JP2007258561A - Protector and protection method of diffusion furnace - Google Patents

Protector and protection method of diffusion furnace Download PDF

Info

Publication number
JP2007258561A
JP2007258561A JP2006083075A JP2006083075A JP2007258561A JP 2007258561 A JP2007258561 A JP 2007258561A JP 2006083075 A JP2006083075 A JP 2006083075A JP 2006083075 A JP2006083075 A JP 2006083075A JP 2007258561 A JP2007258561 A JP 2007258561A
Authority
JP
Japan
Prior art keywords
wave
diffusion furnace
atmospheric pressure
seismic intensity
pressure control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006083075A
Other languages
Japanese (ja)
Inventor
Takahiro Sasaki
孝裕 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006083075A priority Critical patent/JP2007258561A/en
Publication of JP2007258561A publication Critical patent/JP2007258561A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a protector and a protection method of a vertical diffusion furnace capable of reducing a damage when an earthquake occurs, with a simple structure. <P>SOLUTION: A P wave detector 51 informs a P wave analyzer 52 of the fact that P wave has arrived. The P wave analyzer 52, upon being informed of arrival of P waves from the P wave detector 51, predicts seismic intensity in the district where the vertical diffusion furnace 54 is installed at the time when S waves arrives in the future based on the waveform, amplitude of the arriving P waves, or the like. Then, whether the prediction result is equal to a seismic intensity 5 or higher or not is judged. If the result means seismic intensity 5 or higher, the fact is reported to an atmospheric pressure control unit 53. The atmospheric pressure control unit 53 lowers the atmospheric pressure inside the diffusion furnace when the prediction result is reported as 5 or higher of seismic intensity from the P wave analyzer 52. So, the atmospheric pressure in the diffusion furnace is lowered by decreasing the supplied amount of gas with no change of exhaustion level by a vacuum pump. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体装置の製造等に用いられる拡散炉の保護装置及び保護方法に関する。   The present invention relates to a protection device and a protection method for a diffusion furnace used for manufacturing a semiconductor device.

半導体装置の製造過程では、不純物の導入等の際に縦型拡散炉が使用される。この縦型拡散炉の内部には、処理対象である半導体ウェハが挿入される炉心管、その周囲に配置されたヒータ等が設けられている。また、半導体ウェハは石英ボートに固定された炉心管に挿入され、石英ボートは保温筒とよばれる基台上に載せられる。   In the process of manufacturing a semiconductor device, a vertical diffusion furnace is used when introducing impurities. Inside the vertical diffusion furnace, a furnace core tube into which a semiconductor wafer to be processed is inserted, a heater disposed around the core tube, and the like are provided. The semiconductor wafer is inserted into a core tube fixed to a quartz boat, and the quartz boat is placed on a base called a heat insulating cylinder.

このような構造の縦型拡散炉では、これまで、通常の運転時に大きな問題は生じていない。しかしながら、震度の大きい地震が発生すると膨大な被害が生じてしまう。例えば、石英ボートが保温筒から落下して破損してしまう。また、石英ボートが炉心管の内壁に衝突して石英ボート及び/又は炉心管が破損してしまう。更に、半導体ウェハが石英ボートから落下して割れてしまうこともある。   In the vertical diffusion furnace having such a structure, until now, no major problem has occurred during normal operation. However, if an earthquake with a large seismic intensity occurs, enormous damage will occur. For example, a quartz boat falls from a heat insulating cylinder and is damaged. Further, the quartz boat collides with the inner wall of the core tube and the quartz boat and / or the core tube is damaged. Further, the semiconductor wafer may fall from the quartz boat and break.

そして、縦型拡散炉は、半導体装置を製造する工場内では、中核の一部を担っているため、縦型拡散炉が故障すると、そこで製造が滞ってしまい、生産効率を大幅に低下させてしまう。このため、縦型拡散炉の耐震対策は重要であり、また、例え被害が出たとしても、できるだけ小さく抑えて早急に復旧可能とすることが要望されている。   And since the vertical diffusion furnace is part of the core in the factory that manufactures semiconductor devices, if the vertical diffusion furnace breaks down, production is delayed and production efficiency is greatly reduced. End up. For this reason, seismic countermeasures for vertical diffusion furnaces are important, and even if damage occurs, there is a demand for being able to recover as quickly as possible while keeping it as small as possible.

