JP2007260598A - Method and apparatus for treating polluted water by ozone microbubble - Google Patents

Method and apparatus for treating polluted water by ozone microbubble Download PDF

Info

Publication number
JP2007260598A
JP2007260598A JP2006090983A JP2006090983A JP2007260598A JP 2007260598 A JP2007260598 A JP 2007260598A JP 2006090983 A JP2006090983 A JP 2006090983A JP 2006090983 A JP2006090983 A JP 2006090983A JP 2007260598 A JP2007260598 A JP 2007260598A
Authority
JP
Japan
Prior art keywords
ozone
contaminated water
reactor
fine
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006090983A
Other languages
Japanese (ja)
Other versions
JP4910452B2 (en
Inventor
Akira Niimura
亮 新村
Masato Shimoyama
真人 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2006090983A priority Critical patent/JP4910452B2/en
Publication of JP2007260598A publication Critical patent/JP2007260598A/en
Application granted granted Critical
Publication of JP4910452B2 publication Critical patent/JP4910452B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for treating polluted water by ozone microbubbles which can sufficiently improve reaction efficiency between polluted water and ozone. <P>SOLUTION: The polluted water treatment apparatus 100 comprises an ozone reaction tank 1, a feed pipe 2, a discharge pipe 3, an ozone generator 4, a microbubble generator 5, an ozone supply means 6, an introduction pipe 7, and lead-out pipe 8.The total inflow of the polluted water into the ozone reaction tank 1 through the feed pipe 2 and the lead-out pipe 8, and the outflow of the polluted water from the ozone reaction tank 1 through the discharge pipe 3 are regulated to form a downflow having a flow rate equal to or higher than the rising speed of the ozone microbubble (for example, 1 mm/s or more) in the polluted water in the ozone reaction tank 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、汚染水とオゾン微細気泡とを反応させて汚染水に含まれる有機物を処理するオゾン微細気泡による汚染水の処理方法、及びオゾン微細気泡による汚染水の処理装置に関し、特に、汚染水とオゾンとの反応効率を向上させるためのオゾン微細気泡による汚染水の処理方法、及びオゾン微細気泡による汚染水の処理装置に関する。   The present invention relates to a method for treating contaminated water using ozone fine bubbles, which reacts the contaminated water with ozone fine bubbles to treat organic substances contained in the contaminated water, and a treatment apparatus for contaminated water using ozone fine bubbles, and more particularly to contaminated water. It is related with the processing method of the contaminated water by the ozone fine bubble for improving the reaction efficiency of ozone and ozone, and the processing apparatus of the contaminated water by the ozone fine bubble.

有機物を含有する汚染水として、例えば、畜産排水、ゴミ処分場浸出水、バイオマスからの廃水等がある。これらの汚染水にはフミン酸等の有機物が多量に含まれており、例えば、COD(Chemical Oxygen Demand;化学的酸素要求量)=1500〜7000mg/L、BOD(Biochemical Oxygen Demand;生物化学的酸素要求量)=300〜1700mg/Lの値を示す。また、かかる汚染水は、SSや色度も高く、例えば、SS(Suspended Solid;浮遊物質量)=400〜18000mg/L、色度=2000〜3000を示す。   Examples of contaminated water containing organic matter include livestock wastewater, waste disposal site leachate, and wastewater from biomass. These contaminated waters contain a large amount of organic substances such as humic acid. For example, COD (Chemical Oxygen Demand) = 1500 to 7000 mg / L, BOD (Biochemical Oxygen Demand; biochemical oxygen) Requested amount) = 300 to 1700 mg / L. Such contaminated water also has high SS and chromaticity, and for example, shows SS (Suspended Solid) = 400-18000 mg / L, chromaticity = 2000-3000.

このような汚染水に含まれる有機物を処理するために、例えば、汚染水に膜処理や凝集沈殿処理等を施して有機物を除去する技術がある。しかし、これらの技術では、薬剤の使用量が多くなりコストUPを招いてしまう。また、これらの技術では、汚染水に含まれる有機物を十分に除去することができず、特に色度を所定の基準値以下にすることが困難であった。   In order to treat organic substances contained in such contaminated water, for example, there is a technique for removing organic substances by subjecting the contaminated water to film treatment or coagulation precipitation treatment. However, with these techniques, the amount of medicine used increases and costs increase. Also, with these techniques, organic substances contained in the contaminated water cannot be sufficiently removed, and it has been particularly difficult to make the chromaticity below a predetermined reference value.

そこで、近年、汚染水とオゾンとを反応させることにより、汚染水に含まれる有機物を処理する技術が開発されている。この技術は、汚染水にオゾンを曝気し、オゾンの酸化作用によって有機物を処理する技術であり、別途、薬剤を使用する必要がない点で優れている。しかし、曝気したオゾンは、気泡径が大きいため、汚染水中の浮上速度が速く、しかも汚染水に溶解しにくい。その結果、この技術では、汚染水とオゾンとを効率的に反応させることができず、特に色度を所定の基準値以下(例えば、100以下)にするには、オゾンの注入量が多量に必要であった。より具体的には、色度200〜400の汚染水を色度100以下にするには、汚染水1m当たりオゾンが1200〜2000g程度も必要であった。そのため、汚染水にオゾンを曝気する技術では、オゾンを製造するための設備費用やランニングコストが高くなってしまう。また、その際に得られた排ガスには、汚染水に未溶解のオゾンが多量に含まれており、オゾンは有害であることから、排ガス中のオゾンを処理するための設備(例えば、オゾン分解装置やオゾン吸着装置等)も必要となり、コストが高くなってしまう。 Therefore, in recent years, a technique for treating organic substances contained in contaminated water by reacting contaminated water with ozone has been developed. This technique is a technique in which ozone is aerated in contaminated water and organic substances are treated by the oxidizing action of ozone, and is excellent in that it is not necessary to use a chemical separately. However, aerated ozone has a large bubble diameter, and therefore has a fast ascent rate in the contaminated water and is difficult to dissolve in the contaminated water. As a result, in this technique, the contaminated water and ozone cannot be reacted efficiently. Particularly, in order to make the chromaticity below a predetermined reference value (for example, 100 or less), a large amount of ozone is injected. It was necessary. More specifically, ozone of about 1200 to 2000 g per 1 m 3 of contaminated water was required to reduce the polluted water having a chromaticity of 200 to 400 to 100 or less. For this reason, the technology for aeration of ozone into contaminated water increases the equipment cost and running cost for producing ozone. In addition, since the exhaust gas obtained at that time contains a large amount of undissolved ozone in the contaminated water, and ozone is harmful, equipment for treating ozone in the exhaust gas (for example, ozone decomposition) A device, an ozone adsorption device, etc.) are also required, which increases the cost.

