JP2007260559A - Biological deodorizer and biological deodorization method - Google Patents

Biological deodorizer and biological deodorization method Download PDF

Info

Publication number
JP2007260559A
JP2007260559A JP2006088972A JP2006088972A JP2007260559A JP 2007260559 A JP2007260559 A JP 2007260559A JP 2006088972 A JP2006088972 A JP 2006088972A JP 2006088972 A JP2006088972 A JP 2006088972A JP 2007260559 A JP2007260559 A JP 2007260559A
Authority
JP
Japan
Prior art keywords
packed bed
carrier
upstream
downstream
packed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006088972A
Other languages
Japanese (ja)
Inventor
Kazuyuki Usui
一行 臼井
Yoshiki Matsubayashi
由樹 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2006088972A priority Critical patent/JP2007260559A/en
Publication of JP2007260559A publication Critical patent/JP2007260559A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

<P>PROBLEM TO BE SOLVED: To improve an efficiency in deodorization treatment of an odorant gas containing a sulfur series odorant with a microorganism to improve the miniaturization and treating performance of a biological deodorizer. <P>SOLUTION: An upstream packed bed 21 and a downstream packed bed 31 are formed by each filling deodorization treating chambers 20, 30 of the biological deodorizer 1 with a porous ceramic-made carrier where the microorganism that decomposes the sulfur series odorant is immobilized, after an easily decomposable sulfur series odorant is mainly decomposed by allowing the odorant gas to pass through the bed 21 and a hardly decomposable sulfur series odorant is mainly decomposed by allowing the remaining gas to pass through the bed 31. The size of the carrier in the bed 31 is made smaller that of the carrier in the bed 21 and a carrier surface area and a total carrier surface area per unit volume in the bed 31 are made bigger than those of both the areas in the bed 21. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、臭気ガスに含まれる臭気物質を微生物を利用して分解、脱臭するための生物脱臭装置、及び生物脱臭方法に関し、特に、臭気物質として硫黄系臭気物質を含む臭気ガスを効率よく脱臭するための生物脱臭装置、及び生物脱臭方法に関する。   The present invention relates to a biological deodorization apparatus and a biological deodorization method for decomposing and deodorizing odorous substances contained in odorous gas using microorganisms, and in particular, efficiently deodorizing odorous gas containing sulfur-based odorous substances as odorous substances. The present invention relates to a biological deodorization apparatus and a biological deodorization method.

下水処理場や畜産施設、各種廃水処理施設等で発生するガスには、臭気物質として硫化水素、硫化メチル、二硫化メチル、メチルメルカプタンを主体とした硫黄系臭気物質が多量に含まれており、その発生源となる設備や季節等により変動するものの、中でも硫化水素が比較的高濃度で含まれているのが一般的である。これら臭気物質を含む臭気ガスは、周辺住民の住環境の維持や環境保全、施設内の安全確保の観点等から、臭気物質を除去して脱臭した後に大気中へ放出される。   Gases generated at sewage treatment plants, livestock facilities, various wastewater treatment facilities, etc. contain a large amount of sulfur-based odorous substances mainly composed of hydrogen sulfide, methyl sulfide, methyl disulfide, and methyl mercaptan as odorous substances. In general, hydrogen sulfide is contained at a relatively high concentration, although it varies depending on the equipment and the season of generation. The odorous gas containing these odorous substances is released into the atmosphere after removing the odorous substances and deodorizing from the viewpoints of maintaining the living environment of surrounding residents, environmental conservation, and ensuring safety in the facility.

この臭気ガスの脱臭方法としては、活性炭吸着法や薬液洗浄法等の臭気物質を物理的、化学的に除去する方法が従来から多用されているが、近年では、これらに比べて維持管理が容易でランニングコストが低い生物脱臭法が注目され、下水処理場を中心に広く普及しつつある。この生物脱臭法は、好気性微生物(ここでは硫黄系臭気物質酸化菌)の臭気物質を捕食して酸化分解する機能を利用して脱臭するものであり、このような微生物を固定化した担体を充填した充填層に臭気ガスを供給し、担体に生息する微生物により各硫黄系臭気物質を硫酸へと酸化分解して脱臭を行う。   As a deodorizing method for this odor gas, a method for physically and chemically removing odorous substances such as an activated carbon adsorption method and a chemical cleaning method has been widely used in the past. At the same time, biological deodorization methods with low running costs have attracted attention, and are becoming widespread mainly in sewage treatment plants. This biological deodorization method uses a function of precipitating and oxidatively degrading odorous substances of aerobic microorganisms (here, sulfur-based odorous substance oxidizing bacteria), and a carrier on which such microorganisms are immobilized is used. Odor gas is supplied to the packed packed bed, and each sulfur-based odorous substance is oxidized and decomposed into sulfuric acid by microorganisms that live on the carrier to perform deodorization.

ここで、硫黄系臭気物質の微生物による分解のされ易さ(分解性)には差があり、比較的容易に分解される易分解性の硫化水素に比べて、硫化メチル、二硫化メチル、メチルメルカプタンは、分解速度が遅く難分解性である。これは、硫化水素が硫酸に直接分解されるのに対し、他の硫黄系臭気物質は、一旦中間生成物に変換されてから硫酸に変換される、即ち、硫化メチルと二硫化メチルは、メチルメルカプタンに一旦変換された後、元から存在するメチルメルカプタンと共に更に硫化水素に変換されてから硫酸に分解されるからである。また、各硫黄系臭気物質を酸化分解する微生物は、種毎に異なる生息環境を好み、例えば硫化水素を分解する硫化水素酸化菌はpH2〜4でも活性を維持できるが、上記した他の硫黄系臭気物質の酸化菌は中性域(pH6〜8程度)で活性化し、pH5以下では充分な機能を発揮できない。   Here, there is a difference in the ease (degradability) that sulfur-based odorous substances are decomposed by microorganisms. Compared to easily decomposable hydrogen sulfide that is decomposed relatively easily, methyl sulfide, methyl disulfide, methyl Mercaptans have a slow degradation rate and are hardly decomposable. This is because hydrogen sulfide is directly decomposed into sulfuric acid, while other sulfur-based odorous substances are once converted into intermediate products and then into sulfuric acid. That is, methyl sulfide and methyl disulfide are converted into methyl. This is because it is once converted into mercaptan and then further converted into hydrogen sulfide together with methyl mercaptan which is originally present, and then decomposed into sulfuric acid. In addition, microorganisms that oxidatively decompose sulfur-based odorous substances prefer different habitat environments for each species. For example, hydrogen sulfide-oxidizing bacteria that decompose hydrogen sulfide can maintain activity even at pH 2 to 4, but other sulfur-based microorganisms described above. Odor-oxidizing bacteria are activated in a neutral range (about pH 6 to 8), and cannot function sufficiently at pH 5 or lower.

従って、臭気ガスを前記担体の充填層に供給すると、多量に含まれている易分解性の硫化水素を中心に臭気物質の分解が進行し、それに伴い硫酸が生成されて充填層のpHが次第に低下する。その結果、硫化水素酸化菌は活性化して増殖する一方、他の硫黄系臭気物質酸化菌は生息が困難になり、硫化メチル、二硫化メチル、メチルメルカプタンの分解性能が徐々に低下する。そこで、従来、硫化水素酸化菌と他の酸化菌の生息域を分離し、それぞれに適した環境で生育して臭気ガスを順次供給し、臭気物質の分解処理性能(脱臭処理性能)の低下を抑制する生物脱臭装置が提案されている(特許文献1参照)。   Therefore, when the odor gas is supplied to the packed bed of the carrier, the decomposition of the odorous substance mainly proceeds with a large amount of easily decomposable hydrogen sulfide, and accordingly, sulfuric acid is generated and the pH of the packed bed gradually increases. descend. As a result, hydrogen sulfide oxidizing bacteria are activated and proliferated, while other sulfur odorant oxidizing bacteria become difficult to live, and the degradation performance of methyl sulfide, methyl disulfide, and methyl mercaptan gradually decreases. Therefore, conventionally, the habitats of hydrogen sulfide oxidizing bacteria and other oxidizing bacteria are separated, grown in an environment suitable for each, and the odorous gas is sequentially supplied to reduce degradation of odorous substances (deodorizing performance). A biological deodorization device that suppresses is proposed (see Patent Document 1).

図3は、この従来の生物脱臭装置100の概略構成を示す側断面図である。
生物脱臭装置100は、図示のように、臭気ガスの流入口111と流出口112とを有する生物脱臭塔110を備え、その内部を隔壁113により区画して、ガス流路の上流側と下流側の2つの脱臭処理室120、130を形成し、それぞれに粒状の担体121A、131Aを複数充填して充填層121、131を形成している。この隔壁113の上端部には脱臭処理室120、130同士を連通させるガス通路114が形成されており、流入口111から供給された臭気ガスは、上流側脱臭処理室120を上昇して上流側充填層121を通過して脱臭され、ガス通路114を通って下流側脱臭処理室130に入り、下降して下流側充填層131を通過して更に脱臭されて流出口112から排出される。
FIG. 3 is a side sectional view showing a schematic configuration of this conventional biological deodorizing apparatus 100.
As shown in the figure, the biological deodorization apparatus 100 includes a biological deodorization tower 110 having an odor gas inlet 111 and an outlet 112, the interior of which is partitioned by a partition wall 113, and upstream and downstream of the gas flow path. These deodorizing chambers 120 and 130 are formed, and a plurality of granular carriers 121A and 131A are filled in each of them to form packed layers 121 and 131. A gas passage 114 that allows the deodorizing chambers 120 and 130 to communicate with each other is formed at the upper end portion of the partition wall 113, and the odor gas supplied from the inflow port 111 moves up the upstream deodorizing chamber 120 to the upstream side. The deodorized gas passes through the packed bed 121, enters the downstream deodorizing treatment chamber 130 through the gas passage 114, descends, passes through the downstream packed bed 131, is further deodorized, and is discharged from the outlet 112.

