is no need to reduce the number, and the number of hot rolling operations can be reduced as compared with the conventional case, and the work process can be omitted. Further, the surface condition and flatness can be easily controlled, the thickness of the oxide film is reduced, adhesion failure is unlikely to occur, and a clad material for heat exchanger having excellent corrosion resistance can be manufactured.

請求項2に係る側材の製造方法によれば、平坦性がより向上した側材を得ることができ、芯材との密着性および圧着性がより向上するため、密着不良がより一層生じにくい。請求項3に係る側材の製造方法によれば、側材用鋳塊に均質化熱処理を行うことで、スライスされた側材の平坦性がより向上するため、密着不良がより一層生じにくい。   According to the method for manufacturing a side material according to claim 2, a side material with improved flatness can be obtained, and adhesion and pressure-bonding properties with the core material are further improved. . According to the method for manufacturing a side material according to claim 3, the flatness of the sliced side material is further improved by performing the homogenization heat treatment on the ingot for side material, so that poor adhesion is less likely to occur.

請求項4または請求項5に係る側材の製造方法では、側材に表面平滑化処理を行うので、密着不良がより一層生じにくい。   In the method for manufacturing a side material according to claim 4 or claim 5, since the side material is subjected to a surface smoothing process, adhesion failure is less likely to occur.

請求項6に係る側材の製造方法では、平坦度を制御することで、芯材との密着性および圧着性がより向上するため、密着不良がより一層生じにくい。請求項7に係る側材の製造方法では、芯材や各側材との間に隙間が形成されにくく、密着性および圧着性がさらに向上する。請求項8に係る側材の製造方法では、側材の厚さを規定したので、適切なクラッド率を有する熱交換器用クラッド材が製造できる。   In the method for manufacturing the side material according to the sixth aspect, by controlling the flatness, the adhesion to the core material and the pressure-bonding property are further improved, so that the adhesion failure is less likely to occur. In the side material manufacturing method according to the seventh aspect, a gap is hardly formed between the core material and each side material, and adhesion and pressure-bonding properties are further improved. In the method for manufacturing the side material according to the eighth aspect, since the thickness of the side material is specified, a clad material for a heat exchanger having an appropriate cladding rate can be manufactured.

請求項9に係る熱交換器用クラッド材の製造方法では、側材用部材として、前記の方法により製造した側材を使用したので、側材用部材の表面状態および平坦度の制御が容易となり、密着不良が生じにくく、耐食性に優れた熱交換器用クラッド材が製造できる。また、製造コストの低い熱交換器用クラッド材を製造することができる。   In the manufacturing method of the clad material for heat exchanger according to claim 9, since the side material manufactured by the above method is used as the side material member, it becomes easy to control the surface state and flatness of the side material member, It is possible to produce a clad material for heat exchanger that is less likely to cause poor adhesion and has excellent corrosion resistance. Moreover, the cladding material for heat exchangers with low manufacturing cost can be manufactured.

請求項10に係る熱交換器用クラッド材では、芯材と各側材との密着性および圧着性が向上し、また、芯材や各側材との間に隙間が形成されにくいため、耐食性を向上させることができる。   In the clad material for a heat exchanger according to claim 10, the adhesion and pressure-bonding properties between the core material and each side material are improved, and a gap is not easily formed between the core material and each side material. Can be improved.

次に、図面を参照して本発明に係る側材の製造方法およびこの側材を用いた熱交換器用クラッド材の製造方法について詳細に説明する。なお、参照する図面において、図1(a)、図1(b)は、熱交換器用クラッド材の製造方法のフローを示す図、図2は、熱交換器用クラッド材の構成を示す断面図、図3は、側材鋳造工程または芯材鋳造工程の概略を示す模式図、図4(a)、図4(b)は、側材のスライス方法の概略を示す模式図、図5(a)は、重ね合せ材の構成を示す模式図、図5(b)は、熱間圧延工程の概略を示す模式図である。   Next, a method for manufacturing a side material according to the present invention and a method for manufacturing a clad material for a heat exchanger using the side material will be described in detail with reference to the drawings. In the drawings to be referred to, FIG. 1 (a) and FIG. 1 (b) are diagrams showing a flow of a manufacturing method of a clad material for heat exchanger, and FIG. 2 is a cross-sectional view showing the configuration of the clad material for heat exchanger, FIG. 3 is a schematic diagram showing an outline of a side material casting process or a core material casting process, FIGS. 4A and 4B are schematic diagrams showing an outline of a side material slicing method, and FIG. 5A. FIG. 5 is a schematic diagram showing a configuration of a laminated material, and FIG. 5B is a schematic diagram showing an outline of a hot rolling process.

≪側材の製造方法(側材製造工程)≫
側材の製造方法は、図1に示すように、熱交換器用クラッド材に使用される芯材の片面または両面に重ね合わされた1層以上の側材を製造するための側材製造工程S1aである。
この側材製造工程S1aは、まず、芯材とは成分組成の異なる側材用金属を溶解する溶解工程と、この溶解工程で溶解された側材用金属を、鋳造して側材用鋳塊にする鋳造工程と、この側材用鋳塊を所定厚さにスライスして、側材の少なくとも1層とするスライス工程とを備えるものである。
なお、必要に応じて、鋳造工程の後に、後述する均質化熱処理を行ってもよく、また、スライス工程の後に、後述する表面平滑化処理(図1の面削)を行ってもよい。
≪Side material manufacturing method (side material manufacturing process) ≫
As shown in FIG. 1, the side material manufacturing method includes a side material manufacturing step S1a for manufacturing one or more side materials superimposed on one or both sides of a core material used for a clad material for a heat exchanger. is there.
In this side material manufacturing step S1a, first, a side material having a component composition different from that of the core material is melted, and the side material metal melted in this melting step is cast to form a side material ingot. And a slicing step of slicing the ingot for the side material into a predetermined thickness to form at least one layer of the side material.
If necessary, a homogenization heat treatment described later may be performed after the casting process, and a surface smoothing process (face cutting in FIG. 1) described later may be performed after the slicing process.