従来、かかる問題を解決するために、汚染水とオゾン微細気泡とを反応させて汚染水に含まれる有機物を処理する技術が開発されている(例えば、特許文献1参照)。オゾン微細気泡は、曝気したオゾンと比べて気泡径が著しく小さいため(直径50μm以下)、汚染水中の浮上速度が遅くなり、しかも汚染水に溶解しやすい。従って、このような従来の技術によれば、汚染水とオゾンとの反応効率が一応向上することとなり、その結果、コストダウンを図ることも可能となる。
特開2001−259667号公報
Conventionally, in order to solve such a problem, a technique for treating organic substances contained in contaminated water by reacting contaminated water with fine ozone bubbles has been developed (see, for example, Patent Document 1). Ozone fine bubbles have a remarkably small bubble diameter (50 μm or less in diameter) compared to aerated ozone, and therefore the floating speed in the contaminated water is slow, and the ozone fine bubbles are easily dissolved in the contaminated water. Therefore, according to such a conventional technique, the reaction efficiency between the contaminated water and ozone is temporarily improved, and as a result, the cost can be reduced.
JP 2001-259667 A

しかしながら、汚染水にオゾン微細気泡を供給したとしても、オゾン微細気泡は汚染水中を所定の速度で浮上するとともに、その一部は汚染水に溶解しない。そのため、従来の技術にあっては、汚染水とオゾンとの反応効率を十分に向上させることができなかった。   However, even if ozone fine bubbles are supplied to the contaminated water, the ozone fine bubbles float up in the contaminated water at a predetermined speed, and some of them do not dissolve in the contaminated water. Therefore, in the conventional technique, the reaction efficiency between the contaminated water and ozone cannot be sufficiently improved.

本発明は、上記の問題に鑑みてなされたものであり、その目的は、汚染水とオゾンとの反応効率を十分に向上させることができるオゾン微細気泡による汚染水の処理方法、及びオゾン微細気泡による汚染水の処理装置を提供することにある。   The present invention has been made in view of the above-mentioned problems, and the object thereof is a method for treating contaminated water using ozone fine bubbles, which can sufficiently improve the reaction efficiency between contaminated water and ozone, and ozone fine bubbles. It is in providing the processing apparatus of the contaminated water by.

上記課題を解決するために、本発明は、有機物を含有する汚染水とオゾン微細気泡とを反応させて前記有機物を処理するオゾン微細気泡による汚染水の処理方法であって、前記汚染水に、前記オゾン微細気泡の浮上速度以上の流速を有する下降流を形成することを特徴とする。   In order to solve the above-mentioned problem, the present invention is a treatment method of contaminated water by ozone fine bubbles that reacts contaminated water containing organic matter with ozone fine bubbles to treat the organic matter, A downward flow having a flow velocity equal to or higher than the rising speed of the ozone fine bubbles is formed.

かかる構成によれば、汚染水に形成された下降流の作用により、汚染水に供給されたオゾン微細気泡は、汚染水中を浮上することなく汚染水に滞留し続け、汚染水にほぼ完全に溶解する。これにより、汚染水とオゾンとの反応効率が十分に向上することとなる。   According to this configuration, due to the action of the downward flow formed in the contaminated water, the ozone fine bubbles supplied to the contaminated water continue to stay in the contaminated water without rising in the contaminated water, and are almost completely dissolved in the contaminated water. To do. As a result, the reaction efficiency between the contaminated water and ozone is sufficiently improved.

また、本発明は、有機物を含有する汚染水とオゾン微細気泡とを反応させるオゾン反応器と、前記オゾン反応器の上部側に接続され該オゾン反応器に前記汚染水を供給する供給管と、前記オゾン反応器の下部側に接続され該オゾン反応器から反応後の前記汚染水を排出する排出管と、オゾン発生器と、直径50μm以下の微細気泡を発生させる微細気泡発生器と、前記オゾン発生器と前記微細気泡発生器とを連結し前記オゾン発生器で発生したオゾンを前記微細気泡発生器に供給するオゾン供給手段と、前記供給管と前記微細気泡発生器とを連結し該供給管内を流れる前記汚染水の一部を前記微細気泡発生器に導入する導入管と、前記微細気泡発生器と前記オゾン反応器の上部側とを連結し前記微細気泡発生器で生成されたオゾン微細気泡を含有する前記汚染水の一部を前記オゾン反応器に供給する導出管と、を備え、前記供給管及び前記導出管を介して前記オゾン反応器に流入する前記汚染水の総流入量と、前記排出管を介して前記オゾン反応器から流出する前記汚染水の流出量と、を調節して、前記オゾン反応器内の前記汚染水に、前記オゾン微細気泡の浮上速度以上の流速を有する下降流を形成することを特徴とする。   Further, the present invention provides an ozone reactor for reacting contaminated water containing organic matter and ozone fine bubbles, a supply pipe connected to the upper side of the ozone reactor and supplying the contaminated water to the ozone reactor, A discharge pipe connected to the lower side of the ozone reactor and discharging the contaminated water after reaction from the ozone reactor, an ozone generator, a fine bubble generator for generating fine bubbles having a diameter of 50 μm or less, and the ozone An ozone supply means for connecting the generator and the fine bubble generator and supplying ozone generated by the ozone generator to the fine bubble generator; and the supply pipe and the fine bubble generator are connected to each other in the supply pipe. Ozone microbubbles generated by the microbubble generator by connecting the introduction pipe for introducing a part of the contaminated water flowing through the microbubble generator to the upper side of the ozone generator and the microbubble generator The A discharge pipe for supplying a part of the contaminated water to the ozone reactor, and a total inflow amount of the contaminated water flowing into the ozone reactor through the supply pipe and the discharge pipe, and the discharge Adjusting the outflow amount of the contaminated water flowing out from the ozone reactor through a pipe, and causing the contaminated water in the ozone reactor to have a downward flow having a flow velocity equal to or higher than the rising speed of the ozone fine bubbles. It is characterized by forming.

また、本発明は、有機物を含有する汚染水とオゾン微細気泡とを反応させるオゾン反応器と、前記オゾン反応器の上部側に接続され該オゾン反応器に前記汚染水を供給する供給管と、前記オゾン反応器の下部側に接続され該オゾン反応器から反応後の前記汚染水を排出する排出管と、オゾン発生器と、直径50μm以下の微細気泡を発生させる微細気泡発生器と、前記オゾン発生器と前記微細気泡発生器とを連結し前記オゾン発生器で発生したオゾンを前記微細気泡発生器に供給するオゾン供給手段と、前記オゾン反応器の下部側と前記微細気泡発生器とを連結し該オゾン反応器から前記汚染水の一部を回収して前記微細気泡発生器に導入する導入管と、前記微細気泡発生器と前記オゾン反応器の上部側とを連結し前記微細気泡発生器で生成されたオゾン微細気泡を含有する前記汚染水の一部を前記オゾン反応器に供給する導出管と、を備え、前記供給管及び前記導出管を介して前記オゾン反応器に流入する前記汚染水の総流入量と、前記排出管及び前記導入管を介して前記オゾン反応器から流出する前記汚染水の総流出量と、を調節して、前記オゾン反応器内の前記汚染水に、前記オゾン微細気泡の浮上速度以上の流速を有する下降流を形成することを特徴とする。   Further, the present invention provides an ozone reactor for reacting contaminated water containing organic matter and ozone fine bubbles, a supply pipe connected to the upper side of the ozone reactor and supplying the contaminated water to the ozone reactor, A discharge pipe connected to the lower side of the ozone reactor and discharging the contaminated water after reaction from the ozone reactor, an ozone generator, a fine bubble generator for generating fine bubbles having a diameter of 50 μm or less, and the ozone An ozone supply means for connecting the generator and the fine bubble generator to supply ozone generated by the ozone generator to the fine bubble generator, and connecting the lower side of the ozone reactor and the fine bubble generator The microbubble generator is configured by connecting an introduction pipe for recovering a part of the contaminated water from the ozone reactor and introducing it into the microbubble generator, and the microbubble generator and the upper side of the ozone reactor. Generated by A discharge pipe for supplying a part of the contaminated water containing the ozone fine bubbles to the ozone reactor, and the contaminated water flowing into the ozone reactor through the supply pipe and the discharge pipe Adjusting the total inflow amount and the total outflow amount of the contaminated water flowing out from the ozone reactor through the discharge pipe and the introduction pipe, the ozone fine particles are added to the contaminated water in the ozone reactor. It is characterized by forming a downward flow having a flow velocity equal to or higher than the rising speed of the bubbles.