また、各脱臭処理室120、130の上部には、充填層121、131のそれぞれに散水する散水手段122、132が設けられるとともに、各底部に、散水されて各充填層121、131を通過した水を貯水するための貯水槽123、133が形成されており、それらの間に設けられたポンプ124、134を駆動して水を循環使用する。この貯水槽123、133には、水を補給する水補給管125、135とオーバーフロー配管126、136とが接続され、その水面位置が一定に保持されるとともに、水補給管125、135に取り付けられたpH調整剤注入管127、137から注入されるpH調整剤により、貯水槽123、133の水のpHを所定範囲内に調整して維持する。   In addition, sprinkling means 122 and 132 for spraying the filling layers 121 and 131 are provided at the upper portions of the deodorizing treatment chambers 120 and 130, respectively, and water is sprinkled on the bottom portions to pass through the filling layers 121 and 131. Water storage tanks 123 and 133 for storing water are formed, and pumps 124 and 134 provided between them are driven to circulate and use the water. The water tanks 123 and 133 are connected to water supply pipes 125 and 135 for replenishing water and overflow pipes 126 and 136, respectively, and the water surface position is kept constant and attached to the water supply pipes 125 and 135. The pH of the water storage tanks 123 and 133 is adjusted and maintained within a predetermined range by the pH adjusters injected from the pH adjuster injection pipes 127 and 137.

なお、臭気ガスの脱臭は、ガス中の臭気物質が担体121A、131A表面の水分に吸収され、それらを担体121A、131Aに固定化された各酸化菌が取り込んで酸化分解することで行われる。従って、各充填層121、131への散水は、担体121A、131A表面の乾燥を防止して水膜等が形成された状態を確実に維持する役割を有する。同時に、この散水は、担体121A、131Aを洗浄し、脱臭により生成した硫酸を排除して充填層121、131のpHを調整する他に、担体121A、131A上の微生物の生息に必要な水分補給も兼ねている。   The deodorization of the odor gas is performed by absorbing odor substances in the gas by moisture on the surfaces of the carriers 121A and 131A, and taking in them by oxidizing bacteria immobilized on the carriers 121A and 131A. Accordingly, the water spray to each of the packed layers 121 and 131 has a role of preventing the surfaces of the carriers 121A and 131A from being dried and reliably maintaining a state in which a water film or the like is formed. At the same time, the watering is performed by washing the carriers 121A and 131A, removing sulfuric acid generated by deodorization to adjust the pH of the packed layers 121 and 131, and supplying water necessary for the inhabiting of microorganisms on the carriers 121A and 131A. Also serves.

この従来の生物脱臭装置100では、上流側充填層121の担体121Aに主に硫化水素酸化菌を固定化するとともに、上流側貯水槽123の水をその生息に適したpHに調整し、調整後の水を散水して上流側充填層121を硫化水素酸化菌に適した生息環境に維持する。また、下流側充填層131の担体131Aに他の硫黄系臭気物質の酸化菌を固定化するとともに、下流側貯水槽133の水をそれらの生息に適したpHに調整し、調整後の水を散水して下流側充填層131を他の酸化菌に適した生息環境に維持する。   In this conventional biological deodorization apparatus 100, hydrogen sulfide-oxidizing bacteria are mainly immobilized on the carrier 121A of the upstream packed bed 121, and the water in the upstream water storage tank 123 is adjusted to a pH suitable for its habitat. The upstream packed bed 121 is maintained in a habitat suitable for hydrogen sulfide oxidizing bacteria. Moreover, while oxidizing the oxidizing bacteria of other sulfur-based odorous substances to the carrier 131A of the downstream packed bed 131, the water in the downstream water storage tank 133 is adjusted to a pH suitable for their habitat, and the adjusted water is used. Water is sprayed to maintain the downstream packed bed 131 in a habitat suitable for other oxidizing bacteria.

このように、各酸化菌の生息域を分離してそれぞれに適した環境で生育し、供給する臭気ガス中の比較的高濃度で易分解性の硫化水素は上流側充填層121で分解除去し、難分解性の他の硫黄系臭気物質(硫化メチル、二硫化メチル、メチルメルカプタン)は下流側充填層131で分解除去する。以上のように、この従来の装置100では、それぞれの酸化菌を各充填層121、131内で活性を維持したまま分離して生育し、臭気物質の分解処理性能の低下を抑制している。   In this way, the habitat of each oxidizing bacterium is separated and grown in a suitable environment, and the relatively high concentration and easily decomposable hydrogen sulfide in the supplied odor gas is decomposed and removed in the upstream packed bed 121. Other sulfur-based odorous substances (methyl sulfide, methyl disulfide, methyl mercaptan) that are difficult to decompose are decomposed and removed by the downstream packed bed 131. As described above, in this conventional apparatus 100, each oxidizing bacterium is separated and grown while maintaining the activity in each packed bed 121, 131, and the degradation of the odorous substance decomposition treatment performance is suppressed.

ここで、微生物の分解処理能力には一定の限度があり、臭気物質、特に難分解性の硫黄系臭気物質を効率よく分解するためには、臭気ガスと担体121A、131Aの接触面積を大きくしたり、接触時間を長くする等して、より多くの微生物に分解を行わせる必要がある。しかしながら、この従来の装置100では、担体121A、131Aの形態や充填密度等の充填の態様については、以上のような観点からの考慮は特になされておらず、従って、接触面積や時間が不足する等して臭気物質の分解処理の効率が低くなる恐れがある。   Here, there is a certain limit to the ability of the microorganisms to decompose, and in order to efficiently decompose odorous substances, especially persistent sulfurous odorous substances, the contact area between the odorous gas and the carriers 121A and 131A is increased. It is necessary to cause more microorganisms to decompose by increasing the contact time. However, in the conventional apparatus 100, the form of the carriers 121A and 131A and the filling mode such as the packing density are not particularly considered from the above viewpoint, and therefore the contact area and time are insufficient. As a result, the efficiency of the decomposition treatment of odorous substances may be lowered.

このような問題に対しては、充填層121、131の容積を大きくして担体121A、131Aをより多く充填することで対処できるが、この場合には、装置100が大型化して広い設置スペースが必要となり、設備コストが増加するという問題が生じる。また、充填層121、131の容積は変えずに担体121A、131Aの粒径を小さくし、その比表面積を大きくしても、臭気ガスとの接触面積が増加して処理効率の向上に効果がある。しかしながら、この場合には、臭気ガスが通過する各担体間の隙間も狭くなるため、そこに異物が詰まりやすくなり、充填層121、131が閉塞等して臭気ガスの円滑な通過が妨げられる恐れがある。   Such a problem can be dealt with by increasing the volume of the packed beds 121 and 131 and filling the carriers 121A and 131A more, but in this case, the apparatus 100 is enlarged and a large installation space is required. This causes a problem that the equipment cost increases. Moreover, even if the particle size of the carriers 121A and 131A is reduced without increasing the volume of the packed layers 121 and 131 and the specific surface area is increased, the contact area with the odor gas is increased, which is effective in improving the processing efficiency. is there. However, in this case, since the gaps between the carriers through which the odor gas passes are also narrowed, foreign substances are likely to be clogged therewith, and the filling layers 121 and 131 may be blocked to prevent smooth passage of the odor gas. There is.

即ち、例えば下水処理場等で発生する臭気ガスでは、臭気物質として硫化水素が全体の80〜90%程度を占めるのが一般的であるが、このような硫化水素の濃度が高い臭気ガスを処理する場合には、硫黄系臭気物質の分解反応の中間生成物である単体硫黄が析出することがあり、析出硫黄が蓄積して担体間の間隔が狭く、又は閉塞する恐れがある。同時に、硫化水素をエネルギー源とする硫化水素酸化菌が臭気ガスの上流側で急速に増殖し、上記した析出硫黄と共にヘドロ状の団塊を形成することがあり、これにより担体間の隙間が詰まる恐れもある。このような場合には、充填層121、131が閉塞して臭気ガスが流れ難くなるとともに、微生物と臭気物質の接触が妨げられ、分解処理の効率や性能が低下するという問題が生じる。この硫黄の析出や団塊の形成は、硫化水素を分解除去する上流側充填層121で特に生じやすく、また、季節的な変動等で硫化水素濃度が一時的に増加したときにも生じる恐れがある。   That is, for example, in odorous gas generated at a sewage treatment plant, hydrogen sulfide generally occupies about 80 to 90% of the odorous substance. However, such odorous gas having a high concentration of hydrogen sulfide is treated. In such a case, elemental sulfur, which is an intermediate product of the decomposition reaction of the sulfur-based odorous substance, may be deposited, and the deposited sulfur may accumulate and the interval between the carriers may be narrowed or blocked. At the same time, hydrogen sulfide oxidizing bacteria using hydrogen sulfide as an energy source may rapidly grow upstream of the odor gas and form sludge-like nodules with the above-mentioned precipitated sulfur, which may clog the gaps between the carriers. There is also. In such a case, the packed layers 121 and 131 are blocked, and it becomes difficult for the odorous gas to flow, and the contact between the microorganisms and the odorous substance is hindered, resulting in a problem that the efficiency and performance of the decomposition process are lowered. This precipitation of sulfur and formation of nodules are particularly likely to occur in the upstream packed bed 121 that decomposes and removes hydrogen sulfide, and may also occur when the hydrogen sulfide concentration temporarily increases due to seasonal fluctuations or the like. .