<クラッド材の構成>
側材は、芯材とその片面または両面に重ね合わされた1層以上の側材とからなる熱交換器用クラッド材に使用されるものであり、熱交換器用クラッド材の側材の層数は何ら限定されることはない。例えば、図2(a)に示すように、芯材2の片面に1つのろう材3をクラッドした2層の熱交換器用クラッド材1a、図2(b)に示すように、芯材2の両面にろう材3を1つずつクラッドした3層の熱交換器用クラッド材1b、図2(c)に示すように、芯材2の片面にろう材3と、芯材2の他面に犠牲材4を1つずつクラッドした3層の熱交換器用クラッド材1c、図2(d)に示すように、芯材2の片面に中間材5、ろう材3をクラッドした3層の熱交換器用クラッド材1d、図2(e)に示すように、芯材2の片面に中間材5、ろう材3と、芯材2の他面に犠牲材4をクラッドした4層の熱交換器用クラッド材1e、図2(f)に示すように、芯材2の両面に中間材5、ろう材3をクラッドした5層の熱交換器用クラッド材1f等を挙げることができる。
しかしながら、図示しないが、さらに側材(ろう材、犠牲材、中間材)の層数を増やした6層以上の熱交換器用クラッド材にも好適に適用することが可能であることはいうまでもない。
<Configuration of clad material>
The side material is used for a clad material for a heat exchanger composed of a core material and one or more side materials laminated on one or both sides thereof, and the number of layers of the side material of the clad material for the heat exchanger is not limited. There is no limit. For example, as shown in FIG. 2A, a two-layer clad material 1a for a heat exchanger in which one brazing material 3 is clad on one side of the core material 2, and as shown in FIG. 3 layers of heat exchanger clad material 1b clad with brazing material 3 on each side, brazing material 3 on one side of core material 2 and sacrifice on the other surface of core material 2 as shown in FIG. A three-layer clad material 1c clad with the material 4 one by one, and for a three-layer heat exchanger clad with the intermediate material 5 and the brazing material 3 on one side of the core material 2 as shown in FIG. Clad material 1d, as shown in FIG. 2 (e), a four-layer clad material for a heat exchanger in which an intermediate material 5 and a brazing material 3 are clad on one side of a core material 2 and a sacrificial material 4 is clad on the other surface of the core material 2. 1e, as shown in FIG. 2 (f), a five-layer clad material 1f for a heat exchanger in which an intermediate material 5 and a brazing material 3 are clad on both surfaces of the core material 2 are listed. It is possible.
However, although not shown, it is needless to say that the present invention can also be suitably applied to a cladding material for heat exchangers of six layers or more in which the number of side members (brazing material, sacrificial material, intermediate material) is further increased. Absent.

(溶解工程)
溶解工程では、芯材とは成分組成の異なる側材用金属を溶解する。
側材用金属として、熱交換器用クラッド材1a〜1fがろう材を備えるときに、ろう材用として、4000系のAl−Si系アルミニウム合金を用いることができる。ここで、Al−Si系合金とは、Siの他に、Znを含有した合金も含むものである。Al−Si系合金としては、例えば、Al−7〜13質量%Si系合金、またはAl−7〜13質量%Si−2〜7質量%Zn系合金等を用いることができるが、これらに限定されるものではなく、ろう材として用いられる合金であれば、全て適用することができる。
(Dissolution process)
In the melting step, the side metal having a different component composition from that of the core is melted.
When the clad materials 1a to 1f for heat exchangers are provided with a brazing material as the side material metal, a 4000 series Al—Si based aluminum alloy can be used for the brazing material. Here, the Al—Si based alloy includes an alloy containing Zn in addition to Si. As the Al—Si based alloy, for example, Al-7 to 13 mass% Si based alloy or Al-7 to 13 mass% Si-2 to 7 mass% Zn based alloy can be used. However, any alloy that can be used as a brazing material can be applied.

側材用金属として、熱交換器用クラッド材1c、1eが犠牲材を備えるときに、犠牲材用として、3000系のAl−Mn系アルミニウム合金または7000系のAl−Zn−Mg系アルミニウム合金を用いることができ、さらに、Al−Zn系合金を用いることができる。ここで、Al−Zn系合金とは、Znの他に、Mn、Siを含有した合金も含むものである。Al−Zn系合金としては、例えば、Al−1〜7質量%Zn系合金、Al−0.5〜1.2質量%Mn−0.5〜1.2質量%Si−2〜6質量%Zn系合金、Al−0.8〜1.2質量%Si−2〜6質量%Zn系合金を用いることができるが、これらに限定されるものではなく、犠牲材として用いられる合金であれば、全て適用することができる。   When the clad materials 1c and 1e for the heat exchanger are provided with a sacrificial material as the side material metal, a 3000-based Al—Mn-based aluminum alloy or a 7000-based Al—Zn—Mg-based aluminum alloy is used as the sacrificial material. In addition, an Al—Zn alloy can be used. Here, the Al—Zn-based alloy includes an alloy containing Mn and Si in addition to Zn. Examples of Al-Zn alloys include Al-1 to 7 mass% Zn-based alloys, Al-0.5 to 1.2 mass% Mn-0.5 to 1.2 mass% Si-2 to 6 mass%, A Zn-based alloy, Al-0.8 to 1.2 mass% Si-2 to 6 mass% Zn-based alloy can be used, but is not limited to these, and any alloy can be used as a sacrificial material. All can be applied.

側材用金属として、熱交換器用クラッド材1d〜1fが中間材を備えるときに、中間材用として、1000系の純アルミニウムまたは7000系のAl−Zn−Mg系アルミニウム合金等を用いることができ、さらに、Al−Mn系合金を用いることができる。ここで、Al−Mn系合金とは、Mnの他に、Cu、Si、Tiを含有した合金も含むものである。Al−Mn系合金としては、例えば、Al−0.5〜1.2質量%Mn−0.5〜1.2質量%Cu−0.5〜1.2質量%Si系合金、Al−0.5〜1.2質量%Mn−0.5〜1.2質量%Cu−0.5〜1.2質量%Si−0.05〜0.3質量%Ti系合金を用いることができるが、これらに限定されるものではなく、中間材として用いられる合金であれば、全て適用することができる。
前記した金属の成分組成の調整は、用いる熱交換器用クラッド材の用途等に応じて適宜決めることができる。
As the side metal, when the heat exchanger clad materials 1d to 1f are provided with an intermediate material, 1000 series pure aluminum or 7000 series Al-Zn-Mg aluminum alloy can be used for the intermediate material. Furthermore, an Al—Mn alloy can be used. Here, the Al—Mn alloy includes alloys containing Cu, Si, and Ti in addition to Mn. Examples of the Al-Mn alloy include Al-0.5 to 1.2 mass% Mn-0.5 to 1.2 mass% Cu-0.5 to 1.2 mass% Si-based alloy, Al-0. Although 5 to 1.2 mass% Mn-0.5 to 1.2 mass% Cu-0.5 to 1.2 mass% Si-0.05 to 0.3 mass% Ti-based alloy can be used. However, the present invention is not limited to these, and any alloy that can be used as an intermediate material can be applied.
The adjustment of the component composition of the metal can be appropriately determined according to the use of the clad material for heat exchanger to be used.