さらに、本発明のオゾン微細気泡による汚染水の処理装置において、前記オゾン反応器は、配管で構成されていることが好ましい。   Furthermore, in the apparatus for treating contaminated water using ozone fine bubbles according to the present invention, the ozone reactor is preferably constituted by piping.

さらに、本発明のオゾン微細気泡による汚染水の処理装置において、前記オゾン反応器は、前記下降流の作用によって自動的に回転駆動する攪拌用ファンを備えていることが好ましい。   Furthermore, in the apparatus for treating contaminated water using ozone fine bubbles according to the present invention, it is preferable that the ozone reactor includes a stirring fan that is automatically rotated by the action of the downward flow.

さらに、本発明のオゾン微細気泡による汚染水の処理装置において、前記オゾン反応器内の前記汚染水に超音波を付与する超音波発生器を備えていることが好ましい。   Furthermore, it is preferable that the apparatus for treating contaminated water using ozone fine bubbles of the present invention further includes an ultrasonic generator for applying ultrasonic waves to the contaminated water in the ozone reactor.

本発明によれば、オゾン微細気泡による汚染水の処理方法、及びオゾン微細気泡による汚染水の処理装置において、汚染水とオゾンとの反応効率を十分に向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the reaction efficiency of contaminated water and ozone can fully be improved in the processing method of the contaminated water by ozone fine bubbles, and the processing apparatus of the contaminated water by ozone fine bubbles.

以下、添付図面を参照しながら、本発明に係るオゾン微細気泡による汚染水の処理装置(以下、単に「汚染水の処理装置」という)の各実施形態について説明する。   Embodiments of a contaminated water treatment apparatus (hereinafter simply referred to as “contaminated water treatment apparatus”) according to the present invention will be described below with reference to the accompanying drawings.

===第一実施形態===
図1Aは、本発明の第一実施形態における汚染水の処理装置100を示す概略構成図である。図1Aに示す汚染水の処理装置100は、オゾン反応槽1と、供給管2と、排出管3と、オゾン発生器4と、微細気泡発生器5と、オゾン発生器4と微細気泡発生器5とを連結するオゾン供給手段6と、供給管2と微細気泡発生器5とを連結する導入管7と、微細気泡発生器5とオゾン反応槽1の上部側とを連結する導出管8と、を備えている。
=== First Embodiment ===
FIG. 1A is a schematic configuration diagram showing a contaminated water treatment apparatus 100 according to the first embodiment of the present invention. The contaminated water treatment apparatus 100 shown in FIG. 1A includes an ozone reaction tank 1, a supply pipe 2, a discharge pipe 3, an ozone generator 4, a fine bubble generator 5, an ozone generator 4 and a fine bubble generator. 5, an ozone supply means 6 that connects 5, an introduction pipe 7 that connects the supply pipe 2 and the fine bubble generator 5, and a lead-out pipe 8 that connects the fine bubble generator 5 and the upper side of the ozone reaction tank 1. It is equipped with.

かかる汚染水の処理装置100は、供給管2及び導出管8を介してオゾン反応槽1に流入する汚染水の総流入量と、排出管3を介してオゾン反応器1から流出する汚染水の流出量と、を調節して、オゾン反応槽1内の汚染水に、オゾン微細気泡の浮上速度以上の流速を有する下降流を形成するものである。より具体的には、下降流の流速は、ストークスの法則に基づいてオゾン微細気泡の直径に応じて定まり、例えば、オゾン微細気泡の気泡径が最大値50μmの場合には、オゾン微細気泡の浮上速度が約1mm/秒であることから下降流の流速を1mm/秒以上とする。   The contaminated water treatment apparatus 100 includes a total amount of contaminated water flowing into the ozone reaction tank 1 through the supply pipe 2 and the outlet pipe 8 and contaminated water flowing out of the ozone reactor 1 through the discharge pipe 3. The amount of outflow is adjusted to form a downward flow in the contaminated water in the ozone reaction tank 1 having a flow velocity equal to or higher than the rising speed of the ozone fine bubbles. More specifically, the flow velocity of the downward flow is determined according to the diameter of the ozone microbubbles based on Stokes' law, for example, when the bubble diameter of the ozone microbubbles is a maximum value of 50 μm, Since the velocity is about 1 mm / second, the flow velocity of the downward flow is set to 1 mm / second or more.

オゾン反応槽1は、有機物を含有する汚染水とオゾン微細気泡とを反応させるための反応槽であり、その内部に攪拌用ファン11が設けられている。攪拌用ファン11は、汚染水に形成した下降流によって自動的に回転駆動するものである。オゾン反応槽1の高さ及び断面積は、汚染水に形成する下降流が気泡の上昇速度よりも速く、且つ汚染水に含まれている有機物の処理に必要な滞留時間を満足するように決定する。オゾン微細気泡は、直径50μm以下の微細気泡内にオゾンを含有させたものであり、オゾン発生器4、微細気泡発生器5及びオゾン供給手段6によって生成され、汚染水中に供給される。供給管2は、オゾン反応槽1の上部側に接続されオゾン反応槽1に汚染水を供給する。排出管3は、オゾン反応槽1の下部側に接続されオゾン反応槽1から反応後の汚染水を排出する。   The ozone reaction tank 1 is a reaction tank for reacting contaminated water containing organic substances with ozone fine bubbles, and a stirring fan 11 is provided in the reaction tank 1. The stirring fan 11 is automatically rotated by a downward flow formed in the contaminated water. The height and cross-sectional area of the ozone reaction tank 1 are determined so that the downward flow formed in the contaminated water is faster than the rising speed of the bubbles, and the residence time necessary for the treatment of the organic matter contained in the contaminated water is satisfied. To do. The ozone fine bubbles are those in which ozone is contained in fine bubbles having a diameter of 50 μm or less, are generated by the ozone generator 4, the fine bubble generator 5, and the ozone supply means 6, and are supplied into the contaminated water. The supply pipe 2 is connected to the upper side of the ozone reaction tank 1 and supplies contaminated water to the ozone reaction tank 1. The discharge pipe 3 is connected to the lower side of the ozone reaction tank 1 and discharges the contaminated water after the reaction from the ozone reaction tank 1.