なお、臭気物質の含有量が変動する臭気ガスを、生物脱臭装置のみで安定して脱臭処理するのは難しく、また、そのような臭気ガスを確実に脱臭するために装置を大型化する場合には設備コストが増加する。そこで、このような生物脱臭装置では、ガスの流出口に活性炭吸着塔を連結し、ガス中に残留する低濃度の臭気物質を吸着除去することが広く行われている。また、活性炭は、水分が表面に付着すると臭気物質の吸着能力が低下する等、寿命が短くなる傾向があるため、活性炭吸着塔を設ける場合には、そのガス流入口の手前にガス中のミストを除去するミストセパレータを設け、かつ、ガスを活性炭吸着塔に送り込むための脱臭ファン(ブロア)を設けるのが一般的である。   In addition, it is difficult to stably deodorize odorous gas with varying odorous substance content using only a biological deodorizing device, and when the device is enlarged to reliably deodorize such odorous gas. Increases the equipment cost. Therefore, in such a biological deodorization apparatus, an activated carbon adsorption tower is connected to the gas outlet and adsorption removal of low-concentration odorous substances remaining in the gas is widely performed. In addition, activated carbon has a tendency to shorten its life when moisture adheres to the surface, such as the ability to adsorb odorous substances, so when an activated carbon adsorption tower is installed, the mist in the gas is placed in front of the gas inlet. It is common to provide a mist separator for removing gas and a deodorizing fan (blower) for sending gas to the activated carbon adsorption tower.

従って、この場合には、脱臭システムを構成する機器が多くなるとともに、それらを含む装置の全体が大型化して設置スペースも広くなり、設備コストが増加するという問題が生じる。加えて、装置全体の消費エネルギーや保守点検作業の回数及び手間も増加し、かつ活性炭等の消費材の定期的な交換も必要である等、ランニングコストが増加するという問題も生じる。   Therefore, in this case, the number of devices constituting the deodorizing system is increased, and the entire apparatus including them is increased in size to increase the installation space, resulting in an increase in equipment cost. In addition, there is a problem that the running cost increases, such as the energy consumption of the entire apparatus, the number of maintenance inspections, and the time and effort, and the need for regular replacement of consumables such as activated carbon.

特開平8−323136号公報JP-A-8-323136

本発明は、前記従来の問題に鑑みなされたものであって、その目的は、硫黄系臭気物質を含む臭気ガスの微生物による脱臭処理の効率を向上させ、生物脱臭装置の小型化及び処理性能の向上を図るとともに、設備コストやランニングコストを低減することである。   The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to improve the efficiency of deodorizing treatment by microorganisms of odorous gas containing sulfur-based odorous substances, and to reduce the size and processing performance of a biological deodorizing apparatus. It is to improve the facility cost and running cost.

請求項1の発明は、硫黄系臭気物質を含む臭気ガスを流通させるガス流路と、該ガス流路の上流側に配置され、主に易分解性の前記硫黄系臭気物質を分解する微生物を固定化した担体を充填した上流側充填層と、前記ガス流路の下流側に配置され、主に難分解性の前記硫黄系臭気物質を分解する微生物を固定化した担体を充填した下流側充填層とを備え、前記臭気ガスを前記上流側充填層と前記下流側充填層に順次通過させて脱臭を行う生物脱臭装置であって、前記上流側充填層に充填した担体の総表面積を該上流側充填層の体積で除した値をE1、前記下流側充填層に充填した担体の総表面積を該下流側充填層の体積で除した値をE2としたとき、E1<E2であることを特徴とする。
請求項2の発明は、請求項1に記載された生物脱臭装置において、前記下流側充填層に充填した担体の総表面積が、前記上流側充填層に充填した担体の総表面積よりも大きいことを特徴とする。
請求項3の発明は、請求項1または2に記載された生物脱臭装置において、前記上流側充填層及び下流側充填層の担体が粒状に形成され、かつ前記下流側充填層の担体が前記上流側充填層の担体よりも小粒に形成されていることを特徴とする。
請求項4の発明は、請求項1ないし3のいずれかに記載された生物脱臭装置において、前記上流側充填層及び下流側充填層の担体は、多孔質セラミックからなることを特徴とする。
請求項5の発明は、請求項1ないし4のいずれかに記載された生物脱臭装置において、前記上流側充填層に散水し、該上流側充填層のpHを調整する上流側pH調整手段と、前記下流側充填層に散水し、該下流側充填層のpHを調整する下流側pH調整手段とを備え、前記上流側充填層と前記下流側充填層のpHを独立に制御することを特徴とする。
請求項6の発明は、硫黄系臭気物質を含む臭気ガスを、微生物を固定化した担体を充填した上流側充填層及び下流側充填層に順次通過させ、前記担体に固定化された微生物により前記硫黄系臭気物質を分解して脱臭する生物脱臭方法であって、前記上流側充填層に前記臭気ガスを通過させ、主に易分解性の前記硫黄系臭気物質を分解する工程と、前記下流側充填層に前記臭気ガスを通過させ、主に難分解性の前記硫黄系臭気物質を分解する工程とを有し、前記上流側充填層に充填した担体の総表面積を該上流側充填層の体積で除した値をE1、前記下流側充填層に充填した担体の総表面積を該下流側充填層の体積で除した値をE2としたとき、E1<E2としたことを特徴とする。
請求項7の発明は、請求項6に記載された生物脱臭方法において、前記下流側充填層に充填した担体の総表面積を前記上流側充填層に充填した担体の総表面積よりも大きくしたことを特徴とする。
請求項8の発明は、請求項6または7に記載された生物脱臭方法において、前記上流側充填層に散水し、該上流側充填層のpHを0.5以上5以下に調整する工程と、前記下流側充填層に散水し、該下流側充填層のpHを6以上8以下に調整する工程とを有することを特徴とする。
According to the first aspect of the present invention, there is provided a gas flow path through which an odor gas containing a sulfur-based odor substance is circulated, and a microorganism that is disposed upstream of the gas flow path and mainly decomposes the easily decomposable sulfur-based odor substance. An upstream side packed bed filled with an immobilized carrier and a downstream side packed with a carrier that is arranged downstream of the gas flow path and mainly immobilized with microorganisms that decompose the hardly decomposable sulfur-based odorous substances. A biological deodorization apparatus for performing deodorization by sequentially passing the odorous gas through the upstream packed bed and the downstream packed bed, the total surface area of the carrier packed in the upstream packed bed being the upstream E1 <E2, where E1 is a value obtained by dividing the volume of the side packed bed by E1, and E2 is a value obtained by dividing the total surface area of the carrier packed in the downstream packed bed by the volume of the downstream packed bed. And
According to a second aspect of the present invention, in the biological deodorization apparatus according to the first aspect, the total surface area of the carrier packed in the downstream packed bed is larger than the total surface area of the carrier packed in the upstream packed bed. Features.
The invention according to claim 3 is the biological deodorization apparatus according to claim 1 or 2, wherein the carrier of the upstream packed bed and the downstream packed bed is formed in a granular form, and the carrier of the downstream packed bed is the upstream It is characterized by being formed smaller than the carrier of the side packed layer.
According to a fourth aspect of the present invention, in the biological deodorization apparatus according to any one of the first to third aspects, the carrier of the upstream side packed bed and the downstream side packed bed is made of a porous ceramic.
The invention according to claim 5 is the biological deodorization device according to any one of claims 1 to 4, wherein the upstream pH adjusting means for sprinkling water to the upstream packed bed and adjusting the pH of the upstream packed bed; A downstream pH adjusting means for sprinkling water on the downstream packed bed and adjusting the pH of the downstream packed bed, and independently controlling the pH of the upstream packed bed and the downstream packed bed. To do.
According to the sixth aspect of the present invention, an odor gas containing a sulfur-based odor substance is sequentially passed through an upstream packed bed and a downstream packed bed filled with a carrier on which microorganisms are immobilized, and the microorganisms immobilized on the carrier A biological deodorization method for decomposing and deodorizing a sulfur-based odor substance, the step of passing the odor gas through the upstream packed bed and decomposing mainly the easily decomposable sulfur-based odor substance, and the downstream side A step of allowing the odorous gas to pass through the packed bed and mainly decomposing the hard-to-decompose sulfur-based odorous substance, and determining the total surface area of the carrier packed in the upstream packed bed by the volume of the upstream packed bed E1 <E2 where E1 is a value obtained by dividing E1 and a value obtained by dividing the total surface area of the carrier packed in the downstream packed bed by the volume of the downstream packed bed is E2.
According to a seventh aspect of the present invention, in the biological deodorization method according to the sixth aspect, the total surface area of the carrier packed in the downstream packed bed is made larger than the total surface area of the carrier packed in the upstream packed bed. Features.
The invention of claim 8 is the biological deodorization method according to claim 6 or 7, wherein water is sprayed on the upstream packed bed, and the pH of the upstream packed bed is adjusted to 0.5 or more and 5 or less, Sprinkling water into the downstream packed bed, and adjusting the pH of the downstream packed bed to 6 or more and 8 or less.

