JP2007258031A - Manufacturing method for polymer electrolyte membrane-electrode assembly - Google Patents

Manufacturing method for polymer electrolyte membrane-electrode assembly Download PDF

Info

Publication number
JP2007258031A
JP2007258031A JP2006081872A JP2006081872A JP2007258031A JP 2007258031 A JP2007258031 A JP 2007258031A JP 2006081872 A JP2006081872 A JP 2006081872A JP 2006081872 A JP2006081872 A JP 2006081872A JP 2007258031 A JP2007258031 A JP 2007258031A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
carbon material
polymer electrolyte
electrode
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006081872A
Other languages
Japanese (ja)
Inventor
Yoshiaki Maeda
義明 前田
Toru Uda
徹 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2006081872A priority Critical patent/JP2007258031A/en
Publication of JP2007258031A publication Critical patent/JP2007258031A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which allows a porous electrode layer (catalyst support) for a fuel cell to be formed on an industrial scale as a manufacturing method for a polymer electrolyte membrane-electrode assembly. <P>SOLUTION: The polymer electrolyte membrane-electrode assembly is manufactured in such a method that a carbon material is dispersed in a hydrocarbon-based solvent with added basic high-molecular dispersant, a voltage is applied using a polymer electrolyte membrane as a positive electrode in this solvent, and a carbon material thin film is attached on a surface of a positive electrode material. On applying a voltage using a coating material as a positive electrode to attach the carbon material on the surface of the positive electrode material, the carbon material is dispersed in a hydrocarbon-based solvent with added basic high-molecular dispersant to improve the dispersibility of the carbon material in the solvent. This can lead to formation of the carbon material thin film with superior absorption performance, that is, increased amount of absorption. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高分子電解質膜-電極複合体(MEA)の製造方法に関する。さらに詳しくは、燃料電池の電極触媒層などとして有効に用いられる炭素材料薄膜電極を形成させた高分子電解質膜-電極複合体の製造方法に関する。   The present invention relates to a method for producing a polymer electrolyte membrane-electrode assembly (MEA). More specifically, the present invention relates to a method for producing a polymer electrolyte membrane-electrode composite formed with a carbon material thin film electrode that is effectively used as an electrode catalyst layer of a fuel cell.

燃料電池の電極触媒層は、燃料電池の反応の起こる要の部分であり、炭素材料に保持した触媒、高分子電解質膜の溶液および結合剤とから形成され、それを形成させる方法として、高分子電解質膜に電極触媒層を直接塗布する方法が知られている。より具体的には、電極触媒層を形成する触媒担持カーボンを固体高分子電解質膜と同質の高分子樹脂溶液中に分散させたペーストを用いて薄膜を形成し、水素イオンを選択的に透過する固体高分子電解質膜に密着された電極触媒層を形成させる方法が提案されている。この方法では、固体高分子電解質膜と同質の高分子樹脂溶液がペースト分散液調製に用いられ、また触媒担持カーボンをその表面の芳香族環に結合した塩基性官能基が高分子樹脂溶液において陽イオンに変遷した状態で分散させることが必要とされている。
特許第3736545公報
The electrode catalyst layer of the fuel cell is the main part where the reaction of the fuel cell occurs, and is formed from a catalyst held on a carbon material, a solution of a polymer electrolyte membrane, and a binder. A method of directly applying an electrode catalyst layer to an electrolyte membrane is known. More specifically, a thin film is formed using a paste in which the catalyst-supporting carbon that forms the electrode catalyst layer is dispersed in a polymer resin solution that is the same as the solid polymer electrolyte membrane, and selectively transmits hydrogen ions. A method for forming an electrode catalyst layer in close contact with a solid polymer electrolyte membrane has been proposed. In this method, a polymer resin solution having the same quality as the solid polymer electrolyte membrane is used for preparing the paste dispersion, and the basic functional group in which the catalyst-carrying carbon is bonded to the aromatic ring on the surface of the polymer resin solution is positive in the polymer resin solution. It is necessary to disperse in a state of transition to ions.
Japanese Patent No. 3736545

