JP2007257942A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery Download PDF

Info

Publication number
JP2007257942A
JP2007257942A JP2006079219A JP2006079219A JP2007257942A JP 2007257942 A JP2007257942 A JP 2007257942A JP 2006079219 A JP2006079219 A JP 2006079219A JP 2006079219 A JP2006079219 A JP 2006079219A JP 2007257942 A JP2007257942 A JP 2007257942A
Authority
JP
Japan
Prior art keywords
secondary battery
hole
electrolyte secondary
aqueous electrolyte
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006079219A
Other languages
Japanese (ja)
Inventor
Noriko Ikeda
法子 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006079219A priority Critical patent/JP2007257942A/en
Publication of JP2007257942A publication Critical patent/JP2007257942A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve cycle efficiency of a nonaqueous electrolyte secondary battery. <P>SOLUTION: The nonaqueous electrolyte secondary battery housing a cathode, an anode, and nonaqueous electrolyte in an outer package is provided with an additional liquid injection hole capable of injecting additional electrolyte into a battery after being assembled with its airtightness kept. The additional injection hole is provided with a through-hole fitted at a sealing plate sealing the outer package and sealing resin endowed with selective gas permeability for sealing the through-hole. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、非水電解質二次電池に関し、より詳しくは、非水電解質二次電池のサイクル特性の向上に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improvement of cycle characteristics of a non-aqueous electrolyte secondary battery.

今日、携帯電話、ノートパソコン、PDA等の移動情報端末の高機能化・小型化および軽量化が急速に進展している。これらの端末の駆動電源として、高いエネルギー密度を有し、高容量であるリチウムイオン二次電池に代表される非水電解質二次電池が広く利用されている。   Today, mobile information terminals such as mobile phones, notebook computers, PDAs, and the like are rapidly increasing in functionality, size, and weight. As a driving power source for these terminals, non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries having high energy density and high capacity are widely used.

このようなリチウムイオン二次電池は、充放電によって非水電解質が分解するので、非水電解質量の減少によるサイクル劣化が生じるという問題がある。また、非水電解質の分解により生じたガスが正負極間にとどまって、正負極の対向状態を悪くし、これによりスムースな充放電反応が阻害されて、サイクル特性がさらに低下するという問題がある。   Such a lithium ion secondary battery has a problem that cycle deterioration due to a decrease in nonaqueous electrolytic mass occurs because the nonaqueous electrolyte is decomposed by charging and discharging. In addition, there is a problem that the gas generated by the decomposition of the nonaqueous electrolyte stays between the positive and negative electrodes, worsens the facing state of the positive and negative electrodes, thereby inhibiting the smooth charge / discharge reaction and further reducing the cycle characteristics. .

このような非水電解質二次電池にかかる技術としては、下記特許文献1〜4に記載の技術が挙げられる。   As a technique concerning such a nonaqueous electrolyte secondary battery, the techniques described in Patent Documents 1 to 4 below are listed.

特開2000-123875号公報(要約書)JP 2000-123875 A (abstract) 特開2000-353547号公報(要約書)JP 2000-353547 A (abstract) 特開2001-210309号公報(要約書)Japanese Patent Laid-Open No. 2001-210309 (Abstract) 特開2003-68276号公報(要約書)JP2003-68276 (abstract)

特許文献1は、電池缶の封口部に、ネジ式のふたによって密閉可能な孔および孔を密閉するためのネジ式の蓋をつける技術を提案している。この技術によると、充放電に伴う、電池缶のガス発生と膨れの影響を効果的に排除できるとされる。   Patent Document 1 proposes a technique for attaching a screw-type lid for sealing a hole and a hole that can be sealed by a screw-type lid to a sealing part of a battery can. According to this technique, it can be said that the effects of gas generation and swelling of the battery can associated with charging and discharging can be effectively eliminated.

しかしながら、上記特許文献1にかかる電池は、充放電サイクルにより非水電解質量が減少した場合には、蓋を開けて非水電解質を注入する必要があり、この際に真空雰囲気下や不活性ガス雰囲気下で作業を行わないと、外気から酸素や水蒸気が電池内部に侵入して、電池特性を劣化させるという課題を有している。また、真空雰囲気下や不活性ガス雰囲気下で作業を行うには、専門的な知識及び施設が必要となり、容易に非水電解質を注液できないだけでなく、コスト高になるという問題がある。   However, in the battery according to Patent Document 1, when the non-aqueous electrolyte mass is reduced by the charge / discharge cycle, it is necessary to open the lid and inject the non-aqueous electrolyte. If the work is not performed in an atmosphere, oxygen or water vapor enters the battery from the outside air, which causes a problem that the battery characteristics are deteriorated. In addition, in order to work in a vacuum atmosphere or an inert gas atmosphere, specialized knowledge and facilities are required, and there is a problem that not only the nonaqueous electrolyte can be easily injected, but also the cost is increased.

特許文献2は、注液口を密閉するゴム栓を装着した状態で初期充電を行い、初期充電後にシリンジに連通させた中空針の先端をゴム栓の上方から刺通して電池缶内に挿入することにより電池缶内のガス等をシリンジ内に回収する技術を提案している。この技術によると、初期充電の際に電池缶内に発生するガスを、大気中に放出することなく、また、非水電解質を飛散させることもなく確実に回収できるとされる。   In Patent Document 2, initial charging is performed in a state where a rubber stopper that seals the liquid injection port is attached, and the tip of a hollow needle communicated with a syringe after the initial charging is inserted from above the rubber stopper into a battery can. Has proposed a technique for recovering gas in a battery can into a syringe. According to this technique, the gas generated in the battery can during the initial charging can be reliably recovered without being released into the atmosphere and without scattering the nonaqueous electrolyte.

しかしながら、上記特許文献2にかかる電池は、シリンジにガスを回収した後、ゴム栓を除去した後に注液口を安全弁により本封口するため、充放電サイクルにより非水電解質量が減少した場合に、再度非水電解質を電池内に注入することはできない。   However, since the battery according to Patent Document 2 collects the gas in the syringe and then removes the rubber stopper and then seals the liquid injection port with a safety valve, when the nonaqueous electrolytic mass is reduced by the charge / discharge cycle, The nonaqueous electrolyte cannot be injected into the battery again.

特許文献3は、電池容器に開閉可能な液口栓を備える技術を提案している。この技術によると、非水電解質量が減少した場合に、非水電解質の補液を上記液口栓から行うことにより、繰り返し使用しても容量の低下が小さい非水電解質二次電池が実現できるとされる。   Patent Document 3 proposes a technique that includes a liquid plug that can be opened and closed in a battery container. According to this technology, when the non-aqueous electrolyte mass is reduced, a non-aqueous electrolyte secondary battery with a small decrease in capacity can be realized even if it is used repeatedly by performing a non-aqueous electrolyte replenisher from the liquid stopper. Is done.

しかしながら、上記特許文献3にかかる電池は、液口栓を開けて非水電解質を注入する必要があり、上記特許文献1と同様の課題を有している。   However, the battery according to Patent Document 3 needs to open a liquid stopper and inject a nonaqueous electrolyte, and has the same problem as that of Patent Document 1.

特許文献4は、電池ケースの蓋の注液孔周辺部及び注液栓を溶接する技術を提案している。この技術によると、非水電解質の注入に用いた注液孔部分の密閉性を保持できるとされる。   Patent Document 4 proposes a technique for welding a peripheral portion of a liquid injection hole of a battery case lid and a liquid injection stopper. According to this technique, it is said that the sealing property of the liquid injection hole used for injecting the nonaqueous electrolyte can be maintained.