本発明によれば、硫黄系臭気物質を含む臭気ガスの微生物による脱臭処理の効率を向上させることができ、生物脱臭装置の小型化及び処理性能の向上が図れるとともに、設備コストやランニングコストを低減することができる。   According to the present invention, it is possible to improve the efficiency of deodorizing treatment by microorganisms of odorous gas containing sulfur-based odorous substances, reducing the size of the biological deodorizing device and improving the processing performance, and reducing the equipment cost and running cost. can do.

以下、本発明の一実施形態について、図面を参照して説明する。
図1は、本実施形態の生物脱臭装置の概略構成を示す側断面図であり、図2は、図1のF−F矢視図である。
この生物脱臭装置1は、図3に示す従来の生物脱臭装置100と同様に、下水処理場等で発生する硫化水素、硫化メチル、二硫化メチル、メチルメルカプタンを主体とする硫黄系臭気物質を含む臭気ガスを、上記した各種微生物を固定化した担体を用いて脱臭するための装置であり、臭気ガス中の硫黄系臭気物質を微生物により硫酸へと酸化分解して脱臭する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a side sectional view showing a schematic configuration of the biological deodorization apparatus of this embodiment, and FIG. 2 is a view taken along the line FF in FIG.
Similar to the conventional biological deodorization apparatus 100 shown in FIG. 3, the biological deodorization apparatus 1 includes a sulfur-based odor substance mainly composed of hydrogen sulfide, methyl sulfide, methyl disulfide, and methyl mercaptan generated in a sewage treatment plant or the like. It is an apparatus for deodorizing odor gas using the above-mentioned carrier on which various microorganisms are immobilized, and deodorizes by oxidizing and decomposing sulfur-based odorous substances in the odor gas into sulfuric acid by microorganisms.

生物脱臭装置1は、図1、2に示すように、臭気ガスの流入口11と流出口12とを有する略箱状の生物脱臭塔10を備え、その内部を隔壁13によりガス流路の上流側(流入口11側)と下流側(流出口12側)の2つの脱臭処理室20、30に区画している。各脱臭処理室20、30は、断面略矩形(図2参照)の角筒状をなし、上下方向の略中央部分のそれぞれに微生物を固定化した担体を複数充填し、略同一体積の上流側及び下流側充填層21、31を形成している。隔壁13の上端部には各脱臭処理室20、30同士を連通させるガス通路14が形成されており、流入口11から供給された臭気ガスは、生物脱臭塔10内のガス流路に沿って、まず、上流側脱臭処理室20を上昇して上流側充填層21を通過して脱臭された後、ガス通路14を通って下流側脱臭処理室30に入り、下降して下流側充填層31を通過して更に脱臭されて流出口12から排出される。   As shown in FIGS. 1 and 2, the biological deodorization apparatus 1 includes a substantially box-shaped biological deodorization tower 10 having an odor gas inlet 11 and an outlet 12, and the interior thereof is upstream of a gas flow path by a partition wall 13. It is divided into two deodorizing treatment chambers 20 and 30 on the side (inlet 11 side) and downstream (outlet 12 side). Each of the deodorization treatment chambers 20 and 30 has a rectangular tube shape with a substantially rectangular cross section (see FIG. 2), is filled with a plurality of carriers immobilizing microorganisms in each of the substantially central portions in the vertical direction, and is upstream of substantially the same volume. And the downstream side filling layers 21 and 31 are formed. A gas passage 14 is formed at the upper end of the partition wall 13 to connect the deodorizing chambers 20 and 30 to each other. The odor gas supplied from the inflow port 11 passes along the gas flow path in the biological deodorization tower 10. First, after the upstream deodorization treatment chamber 20 is lifted and passed through the upstream packed bed 21 to be deodorized, it passes through the gas passage 14 and enters the downstream deodorizing treatment chamber 30, and descends to the downstream packed bed 31. Is further deodorized and discharged from the outlet 12.

また、生物脱臭装置1の上部には、各充填層21、31に散水するための散水装置40が設けられている。散水装置40は、散水する水を貯水槽等から送り出すポンプ(図示せず)と、ポンプからの水の流量を調節するための流量計41Aやバルブ41B等からなる水流量調節手段41と、散水する水を各充填層21、31の上方まで分岐して導く散水管42と、散水管42の分岐した各経路中に設けられた電動弁43と、各充填層21、31の上方のそれぞれに配置された複数の散水ノズル44とを有する。   In addition, a sprinkler 40 for sprinkling the packed beds 21, 31 is provided on the top of the biological deodorizer 1. The watering device 40 includes a pump (not shown) for sending water to be sprinkled from a water storage tank, a water flow rate adjusting means 41 including a flow meter 41A and a valve 41B for adjusting the flow rate of water from the pump, Water pipe 42 that branches and guides water to the upper side of each packed bed 21, 31, an electric valve 43 provided in each branched path of the spray pipe 42, and above each packed bed 21, 31, respectively. And a plurality of watering nozzles 44 disposed therein.

この散水装置40は、水流量調節手段41で水の流量を調節しつつ各電動弁43を独立に作動させ、それぞれを所定のタイミングで開閉して散水ノズル44から各充填層21、31に間欠的に散水し、生成される硫酸の除去や微生物への水分補給等を行う。また、各充填層21、31への散水時間や散水周期、又は散水量等を相互に独立に制御して各充填層21、31からの硫酸の除去量を調節する等し、それらのpHを独立に調整するようになっている。従って、散水された各水を受ける後述する各貯水槽22、32には図示しないpH測定手段が設けられており、その測定値又は経験則等に基づいて散水を行う。なお、ここでは、上流側充填層21のpHが0.5以上5以下に、下流側充填層31のpHが6以上8以下を維持するように調整している。   This watering device 40 operates each motor-operated valve 43 independently while adjusting the flow rate of water by the water flow rate adjusting means 41, and opens and closes each at a predetermined timing to intermittently pass from the watering nozzle 44 to each packed bed 21, 31. Water is sprayed and the generated sulfuric acid is removed and water is replenished to microorganisms. In addition, by controlling the watering time, watering cycle, watering amount, etc. to each packed bed 21, 31 independently of each other to adjust the removal amount of sulfuric acid from each packed bed 21, 31, etc. It is designed to adjust independently. Accordingly, each of the water tanks 22 and 32 (to be described later) that receives each water spray is provided with pH measuring means (not shown), and water is sprayed based on the measured value or empirical rule. Here, the pH of the upstream packed bed 21 is adjusted to be 0.5 or more and 5 or less, and the pH of the downstream packed bed 31 is adjusted to be 6 or more and 8 or less.

一方、生物脱臭塔10(各脱臭処理室20、30)の底部には、散水された水を貯水するための貯水槽22、32が設けられており、これらは隔壁13の下端部に形成された通水孔15を介して互いに連通している。また、生物脱臭塔10の一側面(図1では脱臭処理室20の手前側の側面)には、オーバーフロー管16が、臭気ガスの流入口11及び流出口12よりも低い位置に接続され、貯水槽22、32の水面位置を臭気ガスの入出を妨げない一定位置に維持するとともに、下端部に排水時等に使用するドレン17が接続されている。この貯水槽22、32は、生物脱臭塔10内の湿度をある程度の高さに維持し、充填層21、31の担体の乾燥を防止して微生物による臭気物質の酸化分解(脱臭)の処理効率の低下を防止する役割等を有する。   On the other hand, at the bottom of the biological deodorization tower 10 (each deodorization treatment chamber 20, 30), water storage tanks 22, 32 for storing the sprinkled water are provided, and these are formed at the lower end of the partition wall 13. The communication holes 15 communicate with each other through the water passage holes 15. Further, an overflow pipe 16 is connected to a side surface of the biological deodorization tower 10 (a side surface on the front side of the deodorization treatment chamber 20 in FIG. 1) at a position lower than the inlet port 11 and the outlet port 12 of the odor gas. The water surface position of the tanks 22 and 32 is maintained at a fixed position that does not prevent the odor gas from entering and exiting, and a drain 17 used for draining is connected to the lower end portion. The water storage tanks 22 and 32 maintain the humidity in the biological deodorization tower 10 to a certain level, prevent the carrier of the packed layers 21 and 31 from drying, and treat the oxidative decomposition (deodorization) of odorous substances by microorganisms. It has a role to prevent the deterioration of

また、この生物脱臭装置1は、上流側充填層21に充填した担体の総表面積を上流側充填層21の体積で除した値をE1、下流側充填層31に充填した担体の総表面積を下流側充填層31の体積で除した値をE2としたとき、E1<E2となるように構成されている。即ち、各充填層21、31に異なる寸法や形態の担体を充填したり、或いは担体の充填態様を変化させる等して、下流側充填層31の単位体積あたりの担体表面積(担体表面積の密度:m/m)を、上流側充填層21のそれよりも大きくし、これにより下流側充填層31の臭気ガスとの接触面積を増加させている。 Further, the biological deodorization apparatus 1 has a value obtained by dividing the total surface area of the carrier packed in the upstream packing layer 21 by the volume of the upstream packing layer 21 as E1, and the total surface area of the carrier packed in the downstream packing layer 31 downstream. When the value divided by the volume of the side filling layer 31 is E2, E1 <E2. That is, the surface area of the carrier per unit volume of the downstream side packed layer 31 (the density of the surface area of the carrier: m 2 / m 3 ) is made larger than that of the upstream side packed bed 21, thereby increasing the contact area of the downstream side packed bed 31 with the odor gas.