オゾン発生器4は、オゾンガスを発生させるものであればよく、特に限定されるものではない。また、微細気泡発生器5は、直径50μm以下の微細気泡(気泡数:6000個/cm以上)を発生させるものであり、例えば、気体を加圧して液体に過飽和状態にし、この気液混合流を吐出口のオリフィスで急減圧して微細気泡を発生させるものがある(特許3620797号参照)。オゾン供給手段6は、オゾン発生器4で発生したオゾンを微細気泡発生器5に供給する。導入管7は、供給管2内を流れる汚染水の一部を微細気泡発生器5に導入する。導出管8は、微細気泡発生器5で生成されたオゾン微細気泡を含有する汚染水の一部をオゾン反応槽1に供給する。 The ozone generator 4 is not particularly limited as long as it generates ozone gas. The fine bubble generator 5 generates fine bubbles having a diameter of 50 μm or less (the number of bubbles: 6000 / cm 3 or more). For example, the gas is pressurized to supersaturate the liquid, and this gas-liquid mixing is performed. There is a type that generates a fine bubble by suddenly depressurizing the flow at the orifice of the discharge port (see Japanese Patent No. 3620797). The ozone supply means 6 supplies ozone generated by the ozone generator 4 to the fine bubble generator 5. The introduction pipe 7 introduces a part of the contaminated water flowing in the supply pipe 2 into the fine bubble generator 5. The lead-out pipe 8 supplies a part of the contaminated water containing the ozone fine bubbles generated by the fine bubble generator 5 to the ozone reaction tank 1.

ところで、汚染水の処理装置100は、供給管2を介して上流側から順に膜処理装置101及び凝集沈殿処理装置102に連結されており、これらの膜処理装置101及び凝集沈殿処理装置102を経た原水は、さらに汚染水の処装置100で処理される。かかる原水としては、例えば、畜産排水、ゴミ処分場浸出水、バイオマスからの廃水等がある。これらの原水にはフミン酸等の有機物が多量に含まれており、CODやBODが高く、またSSや色度等も高い。膜処理装置101は、原水に膜処理を施して浮遊物等を除去するための装置である。一方、凝集沈殿処理装置102は、膜処理装置101を経た原水に凝集沈殿処理を施して不純物等を除去するための装置である。   By the way, the contaminated water treatment apparatus 100 is connected to the membrane treatment apparatus 101 and the coagulation sedimentation treatment apparatus 102 in order from the upstream side via the supply pipe 2, and passes through the membrane treatment apparatus 101 and the coagulation precipitation treatment apparatus 102. The raw water is further processed by the contaminated water processing apparatus 100. Examples of such raw water include livestock wastewater, waste disposal site leachate, and wastewater from biomass. These raw waters contain a large amount of organic substances such as humic acid, have high COD and BOD, and high SS and chromaticity. The membrane treatment apparatus 101 is an apparatus for performing membrane treatment on raw water to remove suspended matters and the like. On the other hand, the coagulation sedimentation treatment apparatus 102 is an apparatus for removing impurities and the like by subjecting the raw water passed through the membrane treatment apparatus 101 to coagulation sedimentation treatment.

膜処理装置101及び凝集沈殿処理装置102を経た原水(以下「汚染水」ともいう。)にあっては、浮遊物や不純物等が除去された際に有機物の一部も除去されているが、依然として有機物が残存しており、CODやBODが高く、またSSや色度等も高い。汚染水の処理装置100は、かかる汚染水に含まれる有機物を十分に処理して、CODやBODを低く、しかもSSや色度等を低くするための装置である。   In the raw water (hereinafter also referred to as “contaminated water”) that has passed through the membrane treatment apparatus 101 and the coagulation sedimentation treatment apparatus 102, a part of the organic matter is also removed when the suspended matter or impurities are removed. Organic matter still remains, COD and BOD are high, SS and chromaticity are also high. The contaminated water treatment apparatus 100 is an apparatus for sufficiently treating organic substances contained in the contaminated water to reduce COD and BOD, and further reduce SS, chromaticity, and the like.

以上の構成によれば、オゾン反応槽1内の汚染水には、オゾン微細気泡の浮上速度以上の流速を有する下降流が形成されており、この下降流の作用によって、汚染水に供給されたオゾン微細気泡は、汚染水中を浮上することなく汚染水に滞留し続け、汚染水にほぼ完全に溶解する。これにより、汚染水とオゾンとの反応効率が十分に向上する。また、下降流の作用によって、攪拌用ファン11が自動的に回転駆動し始め、これによりオゾン微細気泡と汚染水とが十分に攪拌されることとなる。その結果、オゾン微細気泡は汚染水に溶解しやすくなり、汚染水とオゾンとの反応効率がよりいっそう向上する。従って、汚染水の色度を所定の基準値以下にする場合であっても、オゾンの注入量が少量で足りるようになり、例えば、汚染水1m当たりオゾンが400〜700g程度で足りる。そのため、オゾンを製造するための設備費用やランニングコストが低くなる。また、オゾン反応槽1の上層に滞留する排ガスには、オゾンがほとんど含まれておらず、排ガス中のオゾンを処理するための設備も不要となり、よりいっそうコストダウンを図ることができる。 According to the above configuration, the contaminated water in the ozone reaction tank 1 is formed with a downward flow having a flow velocity higher than the rising speed of the ozone microbubbles, and is supplied to the contaminated water by the action of the downward flow. The ozone fine bubbles continue to stay in the contaminated water without rising in the contaminated water, and are almost completely dissolved in the contaminated water. Thereby, the reaction efficiency of contaminated water and ozone is sufficiently improved. In addition, the stirring fan 11 automatically starts to rotate by the action of the downward flow, whereby the ozone fine bubbles and the contaminated water are sufficiently stirred. As a result, the ozone fine bubbles are easily dissolved in the contaminated water, and the reaction efficiency between the contaminated water and ozone is further improved. Therefore, even when the chromaticity of the contaminated water is set to a predetermined reference value or less, a small amount of ozone is sufficient. For example, about 400 to 700 g of ozone per 1 m 3 of the contaminated water is sufficient. Therefore, the equipment cost and running cost for manufacturing ozone become low. Further, the exhaust gas staying in the upper layer of the ozone reaction tank 1 contains almost no ozone, and no equipment for treating ozone in the exhaust gas is required, so that the cost can be further reduced.

なお、図1Aには図示していないが、汚染水の処理装置100は、オゾン反応槽1内の汚染水に超音波を付与する超音波発生器を備えることが好ましい。かかる場合には、超音波の作用によりオゾン微細気泡が汚染水に溶解しやすくなり、汚染水とオゾンとの反応効率がよりいっそう向上する。   Although not shown in FIG. 1A, the contaminated water treatment apparatus 100 preferably includes an ultrasonic generator that applies ultrasonic waves to the contaminated water in the ozone reaction tank 1. In such a case, the fine ozone bubbles are easily dissolved in the contaminated water by the action of ultrasonic waves, and the reaction efficiency between the contaminated water and ozone is further improved.