(鋳造工程)
鋳造方法としては、半連続鋳造法を用いることができる。
半連続鋳造法は、図3に示すような鋳造装置10が用いられ、底部が開放された金属製の水冷鋳型11に、上方より金属(ここでは側材用金属)の溶湯Mを注入し、水冷鋳型11の底部より凝固した金属を連続的に取り出し、所定厚さT1の側材用鋳塊17を得るものである。このとき、溶湯Mは、桶12から、ノズル13、フロート14およびグラススクリーン15を介して、水冷鋳型11に供給される。水冷鋳型11に供給された溶湯Mは、冷却水Wで冷却された水冷鋳型11の内壁面に接することにより凝固し凝固殻16となる。さらに、水冷鋳型11の下部から冷却水Wが、直接、凝固殻16の表面に噴射され、連続的に側材用鋳塊17が製造される。
(Casting process)
As a casting method, a semi-continuous casting method can be used.
In the semi-continuous casting method, a casting apparatus 10 as shown in FIG. 3 is used, and a molten metal M (here, a metal for a side material) is poured from above into a metal water-cooled mold 11 having an open bottom, the metal solidifies from the bottom of the water-cooled mold 11 is continuously taken out to thereby obtain a ingot for side material 17 having a predetermined thickness T 1. At this time, the molten metal M is supplied from the trough 12 to the water-cooled mold 11 through the nozzle 13, the float 14 and the glass screen 15. The molten metal M supplied to the water-cooled mold 11 is solidified by being in contact with the inner wall surface of the water-cooled mold 11 cooled by the cooling water W to become a solidified shell 16. Further, the cooling water W is directly sprayed from the lower part of the water-cooled mold 11 onto the surface of the solidified shell 16 to continuously produce the side material ingot 17.

ここで、側材用鋳塊17の厚さT1は、200〜700mmが好ましい。また、側材用鋳塊17の幅、長さは特に限定されるものではないが、生産性を考慮すると、幅1000〜2500mm、長さは3000〜10000mmが好ましい。
なお、半連続鋳造法は、縦向き、横向きのどちらで行ってもよい。
Here, the thickness T 1 of the side material ingot 17 is preferably 200 to 700 mm. Moreover, although the width | variety and length of the ingot 17 for side materials are not specifically limited, When productivity is considered, width 1000-2500mm and length are 3000-10000mm.
The semi-continuous casting method may be performed either vertically or horizontally.

(スライス工程)
スライス方法としては、スラブスライス法を用いることができる。
スラブスライス法は、図4(a)に示すように、前記した半連続鋳造法で製造した側材用鋳塊17を、図示しない帯鋸切断機等によってスライスすることによって、所定厚さTの側材35が製造される。ここで、側材35の厚さTは、10〜250mmが好ましい。厚さTが前記範囲外であると、熱交換器用クラッド材のクラッド率が不適切なものとなりやすい。また、図4(b)に示すように、側材用鋳塊17を、水平に設置されている当該側材用鋳塊の設置面35aに対し、平行にスライスするのが好ましい。
ここで、設置面35aとは、側材用鋳塊17のスライス装置の設置台に接する面のことである。
このようにすることにより、スライスの際に生じる切断塊(スライス塊)の自重、形状による変位(例えば、切断塊が倒れようとする力等)の影響が極小化され、スライスされた側材35の平坦性がより向上する。
スライスの方法としては、丸鋸切断機により切断してもよく、また、レーザーや水圧等により切断してもよい。
(Slicing process)
As the slicing method, a slab slicing method can be used.
In the slab slicing method, as shown in FIG. 4A, the side material ingot 17 manufactured by the semi-continuous casting method is sliced by a band saw cutter or the like (not shown), so that the predetermined thickness T 2 is obtained. Side material 35 is manufactured. Here, the thickness T 2 of the side member 35, 10 to 250 mm is preferable. If the second thickness T 2 is outside the range, the clad ratio of the clad member for heat exchanger is liable to be inappropriate. Moreover, as shown in FIG.4 (b), it is preferable to slice the ingot 17 for side materials in parallel with respect to the installation surface 35a of the said ingot for side materials installed horizontally.
Here, the installation surface 35a is a surface in contact with the installation table of the slicing device for the side material ingot 17.
By doing so, the influence of the weight of the cut lump (slice lump) generated during slicing and the displacement due to the shape (for example, the force that causes the cut lump to collapse) is minimized, and the sliced side member 35 The flatness of the is further improved.
As a slicing method, it may be cut by a circular saw cutter, or may be cut by a laser or water pressure.

また、図1(b)に示すように、前記鋳造方法で鋳造された側材用鋳塊17に、適宜必要に応じて、側材用鋳塊17をスライスする前に、内部応力の除去のための均質化熱処理を行ってもよい。
均質化熱処理を行うことにより、側材用鋳塊17の内部応力が除去され、スライスされた側材の平坦性がより向上する。ここで均質化熱処理の温度、時間は特に限定されるものではないが、処理温度は、350〜600℃、処理時間は1〜10時間とするのが好ましい。
Further, as shown in FIG. 1 (b), internal stress is removed before the side material ingot 17 is appropriately sliced into the side material ingot 17 cast by the above casting method. Homogenization heat treatment may be performed.
By performing the homogenization heat treatment, the internal stress of the side material ingot 17 is removed, and the flatness of the sliced side material is further improved. Here, the temperature and time of the homogenization heat treatment are not particularly limited, but the treatment temperature is preferably 350 to 600 ° C. and the treatment time is preferably 1 to 10 hours.