本実施形態では、両充填層21、31の担体を、多数の連通孔が形成された略円柱状の多孔質セラミックで形成し、かつ、上記した関係を満たすため、上流側充填層21の担体を大粒(例えば、直径10mm、長さ25mm)に、下流側充填層31の担体を小粒(例えば、直径6mm、長さ10mm)に形成している。なお、これら大粒の担体と小粒の担体は、それぞれ大きさにばらつきがあるが、大粒の担体の一つ当たりの体積の平均値と小粒の担体の一つ当たりの体積の平均値に統計的有意差(粒子径の平均値の差が、大粒の担体と小粒の担体の体積のばらつきの分散よりも大きいこと)がある場合であれば、目的の効果は得られる。   In the present embodiment, the carrier of both the packed layers 21 and 31 is formed of a substantially cylindrical porous ceramic in which a large number of communication holes are formed, and the carrier of the upstream packed layer 21 is satisfied in order to satisfy the above-described relationship. Are formed into large particles (for example, 10 mm in diameter and 25 mm in length), and the carrier of the downstream packing layer 31 is formed into small particles (for example, 6 mm in diameter and 10 mm in length). These large carriers and small carriers vary in size, but are statistically significant in the average value of the volume of each large carrier and the average value of the volume of each small carrier. If there is a difference (the difference in the average value of the particle diameters is larger than the dispersion of the volume variation between the large carrier and the small carrier), the desired effect can be obtained.

従って、本実施形態では、上流側充填層21と下流側充填層31の担体は、各充填層21、31の単位体積あたりの担体の個数は上流側充填層21よりも下流側充填層31で大きくなるものの、各充填層21、31の単位体積あたりに含まれる担体一つ一つの体積の合計は略等しくなる。ここで「大きくなる」とは、それぞれの充填層21、31の中から任意の部分をとって個数を計数したときの分散よりも、それぞれの充填層21、31の単位体積あたりに含まれる担体一つ一つの体積の合計の平均値の差が大きい場合を言い、「略等しくなる」とは、それぞれの充填層21、31の中から任意の部分をとって充填層21、31の単位体積あたりに含まれる担体一つ一つの体積の合計した値の分散よりも、それぞれの充填層21、31の単位体積あたりに含まれる担体一つ一つの体積の合計の平均値の差が小さい場合を言う。   Therefore, in the present embodiment, the supports of the upstream packed bed 21 and the downstream packed bed 31 are the number of carriers per unit volume of each packed bed 21, 31 in the downstream packed bed 31 rather than the upstream packed bed 21. Although it increases, the sum of the volume of each carrier contained per unit volume of each of the packed layers 21 and 31 becomes substantially equal. Here, “increased” means a carrier contained in a unit volume of each packed layer 21, 31 rather than a dispersion when an arbitrary portion is taken from each packed layer 21, 31 and the number is counted. The case where the difference of the average value of the sum total of every one volume is large is said and "it becomes substantially equal" means taking the arbitrary part from each filling layer 21,31, and unit volume of the filling layers 21,31. The difference in the average value of the total volume of each carrier contained per unit volume of the respective packed layers 21 and 31 is smaller than the dispersion of the total value of the volume of each carrier contained around the carrier. To tell.

また、各充填層21、31の担体は、寸法以外の他の性状、例えば連通孔の形状や気孔率等を略同一に形成しており、担体表面積の密度は下流側充填層31が上流側充填層21よりも高くなる。同時に、本実施形態では各充填層21、31を略同一体積に形成しているため、下流側充填層31に充填した担体の総表面積が、上流側充填層21に充填した担体の総表面積よりも大きくなっている。以上、各充填層21、31について略円柱状の担体を例に採り詳説したが、リボン状、円筒状、ブラシ状、球状、その他の形状であって充填層21、31に充填されて、個数、体積及び表面積に関して以上と同様の関係が成り立つ全ての担体において、本実施形態と同様の作用・効果が得られる。   In addition, the carriers of the packed layers 21 and 31 have other properties other than the dimensions, for example, the shape of the communicating holes and the porosity, etc., and the density of the carrier surface area is determined by the downstream packed layer 31 on the upstream side. It becomes higher than the filling layer 21. At the same time, in the present embodiment, the packed layers 21 and 31 are formed in substantially the same volume, so that the total surface area of the carrier filled in the downstream packed layer 31 is larger than the total surface area of the carrier filled in the upstream packed layer 21. Is also getting bigger. As described above, each of the packed layers 21 and 31 has been described in detail by taking a substantially columnar carrier as an example. However, the packed layers 21 and 31 are in a ribbon shape, a cylindrical shape, a brush shape, a spherical shape, and other shapes, In all carriers in which the same relationship as described above with respect to volume and surface area is established, the same actions and effects as in this embodiment can be obtained.

なお、本実施形態における各担体の多数の連通孔は、臭気ガスと接する表面積を大きくするとともに、充分な保水性や生成物の洗浄性、耐久性や強度等が得られるような形状及び密度等(例えば、直径約1mm、気孔率77%、瞬間吸水率150%等)に形成されている。また、ここでは、各担体をシリカとアルミナ等からなる酸化物セラミック(例えば、SiOが88%、Alが8%)で形成しているが、各種酸化物セラミックや炭化物セラミック、窒化物セラミック等、強度の高い他のセラミックで形成してもよい。 In addition, the large number of communication holes of each carrier in the present embodiment increases the surface area in contact with the odor gas, and has such a shape and density as to obtain sufficient water retention, product washability, durability, strength, etc. (For example, the diameter is about 1 mm, the porosity is 77%, the instantaneous water absorption is 150%, etc.). Here, each support is formed of an oxide ceramic (for example, SiO 2 is 88%, Al 2 O 3 is 8%) made of silica, alumina, and the like. You may form with other ceramics with high intensity | strength, such as a product ceramic.

この上流側充填層21の担体には、比較的含有量が高く易分解性の硫黄系臭気物質(硫化水素)を酸化分解する酸化菌を主に、下流側充填層31の担体には、比較的含有量が低く難分解性の他の硫黄系臭気物質(硫化メチル、二硫化メチル、メチルメルカプタン)を酸化分解する酸化菌を主に、それぞれ固定化して担持させている。   The carrier of the upstream side packed bed 21 is mainly an oxidizing bacterium that oxidizes and decomposes a sulfur odor substance (hydrogen sulfide) that has a relatively high content and is easily decomposable. Oxidizing bacteria that oxidatively decompose other sulfur-based odorous substances (methyl sulfide, methyl disulfide, methyl mercaptan) that have low chemical content and are difficult to decompose are mainly immobilized and supported.

微生物の固定化は、装置1の運転開始に先立つ微生物の種付操作と馴養運転により行うが、この固定化は、それぞれの担体に予め各微生物を付着させてから各充填層21、31に充填して行ってもよく、また、馴養運転により、各微生物にそれぞれの適した環境への棲み分けを行わせて微生物相を形成する、即ち、pHが0.5以上5以下の上流側充填層21で硫化水素酸化菌を増殖させ、pHが6以上8以下の下流側充填層31で他の酸化菌を増殖させて行ってもよい。   The microorganisms are immobilized by the seeding operation of the microorganisms prior to the start of the operation of the apparatus 1 and the acclimatization operation. This immobilization is performed by filling each packed bed 21, 31 after each microorganism is attached to each carrier in advance. In addition, by the acclimatization operation, each microorganism is divided into a suitable environment to form a microflora, that is, an upstream packed bed having a pH of 0.5 or more and 5 or less. Alternatively, hydrogen sulfide oxidizing bacteria may be grown at 21 and other oxidizing bacteria may be grown at the downstream packed bed 31 having a pH of 6 or more and 8 or less.

次に、この生物脱臭装置1による硫黄系臭気物質を含む臭気ガスの脱臭処理について説明する。
まず、臭気ガスを流入口11から上流側脱臭処理室20に供給し、その内部を上昇させて上流側充填層21を通過させ、その担体に固定化した微生物により、主として易分解性の硫化水素を分解する。続いて、硫化水素の大部分を除去した臭気ガスを、ガス通路14を通して下流側脱臭処理室30に移動させ、その内部を下降させて下流側充填層31を通過させ、その担体に固定化した微生物により、主として難分解性の他の硫黄系臭気物質と、場合によっては未分解の残留硫化水素を分解する。その後、臭気物質を除去して脱臭したガスを流出口12から大気中等へ排出する。
Next, the deodorizing process of the odor gas containing the sulfur odor substance by the biological deodorizing apparatus 1 will be described.
First, odorous gas is supplied from the inlet 11 to the upstream deodorization treatment chamber 20, and the inside thereof is raised and passed through the upstream packed bed 21, and mainly easily degradable hydrogen sulfide by microorganisms immobilized on the carrier. Disassemble. Subsequently, the odor gas from which most of the hydrogen sulfide has been removed is moved to the downstream side deodorization treatment chamber 30 through the gas passage 14, and the inside thereof is lowered to pass through the downstream side packed bed 31 and immobilized on the carrier. The microorganisms mainly decompose other sulfur-based odorous substances that are hardly decomposable and, in some cases, undecomposed residual hydrogen sulfide. Thereafter, the deodorized gas is removed from the outflow port 12 to the atmosphere or the like by removing the odorous substance.