<確認試験>
次に、本発明の効果を確認すべく、図1Aに示した汚染水の処理装置100における処理水の色度及びCODの推移を測定した。また、超音波処理を施した場合の処理水の酸素飽和度も測定した。各測定結果をそれぞれ図1B〜図1Dに示す。なお、本確認試験において、オゾン反応槽への汚染水の流入量は2L/minであり、オゾン反応槽はφ10cmであることから、下降流の速度は0.43cm/secとなる。一方、ストークスの法則から、50μmのオゾン微細気泡の浮上速度は0.14cm/secとなる。従って、下降流の速度は、オゾン微細気泡の浮上速度以上の流速を有することとなる。
<Confirmation test>
Next, in order to confirm the effect of the present invention, the chromaticity and COD transition of the treated water in the contaminated water treatment apparatus 100 shown in FIG. 1A were measured. Moreover, the oxygen saturation of the treated water at the time of performing an ultrasonic treatment was also measured. The measurement results are shown in FIGS. 1B to 1D, respectively. In this confirmation test, the amount of contaminated water flowing into the ozone reaction tank is 2 L / min, and the ozone reaction tank is φ10 cm, so the downflow speed is 0.43 cm / sec. On the other hand, from the Stokes' law, the floating speed of 50 μm ozone fine bubbles is 0.14 cm / sec. Therefore, the speed of the downward flow has a flow velocity higher than the rising speed of the ozone fine bubbles.

図1Bに示すように、処理水の色度は、一部誤差が生じたものの、単位水量あたりのオゾン量が多いほど、低い値を示す傾向にあった。そして、汚染水にオゾン微細気泡を供給した場合には、オゾンを曝気によって供給した場合と比べ、色度を基準値以下にするために要するオゾンの注入量が少量で足りることを示唆する結果を示した。なお、オゾン濃度21g/m、42g/m、汚染水3.5L、7.5Lの各ケースについて試験を行った。例えば、色度を約500以下にするために必要となるオゾンの注入量は、オゾンを曝気によって供給した場合には約1300g/mであったが、汚染水にオゾン微細気泡を供給した場合には約450g/mであった。 As shown in FIG. 1B, the chromaticity of the treated water tended to show a lower value as the amount of ozone per unit water amount increased, although some errors occurred. When ozone fine bubbles are supplied to the contaminated water, the results suggesting that the amount of ozone injection required to bring the chromaticity below the reference value is sufficient compared to when ozone is supplied by aeration. Indicated. Incidentally, the ozone concentration 21g / m 3, 42g / m 3, contaminated water 3.5 L, were tested for each case of 7.5 L. For example, the amount of ozone injection required to reduce the chromaticity to about 500 or less was about 1300 g / m 3 when ozone was supplied by aeration, but when ozone fine bubbles were supplied to contaminated water. Was about 450 g / m 3 .

図1Cに示すように、処理水のCOD(mg/L)は、汚染水にオゾン微細気泡を供給した場合の方が通常の曝気によってオゾンを供給した場合よりも著しく低下した。なお、同図に示す確認試験において、オゾンの濃度は42g/m、汚染水は3.5Lとした。 As shown in FIG. 1C, the COD (mg / L) of treated water was significantly lower when ozone fine bubbles were supplied to contaminated water than when ozone was supplied by normal aeration. In the confirmation test shown in the figure, the ozone concentration was 42 g / m 3 and the contaminated water was 3.5 L.

図1Dに示すように、処理水の酸素飽和度(%)は、汚染水に超音波処理を施すことにより100%を超える値を示し、過飽和状態となった。特に、微細気泡を供給する際に超音波処理を併用した場合には、通常の曝気処理に超音波処理を併用した場合と比べると、よりいっそう過飽和状態となった。なお、同図では、オゾンではなく酸素の飽和度を測定しているが、オゾンの場合にも同様の効果、すなわち超音波処理を併用することによりオゾンの溶解を促進させる効果が期待できる。   As shown in FIG. 1D, the oxygen saturation (%) of the treated water showed a value exceeding 100% when the contaminated water was subjected to ultrasonic treatment, and was in a supersaturated state. In particular, when ultrasonic treatment was used in combination with supplying fine bubbles, the state of supersaturation was further increased as compared with the case where ultrasonic treatment was used in combination with normal aeration processing. In the figure, the saturation of oxygen, not ozone, is measured, but the same effect can be expected in the case of ozone, that is, the effect of promoting the dissolution of ozone by using ultrasonic treatment together.

ところで、上記の各図面では明らかではないが、汚染水にオゾン微細気泡の浮上速度以上の流速を有する下降流を形成した場合には、下降流を形成しなかった場合と比べ、色度を所定の基準値以下にするために要するオゾンの注入量が少量で足りる結果を示した。   By the way, although it is not clear in each of the above drawings, the chromaticity is predetermined when the downflow having a flow velocity higher than the rising speed of the ozone fine bubbles is formed in the contaminated water, compared to the case where the downflow is not formed. The results showed that a small amount of ozone was required to make the amount less than the standard value.

以上の結果から、本発明の如く、汚染水にオゾン微細気泡の浮上速度以上の流速を有する下降流を形成した場合には、かかる下降流を形成しなかった場合と比べ、汚染水とオゾンとの反応効率が十分に向上すると推測される。   From the above results, as in the present invention, when the downflow having a flow velocity higher than the rising speed of the ozone fine bubbles is formed in the contaminated water, the contaminated water and ozone are compared with the case where the downflow is not formed. It is estimated that the reaction efficiency is sufficiently improved.

また、超音波処理を併用することによりオゾンの溶解が促進し、汚染水とオゾンとの反応効率がよりいっそう向上すると推測される。   Moreover, it is estimated that the combined use of ultrasonic treatment accelerates the dissolution of ozone and further improves the reaction efficiency between contaminated water and ozone.

===第二実施形態===
図2は、本発明の第二実施形態における汚染水の処理装置200を示す概略構成図である。但し、同図において、図1Aに示した第一実施形態と同一の箇所には同一の符号を付し、改良した箇所及び新たに付与した箇所にのみ新たな符号を付すこととし、本発明の主要部を中心に説明する。
=== Second Embodiment ===
FIG. 2 is a schematic configuration diagram showing a contaminated water treatment apparatus 200 according to the second embodiment of the present invention. However, in the same figure, the same reference numerals are given to the same portions as those in the first embodiment shown in FIG. 1A, and only the improved portions and the newly added portions are attached with new reference numerals. The explanation will focus on the main part.