特許文献1に地震対策をとった縦型拡散炉が開示されているが、機械的に複雑な構成を採用しているため、その製造に要する時間及びコストが上昇してしまう。   Patent Document 1 discloses a vertical diffusion furnace in which countermeasures against earthquakes are taken. However, since a mechanically complicated configuration is employed, the time and cost required for the production increase.

特開平11−74205号公報JP-A-11-74205 特開平11−159571号公報JP 11-159571 A

本発明は、簡素な構造で地震の際の被害を低減することができる拡散炉の保護装置及び保護方法を提供することを目的とする。   An object of this invention is to provide the protection apparatus and protection method of a diffusion furnace which can reduce the damage at the time of an earthquake with a simple structure.

本願発明者は、前記課題を解決すべく鋭意検討を重ねた結果、以下に示す発明の諸態様に想到した。   As a result of intensive studies to solve the above problems, the present inventor has come up with various aspects of the invention described below.

本願発明に係る拡散炉の保護装置には、地震の第一波を検出する検出手段と、前記検出手段により第一波が検出されると、当該第一波の内容を解析し、その解析結果から当該第一波に続く第二波が到来した時の震度が5以上になるか予測する解析手段と、が設けられている。更に、前記解析手段により震度が5以上になると予測されると、当該第二波が到来する前に前記拡散炉内の気圧を低下させる気圧制御手段が設けられている。   The protection device for the diffusion furnace according to the present invention includes a detecting means for detecting the first wave of the earthquake, and when the first wave is detected by the detecting means, the contents of the first wave are analyzed, and the analysis result Analysis means for predicting whether the seismic intensity when the second wave following the first wave arrives is 5 or more. Furthermore, when the seismic intensity is predicted to be 5 or more by the analyzing means, an atmospheric pressure control means for reducing the atmospheric pressure in the diffusion furnace before the second wave arrives is provided.

本願発明に係る拡散炉の保護方法では、地震の第一波を検出すると、当該第一波の内容を解析し、その解析結果から当該第一波に続く第二波が到来した時の震度が5以上になるか予測し、震度が5以上になると予測すると、当該第二波が到来する前に前記拡散炉内の気圧を低下させる。   In the diffusion furnace protection method according to the present invention, when the first wave of the earthquake is detected, the contents of the first wave are analyzed, and the seismic intensity when the second wave following the first wave arrives from the analysis result is If it is predicted that the seismic intensity will be 5 or more, the atmospheric pressure in the diffusion furnace is reduced before the second wave arrives.

本発明によれば、所定の第一波を検知すると、第二波が到来する前に拡散炉内の気圧を低下させるため、部品同士の密着度が向上して振動に伴う衝突及び落下が生じにくくなる。この結果、地震に伴う被害を大幅に低減することができる。   According to the present invention, when a predetermined first wave is detected, the atmospheric pressure in the diffusion furnace is lowered before the second wave arrives, so that the adhesion between components is improved and collision and dropping due to vibration occur. It becomes difficult. As a result, the damage caused by the earthquake can be greatly reduced.

以下、本発明の実施形態について添付の図面を参照して具体的に説明する。図1は、本発明の実施形態に係る縦型拡散炉の保護装置を示すブロック図である。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a block diagram illustrating a protection device for a vertical diffusion furnace according to an embodiment of the present invention.