また、燃料電池用のセルは、高分子電解質膜の両側の面に燃料極と空気極とを熱圧縮して、膜・電極接合体(MEA)として一般に作製されている。実際には、電極触媒層をシート状に膜成形し、同時にこれを高分子電解質膜にホットプレスする方法も一般的に行われているが、ホットプレスやヒートロールによる電極触媒層の膜成形時に適用される加熱および加圧により、高分子電解質膜に塑性変形が生ずるのを避けることができない。   Further, a cell for a fuel cell is generally manufactured as a membrane / electrode assembly (MEA) by thermally compressing a fuel electrode and an air electrode on both sides of a polymer electrolyte membrane. In practice, a method of forming an electrode catalyst layer into a sheet and simultaneously hot pressing it onto a polymer electrolyte membrane is generally performed, but at the time of forming the electrode catalyst layer by hot pressing or heat roll, It is unavoidable that plastic deformation occurs in the polymer electrolyte membrane due to the applied heating and pressurization.

一方、ホットプレスを行わずに触媒層を形成させる方法としては、電気泳動法を用いる方法があるが、この方法では電極間にセルを配して電気泳動を行うため、大量生産には不向きである。
J. of Electrochem. Soc. 151巻 (10) A 1733〜7頁 (2004)
On the other hand, as a method of forming a catalyst layer without performing hot pressing, there is a method using an electrophoresis method, but this method is not suitable for mass production because cells are placed between electrodes to perform electrophoresis. is there.
J. of Electrochem. Soc. 151 (10) A 1733-7 (2004)

本発明の目的は、高分子電解質膜-電極複合体(MEA)の製造方法であって、工業的規模において燃料電池用多孔質電極層(触媒担体)を形成し得る方法を提供することにある。   An object of the present invention is to provide a method for producing a polymer electrolyte membrane-electrode assembly (MEA), which can form a porous electrode layer (catalyst support) for a fuel cell on an industrial scale. .

かかる本発明の目的は、炭素材料を、塩基性高分子型分散剤を添加した炭化水素系溶媒中に分散させ、この溶媒中で高分子電解質膜を陽極として電圧を印加し、陽極材表面上に炭素材料薄膜を形成せしめて、高分子電解質膜-電極複合体を製造する方法によって達成される。   An object of the present invention is to disperse a carbon material in a hydrocarbon solvent to which a basic polymer type dispersant is added, and in this solvent, a voltage is applied using the polymer electrolyte membrane as an anode, on the surface of the anode material. This is achieved by a method of producing a polymer electrolyte membrane-electrode composite by forming a carbon material thin film on the substrate.

被被覆材を陽極として電圧を印加し、陽極材の表面上に炭素材料を付着させるに際して、炭素材料を塩基性高分子型分散剤を添加した炭化水素系溶媒中に分散させることにより、炭素材料の溶媒中における分散性を向上させて、吸着性が良好な、換言すれば吸着量を増加させた炭素材料薄膜の形成が実現可能となる。このように、塩基性高分子型分散剤を添加した炭化水素系溶媒に炭素材料、特にカーボンナノチューブを分散させ、この分散液中に電場をかけることにより、高分子電解質表面にカーボンナノチューブを吸着させることができる。   When a voltage is applied using the material to be coated as an anode and the carbon material is deposited on the surface of the anode material, the carbon material is dispersed in a hydrocarbon solvent to which a basic polymer type dispersant is added. It is possible to improve the dispersibility in the solvent and form a carbon material thin film with good adsorbability, in other words, with an increased amount of adsorption. In this way, carbon materials, particularly carbon nanotubes, are dispersed in a hydrocarbon solvent to which a basic polymer type dispersant is added, and an electric field is applied to the dispersion liquid to adsorb the carbon nanotubes on the surface of the polymer electrolyte. be able to.

本発明方法によれば、高分子電解質膜にダメージを与えることなく触媒層を形成することができる。高分子電解質膜上に被覆されたカーボンナノチューブ等の炭素材料は導電性を有しており、またナノサイズの空間を有しているため、触媒層の担体として好適に使用し得る。さらに、高分子電解質膜を陽極として用いることができるので、連続生産が可能である。   According to the method of the present invention, the catalyst layer can be formed without damaging the polymer electrolyte membrane. A carbon material such as carbon nanotubes coated on the polymer electrolyte membrane has electrical conductivity and has a nano-sized space, and therefore can be suitably used as a support for the catalyst layer. Furthermore, since the polymer electrolyte membrane can be used as the anode, continuous production is possible.

炭素材料としては、カーボンナノチューブ、カーボンブラック、黒鉛、カーボンファイバー、フラーレンなどが挙げられるが、好ましくは、優れた電気伝導性と熱伝導性の観点からカーボンナノチューブが、電気特性および嵩密度の観点からカーボンブラックまたは黒鉛が用いられる。これらは、溶液分散するものであれば特に制限なく使用することができ、カーボンナノチューブとしては単層カーボンナノチューブまたは多層カーボンナノチューブなどが、カーボンブラックとしては、ケッチェンブラック、アセチレンブラックなどが、また黒鉛としては、人造黒鉛、天然黒鉛のいずれかが用いられる。   Examples of the carbon material include carbon nanotube, carbon black, graphite, carbon fiber, fullerene, and the like. Preferably, from the viewpoint of excellent electrical conductivity and thermal conductivity, the carbon nanotube is from the viewpoint of electrical characteristics and bulk density. Carbon black or graphite is used. These can be used without particular limitation as long as they are dispersed in a solution, such as single-walled carbon nanotubes or multi-walled carbon nanotubes as carbon nanotubes, ketjen black, acetylene black, etc. as carbon black, and graphite. As such, either artificial graphite or natural graphite is used.

塩基性高分子型分散剤としては、分子量が数千〜数万であり、エステルを有する構造のものであれば特に制限なく使用することができ、脂肪酸エステルなど、好ましくはポリエステル酸アマイドアミン塩が用いられる。実際には、市販品、例えば楠本化成製品ディスパロンDA-703-50、DA-705、DA-725、DA-234等が用いられる。この他、ポリエーテルリン酸エステルのアミン塩である同社製品ディスパロンDA-325等も用いられる。これらは、1〜20重量%、好ましくは3〜10重量%の割合で、炭化水素系溶媒中に添加されて用いられる。この使用割合がこれ以下では、本発明の目的が達成されず、一方これ以上の割合で用いられると、形成した薄膜中に塩基性高分子型分散剤が多量に付着することとなり、好ましくない。   As the basic polymer type dispersant, a molecular weight of several thousand to several tens of thousands can be used without particular limitation as long as it has an ester structure, and a fatty acid ester or the like, preferably a polyester acid amide amine salt is used. Used. In practice, commercially available products such as Enomoto Kasei products Disparon DA-703-50, DA-705, DA-725, DA-234 and the like are used. In addition, the company's product Disparon DA-325, which is an amine salt of polyether phosphate, is also used. These are used by being added to a hydrocarbon solvent in a proportion of 1 to 20% by weight, preferably 3 to 10% by weight. If the use ratio is less than this, the object of the present invention is not achieved. On the other hand, if the use ratio is more than this, a large amount of the basic polymer type dispersant is adhered to the formed thin film, which is not preferable.

塩基性高分子型分散剤を添加した炭化水素溶媒中に分散させた炭素材料、好ましくはカーボンナノチューブの平均粒子径(湿式でのレーザー散乱法による50%粒子径)は、100〜1000nm、好ましくは500〜800nmに設定されることが好ましい。このような平均粒子径への調整は、ボールミルなどを用いても行われるが、好ましくは超音波ホモジナイザを用いて行われる。超音波ホモジナイザの代りに、超音波洗浄器を用いると、分散液中のカーボンナノチューブ凝集塊の平均粒子径は1000nm以上となり、またポット型ボールミルを用いると、カーボンナノチューブの破断などがみられることもある。   The average particle size of carbon material, preferably carbon nanotubes (50% particle size by wet laser scattering method) dispersed in a hydrocarbon solvent to which a basic polymer type dispersant is added is preferably 100 to 1000 nm, preferably The thickness is preferably set to 500 to 800 nm. Such adjustment to the average particle diameter is also performed using a ball mill or the like, but is preferably performed using an ultrasonic homogenizer. If an ultrasonic cleaner is used instead of an ultrasonic homogenizer, the average particle diameter of the carbon nanotube aggregates in the dispersion will be 1000 nm or more, and if a pot-type ball mill is used, the carbon nanotubes may break. is there.

また、塩基性高分子型分散剤を添加した炭化水素溶媒中に分散させた炭素材料、特にカーボンナノチューブの平均粒子径を100〜1000nmの範囲に設定した場合には、上記カーボンシートを用いた場合と同様に、吸着量および吸着層中のカーボンナノチューブ重量割合をいずれも増加させることができる。このことは、吸着中に同時に吸着される塩基性高分子型分散剤の重量割合が減少し、その結果としてカーボンナノチューブの重量割合が増加することを意味し、カーボンナノチューブ吸着層の機能として求められる導電性が十分に得られ、電気抵抗を減少させるという効果を奏する。   In addition, when the carbon material dispersed in a hydrocarbon solvent to which a basic polymer type dispersant is added, particularly when the average particle diameter of the carbon nanotube is set in the range of 100 to 1000 nm, the above carbon sheet is used. Similarly, both the adsorption amount and the weight ratio of carbon nanotubes in the adsorption layer can be increased. This means that the weight ratio of the basic polymer dispersant adsorbed simultaneously during the adsorption decreases, and as a result, the weight ratio of the carbon nanotubes increases, and is required as a function of the carbon nanotube adsorption layer. Conductivity is sufficiently obtained, and the effect of reducing electric resistance is achieved.

炭化水素系溶媒としては、芳香族炭化水素溶媒などが挙げられるが、好ましくはキシレンまたはトルエンが用いられる。これらの炭化水素溶媒は、炭素材料に対して一般に約100〜1000倍量程度用いられる。   Examples of the hydrocarbon solvent include aromatic hydrocarbon solvents, and preferably xylene or toluene is used. These hydrocarbon solvents are generally used in an amount of about 100 to 1000 times the carbon material.

被被覆材となる陽極としては、高分子電解質膜が用いられる。高分子電解質膜は、水素イオンに対するイオン交換基としてスルホン酸基(-SO3H)やカルボン酸基(-COOH)の如き酸性基を有し、水中で導電性を有する高分子膜であって、一般にはパーフルオロ系主鎖にスルホン酸基を置換したポリマーが用いられる。その膜厚は、約25〜500μm、好ましくは約50〜300μmのものが使用される。実際には、市販品であるデュポン社製品Nafion等が用いられる。また、薄膜の膜強度を補強するために、PTFE繊維やPTFE多孔質膜で補強したものなども用いられる。 A polymer electrolyte membrane is used as the anode to be coated. The polymer electrolyte membrane is a polymer membrane having an acidic group such as a sulfonic acid group (-SO 3 H) or a carboxylic acid group (-COOH) as an ion exchange group for hydrogen ions, and having conductivity in water. Generally, a polymer having a perfluoro main chain substituted with a sulfonic acid group is used. The film thickness is about 25 to 500 μm, preferably about 50 to 300 μm. In practice, commercially available products such as Nafion manufactured by DuPont are used. Further, in order to reinforce the film strength of the thin film, those reinforced with PTFE fibers or a porous PTFE film are also used.

炭素材料薄膜の形成は、炭素材料を塩基性高分子型分散剤を添加した炭化水素系溶媒中で、上記陽極に電圧を印加することにより陽極材上に付着(吸着)することにより行われる。ここで、印加される電圧は、1〜1000V、好ましくは5〜500Vであり、印加電圧がこれより低い場合には、炭素材料の付着量が少なくなってしまい、一方これより大きい場合には、炭素材料の付着膜が不均一となり、かつ電力効率が悪化するため好ましくない。また、印加時間は必要とする製膜量により異なるが、例えば1〜3000秒、好ましくは30〜1000秒あるいは周期的に印加することも可能である。このとき、炭素材料の沈降を防ぐべく、分散溶液を攪拌しながら製膜することも行われる。また、製膜時にマスキングを行うことで、導電性が必要な部分にのみ炭素材料を付着させることができる。   The carbon material thin film is formed by adhering (adsorbing) the carbon material on the anode material by applying a voltage to the anode in a hydrocarbon solvent to which a basic polymer type dispersant is added. Here, the applied voltage is 1 to 1000 V, preferably 5 to 500 V. When the applied voltage is lower than this, the amount of adhesion of the carbon material decreases, whereas when larger than this, The adhesion film of the carbon material is not uniform, and the power efficiency is deteriorated, which is not preferable. The application time varies depending on the amount of film formation required, but it can be applied, for example, for 1 to 3000 seconds, preferably 30 to 1000 seconds, or periodically. At this time, in order to prevent sedimentation of the carbon material, a film is also formed while stirring the dispersion solution. Further, by performing masking at the time of film formation, the carbon material can be attached only to a portion requiring conductivity.

表面に炭素材料薄膜が製膜された陽極材は、分散溶液中から取り出した後、表面に製膜された炭素材料以外を取除くように洗浄され、乾燥される。   The anode material having the carbon material thin film formed on the surface is taken out of the dispersion solution, and then washed and dried so as to remove other than the carbon material formed on the surface.

以上の工程を繰り返し行うことで、陽極材表面上に製膜される炭素材料の膜厚を厚くしていくことができる。すなわち、上記工程の繰り返し回数を設定することによって、製膜される炭素材料の膜厚を所望の厚み、例えば約1〜50μm程度の厚みに制御することが可能となる。   By repeating the above steps, the film thickness of the carbon material formed on the anode material surface can be increased. That is, by setting the number of repetitions of the above steps, the film thickness of the carbon material to be formed can be controlled to a desired thickness, for example, about 1 to 50 μm.

次に、実施例について本発明を説明する。   Next, the present invention will be described with reference to examples.

実施例
キシレン90mlに、ポリエステル酸アマイドアミン塩の50%キシレン溶液(楠本化成製品ディスパロンDA-703-50)10mlを加え、この溶液に気相成長法多層カーボンナノチューブ(日機装製品;繊維径10〜30nm、繊維長1〜100μm)500mgを添加し、超音波ホモジナイザ(BRANSON製 SONIFIER450)による出力300Wでの照射を12時間行い、多層カーボンナノチューブ分散液を得た。この分散液中の多層カーボンナノチューブの湿式でのレーザー散乱による平均粒子径は600nmであった。
Example: To 90 ml of xylene, 10 ml of a 50% xylene solution of polyester acid amide amine salt (Enomoto Kasei product Disparon DA-703-50) was added. Vapor growth multi-walled carbon nanotubes (Nikkiso product; fiber diameter 10-30 nm) were added to this solution. And fiber length 1 to 100 μm) were added, and irradiation with an output of 300 W was performed with an ultrasonic homogenizer (SONIFIER450 manufactured by BRANSON) for 12 hours to obtain a multi-walled carbon nanotube dispersion. The average particle diameter of the multi-walled carbon nanotubes in this dispersion by wet laser scattering was 600 nm.

次に、陽極として高分子電解質膜(デュポン社製品Nafion 117;膜厚183μm)、陰極としてSUS304を用い、ミニクランプを用いて電極間が2cmとなるように設置し、200Vの電圧を5分間印加することにより、陽極材への製膜処理(製膜面積25cm2)を行った。製膜後、高分子電解質膜を室温条件下で乾燥させた。この高分子電解質膜を折り曲げてもカーボンナノチューブ薄膜の剥離は観測されず、カーボンナノチューブのファンデルワールス力と絡まりにより高分子電解質膜に吸着しているものと考えられる。 Next, a polymer electrolyte membrane (DuPont Nafion 117; film thickness 183 μm) is used as the anode, SUS304 is used as the cathode, and the electrodes are installed so that the distance between the electrodes is 2 cm using a mini clamp, and a voltage of 200 V is applied for 5 minutes. By doing so, the film forming process (film forming area 25cm < 2 >) to an anode material was performed. After film formation, the polymer electrolyte membrane was dried at room temperature. Even when this polymer electrolyte membrane is bent, no peeling of the carbon nanotube thin film is observed, and it is considered that the polymer electrolyte membrane is adsorbed by the van der Waals force of the carbon nanotube.

作製したカーボンナノチューブ薄膜の走査型電子顕微鏡による観察を行った結果、吸着層の膜厚は約20μmで、またカーボンナノチューブ薄膜の体積固有抵抗を4端子法で測定すると、3×101Ω・cmであった。
As a result of observation of the produced carbon nanotube thin film with a scanning electron microscope, the film thickness of the adsorption layer was about 20 μm, and the volume resistivity of the carbon nanotube thin film was measured by the 4-terminal method, 3 × 10 1 Ω · cm Met.