しかしながら、上記特許文献4にかかる電池は、充放電サイクルにより非水電解質量が減少した場合に、再度非水電解質を電池内に注入することはできない。   However, the battery according to Patent Document 4 cannot reinject the nonaqueous electrolyte into the battery when the nonaqueous electrolytic mass is reduced by the charge / discharge cycle.

本発明は、上記に鑑みなされたものであって、充放電サイクルによって非水電解質量が減少した場合に、電池に悪影響を及ぼすことなく再度非水電解質を注液できる非水電解質二次電池を提供することを目的とする。   The present invention has been made in view of the above, and provides a non-aqueous electrolyte secondary battery capable of injecting a non-aqueous electrolyte again without adversely affecting the battery when the non-aqueous electrolytic mass is reduced by a charge / discharge cycle. The purpose is to provide.

上記課題を解決するための本発明は、正極と、負極と、非水電解質と、を外装体内に収容した非水電解質二次電池において、前記非水電解質二次電池は、組み立て後の電池内に密閉性を保ったままで前記非水電解質を追加注液できる追加注液孔を備えることを特徴とする。   The present invention for solving the above-mentioned problems is a non-aqueous electrolyte secondary battery in which a positive electrode, a negative electrode, and a non-aqueous electrolyte are housed in an outer package, wherein the non-aqueous electrolyte secondary battery is in an assembled battery. Are provided with an additional liquid injection hole through which the nonaqueous electrolyte can be additionally injected while maintaining hermeticity.

この構成によると、密閉性を保ったままで非水電解質を注液できる追加注液孔を備えるため、真空雰囲気や不活性ガス雰囲気にしなくても、電池に悪影響を及ぼすことなく非水電解質の追加注液が可能となる。よって、充放電サイクルによって減少した非水電解質量を追加注液により容易に回復させることができ、これによって追加注液後の放電容量を飛躍的に大きくすることができる。よって、サイクル特性に優れた非水電解質二次電池を提供できる。   According to this configuration, it is equipped with an additional injection hole that can inject nonaqueous electrolyte while maintaining hermeticity, so the nonaqueous electrolyte can be added without adversely affecting the battery even if it is not in a vacuum atmosphere or inert gas atmosphere. Injection is possible. Therefore, the nonaqueous electrolytic mass reduced by the charge / discharge cycle can be easily recovered by the additional injection, and thereby the discharge capacity after the additional injection can be greatly increased. Therefore, the nonaqueous electrolyte secondary battery excellent in cycle characteristics can be provided.

ここで、「密閉性を保ったまま」とは、外気から電池内部に水やガス等が侵入しないことを意味し、外気から電池内部にガス等が侵入しない構造で且つ電池内部で発生したガスが電池外部に放出される構造であっても「密閉性を保ったまま」の意味に含まれる。   Here, “while maintaining hermeticity” means that water or gas does not enter the battery from outside air, and the gas generated inside the battery does not allow gas or the like to enter the battery from outside air. Even if the structure is discharged to the outside of the battery, it is included in the meaning of “maintaining hermeticity”.

上記構成において、前記非水電解質二次電池は、前記外装体の開口部を封口するための封口板を備え、前記追加注液孔は、前記封口板に設けられた貫通孔と、前記貫通孔を密閉する密閉用樹脂とを有し、前記密閉用樹脂は、水は通しにくく、且つ酸素ガスの透過度よりも炭酸ガスの透過度のほうが大きい選択的ガス透過性を有する構成とすることができる。   The said structure WHEREIN: The said nonaqueous electrolyte secondary battery is provided with the sealing board for sealing the opening part of the said exterior body, The said additional liquid injection hole is the through-hole provided in the said sealing board, and the said through-hole The sealing resin is configured to have selective gas permeability such that water does not easily pass through and the permeability of carbon dioxide gas is greater than the permeability of oxygen gas. it can.

水や酸素ガスは、電池内部に侵入すると、リチウムと反応して電池特性を劣化させる。よって、密閉用樹脂は、水をしにくく、酸素ガスを透過させにくいことが好ましい。他方、炭酸ガスは、非水電解質の分解によって発生し、これらのガスが電池内にとどまると、電池を膨らせるとともにサイクル特性を劣化させる。よって、密閉用樹脂は、炭酸ガスをスムースに電池外部に透過して放出させることが好ましい。よって、上記構成を採用することが好ましい。   When water or oxygen gas enters the inside of the battery, it reacts with lithium and deteriorates the battery characteristics. Therefore, it is preferable that the sealing resin does not easily cause water and does not allow oxygen gas to pass therethrough. On the other hand, carbon dioxide gas is generated by decomposition of the nonaqueous electrolyte, and when these gases remain in the battery, the battery is expanded and the cycle characteristics are deteriorated. Therefore, it is preferable that the sealing resin allows carbon dioxide gas to smoothly pass through the outside of the battery and be released. Therefore, it is preferable to employ the above configuration.

ここで、ガス透過度の指標としてガス透過係数を用いることができ、ガス透過係数は、図2を参照にして以下の式1により求めることができる。   Here, a gas permeability coefficient can be used as an index of gas permeability, and the gas permeability coefficient can be obtained by the following formula 1 with reference to FIG.

(式1) 透過流束[kmol/(s・m2)]=(ガス透過係数)[kmol・m/(s・m2・kPa)]×(透過推進力=圧力差)[kPa]÷(膜厚)[m] (Equation 1) Permeation flux [kmol / (s · m 2 )] = (Gas permeability coefficient) [kmol · m / (s · m 2 · kPa)] x (permeation thrust = pressure difference) [kPa] ÷ (Film thickness) [m]

また、このような追加注液孔は、封口板に貫通孔を設けて、この貫通孔を密閉用樹脂で密閉する構成とすることが設計・作製の面から好ましい。   Moreover, it is preferable from the surface of a design and preparation that such an additional liquid injection hole is set as the structure which provides a through-hole in a sealing board and seals this through-hole with sealing resin.

ここで、電池内で発生するガスとしては、炭酸ガス以外に、水素ガス、メタンガス、エタンガス等がある。これらのガスもまた、電池を膨らせ、サイクル特性を低下させる要因となるので、密閉用樹脂はこれらのガスを透過しやすいことが好ましい。より好ましくはこれらのガスの透過度を、それぞれ酸素ガスよりも大きくする。   Here, as gas generated in the battery, there are hydrogen gas, methane gas, ethane gas and the like in addition to carbon dioxide gas. Since these gases also cause the battery to swell and deteriorate the cycle characteristics, it is preferable that the sealing resin easily permeates these gases. More preferably, the permeability of these gases is larger than that of oxygen gas.

他方、電池外に存在する水蒸気は、酸素ガスと同様に、電池内部に侵入すると、リチウムと反応して電池特性を劣化させる。よって、密閉用樹脂は、水蒸気を透過させにくいことが好ましい。より好ましくは、水蒸気の透過度を、炭酸ガスよりも小さくする。   On the other hand, the water vapor existing outside the battery, like oxygen gas, enters the battery and reacts with lithium to deteriorate the battery characteristics. Therefore, it is preferable that the sealing resin is difficult to transmit water vapor. More preferably, the water vapor permeability is smaller than that of carbon dioxide.