図2に示す汚染水の処理装置200は、図1Aに示した第一実施形態とほぼ同様の構成を有し、オゾン反応槽1と、供給管2と、排出管3と、オゾン発生器4と、微細気泡発生器5と、オゾン供給手段6と、導入管70と、導出管80と、を備えている。但し、本実施形態における汚染水の処理装置200では、図1Aに示した第一実施形態と異なり、導入管70は、オゾン反応槽1の下部側と微細気泡発生器5とを連結し該オゾン反応槽1から汚染水の一部を回収して微細気泡発生器5に導入する。また、導出管80は、微細気泡発生器5とオゾン反応槽1の上部側とを連結し微細気泡発生器5で生成されたオゾン微細気泡を含有する汚染水の一部をオゾン反応槽1に供給する。   A contaminated water treatment apparatus 200 shown in FIG. 2 has substantially the same configuration as that of the first embodiment shown in FIG. 1A, and includes an ozone reaction tank 1, a supply pipe 2, a discharge pipe 3, and an ozone generator 4. A fine bubble generator 5, an ozone supply means 6, an introduction pipe 70, and a lead-out pipe 80. However, in the contaminated water treatment apparatus 200 according to the present embodiment, unlike the first embodiment shown in FIG. 1A, the introduction pipe 70 connects the lower side of the ozone reaction tank 1 and the fine bubble generator 5 to the ozone. A part of the contaminated water is collected from the reaction tank 1 and introduced into the fine bubble generator 5. In addition, the outlet pipe 80 connects the fine bubble generator 5 and the upper side of the ozone reaction tank 1, and part of the contaminated water containing the ozone fine bubbles generated by the fine bubble generator 5 is supplied to the ozone reaction tank 1. Supply.

かかる汚染水の処理装置200は、供給管2及び導出管80を介してオゾン反応槽1に流入する汚染水の総流入量と、排出管3及び導入管70を介してオゾン反応槽1から流出する汚染水の総流出量と、を調節して、オゾン反応槽1内の汚染水に、オゾン微細気泡の浮上速度以上の流速を有する下降流を形成するものである。   The contaminated water treatment apparatus 200 has a total inflow amount of contaminated water flowing into the ozone reaction tank 1 through the supply pipe 2 and the outlet pipe 80, and flows out of the ozone reaction tank 1 through the discharge pipe 3 and the introduction pipe 70. The total outflow amount of the contaminated water is adjusted to form a downward flow having a flow rate higher than the rising speed of the ozone fine bubbles in the contaminated water in the ozone reaction tank 1.

以上の構成によれば、汚染水がオゾン反応槽1内を循環することとなり、オゾン反応槽1内の汚染水に流速の大きな下降流を形成しやすくなる。その結果、オゾン反応槽1内の汚染水に、オゾン微細気泡の浮上速度以上の流速を有する下降流を形成することが容易となる。また、汚染水がオゾン反応槽1内を循環するため、オゾン反応槽1内において汚染水とオゾンとの反応が連続して繰り返されることとなり、汚染水とオゾンとの反応効率がよりいっそう向上する。さらに、微細気泡発生器5は、汚染水を導入管70及び導出管80を介してオゾン反応槽1内に循環させるため、循環ポンプと同様の機能を有する。従って、本実施形態の汚染水の処理装置200にあっては、別途、循環ポンプを設ける必要がなく、コストダウンにも寄与する。   According to the above configuration, the contaminated water circulates in the ozone reaction tank 1, and it becomes easy to form a downward flow having a large flow velocity in the contaminated water in the ozone reaction tank 1. As a result, it becomes easy to form a downward flow in the contaminated water in the ozone reaction tank 1 having a flow velocity equal to or higher than the rising speed of the ozone fine bubbles. In addition, since the contaminated water circulates in the ozone reaction tank 1, the reaction between the contaminated water and ozone is continuously repeated in the ozone reaction tank 1, and the reaction efficiency between the contaminated water and ozone is further improved. . Furthermore, since the fine bubble generator 5 circulates the contaminated water into the ozone reaction tank 1 through the introduction pipe 70 and the outlet pipe 80, it has the same function as a circulation pump. Therefore, in the contaminated water treatment apparatus 200 of the present embodiment, it is not necessary to separately provide a circulation pump, which contributes to cost reduction.

===第三実施形態===
図3は、本発明の第三実施形態における汚染水の処理装置300を示す概略構成図である。但し、同図において、図1Aに示した第一実施形態と同一の箇所には同一の符号を付し、改良した箇所及び新たに付与した箇所にのみ新たな符号を付すこととし、本発明の主要部を中心に説明する。
=== Third embodiment ===
FIG. 3 is a schematic configuration diagram showing a contaminated water treatment apparatus 300 according to the third embodiment of the present invention. However, in the same figure, the same reference numerals are given to the same portions as those in the first embodiment shown in FIG. 1A, and only the improved portions and the newly added portions are attached with new reference numerals. The explanation will focus on the main part.

図3に示す汚染水の処理装置300は、図1Aに示した汚染水の処理装置100とほぼ同様の構成を有し、オゾン反応器である配管10と、供給管2と、排出管3と、オゾン発生器4と、微細気泡発生器5と、オゾン供給手段6と、導入管7と、導出管8と、を備えている。但し、本実施形態における汚染水の処理装置300では、図1Aに示した第一実施形態と異なり、オゾン反応器が反応槽(例えば、図1Aのオゾン反応槽1参照)ではなく、上下に蛇行する配管10で構成されている。   A contaminated water treatment apparatus 300 shown in FIG. 3 has substantially the same configuration as the contaminated water treatment apparatus 100 shown in FIG. 1A, and includes a pipe 10 that is an ozone reactor, a supply pipe 2, a discharge pipe 3, and the like. , An ozone generator 4, a fine bubble generator 5, an ozone supply means 6, an introduction pipe 7, and a lead-out pipe 8. However, in the contaminated water treatment apparatus 300 according to this embodiment, unlike the first embodiment shown in FIG. 1A, the ozone reactor is not a reaction tank (for example, see the ozone reaction tank 1 in FIG. 1A), but meanders up and down. It is comprised by the piping 10 to do.

以上の構成によれば、汚染水が配管10内をオゾン微細気泡の浮上速度以上の流速で流れ、汚染水とオゾンとの接触の機会が著しく増加する。従って、本実施形態の汚染水の処理装置300にあっては、汚染水とオゾンとの反応効率がよりいっそう向上する。また、オゾン反応器が反応槽ではなく、配管10で構成されているため、スペースの縮小化を図ることも可能となり、コストダウンにも寄与することとなる。   According to the above configuration, the contaminated water flows in the pipe 10 at a flow velocity higher than the rising speed of the ozone fine bubbles, and the chance of contact between the contaminated water and ozone is remarkably increased. Therefore, in the contaminated water treatment apparatus 300 of the present embodiment, the reaction efficiency between the contaminated water and ozone is further improved. In addition, since the ozone reactor is constituted by the pipe 10 instead of the reaction tank, it is possible to reduce the space and contribute to cost reduction.