Claims (9)

炭素材料を、塩基性高分子型分散剤を添加した炭化水素系溶媒中に分散させ、この溶媒中で高分子電解質膜を陽極として電圧を印加し、陽極材表面上に炭素材料薄膜を形成せしめることを特徴とする高分子電解質膜-電極複合体の製造方法。   A carbon material is dispersed in a hydrocarbon solvent to which a basic polymer type dispersant is added, and a voltage is applied in this solvent using the polymer electrolyte membrane as an anode to form a carbon material thin film on the surface of the anode material. A method for producing a polymer electrolyte membrane-electrode composite, comprising: 炭素材料がカーボンナノチューブ、カーボンブラックまたは黒鉛である請求項1記載の高分子電解質膜-電極複合体の製造方法。   The method for producing a polymer electrolyte membrane-electrode composite according to claim 1, wherein the carbon material is carbon nanotube, carbon black, or graphite. 塩基性高分子型分散剤が、ポリエステル酸アマイドアミン塩である請求項1記載の高分子電解質膜-電極複合体の製造方法。   2. The method for producing a polymer electrolyte membrane-electrode composite according to claim 1, wherein the basic polymer type dispersant is a polyester acid amide amine salt. 炭化水素系溶媒が芳香族炭化水素溶媒である請求項1記載の高分子電解質膜-電極複合体の製造方法。   The method for producing a polymer electrolyte membrane-electrode composite according to claim 1, wherein the hydrocarbon solvent is an aromatic hydrocarbon solvent. 塩素性高分子型分散剤を添加した炭化水素系溶媒中に分散させた炭素材料が100〜1000nmの平均粒子径(湿式でのレーザー散乱法による50%粒子径)を有する請求項1記載の高分子電解質膜-電極複合体の製造方法。   The high carbon material according to claim 1, wherein the carbon material dispersed in the hydrocarbon solvent to which the chlorinated polymer type dispersant is added has an average particle size of 100 to 1000 nm (50% particle size by wet laser scattering method). A method for producing a molecular electrolyte membrane-electrode composite. 炭素材料がカーボンナノチューブである請求項5記載の高分子電解質膜-電極複合体の製造方法。   6. The method for producing a polymer electrolyte membrane-electrode composite according to claim 5, wherein the carbon material is a carbon nanotube. 炭素材料の平均粒子径を100〜1000nmに調整することが超音波ホモジナイザを用いて行われる請求項5または6記載の高分子電解質膜-電極複合体の製造方法。   The method for producing a polymer electrolyte membrane-electrode assembly according to claim 5 or 6, wherein the average particle diameter of the carbon material is adjusted to 100 to 1000 nm using an ultrasonic homogenizer. 請求項1乃至7記載のいずれかの方法により製造された高分子電解質膜-炭素材料薄膜電極複合体。   A polymer electrolyte membrane-carbon material thin film electrode assembly produced by the method according to claim 1. 炭素材料薄膜電極が燃料電池用電極触媒層として用いられる請求項8記載の複合体。
The composite according to claim 8, wherein the carbon material thin film electrode is used as an electrode catalyst layer for a fuel cell.
JP2006081872A 2006-03-24 2006-03-24 Manufacturing method for polymer electrolyte membrane-electrode assembly Pending JP2007258031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006081872A JP2007258031A (en) 2006-03-24 2006-03-24 Manufacturing method for polymer electrolyte membrane-electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006081872A JP2007258031A (en) 2006-03-24 2006-03-24 Manufacturing method for polymer electrolyte membrane-electrode assembly

Publications (1)

Publication Number Publication Date
JP2007258031A true JP2007258031A (en) 2007-10-04

Family

ID=38632049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006081872A Pending JP2007258031A (en) 2006-03-24 2006-03-24 Manufacturing method for polymer electrolyte membrane-electrode assembly

Country Status (1)