均質化熱処理の処理温度が350℃未満であると、内部応力の除去量が小さく、鋳造中に偏析した溶質元素の均質化も不十分となり、敢えて熱処理を施した効果は小さい。一方、処理温度が600℃を超えると、鋳塊表面の一部が溶解するバーニングと呼ばれる現象が生じ、熱交換器用クラッド材の表面欠陥の原因になりやすい。また、処理時間が1時間未満であると、内部応力の除去効果が小さく、また均質化が不十分となりやすい。なお、処理時間は、生産性を考慮すると10時間以下が好ましい。   If the treatment temperature of the homogenization heat treatment is less than 350 ° C., the amount of internal stress removed is small, and the solute elements segregated during casting are not sufficiently homogenized, so that the effect of the heat treatment is small. On the other hand, when the processing temperature exceeds 600 ° C., a phenomenon called burning in which a part of the ingot surface is melted is likely to cause surface defects in the clad material for heat exchanger. If the treatment time is less than 1 hour, the effect of removing internal stress is small and homogenization tends to be insufficient. The processing time is preferably 10 hours or less in consideration of productivity.

前記製造方法で製造された側材35は、適宜必要に応じて、芯材と重ね合わせる前に、表面に形成された晶出物や酸化物を除去するための表面平滑化処理(図1の面削)を行ってもよい。
表面平滑化処理法としては、エンドミル切削やダイヤモンドバイト切削等の切削法、表面を砥石等で削る研削法、バフ研磨等の研磨法等を用いることができるが、これらに限定されるものではない。
The side material 35 manufactured by the above-described manufacturing method is subjected to a surface smoothing process (in FIG. 1) for removing crystallized substances and oxides formed on the surface, if necessary, before overlapping with the core material. (Chamfering) may be performed.
As the surface smoothing treatment method, a cutting method such as end mill cutting or diamond bite cutting, a grinding method in which the surface is ground with a grindstone, a polishing method such as buffing, or the like can be used, but it is not limited thereto. .

このように、側材用鋳塊17のスライスや表面平滑化処理を施すことにより、平坦性の評価において、長手方向1m当たりの平坦度を1mm以下、望ましくは0.5mm以下、表面粗度が算術平均粗さ(Ra)で0.05〜1.0μm、望ましくは、0.1〜0.7μmとする側材を得ることができる。平坦度が前記範囲を超えると、熱交換器用クラッド材に密着不良が発生しやすくなる。表面粗度が前記範囲未満であると、疵の発生を招きやすく、また、加工が困難となりやすい。表面粗度が前記範囲を超えると、熱交換器用クラッド材に密着不良が発生しやすくなる。   Thus, by performing the slicing of the ingot 17 for the side material and the surface smoothing treatment, in the evaluation of flatness, the flatness per 1 m in the longitudinal direction is 1 mm or less, desirably 0.5 mm or less, and the surface roughness is A side material having an arithmetic average roughness (Ra) of 0.05 to 1.0 μm, preferably 0.1 to 0.7 μm can be obtained. If the flatness exceeds the above range, adhesion failure tends to occur in the heat exchanger clad material. If the surface roughness is less than the above range, wrinkles are likely to occur, and processing tends to be difficult. When the surface roughness exceeds the above range, adhesion failure is likely to occur in the heat exchanger clad material.

また、このような側材35を用いることにより、外面耐食性の試験としてCASS試験(塩水噴霧試験:JIS Z 2371)を1500時間、内面耐食性の試験として浸漬試験(Na:118ppm、Cl:58ppm、SO 2−:60ppm、Cu2+:1ppm、Fe3+:30ppm)を80℃で2000時間行った後、試験後の腐食深さが60μm以下となる熱交換器用クラッド材となる。 Moreover, by using such a side material 35, a CASS test (salt spray test: JIS Z 2371) is used as an external surface corrosion test for 1500 hours, and an immersion test (Na + : 118 ppm, Cl : 58 ppm is used as an internal surface corrosion resistance test). , SO 4 2-: 60ppm, Cu 2+: 1ppm, Fe 3+: after 2000 hours at 30 ppm) 80 ° C., the corrosion depth after the test is clad member for heat exchanger to be 60μm or less.

なお、側材35の少なくとも1層が、前記製造方法により製造され、他の層は、従来の製造方法により製造されていてもよい。   In addition, at least 1 layer of the side material 35 may be manufactured by the said manufacturing method, and the other layer may be manufactured by the conventional manufacturing method.

≪クラッド材の製造工程≫
本発明に係る熱交換器用クラッド材の製造方法は、図1に示すように、前記の製造方法で製造された側材と、側材を重ね合わせるための芯材とを準備する準備工程である側材製造工程S1aおよび芯材製造工程S1bにより、側材および芯材が製造される。その後、重ね合わせ工程S2により、この芯材および側材を所定配置に重ね合わせて重ね合わせ材とし、均質化熱処理工程S3により、この重ね合わせ材に均質化熱処理を行う。そして、均質化熱処理工程S3の後に熱間圧延工程S4により熱間圧延を行い、熱間圧延工程S4の後に冷間圧延工程S5により冷間圧延を行うこととした。
≪Clad material manufacturing process≫
As shown in FIG. 1, the manufacturing method of the clad material for heat exchanger according to the present invention is a preparatory process for preparing the side material manufactured by the above manufacturing method and the core material for overlapping the side material. A side material and a core material are manufactured by the side material manufacturing process S1a and the core material manufacturing process S1b. Thereafter, the core material and the side material are superposed in a predetermined arrangement in the superposition step S2 to obtain a superposition material, and the superposition material is subjected to homogenization heat treatment in the homogenization heat treatment step S3. Then, after the homogenization heat treatment step S3, the hot rolling is performed by the hot rolling step S4, and after the hot rolling step S4, the cold rolling is performed by the cold rolling step S5.

<側材製造工程>
側材製造工程S1aは、前記したとおりであるので、ここでは省略する。
<芯材製造工程>
図1に示すように、芯材製造工程S1bは、芯材用金属を溶解する溶解工程と、溶解工程で溶解された芯材用金属を鋳造して芯材用鋳塊を製造する鋳造工程とを含むこととした。
なお、必要に応じて、表面平滑化処理(図1の面削)および均質化熱処理の少なくとも1つを行ってもよい。
<Side material manufacturing process>
Since the side material manufacturing step S1a is as described above, it is omitted here.
<Core production process>
As shown in FIG. 1, the core material manufacturing process S1b includes a melting process for melting the core metal, and a casting process for manufacturing the core metal ingot by casting the core metal dissolved in the melting process. It was decided to include.
In addition, you may perform at least 1 of a surface smoothing process (facing of FIG. 1) and a homogenization heat processing as needed.