本発明の第一実施形態における汚染水の処理装置を示す概略構成図である。It is a schematic block diagram which shows the processing apparatus of the contaminated water in 1st embodiment of this invention. 処理水の色度測定結果を示すグラフである。It is a graph which shows the chromaticity measurement result of treated water. 処理水のCOD測定結果を示すグラフである。It is a graph which shows the COD measurement result of treated water. 超音波処理を併用した場合における処理水の酸素飽和度測定結果を示すグラフである。It is a graph which shows the oxygen saturation measurement result of the treated water at the time of using ultrasonic treatment together. 本発明の第二実施形態における汚染水の処理装置を示す概略構成図である。It is a schematic block diagram which shows the processing apparatus of the contaminated water in 2nd embodiment of this invention. 本発明の第三実施形態における汚染水の処理装置を示す概略構成図である。It is a schematic block diagram which shows the processing apparatus of the contaminated water in 3rd embodiment of this invention.

符号の説明Explanation of symbols

1 オゾン反応槽
2 供給管
3 排出管
4 オゾン発生器
5 微細気泡発生器
6 オゾン供給手段
7,70 導入管
8,80 導出管
10 配管
100,200,300 汚染水の処理装置
DESCRIPTION OF SYMBOLS 1 Ozone reaction tank 2 Supply pipe 3 Discharge pipe 4 Ozone generator 5 Fine bubble generator 6 Ozone supply means 7,70 Introducing pipe 8,80 Outlet pipe 10 Piping 100,200,300 Contaminated water treatment apparatus

Claims (6)

有機物を含有する汚染水とオゾン微細気泡とを反応させて前記有機物を処理するオゾン微細気泡による汚染水の処理方法であって、
前記汚染水に、前記オゾン微細気泡の浮上速度以上の流速を有する下降流を形成することを特徴とするオゾン微細気泡による汚染水の処理方法。
A method for treating contaminated water with ozone fine bubbles, wherein the organic matter is treated by reacting contaminated water containing organic matter with ozone fine bubbles,
A method for treating contaminated water using ozone fine bubbles, wherein a downward flow having a flow velocity equal to or higher than the rising speed of the ozone fine bubbles is formed in the contaminated water.
有機物を含有する汚染水とオゾン微細気泡とを反応させるオゾン反応器と、
前記オゾン反応器の上部側に接続され該オゾン反応器に前記汚染水を供給する供給管と、
前記オゾン反応器の下部側に接続され該オゾン反応器から反応後の前記汚染水を排出する排出管と、
オゾン発生器と、
直径50μm以下の微細気泡を発生させる微細気泡発生器と、
前記オゾン発生器と前記微細気泡発生器とを連結し前記オゾン発生器で発生したオゾンを前記微細気泡発生器に供給するオゾン供給手段と、
前記供給管と前記微細気泡発生器とを連結し該供給管内を流れる前記汚染水の一部を前記微細気泡発生器に導入する導入管と、
前記微細気泡発生器と前記オゾン反応器の上部側とを連結し前記微細気泡発生器で生成されたオゾン微細気泡を含有する前記汚染水の一部を前記オゾン反応器に供給する導出管と、を備え、
前記供給管及び前記導出管を介して前記オゾン反応器に流入する前記汚染水の総流入量と、前記排出管を介して前記オゾン反応器から流出する前記汚染水の流出量と、を調節して、前記オゾン反応器内の前記汚染水に、前記オゾン微細気泡の浮上速度以上の流速を有する下降流を形成することを特徴とするオゾン微細気泡による汚染水の処理装置。
An ozone reactor for reacting contaminated water containing organic matter with ozone fine bubbles;
A supply pipe connected to the upper side of the ozone reactor for supplying the contaminated water to the ozone reactor;
A discharge pipe connected to the lower side of the ozone reactor and discharging the contaminated water after reaction from the ozone reactor;
An ozone generator;
A fine bubble generator for generating fine bubbles having a diameter of 50 μm or less;
Ozone supply means for connecting the ozone generator and the fine bubble generator to supply the ozone generated by the ozone generator to the fine bubble generator;
An introduction pipe for connecting the supply pipe and the fine bubble generator and introducing a part of the contaminated water flowing in the supply pipe into the fine bubble generator;
A lead-out pipe that connects the fine bubble generator and the upper side of the ozone reactor to supply a part of the contaminated water containing the ozone fine bubbles generated by the fine bubble generator to the ozone reactor; With
Adjusting a total inflow amount of the contaminated water flowing into the ozone reactor through the supply pipe and the outlet pipe, and an outflow amount of the contaminated water flowing out of the ozone reactor through the discharge pipe. An apparatus for treating contaminated water using ozone fine bubbles, wherein a downflow having a flow velocity equal to or higher than the rising speed of the ozone fine bubbles is formed in the contaminated water in the ozone reactor.
有機物を含有する汚染水とオゾン微細気泡とを反応させるオゾン反応器と、
前記オゾン反応器の上部側に接続され該オゾン反応器に前記汚染水を供給する供給管と、
前記オゾン反応器の下部側に接続され該オゾン反応器から反応後の前記汚染水を排出する排出管と、
オゾン発生器と、
直径50μm以下の微細気泡を発生させる微細気泡発生器と、
前記オゾン発生器と前記微細気泡発生器とを連結し前記オゾン発生器で発生したオゾンを前記微細気泡発生器に供給するオゾン供給手段と、
前記オゾン反応器の下部側と前記微細気泡発生器とを連結し該オゾン反応器から前記汚染水の一部を回収して前記微細気泡発生器に導入する導入管と、
前記微細気泡発生器と前記オゾン反応器の上部側とを連結し前記微細気泡発生器で生成されたオゾン微細気泡を含有する前記汚染水の一部を前記オゾン反応器に供給する導出管と、を備え、
前記供給管及び前記導出管を介して前記オゾン反応器に流入する前記汚染水の総流入量と、前記排出管及び前記導入管を介して前記オゾン反応器から流出する前記汚染水の総流出量と、を調節して、前記オゾン反応器内の前記汚染水に、前記オゾン微細気泡の浮上速度以上の流速を有する下降流を形成することを特徴とするオゾン微細気泡による汚染水の処理装置。
An ozone reactor for reacting contaminated water containing organic matter with ozone fine bubbles;
A supply pipe connected to the upper side of the ozone reactor for supplying the contaminated water to the ozone reactor;
A discharge pipe connected to the lower side of the ozone reactor and discharging the contaminated water after reaction from the ozone reactor;
An ozone generator;
A fine bubble generator for generating fine bubbles having a diameter of 50 μm or less;
Ozone supply means for connecting the ozone generator and the fine bubble generator to supply the ozone generated by the ozone generator to the fine bubble generator;
An inlet pipe for connecting the lower side of the ozone reactor and the fine bubble generator to collect a part of the contaminated water from the ozone reactor and introducing it into the fine bubble generator;
A lead-out pipe that connects the fine bubble generator and the upper side of the ozone reactor to supply a part of the contaminated water containing the ozone fine bubbles generated by the fine bubble generator to the ozone reactor; With
The total inflow of the contaminated water flowing into the ozone reactor through the supply pipe and the outlet pipe, and the total outflow of the contaminated water flowing out of the ozone reactor through the discharge pipe and the introduction pipe And forming a downward flow having a flow rate equal to or higher than the rising speed of the ozone fine bubbles in the contaminated water in the ozone reactor.
請求項2又は3に記載のオゾン微細気泡による汚染水の処理装置において、
前記オゾン反応器は、配管で構成されていることを特徴とするオゾン微細気泡による汚染水の処理装置。
In the processing apparatus of the contaminated water by the ozone fine bubble of Claim 2 or 3,
The said ozone reactor is comprised with piping, The processing apparatus of the contaminated water by the ozone fine bubble characterized by the above-mentioned.
請求項2から4のいずれかに記載のオゾン微細気泡による汚染水の処理装置において、
前記オゾン反応器は、前記下降流の作用によって自動的に回転駆動する攪拌用ファンを備えたことを特徴とするオゾン微細気泡による汚染水の処理装置。
In the processing apparatus of the contaminated water by the ozone fine bubble in any one of Claim 2 to 4,
The ozone reactor is provided with a stirring fan that is automatically rotated by the action of the downward flow, and the apparatus for treating contaminated water by ozone fine bubbles.
請求項2から5のいずれかに記載のオゾン微細気泡による汚染水の処理装置において、
前記オゾン反応器内の前記汚染水に、超音波を付与する超音波発生器を備えたことを特徴とするオゾン微細気泡による汚染水の処理装置。