上記構成において、前記貫通孔の内周には、雌ネジ山が刻まれており、前記貫通孔には、前記密閉用樹脂と、前記雌ネジ山に対偶する雄ネジ山が外周に刻まれた軸心中空の押さえネジが嵌め込まれ、前記押さえネジにより前記密閉用樹脂が押圧されて前記貫通孔が密閉されている構成とすることができる。   In the above configuration, a female screw thread is engraved on the inner periphery of the through hole, and a male screw thread that is opposed to the female screw thread is engraved on the outer periphery of the through resin. An axial hollow holding screw is fitted, and the sealing resin is pressed by the holding screw so that the through hole is sealed.

貫通孔を密閉用樹脂で密閉するために、上記構成を採用することが設計上好ましい。これを、図1を用いて説明する。図1(c)に示すように、押さえネジ11は軸心中空(中空部12を有する)であり、密閉用樹脂13の上端と外気とが接触している。よって、この中空部12から、シリンジ等の中空針を密閉用樹脂13に突き刺して非水電解質を追加注液すると、不活性ガス雰囲気等を用いなくとも、電池の密閉性が保たれたままで非水電解質を追加注液できる。   In order to seal the through hole with the sealing resin, it is preferable in terms of design to adopt the above configuration. This will be described with reference to FIG. As shown in FIG. 1C, the holding screw 11 is hollow in the center (having a hollow portion 12), and the upper end of the sealing resin 13 and the outside air are in contact with each other. Therefore, when a hollow needle such as a syringe is pierced from the hollow portion 12 into the sealing resin 13 and a non-aqueous electrolyte is additionally injected, the battery remains sealed without using an inert gas atmosphere or the like. Additional water electrolyte can be injected.

また、上記構成において、前記貫通孔と連続し、前記封口板上面から電池外方に突出した円筒部16を有し、前記円筒部16の外周には、雄ネジ山が刻まれており、軸心中空であって、前記雄ネジ山に対偶する雌ネジ山が該中空部分の内周に刻まれた押さえネジが、前記円筒部の上面との間に前記密閉用樹脂を挟み込んだ状態で嵌め込まれ、前記押さえネジにより前記密閉用樹脂が押圧されて前記貫通孔が密閉されている構成とすることができる。   Further, in the above configuration, the cylindrical portion 16 is continuous with the through-hole and protrudes outward from the battery upper surface of the sealing plate, and a male thread is engraved on the outer periphery of the cylindrical portion 16. A holding screw that is hollow inside and has a female screw thread that opposes the male screw thread on the inner periphery of the hollow part is fitted with the sealing resin sandwiched between the upper surface of the cylindrical part. Thus, the sealing resin is pressed by the holding screw, and the through hole is sealed.

貫通孔を密閉用樹脂で密閉するためのその他の構成としては、上記構成を採用することが設計上好ましい。これを、図5を用いて説明する。図5(c)に示すように、押さえネジ11は軸心中空(中空部12を有する)であり、密閉用樹脂13の上端と外気とが接触している。よって、この中空部12から、シリンジ等の中空針を密閉用樹脂13に突き刺して非水電解質を追加注液すると、不活性ガス雰囲気等を用いなくとも、電池の密閉性が保たれたままで非水電解質を追加注液できる。   As another configuration for sealing the through hole with the sealing resin, it is preferable in terms of design to employ the above configuration. This will be described with reference to FIG. As shown in FIG. 5C, the holding screw 11 is hollow in the center (having a hollow portion 12), and the upper end of the sealing resin 13 and the outside air are in contact with each other. Therefore, when a hollow needle such as a syringe is pierced from the hollow portion 12 into the sealing resin 13 and a non-aqueous electrolyte is additionally injected, the battery remains sealed without using an inert gas atmosphere or the like. Additional water electrolyte can be injected.

上記構成において、前記密閉用樹脂は、クロロプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、クロロスルホン化ポリエチレンゴム、ニトリルブタジエンゴム、ウレタンゴム、天然ゴム、シリコーンゴムのいずれか一種以上の樹脂である構成とすることができる。   In the above configuration, the sealing resin is a chloroprene rubber, butadiene rubber, styrene butadiene rubber, chlorosulfonated polyethylene rubber, nitrile butadiene rubber, urethane rubber, natural rubber, or silicone rubber. be able to.

上記材料の樹脂は、上述した選択的ガス透過性を有し、且つ汎用樹脂であるため、比較的低コストで製造できる。よって、上記材料を密閉用樹脂として用いることが好ましい。   Since the resin of the above material has the selective gas permeability described above and is a general-purpose resin, it can be manufactured at a relatively low cost. Therefore, it is preferable to use the above material as a sealing resin.

以上説明したように、本発明によると、サイクル特性に優れた非水電解質二次電池を実現できる。   As described above, according to the present invention, a nonaqueous electrolyte secondary battery having excellent cycle characteristics can be realized.

以下に、本発明を実施するための最良の形態を、図面を用いて詳細に説明する。   The best mode for carrying out the present invention will be described below in detail with reference to the drawings.

(実施の形態)
図1は、本発明電池の追加注液孔(ガス抜き孔)の構造を示す概略図であり、図1(a)は封口板の平面図、図1(b)は追加注液孔の解体斜視図であり、図1(c)は追加注液孔の断面図である。
(Embodiment)
FIG. 1 is a schematic view showing the structure of an additional liquid injection hole (gas vent hole) of the battery of the present invention, FIG. 1 (a) is a plan view of a sealing plate, and FIG. 1 (b) is a disassembly of the additional liquid injection hole. FIG. 1C is a cross-sectional view of an additional liquid injection hole.

図1(a)に示すように、封口板1は、電極端子2と、注液孔3と、追加注液孔(ガス抜き孔)4とを備えている。注液孔3の周囲は、レーザ溶接によって封口板と固定され、密閉されている。   As shown in FIG. 1A, the sealing plate 1 includes an electrode terminal 2, a liquid injection hole 3, and an additional liquid injection hole (gas vent hole) 4. The periphery of the liquid injection hole 3 is fixed and sealed with a sealing plate by laser welding.

図1(b)に、追加注液孔の解体斜視図を示す。なお、この図においては、電極端子及び注液孔は省略している。封口板1には、貫通孔14が形成されており、この貫通孔の内周部には、雌ネジ山が刻まれている。この貫通孔14に、セプタム(密閉用樹脂)13が嵌め込まれる。また、セプタム13の上部には、前記雌ネジ山と対偶する雄ネジ山が外周に刻まれた軸心中空(中空部12を有する)の押さえネジ11が嵌め込まれ、ネジ止めされる。図1(c)に示すように、貫通孔14の下部には、樹脂止め部15が形成されており、押さえネジ11をネジ止めして締め付けることにより、セプタム13が押さえネジ11と樹脂止め部15に挟まれて圧縮され、この圧縮反発力によって貫通孔14が密閉されている。   FIG. 1B shows a disassembled perspective view of the additional liquid injection hole. In this figure, the electrode terminal and the liquid injection hole are omitted. A through hole 14 is formed in the sealing plate 1, and an internal thread is engraved on the inner periphery of the through hole. A septum (sealing resin) 13 is fitted into the through hole 14. In addition, a presser screw 11 having a hollow axial center (having a hollow portion 12) in which a male screw thread opposite to the female screw thread is carved on the outer periphery is fitted and fixed to the upper portion of the septum 13. As shown in FIG. 1 (c), a resin stopper 15 is formed in the lower portion of the through-hole 14, and the septum 13 is fixed to the stopper screw 11 and the resin stopper by tightening the stopper screw 11 with screws. The through hole 14 is sealed by the compression repulsive force.