(溶解工程)
溶解工程では、側材とは成分組成の異なる芯材用金属を溶解する。
芯材用金属としては、2000系のAl−Cu系アルミニウム合金、3000系のAl−Mn系アルミニウム合金、5000系のAl−Mg系アルミニウム合金等を用いることができるが、これらに限定されるものではなく、芯材として用いられる合金であれば、全て適用することができる。
前記した金属の成分組成の調整は、用いる熱交換器用クラッド材の用途等に応じて適宜決めることができる。
(Dissolution process)
In the melting step, the core metal having a different component composition from the side material is melted.
As the metal for the core material, a 2000 series Al-Cu series aluminum alloy, a 3000 series Al-Mn series aluminum alloy, a 5000 series Al-Mg series aluminum alloy, or the like can be used. However, any alloy that can be used as a core material can be applied.
The adjustment of the component composition of the metal can be appropriately determined according to the use of the clad material for heat exchanger to be used.

(鋳造工程)
鋳造方法としては、前記に説明した半連続鋳造法を用いることができる。
ここで、芯材用鋳塊25の厚さT1(図3参照)は、200〜700mmが好ましい。厚さT1が前記範囲外であると、熱交換器用クラッド材のクラッド率が不適切なものとなりやすい。また、芯材用鋳塊25の幅、長さは特に限定されるものではないが、生産性を考慮すると、幅1000〜2500mm、長さは3000〜10000mmが好ましい。
前記鋳造方法で鋳造された芯材用鋳塊25に、適宜必要に応じて、前記した側材35と重ね合わせる前に、表面に形成された晶出物や酸化物を除去するための表面平滑化処理および内部応力の除去のための均質化熱処理の少なくとも1つを行ってもよい。
(Casting process)
As the casting method, the semi-continuous casting method described above can be used.
Here, the thickness T 1 of the core material ingot for 25 (see FIG. 3) is, 200 to 700 mm is preferable. When the thickness T 1 is out of the above range, the clad rate of the heat exchanger clad material tends to be inappropriate. Further, the width and length of the core material ingot 25 are not particularly limited, but considering the productivity, the width is preferably 1000 to 2500 mm and the length is preferably 3000 to 10000 mm.
Surface smoothing for removing crystallized substances and oxides formed on the surface of the ingot 25 for core material cast by the above casting method, if necessary, before overlapping with the side material 35 described above. At least one of a homogenization treatment and a homogenization heat treatment for removing internal stress may be performed.

表面平滑化処理を行うことにより、平坦性の評価において、長手方向1m当たりの平坦度を1mm以下、望ましくは0.5mm以下、表面粗度が算術平均粗さ(Ra)で0.05〜1.5μm、望ましくは、0.1〜0.7μmとする芯材を得ることができる。平坦度が前記範囲を超えると、熱交換器用クラッド材に密着不良が発生しやすくなる。表面粗度が前記範囲未満であると、疵の発生を招きやすく、また、加工が困難となりやすい。表面粗度が前記範囲を超えると、熱交換器用クラッド材に密着不良が発生しやすくなる。また、均質化熱処理を行うことにより、芯材用鋳塊25の内部応力が除去され、芯材の平坦性がより向上する。ここで均質化熱処理の温度、時間は特に限定されるものではないが、処理温度は、350〜600℃、処理時間は1〜10時間とするのが好ましい。   By performing the surface smoothing treatment, in the evaluation of flatness, the flatness per 1 m in the longitudinal direction is 1 mm or less, preferably 0.5 mm or less, and the surface roughness is 0.05 to 1 in terms of arithmetic average roughness (Ra). A core material having a thickness of 0.5 μm, preferably 0.1 to 0.7 μm can be obtained. If the flatness exceeds the above range, adhesion failure tends to occur in the heat exchanger clad material. If the surface roughness is less than the above range, wrinkles are likely to occur, and processing tends to be difficult. When the surface roughness exceeds the above range, adhesion failure is likely to occur in the heat exchanger clad material. Moreover, by performing the homogenization heat treatment, the internal stress of the core material ingot 25 is removed, and the flatness of the core material is further improved. Here, the temperature and time of the homogenization heat treatment are not particularly limited, but the treatment temperature is preferably 350 to 600 ° C. and the treatment time is preferably 1 to 10 hours.

均質化熱処理の処理温度が350℃未満であると、内部応力の除去量が小さく、鋳造中に偏析した溶質元素の均質化も不十分となり、敢えて熱処理を施した効果は小さい。一方、処理温度が600℃を超えると、鋳塊表面の一部が溶解するバーニングと呼ばれる現象が生じ、熱交換器用クラッド材の表面欠陥の原因になりやすい。また、処理時間が1時間未満であると、内部応力の除去効果が小さく、また均質化も不十分となりやすい。なお、処理時間は、生産性を考慮すると10時間以下が好ましい。   If the treatment temperature of the homogenization heat treatment is less than 350 ° C., the amount of internal stress removed is small, and the solute elements segregated during casting are not sufficiently homogenized, so that the effect of the heat treatment is small. On the other hand, when the processing temperature exceeds 600 ° C., a phenomenon called burning in which a part of the ingot surface is melted is likely to cause surface defects in the clad material for heat exchanger. If the treatment time is less than 1 hour, the effect of removing internal stress is small, and homogenization tends to be insufficient. The processing time is preferably 10 hours or less in consideration of productivity.