以上の生物脱臭塔10のガス流路に沿った臭気ガスの流通を連続して行うと、各臭気物質の分解による硫酸の生成に伴い、次第に各充填層21、31のpHが低下していく。その為、所定のタイミングで散水装置40により各充填層21、31に散水して硫酸を除去するが、上記したように、散水時間を調節する等して各充填層21、31のpHを独立に調整し、上流側充填層21のpHを硫化水素酸化菌の生息に適した5以下であって0.5以上に維持し、下流側充填層31のpHを他の難分解性の硫黄系臭気物質酸化菌の生息に適した6以上8以下に維持する。   When the flow of the odor gas along the gas flow path of the biological deodorization tower 10 is continuously performed, the pH of the packed beds 21 and 31 gradually decreases as sulfuric acid is generated by the decomposition of the odor substances. . Therefore, water is sprinkled onto each of the packed beds 21 and 31 by the watering device 40 at a predetermined timing to remove sulfuric acid. However, as described above, the pH of each of the packed beds 21 and 31 is independently adjusted by adjusting the watering time or the like. To adjust the pH of the upstream packed bed 21 to 5 or less and 0.5 or more suitable for the habitat of hydrogen sulfide oxidizing bacteria, and to adjust the pH of the downstream packed bed 31 to other persistent sulfur system Maintain 6 or more and 8 or less, which is suitable for the odorous bacteria.

このように、本実施形態の生物脱臭装置1では、各微生物をそれぞれに適した環境で活性を維持したまま生息させ、各充填層21、31のそれぞれの臭気物質の分解処理効率及び性能を向上させる。また、硫化メチル、二硫化メチル、メチルメルカプタンを同一の下流側充填層31で処理し、それらを分解する各微生物に同一箇所で微生物群(ミクロフローラ)を形成させ、フローラ内の微生物間で中間生成物の受け渡しを行わせて分解処理の効率を向上させる。同時に、上流側充填層21で含有量の高い硫化水素を除去した後に、臭気ガスを下流側充填層31に通過させることで、下流側充填層31での硫酸の生成量を抑制し、そのpHが過度に低下及び変動するのを防止する。これにより、下流側充填層31のpHの制御を容易化し、その微生物の活性が低下するのを防止して処理効率の低下を抑制する。   As described above, in the biological deodorization apparatus 1 of the present embodiment, each microorganism is inhabited while maintaining activity in an environment suitable for each, and the decomposition treatment efficiency and performance of each odorous substance in each packed bed 21 and 31 are improved. Let In addition, methyl sulfide, methyl disulfide, and methyl mercaptan are treated in the same downstream packed bed 31 so that microorganisms (microflora) are formed at the same location for each microorganism that decomposes them, and intermediate between the microorganisms in the flora. Improve the efficiency of the decomposition process by delivering the product. At the same time, after removing hydrogen sulfide having a high content in the upstream packed bed 21, the odor gas is passed through the downstream packed bed 31, thereby suppressing the amount of sulfuric acid produced in the downstream packed bed 31 and its pH. Is prevented from excessively decreasing and fluctuating. Thereby, control of pH of the downstream side packed bed 31 is facilitated, the activity of the microorganisms is prevented from being reduced, and the reduction in processing efficiency is suppressed.

また、下流側充填層31の単位体積あたりの担体表面積(臭気ガスとの接触面積)を大きくして単位体積あたりの臭気物質の分解性能(分解量)を高くし、難分解性の硫黄系臭気物質の処理効率を向上させる。同時に、上流側充填層21に対して下流側充填層31の担体の総表面積を大きくし、難分解性の硫黄系臭気物質をより多くの微生物に接触させて、その分解処理の性能を高くして臭気ガスの脱臭を確実に行う。   Further, the carrier surface area (contact area with odor gas) per unit volume of the downstream side packed bed 31 is increased to increase the decomposition performance (decomposition amount) of the odor substance per unit volume, and the hardly decomposable sulfur-based odor. Improve material processing efficiency. At the same time, the total surface area of the carrier of the downstream side packed bed 31 is made larger than that of the upstream side packed bed 21, and the hardly decomposable sulfur-based odor substance is brought into contact with more microorganisms to improve the performance of the decomposition process. Make sure to deodorize odor gas.

ここで、上記したように、担体の粒径を小さくして担体間の間隔を狭くした場合には、析出硫黄や増殖した微生物等が団塊を形成し、担体間の隙間を塞いで充填層を閉塞させることがある。しかしながら、下流側充填層31で分解する難分解性の硫黄系臭気物質は、臭気ガス中での濃度が比較的低く、例えば一般的な下水処理場での発生ガスでは全臭気物質の10〜20%程度であるため、それらを捕食する微生物の急激な増殖や硫黄の析出は生じ難い。従って、本実施形態のように小粒な担体を下流側充填層31に充填しても、閉塞による臭気ガスの滞留や脱臭の処理効率の低下が生じることはない。一方、上流側充填層21では、比較的濃度が高い易分解性の硫黄系臭気物質を分解するため、微生物が増殖等して閉塞する恐れが高いが、上流側充填層21には大粒な担体を充填し、担体間の間隔を広くしているため、団塊が生じた場合であっても充填層21が閉塞等するのが防止され、これによっても脱臭の処理効率の低下を抑制している。   Here, as described above, when the carrier particle size is reduced and the interval between the carriers is narrowed, the precipitated sulfur, the grown microorganisms, etc. form a nodule and the gap between the carriers is blocked to form a packed bed. May cause obstruction. However, the hardly decomposable sulfur-based odor substance that decomposes in the downstream side packed bed 31 has a relatively low concentration in the odor gas. For example, in a generated gas at a general sewage treatment plant, 10 to 20 of the total odor substance. Therefore, rapid growth of microorganisms that prey on them and precipitation of sulfur are unlikely to occur. Therefore, even if the downstream carrier layer 31 is filled with a small carrier as in this embodiment, the retention of odor gas and the deodorization treatment efficiency due to the blockage do not occur. On the other hand, the upstream packed bed 21 decomposes a relatively high concentration of easily decomposable sulfur-based odor substance, so that there is a high possibility that microorganisms will grow and become clogged, but the upstream packed bed 21 has a large carrier. And the gap between the carriers is widened, so that even if a nodule is formed, the packed layer 21 is prevented from being clogged, and this also suppresses a decrease in the processing efficiency of deodorization. .

以上説明したように、本実施形態の生物脱臭装置1によれば、臭気ガスの脱臭処理の効率を向上させることができ、これに伴い、下流側充填層31の体積をより小さくしても従来と同量の臭気ガスの処理が可能となるため、下流側充填層31の小スペース化による装置1の小型化を図ることができる。加えて、装置1の脱臭処理性能も高まり、従来よりも多量の臭気物質を分解できるため、臭気ガスの脱臭をより確実に行うことができる。   As described above, according to the biological deodorization apparatus 1 of the present embodiment, the efficiency of the odor gas deodorization treatment can be improved, and accordingly, even if the volume of the downstream packed bed 31 is further reduced, Therefore, it is possible to reduce the size of the apparatus 1 by reducing the space of the downstream packed bed 31. In addition, since the deodorizing performance of the device 1 is enhanced and a larger amount of odorous substances can be decomposed than before, the odorous gas can be deodorized more reliably.

その結果、流出口12におけるガス中の臭気物質の濃度をより低くできるため、従来の装置では残留臭気物質の除去に必要であった活性炭吸着塔やミストセパレータ、脱臭ファンを省略することができる。従って、機器の数が減少して装置全体の消費エネルギーや保守点検作業を削減でき、かつ活性炭等の消費材の定期的な交換等も不要となるため、装置1のランニングコストを低減することができる。また、装置1の小型化及び設置スペースの縮小化等を図れるため、装置1の設備コストを低減することもできる。   As a result, since the concentration of the odorous substance in the gas at the outlet 12 can be lowered, the activated carbon adsorption tower, the mist separator, and the deodorizing fan that are necessary for removing the residual odorous substance in the conventional apparatus can be omitted. Accordingly, the number of devices can be reduced to reduce the energy consumption and maintenance work of the entire apparatus, and the periodic replacement of consumption materials such as activated carbon becomes unnecessary, so that the running cost of the apparatus 1 can be reduced. it can. Moreover, since the apparatus 1 can be reduced in size and the installation space can be reduced, the equipment cost of the apparatus 1 can also be reduced.