本実施形態に係る保護装置50には、地震の第一波(P波:Primary wave)を検知するP波検知部51、P波検知部が検知したP波の解析を行うP波解析部52及びP波解析部52による解析結果に応じて縦型拡散炉54内の気圧を制御する気圧制御部53が設けられている。これらの各部は、例えば、コンピュータ(CPU)及びこれがアクセス可能なROM等に記憶されたプログラム等により構成されている。P波解析部52は、P波検知部51がP波を検知すると、その波形及び振幅等の解析を行い、P波の後に第二波(S波:Secondary wave)が到達した時の震度を予測する。この予測は、P波そのものだけでなく、縦型拡散炉54の構造及び縦型拡散炉54が設置されている地域の地盤の構成を考慮して予め作成しておいたデータベース等を用いて行われる。   The protection device 50 according to the present embodiment includes a P wave detection unit 51 that detects a first wave (P wave) of an earthquake, and a P wave analysis unit 52 that analyzes the P wave detected by the P wave detection unit. And the atmospheric pressure control part 53 which controls the atmospheric | air pressure in the vertical diffusion furnace 54 according to the analysis result by the P wave analysis part 52 is provided. Each of these units includes, for example, a computer (CPU) and a program stored in a ROM or the like accessible by the computer. When the P wave detection unit 51 detects the P wave, the P wave analysis unit 52 analyzes the waveform and amplitude and the seismic intensity when the second wave (S wave: Secondary wave) arrives after the P wave. Predict. This prediction is performed using not only the P wave itself but also a database or the like prepared in advance in consideration of the structure of the vertical diffusion furnace 54 and the structure of the ground in the area where the vertical diffusion furnace 54 is installed. Is called.

ここで、縦型拡散炉54の概要について説明する。図2は、縦型拡散炉54の構造を示す模式図である。縦型拡散炉54では、炉壁7の内部に、石英製の炉心管2、石英製の基台(保温筒)3及びヒータ4が設けられている。基台3は、炉壁7内で上下動され、その上には石英ボート12が載置される。石英ボート12には、半導体ウェハ11を3箇所で支持する支持部12aが形成されている。また、炉壁7の下部には、原料及び窒素ガスが供給される供給用配管5、並びに真空ポンプ等に繋がれた排気用配管6が連結されている。そして、供給用配管5には、原料ガス用のバルブ及び窒素ガス用のバルブが設けられ、排気用配管6にもバルブが設けられている。   Here, an outline of the vertical diffusion furnace 54 will be described. FIG. 2 is a schematic diagram showing the structure of the vertical diffusion furnace 54. In the vertical diffusion furnace 54, a quartz core tube 2, a quartz base (insulation cylinder) 3, and a heater 4 are provided inside the furnace wall 7. The base 3 is moved up and down in the furnace wall 7, and a quartz boat 12 is placed thereon. The quartz boat 12 is formed with support portions 12 a that support the semiconductor wafer 11 at three locations. Further, a supply pipe 5 to which raw materials and nitrogen gas are supplied and an exhaust pipe 6 connected to a vacuum pump or the like are connected to the lower portion of the furnace wall 7. The supply pipe 5 is provided with a source gas valve and a nitrogen gas valve, and the exhaust pipe 6 is also provided with a valve.

なお、図示していないが、基台3を上下方向に移動させる機構も設けられており、基台3には石英製の部材が接している。   Although not shown, a mechanism for moving the base 3 in the vertical direction is also provided, and the base 3 is in contact with a quartz member.

次に、保護装置50の動作について説明する。P波検知部51は、常時P波の到来を監視しており、P波が到来するとその旨をP波解析部52に知らせる。P波解析部52は、P波検知部51からP波が到来したことを知らされると、到来したP波の波形及び振幅等からその後にS波が到来した時の、縦型拡散炉54が設置されている地域の震度を予測する。そして、予測結果が震度5以上であるか否かを判断する。この結果、震度が5以上となるという結果が得られている場合には、気圧制御部53にその旨を知らせる。一方、震度が5以上にならないという結果、即ち震度が4以下となるという結果が得られている場合には、その時点で処理を終了する。   Next, the operation of the protection device 50 will be described. The P wave detection unit 51 constantly monitors the arrival of the P wave, and notifies the P wave analysis unit 52 when the P wave arrives. When the P wave analysis unit 52 is informed that the P wave has arrived from the P wave detection unit 51, the vertical diffusion furnace 54 when the S wave arrives later from the waveform and amplitude of the incoming P wave. Predict the seismic intensity in the area where is installed. And it is judged whether a prediction result is seismic intensity 5 or more. As a result, when the result that the seismic intensity is 5 or more is obtained, the atmospheric pressure control unit 53 is notified of that. On the other hand, when the result that the seismic intensity does not become 5 or more, that is, the result that the seismic intensity becomes 4 or less is obtained, the process is terminated at that time.