<重ね合わせ工程>
重ね合わせ工程S2は、図5(a)に示すように、前記工程で製造された芯材用鋳塊25(図3参照)の先端および後端を切断して所定長さとした芯材26の片面または両面(図示せず)に1つの側材35、または、複数の側材(図示せず)を所定配置に重ね合わせて重ね合わせ材40とする。ここで、所定配置とは、製品としての熱交換器用クラッド材、例えば、図2(a)〜(f)に示すような熱交換器用クラッド材1a〜1fにおける芯材2、ろう材3、犠牲材4、中間材5の配置に対応することを意味する。また、重ね合わせ方法は、従来公知の、例えば、芯材26および側材35の両端部をバンド掛けする方法が用いられる。バンド掛けする方法以外に溶接止めするなどの方法を用いても問題ない。
なお、重ね合わせたときの各隙間は、最大で10mm以内、望ましくは、5mm以内とするのが好ましい。
<Overlay process>
As shown in FIG. 5A, the superimposing step S2 is performed by cutting the leading end and the trailing end of the core material ingot 25 (see FIG. 3) manufactured in the above step to a predetermined length. One side member 35 or a plurality of side members (not shown) are superposed in a predetermined arrangement on one side or both sides (not shown) to form an overlapping member 40. Here, the predetermined arrangement is a clad material for a heat exchanger as a product, for example, a core material 2, a brazing material 3, a sacrificial material in the clad materials 1 a to 1 f for a heat exchanger as shown in FIGS. This means that it corresponds to the arrangement of the material 4 and the intermediate material 5. In addition, as a superimposing method, a conventionally known method, for example, a method of banding both ends of the core material 26 and the side material 35 is used. There is no problem even if a method such as welding is used in addition to the method of banding.
Each gap when overlapped is preferably within 10 mm at maximum, desirably within 5 mm.

<均質化熱処理工程>
このようにして製造した重ね合わせ材40は、内部組織を均一化するため、および、熱間圧延を行い易いように柔らかくするために均質化熱処理を施す(S3)。
<Homogenization heat treatment process>
The laminated material 40 thus manufactured is subjected to a homogenization heat treatment in order to make the internal structure uniform and to make it soft so that hot rolling can be easily performed (S3).

<熱間圧延工程>
熱間圧延工程S4は、図5(b)に示すように、前記重ね合わせ材40のバンドを切断し、重ね合わせ材40を熱間圧延して熱交換器用クラッド材1aを製造する。ここで、熱間圧延方法は、従来公知の圧延法で行う。そして使用する圧延機は、図5(b)では4段式圧延機50を記載したが、図示しない、2段圧延機または4段以上の圧延機を使用してもよい。また、図5(b)では1列のロールスタンドを備えた4段式圧延機50を記載したが、図示しない、複数列のロールスタンドを備えた圧延機を使用して、所定厚さの熱交換器用クラッド材1aが得られるまで、熱間圧延を繰り返し行ってもよい。
<Hot rolling process>
In the hot rolling step S4, as shown in FIG. 5B, the band of the overlapping material 40 is cut, and the overlapping material 40 is hot rolled to produce the clad material 1a for heat exchanger. Here, the hot rolling method is performed by a conventionally known rolling method. As the rolling mill to be used, the four-stage rolling mill 50 is described in FIG. 5B, but a two-stage rolling mill or a rolling mill having four or more stages (not shown) may be used. Further, in FIG. 5B, the four-stage rolling mill 50 provided with one row of roll stands is described. However, using a rolling mill provided with a plurality of rows of roll stands (not shown), heat of a predetermined thickness is used. You may repeat hot rolling until the clad material 1a for exchangers is obtained.

<冷間圧延工程>
このようにして製造された熱交換器用クラッド材1aは、その後、冷間圧延処理を行う(S5)。冷間圧延処理としては、一例として、30〜99%の圧下率で行うことができる。
<Cold rolling process>
The clad material 1a for heat exchanger thus manufactured is then subjected to a cold rolling process (S5). As an example, the cold rolling treatment can be performed at a rolling reduction of 30 to 99%.

また、必要に応じて所望の機械的特性などを付与するために、常法により、熱処理(焼鈍処理)、歪み矯正処理、時効硬化処理などを行ったり、所定の形状に加工し、または所定の大きさに裁断等したりしてもよい。一例として、焼鈍処理として、冷間圧延前に行う荒焼鈍、冷間圧延間に行う中間焼鈍、最終冷間圧延後に行う最終焼鈍を連続炉またはバッチ炉で200〜500℃×0〜10時間で行ったりすることを挙げることができるが、これらに限定されるものではなく、これらの処理によって得られる効果(機械的特性)を奏する限りにおいて、その条件を適宜変更できることはいうまでもない。
本発明に係る熱交換器用クラッド材は、前記説明した熱交換器用クラッド材の製造方法の各工程により、製造される。
In addition, in order to impart desired mechanical properties as required, heat treatment (annealing treatment), distortion correction treatment, age hardening treatment, or the like is performed by a conventional method, or a predetermined shape is processed, or a predetermined shape is obtained. It may be cut into sizes. As an example, as annealing treatment, rough annealing performed before cold rolling, intermediate annealing performed during cold rolling, and final annealing performed after final cold rolling are performed at 200 to 500 ° C. × 0 to 10 hours in a continuous furnace or batch furnace. However, the present invention is not limited to these, and it goes without saying that the conditions can be appropriately changed as long as the effects (mechanical characteristics) obtained by these treatments are exhibited.
The clad material for heat exchangers according to the present invention is produced by each step of the method for producing the clad material for heat exchangers described above.

以上のように、本発明に係る側材の製造方法、熱交換器用クラッド材の製造方法および熱交換器用クラッド材によれば、側材の表面状態および平坦度を容易に制御できるため、平坦性、平滑性を向上させることができ、さらに酸化皮膜厚を減らすことができる。
また、密着性、圧着性が向上するため、圧着パス数を減らすことができ、歩留まり、生産性を向上させることができる。
さらに、芯材や各側材との間に隙間が形成されにくく、耐食性を向上させることができる。
As described above, according to the side material manufacturing method, the heat exchanger clad material manufacturing method, and the heat exchanger clad material according to the present invention, the surface state and flatness of the side material can be easily controlled. Smoothness can be improved and the oxide film thickness can be reduced.
In addition, since the adhesiveness and the pressure bonding property are improved, the number of pressure bonding passes can be reduced, and the yield and productivity can be improved.
Furthermore, it is difficult to form a gap between the core material and each side material, and the corrosion resistance can be improved.

以上、本発明に係る熱交換器用クラッド材に使用される側材の製造方法、熱交換器用クラッド材の製造方法および熱交換器用クラッド材について説明してきたが、本発明の趣旨はこれらの記載に限定されるものではなく、本願の特許請求の範囲の記載に基づいて広く解釈しなければならない。また、本発明の技術的範囲は、本発明の趣旨を逸脱しない範囲において広く変更、改変することができることはいうまでもない。   As mentioned above, although the manufacturing method of the side material used for the cladding material for heat exchangers concerning the present invention, the manufacturing method of the cladding material for heat exchangers, and the cladding material for heat exchangers have been explained, the gist of the present invention is described in these descriptions. The present invention is not limited, and should be interpreted broadly based on the description of the scope of claims of the present application. It goes without saying that the technical scope of the present invention can be widely changed and modified without departing from the spirit of the present invention.

(a)、(b)は、本発明に係る熱交換器用クラッド材の製造方法のフローを示す図である。(A), (b) is a figure which shows the flow of the manufacturing method of the clad material for heat exchangers which concerns on this invention. (a)〜(f)は本発明に係る熱交換器用クラッド材の構成を示す断面図である。(A)-(f) is sectional drawing which shows the structure of the clad material for heat exchangers which concerns on this invention. 側材鋳造工程または芯材鋳造工程の概略を示す模式図である。It is a schematic diagram which shows the outline of a side material casting process or a core material casting process. (a)、(b)は、側材のスライス方法の概略を示す模式図である。(A), (b) is a schematic diagram which shows the outline of the slice method of a side material. (a)は重ね合わせ材の構成を示す模式図、(b)は熱間圧延工程の概略を示す模式図である。(A) is a schematic diagram which shows the structure of a laminated material, (b) is a schematic diagram which shows the outline of a hot rolling process. 従来のクラッド材の製造方法のフローを示す図である。It is a figure which shows the flow of the manufacturing method of the conventional clad material.

符号の説明Explanation of symbols

S1a 側材製造工程
S1b 芯材製造工程
S2 重ね合わせ工程
S3 均質化熱処理工程
S4 熱間圧延工程
S5 冷間圧延工程
1a、1b、1c、1d、1e、1f 熱交換器用クラッド材
2 芯材
3 ろう材
4 犠牲材
5 中間材
17 側材用鋳塊
35 側材
35a 設置面
25 芯材用鋳塊
26 芯材
40 重ね合わせ材
S1a Side material manufacturing process S1b Core material manufacturing process S2 Superposition process S3 Homogenization heat treatment process S4 Hot rolling process S5 Cold rolling process 1a, 1b, 1c, 1d, 1e, 1f Clad material for heat exchanger 2 Core material 3 Wax Material 4 Sacrificial material 5 Intermediate material 17 Side material ingot 35 Side material 35a Installation surface 25 Core material ingot 26 Core material 40 Superposition material

Claims (10)

芯材とその片面または両面に重ね合わされた1層以上の側材とからなる熱交換器用クラッド材に使用される前記側材の製造方法であって、
前記側材の少なくとも1層が、前記芯材とは成分組成の異なる側材用金属であり、その側材用金属を溶解する溶解工程と、
前記溶解工程で溶解された側材用金属を鋳造して側材用鋳塊を製造する鋳造工程と、
前記側材用鋳塊を所定厚さにスライスするスライス工程とをこの順に行うことを特徴とする側材の製造方法。
A method for producing the side material used for a heat exchanger clad material comprising a core material and one or more side materials laminated on one or both sides thereof,
At least one layer of the side material is a metal for a side material having a component composition different from that of the core material, and a melting step for dissolving the metal for the side material;
A casting process for producing the ingot for the side material by casting the metal for the side material melted in the melting step;
A method for manufacturing a side material, comprising: performing a slicing step of slicing the ingot for side material into a predetermined thickness in this order.
前記スライス工程において、前記側材用鋳塊を、水平に設置されている当該側材用鋳塊の設置面に対し平行にスライスすることを特徴とする請求項1に記載の側材の製造方法。   2. The method for manufacturing a side material according to claim 1, wherein, in the slicing step, the ingot for side material is sliced in parallel to an installation surface of the ingot for side material installed horizontally. . 前記鋳造工程の後で、かつ、前記スライス工程の前に、鋳造された側材用鋳塊に、更に均質化熱処理を行うことを特徴とする請求項1または2に記載の側材の製造方法。   The method for producing a side material according to claim 1 or 2, further comprising performing a homogenization heat treatment on the cast side material ingot after the casting step and before the slicing step. . 前記スライス工程の後に、スライスされた所定厚さの側材の表面に、更に表面平滑化処理を行うことを特徴とする請求項1ないし請求項3のいずれか一項に記載の側材の製造方法。   The side material manufacturing method according to any one of claims 1 to 3, wherein after the slicing step, a surface smoothing process is further performed on the surface of the sliced side material having a predetermined thickness. Method. 前記表面平滑化処理を、切削法、研削法および研磨法から選択された1種以上の方法で行うことを特徴とする請求項4に記載の側材の製造方法。   The method for producing a side material according to claim 4, wherein the surface smoothing treatment is performed by one or more methods selected from a cutting method, a grinding method, and a polishing method. 前記側材の少なくとも1層が、長手方向1m当たりの平坦度が1mm以下であることを特徴とする請求項1ないし請求項5のいずれか一項に記載の側材の製造方法。   The method for manufacturing a side material according to any one of claims 1 to 5, wherein at least one layer of the side material has a flatness of 1 mm or less per 1 m in the longitudinal direction. 前記側材の少なくとも1層が、表面粗度が算術平均粗さ(Ra)で0.05〜1.0μmの範囲であることを特徴とする請求項1ないし請求項6のいずれか一項に記載の側材の製造方法。   The surface roughness of the at least one layer of the side material is in the range of 0.05 to 1.0 μm in arithmetic mean roughness (Ra), according to any one of claims 1 to 6. The manufacturing method of the side material of description. 前記側材の少なくとも1層が、厚さが10〜250mmであることを特徴とする請求項1ないし請求項7のいずれか一項に記載の側材の製造方法。   The method for producing a side material according to any one of claims 1 to 7, wherein at least one layer of the side material has a thickness of 10 to 250 mm. 請求項1ないし請求項8のいずれか一項に記載の製造方法で製造された側材と、前記側材を重ね合わせるための芯材とを準備する準備工程と、
前記芯材および前記側材を所定配置に重ね合わせて重ね合わせ材とする重ね合わせ工程と、
前記重ね合わせ材に均質化熱処理を行う均質化熱処理工程と、
前記均質化熱処理工程の後に熱間圧延を行う熱間圧延工程と、
前記熱間圧延工程の後に冷間圧延を行う冷間圧延工程とを含むことを特徴とする熱交換器用クラッド材の製造方法。
A preparation step of preparing a side material manufactured by the manufacturing method according to any one of claims 1 to 8, and a core material for overlapping the side material;
An overlapping step of overlapping the core material and the side material in a predetermined arrangement to form an overlapping material;
A homogenizing heat treatment step of performing a homogenizing heat treatment on the laminated material;
A hot rolling step of performing hot rolling after the homogenizing heat treatment step;
A method for producing a clad material for a heat exchanger, comprising: a cold rolling step in which cold rolling is performed after the hot rolling step.
請求項9に記載の熱交換器用クラッド材の製造方法によって製造されたことを特徴とする熱交換器用クラッド材。   A clad material for heat exchangers produced by the method for producing a clad material for heat exchangers according to claim 9.
JP2006182869A 1954-12-09 2006-06-30 Method for producing side material and method for producing clad material for heat exchanger Active JP4077850B2 (en)