図1(c)に示すように、セプタム13は、押さえネジ11の中空部12で外気と接している。このため、セプタム13は、外気中の電池に悪影響を与える成分、例えば酸素ガスや水蒸気の侵入を防止する機能を有していることが好ましい。他方、電池内部で充放電反応に伴う副反応により生じたガス(例えば、炭酸ガス、メタンガス、水素ガス、エタンガス等)は、正負極間にとどまると、正負極の対向状態を悪くしてサイクル特性に悪影響を及ぼすので、これらのガスを外気中に放出できる機能を有していることが好ましい。   As shown in FIG. 1C, the septum 13 is in contact with the outside air at the hollow portion 12 of the holding screw 11. For this reason, it is preferable that the septum 13 has a function which prevents the penetration | invasion of the component which has a bad influence on the battery in external air, for example, oxygen gas and water vapor | steam. On the other hand, if the gas (for example, carbon dioxide gas, methane gas, hydrogen gas, ethane gas, etc.) generated by the side reaction accompanying the charge / discharge reaction inside the battery stays between the positive and negative electrodes, the facing state of the positive and negative electrodes is deteriorated and the cycle characteristics are deteriorated. Therefore, it is preferable to have a function of releasing these gases into the outside air.

このため、セプタム(密閉用樹脂)13は、酸素ガスの透過度よりも炭酸ガスの透過度が高い選択的ガス透過性を有することが好ましい。このような選択的ガス透過性を有する樹脂として、クロロプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、クロロスルホン化ポリエチレンゴム、ニトリルブタジエンゴム、ウレタンゴム、天然ゴム、シリコーンゴム等が挙げられる。なお、これらの樹脂に対して、水素ガスは分子が小さな気体であり透過性が大きい。また、炭酸ガス、メタンガス、エタンガスは分子量が大きいが、分子同士が樹脂表面で凝集しやすく、樹脂への浸透性が高いため、透過性が大きい。他方、酸素ガス、水蒸気は、分子同士が樹脂表面で凝集しにくいため、透過性は小さい。   For this reason, it is preferable that the septum (sealing resin) 13 has a selective gas permeability having a carbon dioxide gas permeability higher than an oxygen gas permeability. Examples of the resin having such selective gas permeability include chloroprene rubber, butadiene rubber, styrene butadiene rubber, chlorosulfonated polyethylene rubber, nitrile butadiene rubber, urethane rubber, natural rubber, and silicone rubber. For these resins, hydrogen gas is a gas with small molecules and high permeability. Carbon dioxide gas, methane gas, and ethane gas have large molecular weights, but the molecules easily aggregate on the resin surface and have high permeability because they have high permeability to the resin. On the other hand, oxygen gas and water vapor are less permeable because the molecules hardly aggregate on the resin surface.

次に、非水電解質の追加注液方法について説明する。   Next, a method for additionally injecting a nonaqueous electrolyte will be described.

非水電解質は、充放電サイクル時に正負極と反応してガスが発生するため、充放電サイクルが進行するに従いその量が減少する。この結果、非水電解質量が過少となると、スムースな充放電反応が阻害されて、放電容量を著しく低下させる。これを防止するため、非水電解質量が減少したときに、軸心中空の押さえネジ11の中空部12から、中空針を有するシリンジの針を、セプタム13に突き刺し、針先を電池内部に挿入した状態で、非水電解質を追加注液する。この注液方法を用いるためには、セプタム13の材料として、針を抜いたときに自動的に突き刺し穴がふさがる材料であることが好ましい。また、セプタム13は、非水電解質と接触するおそれがあるので、非水電解質(有機溶剤)に耐性を有する材料であることが好ましい。このような材料として、上で例示した樹脂を用いることが好ましい。   The non-aqueous electrolyte reacts with the positive and negative electrodes during the charge / discharge cycle to generate gas, and the amount thereof decreases as the charge / discharge cycle proceeds. As a result, when the non-aqueous electrolytic mass is too small, the smooth charge / discharge reaction is inhibited, and the discharge capacity is significantly reduced. To prevent this, when the non-aqueous electrolysis mass is reduced, the needle of the syringe having a hollow needle is inserted into the septum 13 from the hollow portion 12 of the axial center holding screw 11 and the needle tip is inserted into the battery. In this state, additional nonaqueous electrolyte is injected. In order to use this injection method, it is preferable that the material of the septum 13 is a material that automatically closes the puncture hole when the needle is removed. Further, since the septum 13 may come into contact with the non-aqueous electrolyte, the septum 13 is preferably a material having resistance to the non-aqueous electrolyte (organic solvent). As such a material, it is preferable to use the resin exemplified above.

この追加注液の際、非水電解質が電池外装体からあふれ出ないようにするため、予め充放電サイクル数と非水電解質量との関係を示すグラフを作成しておき、このグラフに基づいて追加注液する非水電解質量を定めることが好ましい。   In order to prevent the non-aqueous electrolyte from overflowing from the battery outer body during this additional injection, a graph showing the relationship between the number of charge / discharge cycles and the non-aqueous electrolytic mass is prepared in advance. It is preferable to determine the nonaqueous electrolytic mass to be additionally injected.

この実施の形態においては、追加注液孔4は、追加注液を行わないときには、電池内部で発生したガスを電池外部に放出するガス抜き孔としても機能する。   In this embodiment, the additional liquid injection hole 4 also functions as a gas vent hole for releasing the gas generated inside the battery to the outside of the battery when no additional liquid injection is performed.

なお、セプタムを用いた貫通孔の密閉方法は、上記方法に限定されるものではない。   In addition, the sealing method of the through-hole using a septum is not limited to the said method.

(実施例1)
〔正極の作製〕
正極活物質としてのコバルト酸リチウム(LiCoO)90質量部と、導電剤としての黒鉛10質量部とを混合した。この混合物95質量部と、結着剤としてのポリビニリデンフルオライド(PVDF)5質量部とを、N−メチル−2−ピロリドンに分散させて、正極活物質スラリーを調製した。
Example 1
[Production of positive electrode]
90 parts by mass of lithium cobaltate (LiCoO 2 ) as a positive electrode active material and 10 parts by mass of graphite as a conductive agent were mixed. 95 parts by mass of this mixture and 5 parts by mass of polyvinylidene fluoride (PVDF) as a binder were dispersed in N-methyl-2-pyrrolidone to prepare a positive electrode active material slurry.

次に、厚み20μmのアルミニウム箔からなる正極芯体の両面に、この正極活物質スラリーを500g/mの均一な厚みで塗布した。この極板を乾燥機内に通して上記有機溶剤を除去した。この後、ロールプレス機を用いて、充填密度が3.3g/cmとなるように圧延して、正極を作製した。 Next, this positive electrode active material slurry was applied to both surfaces of a positive electrode core made of an aluminum foil having a thickness of 20 μm with a uniform thickness of 500 g / m 2 . This electrode plate was passed through a dryer to remove the organic solvent. Then, it rolled so that the packing density might be 3.3 g / cm < 3 > using the roll press machine, and produced the positive electrode.