但し、生物脱臭装置1を設置する施設や処理するガスの種類等によっては、活性炭吸着塔が必要となることもある。しかしながら、本実施形態の生物脱臭装置1によれば、上記したように、硫酸の生成量が少なくpHがより低下しにくい難分解性の硫黄系臭気物質を処理する脱臭処理室30(下流側充填層31)をガスの流出口12側に配置したため、そこでの硫酸除去等に必要な散水量を上流側脱臭処理室20(上流側充填層21)よりも少なくすることができる。その為、排出ガス中のミストを減少させることができ、ミストセパレータ等を省略したり、或いは、活性炭吸着塔の活性炭に吸着する水分量を減少させて、活性炭の寿命を長くする、即ち、その交換回数等を減少させることができる。従って、このような場合でも、設備コストやランニングコストを低減することができる。   However, an activated carbon adsorption tower may be required depending on the facility where the biological deodorizing apparatus 1 is installed, the type of gas to be processed, and the like. However, according to the biological deodorization apparatus 1 of the present embodiment, as described above, the deodorization treatment chamber 30 (downstream side filling) that treats a hardly decomposable sulfur-based odor substance that generates a small amount of sulfuric acid and is less likely to lower the pH. Since the layer 31) is disposed on the gas outlet 12 side, the amount of water spray required for removing sulfuric acid or the like can be made smaller than that in the upstream deodorization treatment chamber 20 (upstream packed bed 21). Therefore, it is possible to reduce the mist in the exhaust gas, omitting the mist separator or the like, or reducing the amount of moisture adsorbed on the activated carbon of the activated carbon adsorption tower, thereby extending the life of the activated carbon, that is, The number of exchanges and the like can be reduced. Accordingly, even in such a case, the equipment cost and running cost can be reduced.

また、この生物脱臭装置1では、担体を多数の連通孔を有する多孔質セラミックで形成したため、臭気ガスと接する担体の表面積を大きくできるとともに、微生物の生息数を増加させることができ、更に、微生物の担体への固定化能も高くなるため、臭気物質を効果的に分解して装置1による臭気ガスの脱臭処理効率及び脱臭性能を向上させることができる。同時に、多孔質セラミックは、その連通孔形状により脱臭生成物(硫酸)の洗浄性が高いため、間欠的な散水のみで硫酸を系外に効率的に排出でき、高い脱臭効率及び性能を長期間に亘って維持することができる。   Further, in this biological deodorization apparatus 1, since the carrier is formed of porous ceramic having a large number of communication holes, the surface area of the carrier in contact with the odor gas can be increased, and the number of microorganisms can be increased. Therefore, the odorous substance can be effectively decomposed to improve the odorous gas deodorizing treatment efficiency and the deodorizing performance. At the same time, porous ceramics have a high detergency product (sulfuric acid) washability due to the shape of the communicating holes, so that sulfuric acid can be efficiently discharged out of the system only by intermittent watering, and high deodorization efficiency and performance can be achieved for a long time Can be maintained over a period of time.

加えて、担体の保水性も高くなるため、微生物の生息や、臭気物質の吸収及び微生物への受け渡しに必要な担体表面の水分をより確実に保持することができ、脱臭処理効率や性能の低下を防止することもできる。更に、担体の強度や耐久性も高くなるため、劣化による担体の交換や補充が不要となり、ランニングコストを低減できるとともに、担体の圧密化や、それに伴う臭気ガスの圧力損失の増大等も防止でき、臭気ガスが流れ難くなるのを抑制して処理効率や性能の低下を防止できる。   In addition, since the water retention capacity of the carrier is also high, it is possible to more reliably retain the moisture on the surface of the carrier, which is necessary for the inhabiting of microorganisms, the absorption of odorous substances, and the delivery to microorganisms, and the deodorization efficiency and performance decline. Can also be prevented. In addition, since the strength and durability of the carrier are increased, it is not necessary to replace or replenish the carrier due to deterioration, reducing running costs, and preventing the consolidation of the carrier and the accompanying increase in odor gas pressure loss. In addition, it is possible to prevent the odorous gas from becoming difficult to flow and to prevent a reduction in processing efficiency and performance.

ここで、生物脱臭装置1の散水には、通常の水道水や河川水等を使用してもよいが、例えば装置1を下水処理場に設置する場合には、比較的水量が多く、かつpHに対する緩衝能力が高く浮遊物の少ない砂ろ過水を使用するのが好ましいが、砂ろ過水を必要量確保できないときには、ストレーナ処理した2次処理水を使用してもよい。また、この装置1では、散水した水を再利用せずに排出する、いわゆる一過式散水方式を採用したが、散水用水を確保できない場合には、図3に示す前記従来の生物脱臭装置100と同様に、生成される硫酸を苛性ソーダ等により中和し、水のpHを所定範囲に維持しつつ循環させて再利用してもよい。   Here, normal tap water, river water, or the like may be used for watering the biological deodorization apparatus 1. However, when the apparatus 1 is installed in a sewage treatment plant, for example, the amount of water is relatively large and the pH is high. Although it is preferable to use sand filtered water having a high buffering capacity and low suspended solids, when the required amount of sand filtered water cannot be ensured, strained secondary treated water may be used. Moreover, although this apparatus 1 employ | adopted what is called a transient watering system which discharges the water sprayed without reusing, when the water for watering cannot be ensured, the said conventional biological deodorizing apparatus 100 shown in FIG. Similarly to the above, the produced sulfuric acid may be neutralized with caustic soda or the like, and recycled while being circulated while maintaining the pH of water within a predetermined range.

なお、本実施形態では、担体を略円柱状に形成したが、例えば球状やブロック状、又はリング状、円筒状等の他の形状の粒状に形成してもよい。また、担体は、多孔質セラミック以外に、例えばポリプロピレンやウレタン等の合成樹脂製の多孔質成形体やスポンジ状成形体、軽石、溶岩、ALC(Autoclaved Light-weight aerated Concrete:軽量気泡コンクリート)等のコンクリート類、表面積が大きいピート、木炭、木片、活性炭等の他の多孔質材等で形成してもよく、ピッチ系、アクリル系、セルロース系、フェノール系等の繊維や繊維状活性炭を所定形状や塊状等に形成し、又は、そのまま各繊維を充填して担体としてもよい。   In this embodiment, the carrier is formed in a substantially columnar shape, but may be formed in a spherical shape, a block shape, or other shapes such as a ring shape or a cylindrical shape. In addition to the porous ceramic, the carrier is, for example, a porous molded body made of synthetic resin such as polypropylene or urethane, a sponge-like molded body, pumice, lava, ALC (Autoclaved Light-weight aerated Concrete), etc. It may be formed of concrete, peat with a large surface area, charcoal, wood chips, activated carbon or other porous materials, such as pitch-based, acrylic-based, cellulose-based, phenol-based fibers or fibrous activated carbon. It may be formed in a lump shape or filled with each fiber as it is to form a carrier.

更に、本実施形態では、生物脱臭装置1として、生物脱臭塔10を1枚の隔壁13で2室に区画した2塔一体構造のものを例に採り説明したが、生物脱臭塔に隔壁を設けずに、2つの充填層をガス流路に沿って塔内の上下方向や左右方向に並設して順次通過させる1塔構造の装置や、2つの塔をパイプ等で連結する2塔構造の装置にも、本実施形態と同様の上流側及び下流側充填層を形成することができる。また、臭気ガスを3つの脱臭処理室に順次通過させる3塔構造の装置や、2つの上流側脱臭処理室と、それらの何れにも連通する1つの下流側脱臭処理室を備え、上流側脱臭処理室を交互に切り替えて使用する3塔切替構造の装置等、上流側と下流側の充填層を有する3塔以上の装置にも本発明は適用することができる。   Furthermore, in the present embodiment, the biological deodorization apparatus 1 has been described by taking as an example a two-column integrated structure in which the biological deodorization tower 10 is divided into two chambers by one partition wall 13, but the biological deodorization tower is provided with a partition wall. Without a two-column structure, two packed beds are connected in parallel in the vertical and horizontal directions in the tower along the gas flow path, and the two towers are connected by pipes. An upstream and downstream packed bed similar to the present embodiment can also be formed in the apparatus. In addition, it is equipped with a three-tower structure device that sequentially passes odor gas through three deodorization treatment chambers, two upstream deodorization treatment chambers, and one downstream deodorization treatment chamber that communicates with any of them, and upstream deodorization chambers. The present invention can also be applied to an apparatus having three or more towers having a packed bed on the upstream side and the downstream side, such as an apparatus having a three-column switching structure in which processing chambers are alternately switched.

本実施形態の生物脱臭装置の概略構成を示す側断面図である。It is a sectional side view which shows schematic structure of the biological deodorizing apparatus of this embodiment. 図1のF−F矢視図である。It is a FF arrow line view of FIG. 従来の生物脱臭装置の概略構成を示す側断面図である。It is a sectional side view which shows schematic structure of the conventional biological deodorizing apparatus.

符号の説明Explanation of symbols

1・・・生物脱臭装置、10・・・生物脱臭塔、11・・・流入口、12・・・流出口、13・・・隔壁、14・・・ガス通路、15・・・通水孔、16・・・オーバーフロー管、17・・・ドレン、20・・・上流側脱臭処理室、21・・・上流側充填層、22・・・貯水槽、30・・・下流側脱臭処理室、31・・・下流側充填層、32・・・貯水槽、40・・・散水装置、41・・・水流量調節手段、41A・・・流量計、41B・・・バルブ、42・・・散水管、43・・・電動弁、44・・・散水ノズル。 DESCRIPTION OF SYMBOLS 1 ... Biological deodorizing device, 10 ... Biological deodorizing tower, 11 ... Inlet, 12 ... Outlet, 13 ... Partition, 14 ... Gas passage, 15 ... Water passage , 16 ... overflow pipe, 17 ... drain, 20 ... upstream deodorization treatment chamber, 21 ... upstream filling layer, 22 ... water tank, 30 ... downstream deodorization treatment chamber, DESCRIPTION OF SYMBOLS 31 ... Downstream packed bed, 32 ... Water storage tank, 40 ... Sprinkling device, 41 ... Water flow rate adjustment means, 41A ... Flow meter, 41B ... Valve, 42 ... Sprinkling Water pipe, 43... Motorized valve, 44.