Priority Applications (27)

Application Number Priority Date Filing Date Title
JP2006182869A JP4077850B2 (en) 2006-02-28 2006-06-30 Method for producing side material and method for producing clad material for heat exchanger
BR122013031786-4A BR122013031786B1 (en) 2005-12-09 2006-12-07 "METHOD FOR PRODUCING COATED MATERIAL"
KR1020087013753A KR101016146B1 (en) 2005-12-09 2006-12-07 Process for producing clad material and equipment therefor
US12/095,983 US8091612B2 (en) 2005-12-09 2006-12-07 Method for manufacturing clad material and equipment for manufacturing the same
BRPI0620033-8A BRPI0620033B1 (en) 2005-12-09 2006-12-07 Method for producing coated material, coating material and equipment for producing it
EP11006622.2A EP2428305B1 (en) 2005-12-09 2006-12-07 Method of manufacturing a clad material having two or more skin materials
PCT/JP2006/324429 WO2007066714A1 (en) 2005-12-09 2006-12-07 Process for producing clad material and equipment therefor
EP06834184A EP1992441B8 (en) 2005-12-09 2006-12-07 Method of manufacturing a clad material
MX2008007376A MX2008007376A (en) 2005-12-09 2006-12-07 Process for producing clad material and equipment therefor.
EP11006624.8A EP2428306B1 (en) 2005-12-09 2006-12-07 Skin material for clad material having at least one layer having a cast structure
MX2012010153A MX344820B (en) 1954-12-09 2006-12-07 Process for producing clad material and equipment therefor.
HUE11006623A HUE030853T2 (en) 2005-12-09 2006-12-07 Equipment for manufacturing skin material
CN200680040182.9A CN101296774B (en) 2005-12-09 2006-12-07 Method and apparatus for manufacturing composite material
HUE11006624A HUE026137T2 (en) 2005-12-09 2006-12-07 Skin material for clad material having at least one layer having a cast structure
EP11006623.0A EP2418039B1 (en) 2005-12-09 2006-12-07 Equipment for manufacturing skin material
MX2012010152A MX342650B (en) 2005-12-09 2006-12-07 Process for producing clad material and equipment therefor.
CA2630296A CA2630296C (en) 2005-12-09 2006-12-07 Method for manufacturing clad material and equipment for manufacturing the same
AU2006323722A AU2006323722A1 (en) 2005-12-09 2006-12-07 Method for manufacturing clad material and equipment for manufacturing the same
RU2008127879/02A RU2388583C2 (en) 2005-12-09 2006-12-07 Method to produce clad material and device to this end
HUE11006622A HUE026886T2 (en) 2005-12-09 2006-12-07 Method of manufacturing a clad material having two or more skin materials
MX2012010154A MX342649B (en) 2005-12-09 2006-12-07 Process for producing clad material and equipment therefor.
NO20082931A NO340462B1 (en) 2005-12-09 2008-06-27 Process for the preparation of coating material
US13/160,884 US8210237B2 (en) 2005-12-09 2011-06-15 Method for manufacturing clad material and equipment for manufacturing the same
US13/160,966 US8381797B2 (en) 2005-12-09 2011-06-15 Method for manufacturing clad material and equipment for manufacturing the same
US13/239,540 US8191609B2 (en) 2005-12-09 2011-09-22 Method for manufacturing clad material and equipment for manufacturing the same
US13/671,065 US20130065080A1 (en) 2005-12-09 2012-11-07 Method for manufacturing clad material and equipment for manufacturing the same
NO20170220A NO342887B1 (en) 2005-12-09 2017-02-14 Cover material for coating material with at least one layer having a casting structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006054205 2006-02-28
JP2006182869A JP4077850B2 (en) 2006-02-28 2006-06-30 Method for producing side material and method for producing clad material for heat exchanger

Publications (2)

Publication Number Publication Date
JP2007260769A true JP2007260769A (en) 2007-10-11
JP4077850B2 JP4077850B2 (en) 2008-04-23

Family

ID=38634273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006182869A Active JP4077850B2 (en) 1954-12-09 2006-06-30 Method for producing side material and method for producing clad material for heat exchanger

Country Status (1)

Country Link
JP (1) JP4077850B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255171A (en) * 2008-03-28 2009-11-05 Kobe Steel Ltd Side material, method for producing the same and method for producing clad material for heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255171A (en) * 2008-03-28 2009-11-05 Kobe Steel Ltd Side material, method for producing the same and method for producing clad material for heat exchanger

Also Published As

Publication number Publication date
JP4077850B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
JP5222197B2 (en) Side material, method for producing the same, and method for producing a clad material for heat exchanger
KR101016146B1 (en) Process for producing clad material and equipment therefor
JP4077853B2 (en) Method for producing side material, method for producing clad material for heat exchanger, and clad material for heat exchanger
JP4077851B2 (en) Side material for clad material
JP4077850B2 (en) Method for producing side material and method for producing clad material for heat exchanger
JP4077852B2 (en) Method for producing side material, method for producing clad material for heat exchanger, and clad material for heat exchanger
JP4023751B2 (en) Clad material manufacturing method
RU2388583C2 (en) Method to produce clad material and device to this end
JP4017174B2 (en) Side material production equipment
AU2011203571B2 (en) Method for manufacturing clad material and equipment for manufacturing the same
AU2011203570B2 (en) Method for manufacturing clad material and equipment for manufacturing the same
AU2011203568B2 (en) Method for manufacturing clad material and equipment for manufacturing the same
MX2008007376A (en) Process for producing clad material and equipment therefor.
AU2011203567A1 (en) Method for manufacturing clad material and equipment for manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080201

R150 Certificate of patent or registration of utility model

Ref document number: 4077850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6