〔負極の作製〕
負極活物質としてのリン片状黒鉛(d002:3.356Å、Lc:1000Å、平均粒径20μm)100質量部と、結着剤としてのスチレンブタジエンゴム(SBR)3質量部と、増粘剤としてのカルボキシメチルセルロース(CMC)2質量部とを、水に分散させて、負極活物質スラリーを調製した。
(Production of negative electrode)
100 parts by mass of flake graphite (d 002 : 3.356 mm, Lc: 1000 mm, average particle size 20 μm) as a negative electrode active material, 3 parts by mass of styrene butadiene rubber (SBR) as a binder, and a thickener As a negative electrode active material slurry, 2 parts by mass of carboxymethylcellulose (CMC) was dispersed in water.

次に、厚み8μmの銅箔からなる負極芯体の両面に、この負極活物質スラリーを200g/mの均一な厚さで塗布した。この極板を乾燥機内に通して水分を除去した。この後、ロールプレス機を用いて、充填密度が1.7g/cmとなるように圧延して、負極を作製した。 Next, the negative electrode active material slurry was applied at a uniform thickness of 200 g / m 2 on both surfaces of a negative electrode core made of a copper foil having a thickness of 8 μm. The electrode plate was passed through a dryer to remove moisture. Then, it rolled by using the roll press machine so that a packing density might be 1.7 g / cm < 3 >, and produced the negative electrode.

〔電極体の作製〕
上記正極と負極とオレフィン系樹脂からなる微多孔膜のセパレータとを、巻き取り機により捲回し、絶縁性の巻き止めテープを取り付け、プレスして扁平電極体を完成させた。
(Production of electrode body)
The positive electrode, the negative electrode, and a microporous membrane separator made of an olefin resin were wound by a winder, and an insulating anti-winding tape was attached and pressed to complete a flat electrode body.

〔非水電解質の調整〕
エチレンカーボネートとジエチルカーボネートとを、体積比50:50の割合(1気圧、25℃における)で混合した非水溶媒に、電解質塩としてのLiPFを1.0M(モル/リットル)の割合で溶解して非水電解質とした。
[Nonaqueous electrolyte adjustment]
LiPF 6 as an electrolyte salt is dissolved at a rate of 1.0 M (mol / liter) in a non-aqueous solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 50:50 (1 atm, at 25 ° C.). Thus, a non-aqueous electrolyte was obtained.

〔封口板の作製〕
図1に示すように、封口板1の電極端子2の注液孔3と反対側の位置に、雌ネジ山を有する直径2.5mmの貫通孔14を形成し、この貫通孔14の内周上部に雌ネジ山を刻み、内周下部には雌ネジ山が刻まれていない樹脂止め部15を形成した。この貫通孔14に、シリコーンゴム製セプタム(島津ガスクロマトグラフ用注入口セプタム、型番:3007-16101)を用いて直径2.5mm、膜圧2.0mmに加工した密閉用樹脂13を嵌め込んだ。この後、軸心中空(直径1.75mmの中空部12を有する)で、外周部に前記雌ネジ山と対偶する雄ネジ山が刻まれた押さえネジ11を前記貫通孔14に嵌めこみ、ネジ止めすることによりセプタム13を押圧して、前記貫通孔14を密閉し、ガス抜き孔としても機能する追加注液孔4を備えた封口板1を作製した。
(Preparation of sealing plate)
As shown in FIG. 1, a through hole 14 having a female screw thread and having a diameter of 2.5 mm is formed at a position opposite to the liquid injection hole 3 of the electrode terminal 2 of the sealing plate 1. A female screw thread is carved in the upper part, and a resin stopper 15 is formed in the lower part of the inner periphery. A sealing resin 13 processed to a diameter of 2.5 mm and a membrane pressure of 2.0 mm using a silicone rubber septum (Shimadzu gas chromatograph inlet septum, model number: 3007-16101) was fitted into the through-hole 14. Thereafter, a holding screw 11 having a hollow axial center (having a hollow portion 12 having a diameter of 1.75 mm) and having a male screw thread that is opposed to the female screw thread is fitted into the through hole 14 in the outer peripheral portion, By stopping, the septum 13 was pressed, the through hole 14 was sealed, and a sealing plate 1 having an additional liquid injection hole 4 that also functions as a gas vent hole was produced.

〔電池の作製〕
上記扁平電極体を角形外装缶内に挿入し、外装缶の開口部に上記封口板を嵌め合わせ、封口板の注液孔から上記非水電解質2.15gを注液した。この後、減圧状態で30分放置して、電極体内に非水電解質を十分に含浸させた。この後、嵌合部及び注液孔をレーザ溶接して、高さ50mm、幅34mm、厚み4.6mmの、実施例1にかかるリチウムイオン二次電池を作製した。
[Production of battery]
The flat electrode body was inserted into a rectangular outer can, the sealing plate was fitted into the opening of the outer can, and 2.15 g of the nonaqueous electrolyte was injected from the injection hole of the sealing plate. Thereafter, the electrode body was allowed to stand for 30 minutes under reduced pressure to fully impregnate the electrode body with a nonaqueous electrolyte. Thereafter, the fitting portion and the liquid injection hole were laser welded to produce a lithium ion secondary battery according to Example 1 having a height of 50 mm, a width of 34 mm, and a thickness of 4.6 mm.

(比較例)
セプタムを取り付けず、封口板の貫通孔を、中空部を有しない(軸心中空でない)押さえネジで締め付けて密閉したこと以外は、上記実施例と同様にして、比較例1にかかる非水電解質二次電池を作製した。
(Comparative example)
The nonaqueous electrolyte according to Comparative Example 1 is the same as the above example except that the septum is not attached and the through hole of the sealing plate is sealed by tightening with a holding screw having no hollow part (not hollow in the center). A secondary battery was produced.

《サイクル特性の測定》
上記実施例かかる電池1つ及び比較例にかかる電池2つに対して、以下の条件で充放電サイクルを行い、各サイクルごとの放電容量を測定した。この結果を図3にグラフとして示す。
<Measurement of cycle characteristics>
One battery according to the above example and two batteries according to the comparative example were subjected to charge / discharge cycles under the following conditions, and the discharge capacity for each cycle was measured. The results are shown as a graph in FIG.

なお、実施例1にかかる電池は、放電容量が初期の放電容量の79%となった時点(704サイクル)で、中空部12から中空針を有するシリンジの針を、セプタム13に突き刺し、針先を電池内部に挿入した状態で、非水電解質0.678g追加注液し、この後再度充放電サイクルを繰り返した。   In the battery according to Example 1, when the discharge capacity reached 79% of the initial discharge capacity (704 cycles), the needle of the syringe having the hollow needle from the hollow portion 12 was pierced into the septum 13, and the needle tip Was inserted into the battery, 0.678 g of nonaqueous electrolyte was additionally injected, and then the charge / discharge cycle was repeated again.

比較例にかかる電池のひとつについては、追加注液を行わずに充放電サイクルを繰り返した。750サイクルを行った時点で放電容量が初期放電容量の55%(470mA)となったので、この時点で充放電サイクルを中止した。これを比較例1とした。   For one of the batteries according to the comparative example, the charge / discharge cycle was repeated without performing additional injection. Since the discharge capacity reached 55% (470 mA) of the initial discharge capacity when 750 cycles were performed, the charge / discharge cycle was stopped at this time. This was designated as Comparative Example 1.