Claims (8)

硫黄系臭気物質を含む臭気ガスを流通させるガス流路と、
該ガス流路の上流側に配置され、主に易分解性の前記硫黄系臭気物質を分解する微生物を固定化した担体を充填した上流側充填層と、
前記ガス流路の下流側に配置され、主に難分解性の前記硫黄系臭気物質を分解する微生物を固定化した担体を充填した下流側充填層とを備え、
前記臭気ガスを前記上流側充填層と前記下流側充填層に順次通過させて脱臭を行う生物脱臭装置であって、
前記上流側充填層に充填した担体の総表面積を該上流側充填層の体積で除した値をE1、前記下流側充填層に充填した担体の総表面積を該下流側充填層の体積で除した値をE2としたとき、
E1<E2であることを特徴とする生物脱臭装置。
A gas flow path for distributing an odor gas containing a sulfur-based odor substance;
An upstream packed bed filled with a carrier that is arranged upstream of the gas flow path and is mainly fixed with microorganisms that decompose the easily decomposable sulfur-based odor substance;
A downstream packed bed filled with a carrier that is arranged on the downstream side of the gas flow path and mainly immobilized with microorganisms that decompose the hardly decomposable sulfur odor substance,
A biological deodorization apparatus for performing deodorization by sequentially passing the odor gas through the upstream packed bed and the downstream packed bed;
The value obtained by dividing the total surface area of the carrier packed in the upstream packed bed by the volume of the upstream packed bed is E1, and the total surface area of the carrier packed in the downstream packed bed is divided by the volume of the downstream packed bed. When the value is E2,
A biological deodorization apparatus characterized by satisfying E1 <E2.
請求項1に記載された生物脱臭装置において、
前記下流側充填層に充填した担体の総表面積が、前記上流側充填層に充填した担体の総表面積よりも大きいことを特徴とする生物脱臭装置。
The biological deodorization device according to claim 1,
The biological deodorization apparatus characterized in that the total surface area of the carrier packed in the downstream packed bed is larger than the total surface area of the carrier packed in the upstream packed bed.
請求項1または2に記載された生物脱臭装置において、
前記上流側充填層及び下流側充填層の担体が粒状に形成され、かつ前記下流側充填層の担体が前記上流側充填層の担体よりも小粒に形成されていることを特徴とする生物脱臭装置。
The biological deodorization apparatus according to claim 1 or 2,
The biological deodorization apparatus, wherein the carrier of the upstream packed bed and the downstream packed bed is formed in a granular shape, and the carrier of the downstream packed bed is formed in a smaller particle than the carrier of the upstream packed bed .
請求項1ないし3のいずれかに記載された生物脱臭装置において、
前記上流側充填層及び下流側充填層の担体は、多孔質セラミックからなることを特徴とする生物脱臭装置。
In the biological deodorization device according to any one of claims 1 to 3,
The biological deodorization apparatus, wherein the carrier of the upstream packed bed and the downstream packed bed is made of a porous ceramic.
請求項1ないし4のいずれかに記載された生物脱臭装置において、
前記上流側充填層に散水し、該上流側充填層のpHを調整する上流側pH調整手段と、
前記下流側充填層に散水し、該下流側充填層のpHを調整する下流側pH調整手段とを備え、
前記上流側充填層と前記下流側充填層のpHを独立に制御することを特徴とする生物脱臭装置。
The biological deodorization device according to any one of claims 1 to 4,
An upstream pH adjusting means for watering the upstream packed bed and adjusting the pH of the upstream packed bed;
A downstream pH adjusting means for sprinkling water on the downstream packed bed and adjusting the pH of the downstream packed bed;
The biological deodorization apparatus characterized by controlling pH of the said upstream packed bed and the said downstream packed bed independently.
硫黄系臭気物質を含む臭気ガスを、微生物を固定化した担体を充填した上流側充填層及び下流側充填層に順次通過させ、前記担体に固定化された微生物により前記硫黄系臭気物質を分解して脱臭する生物脱臭方法であって、
前記上流側充填層に前記臭気ガスを通過させ、主に易分解性の前記硫黄系臭気物質を分解する工程と、
前記下流側充填層に前記臭気ガスを通過させ、主に難分解性の前記硫黄系臭気物質を分解する工程とを有し、
前記上流側充填層に充填した担体の総表面積を該上流側充填層の体積で除した値をE1、前記下流側充填層に充填した担体の総表面積を該下流側充填層の体積で除した値をE2としたとき、E1<E2としたことを特徴とする生物脱臭方法。
Odor gas containing sulfur-based odor substance is sequentially passed through an upstream packed bed and a downstream packed bed filled with a carrier on which microorganisms are immobilized, and the sulfur-based odorous substance is decomposed by the microorganisms immobilized on the carrier. A biological deodorization method for deodorizing
Passing the odor gas through the upstream packed bed and decomposing mainly the easily decomposable sulfur-based odor substance;
Passing the odor gas through the downstream side packed bed, and mainly decomposing the hardly decomposable sulfur-based odor substance,
The value obtained by dividing the total surface area of the carrier packed in the upstream packed bed by the volume of the upstream packed bed is E1, and the total surface area of the carrier packed in the downstream packed bed is divided by the volume of the downstream packed bed. A biological deodorization method characterized in that E1 <E2 when the value is E2.
請求項6に記載された生物脱臭方法において、
前記下流側充填層に充填した担体の総表面積を前記上流側充填層に充填した担体の総表面積よりも大きくしたことを特徴とする生物脱臭方法。
The biological deodorization method according to claim 6,
A biological deodorization method, wherein the total surface area of the carrier packed in the downstream packed bed is made larger than the total surface area of the carrier packed in the upstream packed bed.
請求項6または7に記載された生物脱臭方法において、
前記上流側充填層に散水し、該上流側充填層のpHを0.5以上5以下に調整する工程と、
前記下流側充填層に散水し、該下流側充填層のpHを6以上8以下に調整する工程とを有することを特徴とする生物脱臭方法。
The biological deodorization method according to claim 6 or 7,
Watering the upstream packed bed and adjusting the pH of the upstream packed bed to 0.5 or more and 5 or less;
And a step of watering the downstream packed bed and adjusting the pH of the downstream packed bed to 6 or more and 8 or less.
JP2006088972A 2006-03-28 2006-03-28 Biological deodorizer and biological deodorization method Pending JP2007260559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006088972A JP2007260559A (en) 2006-03-28 2006-03-28 Biological deodorizer and biological deodorization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006088972A JP2007260559A (en) 2006-03-28 2006-03-28 Biological deodorizer and biological deodorization method

Publications (1)

Publication Number Publication Date
JP2007260559A true JP2007260559A (en) 2007-10-11

Family

ID=38634081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006088972A Pending JP2007260559A (en) 2006-03-28 2006-03-28 Biological deodorizer and biological deodorization method

Country Status (1)

Country Link
JP (1) JP2007260559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167870A (en) * 2014-03-04 2015-09-28 株式会社東芝 Biological deodorization apparatus and biological deodorization method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167870A (en) * 2014-03-04 2015-09-28 株式会社東芝 Biological deodorization apparatus and biological deodorization method

Similar Documents

Publication Publication Date Title
KR101024296B1 (en) Biological deodorization system for removal of highly concentrated odors and volatile organic compounds
US20220362710A1 (en) Rotating Spray Device for Water Distribution on Media Bed of a Biofilter
JP5326187B2 (en) Gas processing apparatus provided with gas pretreatment apparatus and cleaning method
JPH11169654A (en) Circulation type microbial deodorization apparatus
CN104001421B (en) A kind of employing pretreated compound bio deodorization process of bubble-free aeration and device
JPH11309333A (en) Water supply and discharge type microbiological deodorizing apparatus
KR101063801B1 (en) Deodorizing apparatus using rare earth ball media
KR102621121B1 (en) Microbial deodorization device and deodorization processing system
JP2691517B2 (en) Biological deodorizer
JP2007260559A (en) Biological deodorizer and biological deodorization method
KR100949696B1 (en) The intermittent media steeping type of biofiltration for deodorization
JP4015285B2 (en) Biological treatment method and apparatus for exhaust gas
JP2009191166A (en) Biological desulfurization apparatus for biogas
JP2007136252A (en) Deodorization method and apparatus for odor gas
JP3410505B2 (en) Biological deodorizing method and device
JP2005246106A (en) Bio-deodorization apparatus and bio-deodorization method
KR20150055684A (en) Apparatus and method for treating hardly degradable malodorous gas
JP6765780B2 (en) Deodorizer
JP5079116B2 (en) Biological deodorization method and biological deodorization apparatus
JP2697066B2 (en) Biological deodorizer
JP4614875B2 (en) Biological deodorization equipment
JP2001219027A (en) Method and device for biogically treating exhasut
JP7450914B2 (en) Deodorizing treatment system
KR101139793B1 (en) Deodorizing apparatus with media multilayer type
JP2000233114A (en) Biological deodorization apparatus, biological deodorization method, and culture method of biological deodorization apparatus