Country Link
JP (1) JP2007258031A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211869A (en) * 2008-03-03 2009-09-17 Dainippon Printing Co Ltd Catalyst layer for solid polymer fuel cell and its manufacturing method
WO2018139473A1 (en) 2017-01-27 2018-08-02 国立大学法人信州大学 Carbon film manufacturing method and film manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243411A (en) * 1999-02-16 2000-09-08 Toyota Motor Corp Joined body of electrolyte film and electrode for fuel cell and its manufacture
JP2005129322A (en) * 2003-10-23 2005-05-19 Toyota Motor Corp Manufacturing method of membrane electrode assembly for solid polymer fuel cell
JP2006063436A (en) * 2004-07-27 2006-03-09 Nok Corp Method for forming carbon material thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243411A (en) * 1999-02-16 2000-09-08 Toyota Motor Corp Joined body of electrolyte film and electrode for fuel cell and its manufacture
JP2005129322A (en) * 2003-10-23 2005-05-19 Toyota Motor Corp Manufacturing method of membrane electrode assembly for solid polymer fuel cell
JP2006063436A (en) * 2004-07-27 2006-03-09 Nok Corp Method for forming carbon material thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211869A (en) * 2008-03-03 2009-09-17 Dainippon Printing Co Ltd Catalyst layer for solid polymer fuel cell and its manufacturing method
WO2018139473A1 (en) 2017-01-27 2018-08-02 国立大学法人信州大学 Carbon film manufacturing method and film manufacturing method

Similar Documents

Publication Publication Date Title
US10392255B2 (en) Method of making cohesive carbon assembly and its applications
JP5050352B2 (en) Post-treatment method for carbon material thin film
Michel et al. High-Performance Nanostructured Membrane Electrode Assemblies for Fuel Cells Made by Layer-By-Layer Assembly of Carbon Nanocolloids We acknowledge the Fulbright/Alsace committee for financial support. PP thanks the Fannie and John Hertz Foundation for support of his research through a graduate fellowship. NAK thanks AFOSR for the support of this research. Supporting Information is available online from Wiley InterScience or form the author.
JP5887382B2 (en) Liquid-based nanostructured carbon material (NCM) coating on bipolar plates for fuel cells
JP5032443B2 (en) Membrane-electrode assembly for fuel cell and method for producing the same
JP5479913B2 (en) Hydrophilic carbon black aggregate, method for producing the same, hydrophilic composite material including the same, and bipolar plate for fuel cell
JP2007258030A (en) Manufacturing method for carbon material thin film
JP2008239369A (en) Method for refining carbon nanowall (cnw), refined carbon nanowall, method for manufacturing catalyst layer for fuel cell, catalyst layer for fuel cell, and polymer electrolyte fuel cell
JPWO2002027844A1 (en) Fuel cell and method of manufacturing the same
Ebenezer et al. Carbon nanotubes and nanohorn hybrid composite buckypaper as microporous layer for proton exchange membrane fuel cell
JP5450088B2 (en) Hydrophilic inorganic aggregate, method for producing the same, hydrophilic composite material containing the same, and bipolar plate for fuel cell
US9929421B2 (en) Membrane electrode assembly of fuel cell
KR101344216B1 (en) Polymer electrolyte membrane fuel cell separator using graphene and preparation method thereof
JP2012195052A (en) Correction method of catalyst layer sheet
JP2007258031A (en) Manufacturing method for polymer electrolyte membrane-electrode assembly
JP5074662B2 (en) Method and apparatus for producing catalyst layer for fuel cell
JP6819688B2 (en) Method for manufacturing membrane-electrode assembly, membrane-electrode assembly manufactured from now on, and fuel cell containing this
JP5167664B2 (en) Method for producing polymer electrolyte membrane-electrode assembly
JP4396308B2 (en) Manufacturing method of fuel cell separator
JP2013020753A (en) Method for correcting catalyst layer sheet
JP5320685B2 (en) Method for producing polymer electrolyte membrane-electrode assembly
JP2020095962A (en) Microbial fuel cell device
JP5103922B2 (en) Electrode catalyst layer, production method thereof, MEA (electrolyte membrane electrode assembly) and polymer electrolyte fuel cell using the same
KR101594138B1 (en) Electrogenerated Ionic Polymer Conductive Film Composite and method of manufacturing the same
JP2007287376A (en) Membrane-electrode assembly manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703