その一方で、縦型拡散炉54では、原料ガス及び窒素ガスが供給用配管5から供給されつつ、排気用配管6に連結された真空ポンプにより供給された分だけのガスを排気している。つまり、炉壁7内の気圧は常圧とされている。そして、気圧制御部53は、P波解析部52から震度が5以上になるという予測結果を知らされると、例えば供給用配管5に設けられている原料ガス用のバルブを閉じることにより、炉壁7内の気圧を低下させる。つまり、真空ポンプによる排気の程度を変更することなく、供給されるガスの量を減少させることにより、炉壁7内の気圧を低下させる。この結果、石英ボート12と基台3との密着度が高まると共に、基台3とその下の石英製の部材との密着度及び半導体ウェハ11と支持部12aとの密着度も高まる。従って、大きな揺れに襲われても、石英ボート12は基台3から落下しにくくなる。また、多少の固有振動数の相違はあるものの、石英ボート12は実質的に基台3及び炉心管2に追従して揺れることになるため、石英ボート12が炉心管2の内壁に衝突しにくくなる。更に、半導体ウェハ11も石英ボート12から落下しにくくなる。   On the other hand, in the vertical diffusion furnace 54, the source gas and the nitrogen gas are supplied from the supply pipe 5 and the gas corresponding to the amount supplied by the vacuum pump connected to the exhaust pipe 6 is exhausted. That is, the atmospheric pressure in the furnace wall 7 is a normal pressure. Then, when the atmospheric pressure control unit 53 is informed of the prediction result that the seismic intensity is 5 or more from the P wave analysis unit 52, for example, by closing the valve for the source gas provided in the supply pipe 5, the furnace The pressure inside the wall 7 is reduced. That is, the atmospheric pressure in the furnace wall 7 is reduced by reducing the amount of gas supplied without changing the degree of exhaust by the vacuum pump. As a result, the degree of adhesion between the quartz boat 12 and the base 3 increases, and the degree of adhesion between the base 3 and the quartz member below it and the degree of adhesion between the semiconductor wafer 11 and the support portion 12a also increase. Accordingly, the quartz boat 12 is unlikely to fall from the base 3 even if it is attacked by a large shake. In addition, although there is some difference in natural frequency, the quartz boat 12 substantially swings following the base 3 and the core tube 2, so that the quartz boat 12 hardly collides with the inner wall of the core tube 2. Become. Furthermore, the semiconductor wafer 11 is also difficult to drop from the quartz boat 12.

このように、本実施形態では、所定のP波が到来すると炉壁7内の気圧を低下させてS波の到来に備えるので、S波が到来しても地震の被害を大幅に低減することができる。従って、震度が5以上の揺れがあっても、全く被害が生じないか、被害が生じても早期に復旧が可能な程度とすることができる。この結果、震度が5以上の地震に襲われても、半導体装置の製造工場の停止期間を著しく短縮することが可能となる。震度5を判断の基準としているのは、これまで、震度が4以下であれば大きな被害はほとんど報告されていないからである。   As described above, in this embodiment, when the predetermined P wave arrives, the atmospheric pressure in the furnace wall 7 is lowered to prepare for the arrival of the S wave, so that the earthquake damage can be greatly reduced even if the S wave arrives. Can do. Therefore, even if the seismic intensity is 5 or more, there is no damage at all, or the damage can be restored to an early level. As a result, even if the earthquake intensity is 5 or more, it is possible to remarkably shorten the stop period of the semiconductor device manufacturing factory. The reason why the seismic intensity of 5 is used as a criterion is that until now, no major damage has been reported if the seismic intensity is 4 or less.

また、本実施形態では、気圧を低下させる際にも炉壁7内に不活性ガスである窒素ガスを供給し続けているため、外気の巻き込み等に伴う汚染物質の混入を抑制することができる。なお、不活性ガスとしてArガス等を供給してもよい。   Further, in this embodiment, since nitrogen gas, which is an inert gas, is continuously supplied into the furnace wall 7 even when the atmospheric pressure is lowered, contamination of contaminants due to entrainment of outside air or the like can be suppressed. . Ar gas or the like may be supplied as an inert gas.

なお、気圧制御部53による気圧の低下を真空に近いものにまでする必要はなく、例えば常圧の2割〜5割程度にまで減圧すればよい。減圧後の圧力は200hPa〜250hPaとすることが好ましい。これは、200hPa未満まで低下させると、過剰な減圧によって石英ボート12等が破損する虞があるからである。一方、250hPaよりも高い場合には、減圧の効果が十分に得られない虞があるからである。   In addition, it is not necessary to make the pressure | pressure drop by the atmospheric | air pressure control part 53 to the thing close | similar to a vacuum, What is necessary is just to reduce pressure to about 20%-50% of a normal pressure, for example. The pressure after the pressure reduction is preferably 200 hPa to 250 hPa. This is because if the pressure is reduced to less than 200 hPa, the quartz boat 12 or the like may be damaged due to excessive decompression. On the other hand, if it is higher than 250 hPa, there is a possibility that the effect of decompression may not be sufficiently obtained.

また、本願発明に係る保護装置は、縦型の拡散炉だけでなく横型の拡散炉の保護に適用することも可能である。   Moreover, the protection device according to the present invention can be applied not only to the vertical diffusion furnace but also to the protection of the horizontal diffusion furnace.

以下、本発明の諸態様を付記としてまとめて記載する。   Hereinafter, various aspects of the present invention will be collectively described as supplementary notes.

(付記1)
拡散炉を地震から保護する保護装置であって、
地震の第一波を検出する検出手段と、
前記検出手段により第一波が検出されると、当該第一波の内容を解析し、その解析結果から当該第一波に続く第二波が到来した時の震度が5以上になるか予測する解析手段と、
前記解析手段により震度が5以上になると予測されると、当該第二波が到来する前に前記拡散炉内の気圧を低下させる気圧制御手段と、
を有することを特徴とする拡散炉の保護装置。
(Appendix 1)
A protection device for protecting the diffusion furnace from earthquakes,
Detection means for detecting the first wave of the earthquake;
When the first wave is detected by the detection means, the contents of the first wave are analyzed, and the seismic intensity when the second wave following the first wave arrives is predicted from the analysis result. Analysis means;
When the seismic intensity is predicted to be 5 or more by the analysis means, atmospheric pressure control means for lowering the atmospheric pressure in the diffusion furnace before the second wave arrives;
A device for protecting a diffusion furnace, comprising:

(付記2)
前記気圧制御手段は、前記気圧を低下させる際に前記拡散炉内に不活性ガスを供給することを特徴とする付記1に記載の拡散炉の保護装置。
(Appendix 2)
The apparatus for protecting a diffusion furnace according to appendix 1, wherein the atmospheric pressure control means supplies an inert gas into the diffusion furnace when the atmospheric pressure is lowered.

(付記3)
前記気圧制御手段は、前記不活性ガスとして窒素ガスを供給することを特徴とする付記2に記載の拡散炉の保護装置。
(Appendix 3)
The apparatus for protecting a diffusion furnace according to appendix 2, wherein the atmospheric pressure control means supplies nitrogen gas as the inert gas.

(付記4)
前記気圧制御手段は、前記拡散炉内の気圧を200hPa乃至250hPaまで低下させることを特徴とする付記1乃至3のいずれか1項に記載の拡散炉の保護装置。
(Appendix 4)
The apparatus for protecting a diffusion furnace according to any one of appendices 1 to 3, wherein the atmospheric pressure control means reduces the atmospheric pressure in the diffusion furnace to 200 hPa to 250 hPa.

(付記5)
拡散炉を地震から保護する保護方法であって、
地震の第一波を検出すると、当該第一波の内容を解析し、その解析結果から当該第一波に続く第二波が到来した時の震度が5以上になるか予測する解析ステップと、
前記解析ステップにおいて震度が5以上になると予測すると、当該第二波が到来する前に前記拡散炉内の気圧を低下させる気圧制御ステップと、
を有することを特徴とする拡散炉の保護方法。
(Appendix 5)
A protection method for protecting a diffusion furnace from earthquakes,
An analysis step for analyzing the contents of the first wave when the first wave of the earthquake is detected, and predicting whether the seismic intensity when the second wave following the first wave arrives is 5 or more from the analysis result;
When the seismic intensity is predicted to be 5 or more in the analysis step, a pressure control step for reducing the pressure in the diffusion furnace before the second wave arrives;
A method for protecting a diffusion furnace, comprising:

(付記6)
前記気圧制御ステップにおいて、前記気圧を低下させる際に前記拡散炉内に不活性ガスを供給することを特徴とする付記5に記載の拡散炉の保護方法。
(Appendix 6)
The method for protecting a diffusion furnace according to appendix 5, wherein an inert gas is supplied into the diffusion furnace when the atmospheric pressure is decreased in the atmospheric pressure control step.