In the processing apparatus of the contaminated water by the ozone fine bubble in any one of Claim 2 to 5,
An apparatus for treating contaminated water using fine ozone bubbles, comprising an ultrasonic generator for applying ultrasonic waves to the contaminated water in the ozone reactor.

JP2006090983A 2006-03-29 2006-03-29 Contaminated water treatment method using ozone fine bubbles, and contaminated water treatment apparatus using ozone fine bubbles Expired - Fee Related JP4910452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090983A JP4910452B2 (en) 2006-03-29 2006-03-29 Contaminated water treatment method using ozone fine bubbles, and contaminated water treatment apparatus using ozone fine bubbles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090983A JP4910452B2 (en) 2006-03-29 2006-03-29 Contaminated water treatment method using ozone fine bubbles, and contaminated water treatment apparatus using ozone fine bubbles

Publications (2)

Publication Number Publication Date
JP2007260598A true JP2007260598A (en) 2007-10-11
JP4910452B2 JP4910452B2 (en) 2012-04-04

Family

ID=38634116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090983A Expired - Fee Related JP4910452B2 (en) 2006-03-29 2006-03-29 Contaminated water treatment method using ozone fine bubbles, and contaminated water treatment apparatus using ozone fine bubbles

Country Status (1)

Country Link
JP (1) JP4910452B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004389A (en) * 2010-06-17 2012-01-05 Denso Corp Device with fluid stirring function
WO2023074422A1 (en) * 2021-10-27 2023-05-04 メタウォーター株式会社 Ozone contact system and ozone contact method
JP7371902B2 (en) 2019-11-15 2023-10-31 アクアインテック株式会社 Air bubble supply facility

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06206084A (en) * 1993-01-07 1994-07-26 Fuji Electric Co Ltd Introduction of ozone gas into downstream dissolving type water treating device
JPH09187798A (en) * 1996-01-09 1997-07-22 Meidensha Corp Method for ozone treatment of waste water sludge and apparatus therefor
JPH09234479A (en) * 1996-03-01 1997-09-09 Chlorine Eng Corp Ltd Ozone reaction tank
JPH1110175A (en) * 1997-06-20 1999-01-19 Meidensha Corp Method for controlling pressurizing and downward injection type ozone contact tank
JP2001198583A (en) * 2000-01-17 2001-07-24 Babcock Hitachi Kk Method and device for oxidizing liquid to be treated
JP2003181478A (en) * 2001-12-20 2003-07-02 Kontekkusu:Kk Apparatus for improving water quality
JP2003334432A (en) * 2002-05-15 2003-11-25 Ryosaku Fujisato Gas dissolving device and water treatment device and water treatment apparatus having these

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06206084A (en) * 1993-01-07 1994-07-26 Fuji Electric Co Ltd Introduction of ozone gas into downstream dissolving type water treating device
JPH09187798A (en) * 1996-01-09 1997-07-22 Meidensha Corp Method for ozone treatment of waste water sludge and apparatus therefor
JPH09234479A (en) * 1996-03-01 1997-09-09 Chlorine Eng Corp Ltd Ozone reaction tank
JPH1110175A (en) * 1997-06-20 1999-01-19 Meidensha Corp Method for controlling pressurizing and downward injection type ozone contact tank
JP2001198583A (en) * 2000-01-17 2001-07-24 Babcock Hitachi Kk Method and device for oxidizing liquid to be treated
JP2003181478A (en) * 2001-12-20 2003-07-02 Kontekkusu:Kk Apparatus for improving water quality
JP2003334432A (en) * 2002-05-15 2003-11-25 Ryosaku Fujisato Gas dissolving device and water treatment device and water treatment apparatus having these

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004389A (en) * 2010-06-17 2012-01-05 Denso Corp Device with fluid stirring function
JP7371902B2 (en) 2019-11-15 2023-10-31 アクアインテック株式会社 Air bubble supply facility
WO2023074422A1 (en) * 2021-10-27 2023-05-04 メタウォーター株式会社 Ozone contact system and ozone contact method

Also Published As

Publication number Publication date
JP4910452B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP2008055291A (en) Water treating device
ES2923703T3 (en) Water and process treatment system that uses dissolved air flotation to remove suspended solids
JP2009262008A (en) Water treating apparatus and water treating method
JP2009254967A (en) Water treatment system
KR101220539B1 (en) Water treating apparatus
JPH11277091A (en) Apparatus and method for treating sewage/waste water by biological reaction
JP2001009446A (en) Pressure flotation method and equipment therefor
JP2006255514A (en) Apparatus and method for treating organic waste water
JP5037479B2 (en) Purification processing apparatus and purification processing method
JP5148460B2 (en) Purification processing apparatus and purification processing method
KR20010056230A (en) Unified Tower-typed Water Treatment Plant
JP4515868B2 (en) Water treatment system
JP4910452B2 (en) Contaminated water treatment method using ozone fine bubbles, and contaminated water treatment apparatus using ozone fine bubbles
JP5682904B2 (en) High concentration dissolved water generating apparatus and high concentration dissolved water generating system
KR20110046132A (en) An waste water management system with a microbubbled device
JP2007090218A (en) Organic waste water treatment method and organic waste water treatment equipment
JP2007083108A (en) Method and apparatus for treating liquid
JP2008119609A (en) Gas diffusion system and gas diffusion method
JP2007330894A (en) Activated sludge treatment apparatus
JP6164941B2 (en) Muddy water treatment system and muddy water treatment method
JP4271991B2 (en) Ozone water treatment equipment
JPWO2020157914A1 (en) Sewage treatment equipment and sewage treatment method
JP2003053378A (en) Method and device for treating water by using separation membrane
KR101203944B1 (en) Denitrification system using micro bubble floating device
KR102059988B1 (en) Membrane water treatment apparatus using micro-bubble

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R150 Certificate of patent or registration of utility model

Ref document number: 4910452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees