JP2007258128A - Ion generating element, manufacturing method of ion generating element, ion generating device, and electric apparatus equipped with above - Google Patents

Ion generating element, manufacturing method of ion generating element, ion generating device, and electric apparatus equipped with above Download PDF

Info

Publication number
JP2007258128A
JP2007258128A JP2006084492A JP2006084492A JP2007258128A JP 2007258128 A JP2007258128 A JP 2007258128A JP 2006084492 A JP2006084492 A JP 2006084492A JP 2006084492 A JP2006084492 A JP 2006084492A JP 2007258128 A JP2007258128 A JP 2007258128A
Authority
JP
Japan
Prior art keywords
discharge
electrode
discharge electrode
ion generating
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006084492A
Other languages
Japanese (ja)
Inventor
Akira Yamamoto
山本  明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006084492A priority Critical patent/JP2007258128A/en
Publication of JP2007258128A publication Critical patent/JP2007258128A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ion generating element capable of obtaining a long life and the stabilization of an electric discharge state. <P>SOLUTION: The ion generating element is equipped with a dielectric substrate 3, a discharge electrode 4 formed on the surface of the dielectric substrate 3, a dielectric electrode 5 formed in the dielectric substrate 3 and arranged nearly in parallel to the discharge electrode 4, and a protection layer 8 formed on the dielectric substrate 3 for covering the discharge electrode 4. The thickness of the protection layer 8 at a discharging part (the tip of a sharp point part) of the discharge electrode 4 is smaller than that of the protection layer 8 at a non-discharging part of the discharge electrode 4 and opposing the dielectric electrode 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば、空気中の浮遊細菌を殺菌、除去したり、空気中の有害物質を除去するための正負両イオンを発生するイオン発生素子、イオン発生素子の製造方法、イオン発生装置およびそれを備えた電気機器に関するものである。   The present invention provides, for example, an ion generating element that generates both positive and negative ions for sterilizing and removing airborne bacteria in the air and removing harmful substances in the air, a method for manufacturing the ion generating element, an ion generating apparatus, and the same It is related with the electric equipment provided with.

近年、正イオンおよび負イオンの両イオンを発生させるイオン発生素子が開発され、実用化されている。例えば特許文献1では、放電始動性を良くし、かつ、放電開始電圧のバラツキを小さくするために、線状放電電極を絶縁膜で被覆し、前記線状放電電極の一部を露出させ、その露出部を電界集中部とする電界装置(イオン発生素子)が提案されている。
特開平6−318490号公報 特開2004−103257号公報(第1図)
In recent years, ion generating elements that generate both positive ions and negative ions have been developed and put into practical use. For example, in Patent Document 1, in order to improve the discharge startability and reduce the variation in the discharge start voltage, the linear discharge electrode is covered with an insulating film, and a part of the linear discharge electrode is exposed. An electric field device (ion generating element) in which an exposed portion is an electric field concentration portion has been proposed.
JP-A-6-318490 JP 2004-103257 A (FIG. 1)

特許文献1において提案されている電界装置(イオン発生素子)では、線状放電電極を絶縁膜で被覆し、前記線状放電電極の一部を露出させているため、前記線状放電電極の露出部が電界集中部となり、当該電界集中部から放電が開始するので、放電始動性を良くし、かつ、放電開始電圧のバラツキを小さくすることができる。しかしながら、前記線状放電電極の露出部は、絶縁膜で覆われていないため、イオン衝撃によるスパッタリングを起こして局部的に劣化し、前記線状放電電極の寿命が短くなるという問題を生ずる。   In the electric field device (ion generating element) proposed in Patent Document 1, since the linear discharge electrode is covered with an insulating film and a part of the linear discharge electrode is exposed, the linear discharge electrode is exposed. Since the portion becomes an electric field concentration portion and discharge starts from the electric field concentration portion, the discharge startability can be improved and the variation in the discharge start voltage can be reduced. However, since the exposed portion of the linear discharge electrode is not covered with an insulating film, sputtering due to ion bombardment is caused to cause local degradation, resulting in a problem that the life of the linear discharge electrode is shortened.

また、誘電体と、前記誘電体の表面に形成される放電電極と、前記誘電体の内部に形成され、前記放電電極に対して略平行に配置される誘導電極と、前記放電電極を覆うように、前記誘電体上に形成される保護層とを備え、前記放電電極に先鋭部を形成したイオン発生素子において、前記保護層が厚さ一定で前記放電電極を連続的に覆うようにした場合(例えば、特許文献2を参照)、前記放電電極の放電箇所である前記先鋭部の先端のみならず、前記放電電極の非放電箇所であって且つ前記誘導電極に対向する箇所でも電界集中し放電が起こることがある。そして、前記放電電極の非放電箇所であって且つ前記誘導電極に対向する箇所でも電界集中し放電が起こることが放電状態のバラツキの要因になっていた。   A dielectric, a discharge electrode formed on the surface of the dielectric, an induction electrode formed inside the dielectric and disposed substantially parallel to the discharge electrode, and covering the discharge electrode A protective layer formed on the dielectric, and in the ion generating element in which the discharge electrode has a sharpened portion, the protective layer has a constant thickness and continuously covers the discharge electrode. (For example, refer to Patent Document 2), the electric field concentrates and discharges not only at the tip of the sharpened portion which is a discharge location of the discharge electrode but also at a non-discharge location of the discharge electrode and facing the induction electrode. May happen. In addition, the electric field is concentrated in the non-discharged part of the discharge electrode and the part facing the induction electrode, and the discharge occurs, which causes a variation in the discharge state.

本発明は、上記の問題点に鑑み、長寿命でしかも放電状態の安定化を図ることができるイオン発生素子、イオン発生素子の製造方法、イオン発生装置およびこれを備えた電気機器を提供することを目的とする。   In view of the above-described problems, the present invention provides an ion generating element, a method for manufacturing an ion generating element, an ion generating apparatus, and an electric device including the same that have a long life and can stabilize a discharge state. With the goal.

上記目的を達成するために本発明に係るイオン発生素子は、誘電体と、前記誘電体の表面に形成される放電電極と、前記誘電体の内部又は裏面に形成され、前記放電電極に対して略平行に配置される誘導電極と、前記放電電極を覆うように、前記誘電体上に形成される保護層とを備え、前記放電電極の放電箇所における前記保護層の厚さが、前記放電電極の非放電箇所であって且つ前記誘導電極に対向する箇所における前記保護層の厚さよりも小さい構成としている。   In order to achieve the above object, an ion generating element according to the present invention includes a dielectric, a discharge electrode formed on a surface of the dielectric, and an inside or a back surface of the dielectric. An induction electrode disposed substantially in parallel, and a protective layer formed on the dielectric so as to cover the discharge electrode, wherein the thickness of the protective layer at the discharge location of the discharge electrode is The thickness of the protective layer is smaller than the thickness of the protective layer at a portion that is a non-discharge portion and that faces the induction electrode.

このような構成によると、前記放電電極の放電箇所が電界集中部となるので、前記放電電極の非放電箇所であって且つ前記誘導電極に対向する箇所での放電を抑制することができる。これにより、放電状態の安定化を図ることができる。また、このような構成によると、前記放電電極の放電箇所での電界強度が高くなり、前記放電電極と前記誘電電極との間に印加する電圧が小さくても放電が開始されるので、低消費電力化及び長寿命化を図ることができる。   According to such a configuration, since the discharge location of the discharge electrode becomes an electric field concentration portion, it is possible to suppress discharge at a location that is a non-discharge location of the discharge electrode and faces the induction electrode. As a result, the discharge state can be stabilized. In addition, according to such a configuration, the electric field strength at the discharge location of the discharge electrode is increased, and the discharge is started even when the voltage applied between the discharge electrode and the dielectric electrode is small. It is possible to increase power consumption and extend the service life.

また、上記目的を達成するために本発明に係るイオン発生素子の製造方法は、誘電体と、前記誘電体の表面に形成される放電電極と、前記誘電体の内部又は裏面に形成され、前記放電電極に対して略平行に配置される誘導電極と、前記放電電極を覆うように、前記誘電体上に形成される保護層とを備え、前記放電電極の放電箇所における前記保護層の厚さが、前記放電電極の非放電箇所であって且つ前記誘導電極に対向する箇所における前記保護層の厚さよりも小さいイオン発生素子の製造方法であって、前記保護層の形成工程において、マスキングにより、前記放電電極の放電箇所における前記保護層の厚さを、前記放電電極の非放電箇所であって且つ前記誘導電極に対向する箇所における前記保護層の厚さよりも小さくしている。   In order to achieve the above object, a method of manufacturing an ion generating element according to the present invention includes a dielectric, a discharge electrode formed on a surface of the dielectric, and an inner or back surface of the dielectric. An induction electrode disposed substantially parallel to the discharge electrode; and a protective layer formed on the dielectric so as to cover the discharge electrode, the thickness of the protective layer at the discharge location of the discharge electrode Is a method for manufacturing an ion generating element that is smaller than the thickness of the protective layer at a portion that is a non-discharged portion of the discharge electrode and faces the induction electrode, and in the step of forming the protective layer, by masking, The thickness of the protective layer at the discharge location of the discharge electrode is made smaller than the thickness of the protective layer at a location where the discharge electrode is a non-discharge location and faces the induction electrode.

このような製造方法によると、上記構成のイオン発生素子の保護層を容易に形成することができる。   According to such a manufacturing method, the protective layer of the ion generating element having the above configuration can be easily formed.

また、上記目的を達成するために本発明に係るイオン発生素子は、誘電体と、前記誘電体の表面に形成される放電電極と、前記誘電体の内部又は裏面に形成され、前記放電電極に対して略平行に配置される誘導電極とを備え、前記放電電極の放電箇所の厚さが、前記放電電極の非放電箇所であって且つ前記誘導電極に対向する箇所の厚さよりも大きい構成としている。   In order to achieve the above object, an ion generating element according to the present invention includes a dielectric, a discharge electrode formed on the surface of the dielectric, and an inside or a back surface of the dielectric. An induction electrode disposed substantially parallel to the discharge electrode, and a thickness of a discharge portion of the discharge electrode is larger than a thickness of a non-discharge portion of the discharge electrode and facing the induction electrode Yes.

このような構成によると、前記放電電極の放電箇所が電界集中部となるので、前記放電電極の非放電箇所であって且つ前記誘導電極に対向する箇所での放電を抑制することができる。これにより、放電状態の安定化を図ることができる。また、このような構成によると、前記放電電極の放電箇所での電界強度が高くなり、前記放電電極と前記誘電電極との間に印加する電圧が小さくても放電が開始されるので、低消費電力化及び長寿命化を図ることができる。   According to such a configuration, since the discharge location of the discharge electrode becomes an electric field concentration portion, it is possible to suppress discharge at a location that is a non-discharge location of the discharge electrode and faces the induction electrode. As a result, the discharge state can be stabilized. In addition, according to such a configuration, the electric field strength at the discharge location of the discharge electrode is increased, and the discharge is started even when the voltage applied between the discharge electrode and the dielectric electrode is small. It is possible to increase power consumption and extend the service life.

また、上記目的を達成するために本発明に係るイオン発生装置は、上記いずれかの構成のイオン発生素子と、前記イオン発生素子が備える放電電極と誘電電極との間に電圧を印加する電圧印加手段とを備える構成としている。   In order to achieve the above object, an ion generating apparatus according to the present invention includes a voltage application for applying a voltage between the ion generating element having any one of the above structures, and a discharge electrode and a dielectric electrode provided in the ion generating element. Means.

また、上記目的を達成するために本発明に係る電気機器は、上記構成のイオン発生装置と、前記イオン発生装置にて発生したイオンを空気中に送出する送出手段とを備える構成としている。   In order to achieve the above object, an electric apparatus according to the present invention includes an ion generator having the above-described configuration and a sending unit that sends out ions generated by the ion generator into the air.

本発明によると、放電電極の放電箇所での電界強度が高くなり、放電電極と誘電電極との間に印加する電圧が小さくても放電が開始されるので、低消費電力化及び長寿命でしかも放電状態の安定化を図ることができるイオン発生素子、イオン発生素子の製造方法、イオン発生装置およびこれを備えた電気機器を実現することができる。   According to the present invention, the electric field strength at the discharge location of the discharge electrode is increased, and the discharge is started even when the voltage applied between the discharge electrode and the dielectric electrode is small. An ion generating element capable of stabilizing the discharge state, a method for manufacturing the ion generating element, an ion generating apparatus, and an electric device including the same can be realized.

本発明の実施形態について図面を参照して以下に説明する。本発明に係るイオン発生装置の一構成例を図1に示す。図1(a)は本発明に係るイオン発生装置の平面図であり、図1(b)は本発明に係るイオン発生装置のX−X線断面図であり、図1(c)はイオン発生素子1のY−Y線断面図である。   Embodiments of the present invention will be described below with reference to the drawings. An example of the configuration of an ion generator according to the present invention is shown in FIG. FIG. 1A is a plan view of an ion generator according to the present invention, FIG. 1B is a cross-sectional view taken along line XX of the ion generator according to the present invention, and FIG. 3 is a sectional view of the element 1 taken along the line YY.

図1に示す本発明に係るイオン発生装置は、イオン発生素子1と、電圧印加回路2とを備えている。電圧印加回路2がイオン発生素子1の放電電極と誘導電極との間に正負交番の高電圧を印加する場合、イオン発生素子1から正負両イオンが発生する。   The ion generating apparatus according to the present invention shown in FIG. 1 includes an ion generating element 1 and a voltage applying circuit 2. When the voltage application circuit 2 applies a positive and negative alternating high voltage between the discharge electrode and the induction electrode of the ion generating element 1, both positive and negative ions are generated from the ion generating element 1.

イオン発生素子1は、誘電体基板3と、放電電極4と、誘導電極5と、電極接点6及び7と、保護層8とを備えている。誘電体基板3は、厚さ方向に積層された下部基板3a及び上部基板3bからなる。   The ion generating element 1 includes a dielectric substrate 3, a discharge electrode 4, an induction electrode 5, electrode contacts 6 and 7, and a protective layer 8. The dielectric substrate 3 includes a lower substrate 3a and an upper substrate 3b stacked in the thickness direction.

本実施形態では、下部基板3a、上部基板3b、及び保護層8の素材としてアルミナを用いている。ただし、下部基板3a、上部基板3b、及び保護層8の素材はアルミナに限定されない。また、本実施形態では、放電電極4及び誘導電極5の素材として、タングステンを用いている。ただし、放電電極4及び誘導電極5の素材はタングステンに限定されない。   In the present embodiment, alumina is used as a material for the lower substrate 3 a, the upper substrate 3 b, and the protective layer 8. However, the material of the lower substrate 3a, the upper substrate 3b, and the protective layer 8 is not limited to alumina. In this embodiment, tungsten is used as a material for the discharge electrode 4 and the induction electrode 5. However, the material of the discharge electrode 4 and the induction electrode 5 is not limited to tungsten.

図1(b)に示すように、放電電極4は下部基板3a及び上部基板3bを貫通する電極接点6に接続され、誘導電極5は下部基板3aを貫通する電極接点7に接続されている。本実施形態では、電極接点6は放電電極4を形成する際に対応する位置に形成されたホール内に放電電極4と同一の材料を充填して形成され、電極接点7は誘導電極5を形成する際に対応する位置に形成されたホール内に誘導電極5と同一の材料を充填して形成されている。   As shown in FIG. 1B, the discharge electrode 4 is connected to an electrode contact 6 that penetrates the lower substrate 3a and the upper substrate 3b, and the induction electrode 5 is connected to an electrode contact 7 that penetrates the lower substrate 3a. In this embodiment, the electrode contact 6 is formed by filling the same material as the discharge electrode 4 into a hole formed at a position corresponding to the formation of the discharge electrode 4, and the electrode contact 7 forms the induction electrode 5. The holes formed at the corresponding positions are filled with the same material as that of the induction electrode 5.

ここで、図2に示すように、厚さ一定(t1:10〜15μm)の保護層8で誘電体基板3の表面すなわち上部基板3bの表面を連続的に覆う場合について考える。図5は図1(a)の領域10に対応する部分拡大図である。また、放電電極4の厚さt2は20μmとする。図2に示すような保護層8の形態では、放電電極4の放電箇所(例えば図5に示す領域11)のみならず、放電電極4の非放電箇所であって且つ誘導電極5に対向する箇所(例えば図5に示す領域12)でも電界集中し放電が起こることがある。保護層8を図2に示すような形態にした場合、たとえ図1に示すように放電電極4に先鋭部を形成しても、放電電極4の非放電箇所であって且つ誘導電極5に対向する箇所(例えば図5に示す領域12)でも電界集中し放電が起こってしまう。   Here, as shown in FIG. 2, a case where the surface of the dielectric substrate 3, that is, the surface of the upper substrate 3b is continuously covered with the protective layer 8 having a constant thickness (t1: 10 to 15 μm) will be considered. FIG. 5 is a partially enlarged view corresponding to the region 10 in FIG. The thickness t2 of the discharge electrode 4 is 20 μm. In the form of the protective layer 8 as shown in FIG. 2, not only the discharge location of the discharge electrode 4 (for example, the region 11 shown in FIG. 5) but also the non-discharge location of the discharge electrode 4 and the location facing the induction electrode 5. Even in the region 12 (for example, the region 12 shown in FIG. 5), electric field may concentrate and discharge may occur. When the protective layer 8 is configured as shown in FIG. 2, even if a sharp portion is formed on the discharge electrode 4 as shown in FIG. 1, it is a non-discharge portion of the discharge electrode 4 and faces the induction electrode 5. Even at a place (for example, the region 12 shown in FIG. 5), the electric field concentrates and discharge occurs.

そこで、本実施形態では、図3に示すように、放電電極4の放電箇所における保護層8の厚さをt1(t1:10〜15μm)とし、放電電極4の非放電箇所における保護層8の厚さをt3(t3:30〜40μm)としている。また、放電電極4の厚さt2は20μmとする。保護層8を図3に示すような形態にすることで、放電電極4の放電箇所が電界集中部となるので、放電電極4の非放電箇所であって且つ誘導電極5に対向する箇所での放電を抑制することができる。これにより、放電状態の安定化を図ることができる。また、保護層8を図3に示すような形態にすることで、放電電極4の放電箇所での電界強度が高くなり、放電電極4と誘電電極5との間に印加する電圧が小さくても放電が開始されるので、低消費電力化及び長寿命化を図ることができる。   Therefore, in the present embodiment, as shown in FIG. 3, the thickness of the protective layer 8 at the discharge portion of the discharge electrode 4 is t1 (t1: 10 to 15 μm), and the protective layer 8 at the non-discharge portion of the discharge electrode 4 is formed. The thickness is set to t3 (t3: 30 to 40 μm). The thickness t2 of the discharge electrode 4 is 20 μm. By forming the protective layer 8 as shown in FIG. 3, the discharge location of the discharge electrode 4 becomes an electric field concentration portion, so that the non-discharge location of the discharge electrode 4 and the location facing the induction electrode 5 Discharge can be suppressed. As a result, the discharge state can be stabilized. Further, by forming the protective layer 8 as shown in FIG. 3, the electric field strength at the discharge location of the discharge electrode 4 is increased, and even if the voltage applied between the discharge electrode 4 and the dielectric electrode 5 is small. Since discharge is started, low power consumption and long life can be achieved.

また、図1に示すように、放電電極4に先鋭部を形成し、先鋭部の先端(図5に示す領域11)を放電電極4の放電箇所とすることで、放電電極4の放電箇所での電界集中をより一層高めることができる。   Further, as shown in FIG. 1, a sharpened portion is formed in the discharge electrode 4, and the tip of the sharpened portion (region 11 shown in FIG. 5) is used as a discharge location of the discharge electrode 4. The electric field concentration can be further increased.

次に、保護層8が図3に示すような形態であるイオン発生素子1の生産方法例の概略について説明する。まず、アルミナシートからなる下部基板3aの表面にタングステン材料をパターン印刷することによって、誘導電極5を形成する。続いて、誘導電極5を覆うようにアルミナシートからなる上部基板3bを載置して、上部基板3bを下部基板3aに圧着する。続いて、上部基板3bの表面に、タングステン材料をパターン印刷することによって、放電電極4を形成する。続いて、誘電体基板3全体を覆うようにアルミナ層をコーティングによって形成し、当該コーティングを放電電極4の放電箇所における上記アルミナ層の厚さがt1(t1:10〜15μm)になるまで続け、その後、放電電極4の放電箇所に対応する部位のみ上記アルミナ層をマスキングし、さらに、放電電極4の非放電箇所における上記アルミナ層の厚さがt3(t3:30〜40μm)になるまでコーティングを続ける。そして、このようにして形成された部材を摂氏1400度〜1600度の温度で、非酸化性雰囲気下で焼結することによってイオン発生素子1を得る。   Next, an outline of an example of a production method of the ion generating element 1 in which the protective layer 8 has a form as shown in FIG. 3 will be described. First, the induction electrode 5 is formed by pattern-printing a tungsten material on the surface of the lower substrate 3a made of an alumina sheet. Subsequently, the upper substrate 3b made of an alumina sheet is placed so as to cover the induction electrode 5, and the upper substrate 3b is pressure-bonded to the lower substrate 3a. Subsequently, the discharge electrode 4 is formed by pattern printing of a tungsten material on the surface of the upper substrate 3b. Subsequently, an alumina layer is formed by coating so as to cover the entire dielectric substrate 3, and the coating is continued until the thickness of the alumina layer at the discharge location of the discharge electrode 4 reaches t1 (t1: 10 to 15 μm). Thereafter, the alumina layer is masked only at the portion corresponding to the discharge portion of the discharge electrode 4, and further, coating is performed until the thickness of the alumina layer at the non-discharge portion of the discharge electrode 4 becomes t3 (t3: 30 to 40 μm). to continue. And the ion generating element 1 is obtained by sintering the member formed in this way at the temperature of 1400 degreeC-1600 degreeC in a non-oxidizing atmosphere.

また、保護層8を図3に示すような形態にするのではなく、放電電極4を図4に示すような形態にしても、放電電極4の放電箇所が電界集中部となるので、放電電極4の非放電箇所であって且つ誘導電極5に対向する箇所での放電を抑制することができる。これにより、放電状態の安定化を図ることができる。また、保護層8を図4に示すような形態にすることで、放電電極4の放電箇所での電界強度が高くなり、放電電極4と誘電電極5との間に印加する電圧が小さくても放電が開始されるので、低消費電力化及び長寿命化を図ることができる。   Further, even if the protective layer 8 is not in the form as shown in FIG. 3 and the discharge electrode 4 is in the form as shown in FIG. 4, the discharge portion of the discharge electrode 4 becomes the electric field concentration portion. It is possible to suppress the discharge at the non-discharge part 4 and the part facing the induction electrode 5. As a result, the discharge state can be stabilized. Further, by forming the protective layer 8 as shown in FIG. 4, the electric field strength at the discharge location of the discharge electrode 4 is increased, and even if the voltage applied between the discharge electrode 4 and the dielectric electrode 5 is small. Since discharge is started, low power consumption and long life can be achieved.

図4に示す形態の放電電極4では、放電箇所の厚さが非放電箇所の厚さt2(20μm)よりも20〜25μm程度大きくなっている。このような放電電極4の形態に応じて、放電電極4の放電箇所における保護層8の厚さがt1(t1:10〜15μm)となり、放電電極4の非放電箇所における保護層8の厚さがt3(t3:30〜40μm)となっている。   In the discharge electrode 4 having the form shown in FIG. 4, the thickness of the discharge portion is about 20 to 25 μm larger than the thickness t2 (20 μm) of the non-discharge portion. According to such a form of the discharge electrode 4, the thickness of the protective layer 8 at the discharge portion of the discharge electrode 4 is t 1 (t 1: 10 to 15 μm), and the thickness of the protective layer 8 at the non-discharge portion of the discharge electrode 4. Is t3 (t3: 30 to 40 μm).

上述した本発明に係るイオン発生装置は、空気調和機、除湿器、加湿器、空気清浄機、冷蔵庫、ファンヒータ、電子レンジ、洗濯乾燥機、掃除機、殺菌装置などの電気機器に搭載するとよい。そして、かかる電気機器にはイオン発生装置で発生したイオンを空気中に送出する送出手段(例えば、送風ファン)を搭載するとよい。このような電気機器であれば、機器本来の機能に加えて、搭載したイオン発生装置で発生したイオンを搭載した送出手段により機器外部の空気中に放出することができる。   The ion generator according to the present invention described above may be mounted on an electrical device such as an air conditioner, a dehumidifier, a humidifier, an air cleaner, a refrigerator, a fan heater, a microwave oven, a washing dryer, a vacuum cleaner, or a sterilizer. . And it is good to equip such an electric equipment with the sending means (for example, ventilation fan) which sends out the ion which generate | occur | produced with the ion generator in the air. In the case of such an electric device, in addition to the original function of the device, ions generated by the mounted ion generator can be released into the air outside the device by the sending means.

は、本発明に係るイオン発生装置の一構成例を示す図である。These are figures which show one structural example of the ion generator which concerns on this invention. は、イオン発生素子の部分断面図である。FIG. 3 is a partial cross-sectional view of an ion generating element. は、本発明に係るイオン発生素子の部分断面図である。These are the fragmentary sectional views of the ion generating element concerning the present invention. は、本発明に係るイオン発生素子の部分断面図である。These are the fragmentary sectional views of the ion generating element concerning the present invention. は、イオン発生素子の部分拡大上面図である。FIG. 3 is a partially enlarged top view of the ion generating element.

符号の説明Explanation of symbols

1 イオン発生素子
2 電圧印加回路
3 誘電体基板
4 放電電極
5 誘導電極
6、7 電極接点
8 保護層
DESCRIPTION OF SYMBOLS 1 Ion generating element 2 Voltage application circuit 3 Dielectric board | substrate 4 Discharge electrode 5 Induction electrode 6, 7 Electrode contact 8 Protective layer

Claims (5)

誘電体と、
前記誘電体の表面に形成される放電電極と、
前記誘電体の内部又は裏面に形成され、前記放電電極に対して略平行に配置される誘導電極と、
前記放電電極を覆うように、前記誘電体上に形成される保護層とを備え、
前記放電電極の放電箇所における前記保護層の厚さが、前記放電電極の非放電箇所であって且つ前記誘導電極に対向する箇所における前記保護層の厚さよりも小さいことを特徴とするイオン発生素子。
A dielectric,
A discharge electrode formed on the surface of the dielectric;
An induction electrode formed inside or on the back surface of the dielectric and disposed substantially parallel to the discharge electrode;
A protective layer formed on the dielectric so as to cover the discharge electrode;
The ion generating element, wherein a thickness of the protective layer at a discharge location of the discharge electrode is smaller than a thickness of the protective layer at a location where the discharge electrode is a non-discharge location and faces the induction electrode .
誘電体と、前記誘電体の表面に形成される放電電極と、前記誘電体の内部又は裏面に形成され、前記放電電極に対して略平行に配置される誘導電極と、前記放電電極を覆うように、前記誘電体上に形成される保護層とを備え、前記放電電極の放電箇所における前記保護層の厚さが、前記放電電極の非放電箇所であって且つ前記誘導電極に対向する箇所における前記保護層の厚さよりも小さいイオン発生素子の製造方法であって、
前記保護層の形成工程において、マスキングにより、前記放電電極の放電箇所における前記保護層の厚さを、前記放電電極の非放電箇所であって且つ前記誘導電極に対向する箇所における前記保護層の厚さよりも小さくすることを特徴とするイオン発生素子の製造方法。
A dielectric, a discharge electrode formed on the surface of the dielectric, an induction electrode formed inside or on the back of the dielectric and arranged substantially parallel to the discharge electrode, and covering the discharge electrode And a protective layer formed on the dielectric, and the thickness of the protective layer at the discharge location of the discharge electrode is a non-discharge location of the discharge electrode and at a location facing the induction electrode A manufacturing method of an ion generating element smaller than the thickness of the protective layer,
In the step of forming the protective layer, by masking, the thickness of the protective layer at the discharge location of the discharge electrode is changed to the thickness of the protective layer at the non-discharge location of the discharge electrode and facing the induction electrode. The manufacturing method of the ion generating element characterized by making it smaller than this.
誘電体と、
前記誘電体の表面に形成される放電電極と、
前記誘電体の内部又は裏面に形成され、前記放電電極に対して略平行に配置される誘導電極とを備え、
前記放電電極の放電箇所の厚さが、前記放電電極の非放電箇所であって且つ前記誘導電極に対向する箇所の厚さよりも大きいことを特徴とするイオン発生素子。
A dielectric,
A discharge electrode formed on the surface of the dielectric;
An induction electrode formed inside or on the back surface of the dielectric and disposed substantially parallel to the discharge electrode;
An ion generating element, wherein a thickness of a discharge portion of the discharge electrode is larger than a thickness of a non-discharge portion of the discharge electrode and facing the induction electrode.
請求項1又は請求項3に記載のイオン発生素子と、
前記イオン発生素子が備える放電電極と誘電電極との間に電圧を印加する電圧印加手段とを備えることを特徴とするイオン発生装置。
The ion generating element according to claim 1 or 3,
An ion generating apparatus comprising: a voltage applying unit that applies a voltage between a discharge electrode and a dielectric electrode included in the ion generating element.
請求項4に記載のイオン発生装置と、前記イオン発生装置にて発生したイオンを空気中に送出する送出手段とを備えることを特徴とする電気機器。   An electrical apparatus comprising: the ion generator according to claim 4; and a sending unit that sends out ions generated by the ion generator into the air.
JP2006084492A 2006-03-27 2006-03-27 Ion generating element, manufacturing method of ion generating element, ion generating device, and electric apparatus equipped with above Pending JP2007258128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006084492A JP2007258128A (en) 2006-03-27 2006-03-27 Ion generating element, manufacturing method of ion generating element, ion generating device, and electric apparatus equipped with above

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006084492A JP2007258128A (en) 2006-03-27 2006-03-27 Ion generating element, manufacturing method of ion generating element, ion generating device, and electric apparatus equipped with above

Publications (1)

Publication Number Publication Date
JP2007258128A true JP2007258128A (en) 2007-10-04

Family

ID=38632129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006084492A Pending JP2007258128A (en) 2006-03-27 2006-03-27 Ion generating element, manufacturing method of ion generating element, ion generating device, and electric apparatus equipped with above

Country Status (1)

Country Link
JP (1) JP2007258128A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008046756A1 (en) 2007-10-01 2009-04-09 Hitachi, Ltd. Apparatus and method for controlling a valve timing device
CN104505713A (en) * 2014-10-28 2015-04-08 张义卿 Electrode material of mesh shaped titanium oxide film, manufacturing method thereof, and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008046756A1 (en) 2007-10-01 2009-04-09 Hitachi, Ltd. Apparatus and method for controlling a valve timing device
CN104505713A (en) * 2014-10-28 2015-04-08 张义卿 Electrode material of mesh shaped titanium oxide film, manufacturing method thereof, and application thereof

Similar Documents

Publication Publication Date Title
TWI694749B (en) Particle generation suppressor by dc bias modulation
JP2001527285A5 (en)
JP6728502B2 (en) Active gas generator
JP6542053B2 (en) Plasma electrode structure and plasma induced flow generator
WO2001002291A3 (en) Device for preparing a plasma for the production of ozone and/or oxygen ions in the air
JP2007258128A (en) Ion generating element, manufacturing method of ion generating element, ion generating device, and electric apparatus equipped with above
EP2803637B1 (en) Discharge device
US20230100544A1 (en) Dielectric barrier plasma generator and plasma discharge starting method for dielectric barrier plasma generator
JP2006253200A (en) Ring for etcher with excellent etching resistance
JP2007122890A (en) Ion generating element and electric equipment equipped with it
KR20070050111A (en) Electrostatic chuck for uniform temperature control and plasma generation apparatus using the same
KR101156604B1 (en) Ion cluster generating apparatus
TW200845287A (en) Electrostatic chuck and plasma processing equipment with electrostatic chuck
JP2006228513A (en) Ion generating element and ion generator mounting the same
JPH08310801A (en) Ozone generating electrode device and production of ozone generating electrode
JP2019117687A (en) Cooler
TW200608578A (en) Method of manufacturing displays and apparatus for manufacturing displays
JP2020024845A (en) Method for controlling ionic wind generator
JP4422014B2 (en) Ion generator
KR20230091642A (en) Plasma generator for fresh food delivery
JP4841177B2 (en) Plasma cleaning equipment
KR100460601B1 (en) Electrode and its manufacturing method of semi-dielectric composit for glow plasma generation
JP2003068724A (en) Apparatus and method for plasma processing
JP4643929B2 (en) Plasma processing method and plasma processing apparatus
JP2005129331A (en) Ion generator and electric apparatus with same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071115