(付記7)
前記気圧制御ステップにおいて、前記不活性ガスとして窒素ガスを供給することを特徴とする付記6に記載の拡散炉の保護方法。
(Appendix 7)
The diffusion furnace protection method according to appendix 6, wherein nitrogen gas is supplied as the inert gas in the atmospheric pressure control step.

(付記8)
前記気圧制御ステップにおいて、前記拡散炉内の気圧を200hPa乃至250hPaまで低下させることを特徴とする付記5乃至7のいずれか1項に記載の拡散炉の保護方法。
(Appendix 8)
The method for protecting a diffusion furnace according to any one of appendices 5 to 7, wherein, in the atmospheric pressure control step, the atmospheric pressure in the diffusion furnace is reduced to 200 hPa to 250 hPa.

本発明の実施形態に係る縦型拡散炉の保護装置を示すブロック図である。It is a block diagram which shows the protection apparatus of the vertical diffusion furnace which concerns on embodiment of this invention. 縦型拡散炉54の構造を示す模式図である。3 is a schematic diagram showing the structure of a vertical diffusion furnace 54. FIG.

符号の説明Explanation of symbols

2:炉心管
3:基台
4:ヒータ
5:供給用配管
6:排気用配管
7:炉壁
11:ウェハ
12:石英ボート
12a:支持部
50:保護装置
51:P波検知部
52:P波解析部
53:気圧制御部
54:縦型熱拡散炉
2: Reactor core tube 3: Base 4: Heater 5: Supply pipe 6: Exhaust pipe 7: Furnace wall 11: Wafer 12: Quartz boat 12a: Supporting part 50: Protection device 51: P wave detection part 52: P wave Analysis unit 53: Barometric pressure control unit 54: Vertical thermal diffusion furnace

Claims (5)

拡散炉を地震から保護する保護装置であって、
地震の第一波を検出する検出手段と、
前記検出手段により第一波が検出されると、当該第一波の内容を解析し、その解析結果から当該第一波に続く第二波が到来した時の震度が5以上になるか予測する解析手段と、
前記解析手段により震度が5以上になると予測されると、当該第二波が到来する前に前記拡散炉内の気圧を低下させる気圧制御手段と、
を有することを特徴とする拡散炉の保護装置。
A protection device for protecting the diffusion furnace from earthquakes,
Detection means for detecting the first wave of the earthquake;
When the first wave is detected by the detection means, the contents of the first wave are analyzed, and the seismic intensity when the second wave following the first wave arrives is predicted from the analysis result. Analysis means;
When the seismic intensity is predicted to be 5 or more by the analysis means, atmospheric pressure control means for lowering the atmospheric pressure in the diffusion furnace before the second wave arrives;
A device for protecting a diffusion furnace, comprising:
前記気圧制御手段は、前記気圧を低下させる際に前記拡散炉内に不活性ガスを供給することを特徴とする請求項1に記載の拡散炉の保護装置。   The apparatus for protecting a diffusion furnace according to claim 1, wherein the atmospheric pressure control means supplies an inert gas into the diffusion furnace when the atmospheric pressure is lowered. 前記気圧制御手段は、前記不活性ガスとして窒素ガスを供給することを特徴とする請求項2に記載の拡散炉の保護装置。   The apparatus for protecting a diffusion furnace according to claim 2, wherein the atmospheric pressure control means supplies nitrogen gas as the inert gas. 拡散炉を地震から保護する保護方法であって、
地震の第一波を検出すると、当該第一波の内容を解析し、その解析結果から当該第一波に続く第二波が到来した時の震度が5以上になるか予測する解析ステップと、
前記解析ステップにおいて震度が5以上になると予測すると、当該第二波が到来する前に前記拡散炉内の気圧を低下させる気圧制御ステップと、
を有することを特徴とする拡散炉の保護方法。
A protection method for protecting a diffusion furnace from earthquakes,
An analysis step for analyzing the contents of the first wave when the first wave of the earthquake is detected, and predicting whether the seismic intensity when the second wave following the first wave arrives is 5 or more from the analysis result;
When the seismic intensity is predicted to be 5 or more in the analysis step, a pressure control step for reducing the pressure in the diffusion furnace before the second wave arrives;
A method for protecting a diffusion furnace, comprising:
前記気圧制御ステップにおいて、前記気圧を低下させる際に前記拡散炉内に不活性ガスを供給することを特徴とする請求項4に記載の拡散炉の保護方法。   The method for protecting a diffusion furnace according to claim 4, wherein, in the atmospheric pressure control step, an inert gas is supplied into the diffusion furnace when the atmospheric pressure is lowered.
JP2006083075A 2006-03-24 2006-03-24 Protector and protection method of diffusion furnace Withdrawn JP2007258561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006083075A JP2007258561A (en) 2006-03-24 2006-03-24 Protector and protection method of diffusion furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006083075A JP2007258561A (en) 2006-03-24 2006-03-24 Protector and protection method of diffusion furnace