比較例にかかる電池のもうひとつについては、放電容量が初期の放電容量の78%となった時点(600サイクル)で、不活性ガス(アルゴンガス)雰囲気下、押さえネジを取り外して非水電解質0.678g追加注液し、その後不活性ガス雰囲気下で押さえネジを再度締め付けた。この後再度充放電サイクルを繰り返した。これを比較例2とした。   Regarding another battery according to the comparative example, when the discharge capacity reached 78% of the initial discharge capacity (600 cycles), the non-aqueous electrolyte was removed by removing the holding screw in an inert gas (argon gas) atmosphere. 678 g was added, and the holding screw was tightened again under an inert gas atmosphere. Thereafter, the charge / discharge cycle was repeated again. This was designated as Comparative Example 2.

充電条件:定電流1It(850mA)で4.2Vまで、その後定電圧で10mAまで
放電条件:定電流1It(850mA)で2.75Vまで
図3から、実施例1では、590サイクル後も初期容量の約90%を保っているのに対し、比較例1、2では約75〜77%と大きく劣化していることがわかる。
Charging conditions: Up to 4.2 V at a constant current of 1 It (850 mA), and then up to 10 mA at a constant voltage. Discharging conditions: Up to 2.75 V at a constant current of 1 It (850 mA) From FIG. 3, in Example 1, the initial capacity after 590 cycles It can be seen that, while maintaining about 90%, the comparative examples 1 and 2 are greatly degraded to about 75 to 77%.

このことは次のように考えられる。実施例1では、選択的ガス透過性を有するシリコーンゴムを用いており、電池内部で発生したガスがこのゴムを透過して電池外部に放出される。よって、ガスが電極と電極との間にたまることがない。他方、比較例1、2では、電池内部で発生したガスが電極と電極との間にたまり、正極・負極がたわんで両電極の対向状態を悪くさせる。よってスムースな充放電反応の進行が阻害され、サイクル特性を劣化させる。また、ガス発生に伴う反応副生成物が、上記たわんだ部分に堆積して、スムースな充放電反応の進行がさらに阻害され、サイクル特性をさらに劣化させる。   This is considered as follows. In Example 1, silicone rubber having selective gas permeability is used, and gas generated inside the battery permeates the rubber and is released to the outside of the battery. Therefore, gas does not collect between the electrodes. On the other hand, in Comparative Examples 1 and 2, the gas generated inside the battery accumulates between the electrodes, and the positive electrode and the negative electrode are bent to make the opposing state of both electrodes worse. Therefore, the progress of the smooth charge / discharge reaction is inhibited, and the cycle characteristics are deteriorated. In addition, reaction by-products accompanying the gas generation are deposited on the bent portion, the progress of the smooth charge / discharge reaction is further inhibited, and the cycle characteristics are further deteriorated.

また、実施例1では、追加注液を行うと、初期容量の89%まで回復していることに対し、比較例2では、追加注液を行っても、初期容量の87%までしか回復しないことがわかる。また、実施例1では、1000サイクル後の放電容量が初期の86%の757mAhと、比較例2の743mAhよりも優れていることがわかる。   In Example 1, when the additional injection was performed, the initial volume was recovered to 89%, whereas in Comparative Example 2, the additional volume was recovered only to 87% of the initial volume. I understand that. Moreover, in Example 1, it turns out that the discharge capacity after 1000 cycles is 757 mAh of 86% of initial stage, and 743 mAh of the comparative example 2.

これは、上記考察と同様の理由によるものと考えられる。   This is considered to be due to the same reason as the above consideration.

次に、セプタムに用いる樹脂の酸素ガス透過度と炭酸ガス透過度との比と、サイクル特性との関係について調べた。   Next, the relationship between the ratio of the oxygen gas permeability and the carbon dioxide permeability of the resin used for the septum and the cycle characteristics was examined.

(実施例2)
シリコーンゴム(SR)製のセプタムに代えて、炭酸ガス透過度/酸素ガス透過度の値が、0.77であるエチレンプロピレンゴム(EPDM)製のセプタムを用いたこと以外は、上記実施例1と同様にして、実施例2にかかるリチウムイオン二次電池を作製した。
(Example 2)
Example 1 except that a septum made of ethylene propylene rubber (EPDM) having a carbon dioxide gas permeability / oxygen gas permeability value of 0.77 was used instead of the silicone rubber (SR) septum. In the same manner, a lithium ion secondary battery according to Example 2 was produced.

(実施例3)
シリコーンゴム製のセプタムに代えて、炭酸ガス透過度/酸素ガス透過度の値が、1.11であるクロロプレンゴム(CR)製のセプタムを用いたこと以外は、上記実施例1と同様にして、実施例3にかかるリチウムイオン二次電池を作製した。
(Example 3)
In place of the septum made of silicone rubber, a septum made of chloroprene rubber (CR) having a carbon dioxide gas permeability / oxygen gas permeability value of 1.11. A lithium ion secondary battery according to Example 3 was produced.

(実施例4)
シリコーンゴム製のセプタムに代えて、炭酸ガス透過度/酸素ガス透過度の値が、1.28であるブタジエンゴム(BR)製のセプタムを用いたこと以外は、上記実施例1と同様にして、実施例4にかかるリチウムイオン二次電池を作製した。
Example 4
Instead of a silicone rubber septum, a butadiene rubber (BR) septum having a carbon dioxide gas permeability / oxygen gas permeability value of 1.28 was used. A lithium ion secondary battery according to Example 4 was produced.

(実施例5)
シリコーンゴム製のセプタムに代えて、炭酸ガス透過度/酸素ガス透過度の値が、1.29であるスチレンブタジエンブタジエンゴム(SBR)製のセプタムを用いたこと以外は、上記実施例1と同様にして、実施例5にかかるリチウムイオン二次電池を作製した。
(Example 5)
The same as Example 1 except that a septum made of styrene butadiene butadiene rubber (SBR) having a carbon dioxide gas permeability / oxygen gas permeability value of 1.29 was used in place of the silicone rubber septum. Thus, a lithium ion secondary battery according to Example 5 was produced.

(実施例6)
シリコーンゴム製のセプタムに代えて、炭酸ガス透過度/酸素ガス透過度の値が、1.33であるクロロスルホン化ポリエチレンゴム(CSM)製のセプタムを用いたこと以外は、上記実施例1と同様にして、実施例6にかかるリチウムイオン二次電池を作製した。
(Example 6)
Example 1 except that a septum made of chlorosulfonated polyethylene rubber (CSM) having a carbon dioxide gas permeability / oxygen gas permeability value of 1.33 was used instead of the silicone rubber septum. Similarly, a lithium ion secondary battery according to Example 6 was produced.

(実施例7)
シリコーンゴム製のセプタムに代えて、炭酸ガス透過度/酸素ガス透過度の値が、1.37であるニトリルブタジエンゴム(NBR)製のセプタムを用いたこと以外は、上記実施例1と同様にして、実施例7にかかるリチウムイオン二次電池を作製した。
(Example 7)
A nitrile butadiene rubber (NBR) septum having a carbon dioxide gas permeability / oxygen gas permeability value of 1.37 was used in place of the silicone rubber septum. Thus, a lithium ion secondary battery according to Example 7 was produced.

(実施例8)
シリコーンゴム製のセプタムに代えて、炭酸ガス透過度/酸素ガス透過度の値が、2.00であるウレタンゴム(U)製のセプタムを用いたこと以外は、上記実施例1と同様にして、実施例8にかかるリチウムイオン二次電池を作製した。
(Example 8)
In place of the septum made of silicone rubber, a septum made of urethane rubber (U) having a carbon dioxide gas permeability / oxygen gas permeability value of 2.00 was used in the same manner as in Example 1 above. A lithium ion secondary battery according to Example 8 was produced.

(実施例9)
シリコーンゴム製のセプタムに代えて、炭酸ガス透過度/酸素ガス透過度の値が、5.57である天然ゴム(NR)製のセプタムを用いたこと以外は、上記実施例1と同様にして、実施例9にかかるリチウムイオン二次電池を作製した。
Example 9
Instead of the silicone rubber septum, a natural rubber (NR) septum having a carbon dioxide gas permeability / oxygen gas permeability value of 5.57 was used. A lithium ion secondary battery according to Example 9 was produced.

上記で作製した実施例1〜9、比較例1にかかる電池について、上記条件で充放電サイクルを700回行った。この結果を下記表1及び図4に示す。   About the battery concerning Examples 1-9 produced above and the comparative example 1, the charging / discharging cycle was performed 700 times on the said conditions. The results are shown in Table 1 below and FIG.

サイクル特性(%)=700サイクル目放電容量÷1サイクル目放電容量×100
また、ガス透過係数はJIS規格K7126−1987にしたがって求めた。
Cycle characteristics (%) = 700th cycle discharge capacity / first cycle discharge capacity × 100
The gas permeability coefficient was determined according to JIS standard K7126-1987.

Figure 2007257942
Figure 2007257942

上記表1及び図4から、ガス抜き孔を有する実施例1〜9のサイクル特性が70.3〜81.1%と、ガス抜き孔を有さない比較例1の62.9%よりも優れていることがわかる。   From Table 1 and FIG. 4, the cycle characteristics of Examples 1 to 9 having gas vent holes are 70.3 to 81.1%, which is superior to 62.9% of Comparative Example 1 having no gas vent holes. You can see that

このことは次のように考えられる。実施例1〜9では、封口板に貫通孔を設け、この貫通孔を密閉用樹脂により封止した構造のガス抜き孔を有しており、充放電サイクルによって発生したガスが、ガス抜き孔を透過して電池外部に放出される。よって、ガスが電極と電極との間にたまることがない。他方、比較例1では、電池内部で発生したガスが電極と電極との間にたまり、正極・負極がたわんで両電極の対向状態を悪くさせる。よってスムースな充放電反応の進行が阻害され、サイクル特性を劣化させる。また、ガス発生に伴う反応副生成物が、上記たわんだ部分に堆積して、スムースな充放電反応の進行がさらに阻害され、サイクル特性をさらに劣化させる。   This is considered as follows. In Examples 1 to 9, the sealing plate is provided with a through hole, and the through hole is sealed with a sealing resin. The gas generated by the charge / discharge cycle is a gas vent. Permeated and discharged outside the battery. Therefore, gas does not collect between the electrodes. On the other hand, in Comparative Example 1, the gas generated inside the battery accumulates between the electrodes, and the positive electrode and the negative electrode are bent to make the opposing state of both electrodes worse. Therefore, the progress of the smooth charge / discharge reaction is inhibited, and the cycle characteristics are deteriorated. In addition, reaction by-products accompanying the gas generation are deposited on the bent portion, the progress of the smooth charge / discharge reaction is further inhibited, and the cycle characteristics are further deteriorated.

また、セプタム材料の炭酸ガス透過度/酸素ガス透過度が1.0以下である(酸素ガス透過度のほうが炭酸ガス透過度以下である)実施例2のサイクル特性が70.3%と、セプタム材料の炭酸ガス透過度/酸素ガス透過度が1.0より大きい(酸素ガス透過度よりも炭酸ガス透過度が大きい)実施例1、3〜9の77.3〜81.1%よりも劣っていることがわかる。   The septum material has a carbon dioxide permeability / oxygen gas permeability of 1.0 or less (the oxygen gas permeability is less than the carbon dioxide permeability). Carbon dioxide gas permeability / oxygen gas permeability of material is larger than 1.0 (carbon dioxide permeability is larger than oxygen gas permeability) Inferior to 77.3-81.1% of Examples 1 and 3-9 You can see that

このことは次のように考えられる。実施例2では、セプタムの酸素ガス透過度が炭酸ガス透過度以上であるため、電池内部で発生した炭酸ガス等の一部が電極と電極との間にたまり、正極・負極がたわんで両電極の対向状態を他の実施例よりもわずかに悪くさせる。よってスムースな充放電反応の進行が阻害されるので、サイクル特性がわずかに劣化する。酸素ガス透過度よりも炭酸ガス透過度が大きい実施例1、3〜9では、セプタムを介して炭酸ガス等がスムースに電池外部に放出されるので、上記のようなことが起こらない。よって、セプタム(密閉用樹脂)の材料としては、酸素ガス透過度よりも炭酸ガス透過度が大きい選択的ガス透過性を有することが好ましい。   This is considered as follows. In Example 2, since the oxygen gas permeability of the septum is equal to or higher than the carbon dioxide permeability, a part of the carbon dioxide gas generated in the battery is accumulated between the electrodes, and the positive electrode and the negative electrode are bent to form both electrodes. This makes the facing state slightly worse than the other embodiments. Therefore, the progress of the smooth charge / discharge reaction is hindered, so that the cycle characteristics are slightly deteriorated. In Examples 1 and 3 to 9, in which the carbon dioxide permeability is higher than the oxygen gas permeability, the carbon dioxide gas and the like are smoothly released to the outside of the battery through the septum. Therefore, it is preferable that the material of the septum (sealing resin) has selective gas permeability having a carbon dioxide gas permeability higher than the oxygen gas permeability.

なお、上記実施例では角形電池を用いたが、円筒形電池や、蓄電用や電池で駆動する車両に用いられる大型の電池にも応用できる。また、追加注液孔(ガス抜き孔)は、封口板以外の部分に形成してもよい。   In addition, although the square battery was used in the said Example, it can apply also to the large sized battery used for the cylindrical battery and the vehicle for a battery drive or a battery drive. Moreover, you may form an additional liquid injection hole (gas vent hole) in parts other than a sealing board.

また、正極活物質、負極活物質、結着剤、増粘剤、非水溶媒、電解質塩は、上記実施例に限定されるものではなく、公知のものを用いることができる。   Further, the positive electrode active material, the negative electrode active material, the binder, the thickener, the non-aqueous solvent, and the electrolyte salt are not limited to the above examples, and known materials can be used.

以上説明したように、本発明によると、非水電解質二次電池のサイクル特性を飛躍的に向上できるので、産業上の意義は大きい。   As described above, according to the present invention, the cycle characteristics of the non-aqueous electrolyte secondary battery can be drastically improved.