Publications (1)

Publication Number Publication Date
JP2007258561A true JP2007258561A (en) 2007-10-04

Family

ID=38645595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006083075A Withdrawn JP2007258561A (en) 2006-03-24 2006-03-24 Protector and protection method of diffusion furnace

Country Status (1)

Country Link
JP (1) JP2007258561A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152549A (en) * 2007-11-30 2009-07-09 Tokyo Electron Ltd Method for reducing expansion of earthquake damage and system for reducing expansion of earthquake damage for use in semiconductor manufacturing apparatus
CN103134635A (en) * 2012-09-07 2013-06-05 上饶光电高科技有限公司 Alarm system of pressure criteria exceeding of small nitrogen for Holland tempress diffusion furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152549A (en) * 2007-11-30 2009-07-09 Tokyo Electron Ltd Method for reducing expansion of earthquake damage and system for reducing expansion of earthquake damage for use in semiconductor manufacturing apparatus
CN103134635A (en) * 2012-09-07 2013-06-05 上饶光电高科技有限公司 Alarm system of pressure criteria exceeding of small nitrogen for Holland tempress diffusion furnace

Similar Documents

Publication Publication Date Title
US10734291B2 (en) Abnormality detection apparatus
US20110265884A1 (en) Twin chamber processing system with shared vacuum pump
US8003920B2 (en) Substrate processing apparatus
JP6671464B2 (en) Processing device maintenance control method and control device
US10049858B2 (en) System and method for protection of vacuum seals in plasma processing systems
JP4931381B2 (en) Substrate processing apparatus, substrate processing apparatus control method, and program
KR101942206B1 (en) Substrate processing apparatus and reaction tube
JP2017017154A (en) Substrate transport device and substrate transport method
JP2007258561A (en) Protector and protection method of diffusion furnace
KR100437532B1 (en) Ventilation Structure For Semiconductor Manufacturing Equipment
JP2009140044A (en) Manufacturing device abnormality inspection system
JP2005216982A (en) Vacuum processing system and purging method therefor
JP2010165943A (en) Method of manufacturing semiconductor device, and wafer processing system
JP2007214176A (en) Method for manufacturing semiconductor device, and plasma processing apparatus
KR100754827B1 (en) Heating device of purge gas for semiconductor wafer
JP2012227370A (en) Substrate processing apparatus
KR20040022649A (en) Wafer processing system for manufacturing semiconductor device
KR100862857B1 (en) Apparatus of double tubes furnace
JP2007184285A (en) Plasma treatment device and plasma treatment method
JP6710153B2 (en) Screw drop prevention mechanism and heat treatment device
KR200440956Y1 (en) Cap cover
KR101717847B1 (en) Method for operating plasma gas scrubber
JP2009176760A (en) Method of detecting sticking of substrate
JP2009253221A (en) Semiconductor substrate cleaning system
JP5539449B2 (en) Program, heat treatment apparatus, and operation detection method of heat treatment apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080731

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081205

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101126