図1は、本発明電池の追加注液孔(ガス抜き孔)の構造を示す概略図であり、図1(a)は封口板の平面図、図1(b)は追加注液孔の解体斜視図であり、図1(c)は追加注液孔の断面図である。FIG. 1 is a schematic view showing the structure of an additional liquid injection hole (gas vent hole) of the battery of the present invention, FIG. 1 (a) is a plan view of a sealing plate, and FIG. 1 (b) is a disassembly of the additional liquid injection hole. FIG. 1C is a cross-sectional view of an additional liquid injection hole. 図2は、樹脂のガス透過係数を求めるための式を説明する概略図である。FIG. 2 is a schematic diagram for explaining an equation for obtaining the gas permeability coefficient of the resin. 図3は、実施例1と比較例1、2とのサイクルごとの放電容量を示すグラフである。FIG. 3 is a graph showing the discharge capacity for each cycle of Example 1 and Comparative Examples 1 and 2. 図4は、密閉用樹脂の炭酸ガス透過度/酸素ガス透過度と、サイクル特性との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the carbon dioxide gas permeability / oxygen gas permeability of the sealing resin and the cycle characteristics. 図5は、本発明電池の追加注液孔(ガス抜き孔)の構造の変形例を示す概略図であり、図5(a)は封口板の平面図、図5(b)は追加注液孔の解体斜視図であり、図5(c)は追加注液孔の断面図である。FIG. 5 is a schematic view showing a modified example of the structure of the additional liquid injection hole (gas vent hole) of the battery of the present invention, FIG. 5 (a) is a plan view of the sealing plate, and FIG. 5 (b) is the additional liquid injection. It is a disassembled perspective view of a hole, and FIG.5 (c) is sectional drawing of an additional liquid injection hole.

符号の説明Explanation of symbols

1 封口板
2 電極端子
3 注液孔
4 追加注液孔(ガス抜き孔)
11 押さえネジ
12 中空部
13 セプタム(密閉用樹脂)
14 貫通孔
15 樹脂止め部
16 円筒部
1 Sealing plate 2 Electrode terminal 3 Injection hole 4 Additional injection hole (gas vent hole)
11 Holding screw 12 Hollow part 13 Septum (resin for sealing)
14 Through hole 15 Resin stopper 16 Cylindrical part

Claims (5)

正極と、負極と、非水電解質と、を外装体内に収容した非水電解質二次電池において、
前記非水電解質二次電池は、組み立て後の電池内に密閉性を保ったままで前記非水電解質を追加注液できる追加注液孔を備える、
ことを特徴とする非水電解質二次電池。
In the non-aqueous electrolyte secondary battery in which the positive electrode, the negative electrode, and the non-aqueous electrolyte are accommodated in the exterior body,
The non-aqueous electrolyte secondary battery includes an additional injection hole that can additionally inject the non-aqueous electrolyte while maintaining hermeticity in the assembled battery.
A non-aqueous electrolyte secondary battery.
請求項1に記載の非水電解質二次電池において、
前記非水電解質二次電池は、前記外装体の開口部を封口するための封口板を備え、
前記追加注液孔は、前記封口板に設けられた貫通孔と、前記貫通孔を密閉する密閉用樹脂とを有し、
前記密閉用樹脂は、水は通さず、且つ酸素ガスの透過度よりも炭酸ガスの透過度のほうが大きい選択的ガス透過性を有する、
ことを特徴とする非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 1,
The non-aqueous electrolyte secondary battery includes a sealing plate for sealing the opening of the exterior body,
The additional liquid injection hole has a through hole provided in the sealing plate and a sealing resin for sealing the through hole,
The sealing resin does not pass water and has a selective gas permeability in which the permeability of carbon dioxide gas is larger than the permeability of oxygen gas.
A non-aqueous electrolyte secondary battery.
請求項2に記載の非水電解質二次電池において、
前記貫通孔の内周には、雌ネジ山が刻まれており、
前記貫通孔には、前記密閉用樹脂と、前記雌ネジ山に対偶する雄ネジ山が外周に刻まれた軸心中空の押さえネジが嵌め込まれ、前記押さえネジにより前記密閉用樹脂が押圧されて前記貫通孔が密閉されている、
ことを特徴とする非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 2,
An internal thread is engraved on the inner periphery of the through hole,
The through hole is fitted with the sealing resin and a hollow holding screw having a male screw thread opposite to the female screw thread on the outer periphery, and the sealing resin is pressed by the pressing screw. The through hole is sealed,
A non-aqueous electrolyte secondary battery.
請求項2に記載の非水電解質二次電池において、
前記貫通孔と連続し、前記封口板上面から電池外方に突出した円筒部を有し、
前記円筒部の外周には、雄ネジ山が刻まれており、
軸心中空であって、前記雄ネジ山に対偶する雌ネジ山が該中空部分の内周に刻まれた押さえネジが、前記円筒部の上面との間に前記密閉用樹脂を挟み込んだ状態で嵌め込まれ、前記押さえネジにより前記密閉用樹脂が押圧されて前記貫通孔が密閉されている、
ことを特徴とする非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 2,
Continuing with the through hole, and having a cylindrical portion protruding outward from the top surface of the sealing plate,
A male thread is engraved on the outer periphery of the cylindrical portion,
A holding screw having a hollow axial center and a female screw thread that opposes the male screw thread on the inner periphery of the hollow portion sandwiches the sealing resin between the upper surface of the cylindrical part. Fitted, and the sealing resin is pressed by the holding screw to seal the through hole,
A non-aqueous electrolyte secondary battery.
請求項2、3又は4に記載の非水電解質二次電池において、
前記密閉用樹脂は、クロロプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、クロロスルホン化ポリエチレンゴム、ニトリルブタジエンゴム、ウレタンゴム、天然ゴム、シリコーンゴムのいずれか一種以上の樹脂からなる、
ことを特徴とする非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 2, 3 or 4,
The sealing resin is made of one or more resins selected from chloroprene rubber, butadiene rubber, styrene butadiene rubber, chlorosulfonated polyethylene rubber, nitrile butadiene rubber, urethane rubber, natural rubber, and silicone rubber.
A non-aqueous electrolyte secondary battery.
JP2006079219A 2006-03-22 2006-03-22 Nonaqueous secondary battery Withdrawn JP2007257942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006079219A JP2007257942A (en) 2006-03-22 2006-03-22 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006079219A JP2007257942A (en) 2006-03-22 2006-03-22 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2007257942A true JP2007257942A (en) 2007-10-04

Family

ID=38631966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006079219A Withdrawn JP2007257942A (en) 2006-03-22 2006-03-22 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2007257942A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229136A (en) * 2012-04-24 2013-11-07 Gs Yuasa Corp Power storage element and liquid re-injection method
JP2014107204A (en) * 2012-11-29 2014-06-09 Toshiba Corp Lithium ion battery
KR101801440B1 (en) 2014-10-22 2017-11-24 주식회사 엘지화학 Secondary battery
KR20180136752A (en) * 2017-06-15 2018-12-26 주식회사 엘지화학 Secondary battery
CN114365346A (en) * 2020-05-19 2022-04-15 宁德时代新能源科技股份有限公司 End cover assembly, secondary battery, battery module, device, liquid injection method and device
US11322811B2 (en) 2017-11-08 2022-05-03 Lg Energy Solution, Ltd. Method for improving lifespan of lithium secondary battery
CN115084803A (en) * 2021-03-12 2022-09-20 泰星能源解决方案有限公司 Method for manufacturing secondary battery and secondary battery assembly
JP2023521121A (en) * 2020-09-02 2023-05-23 寧徳時代新能源科技股▲分▼有限公司 End cover assembly, battery cell, battery, power consumption device and filling method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229136A (en) * 2012-04-24 2013-11-07 Gs Yuasa Corp Power storage element and liquid re-injection method
JP2014107204A (en) * 2012-11-29 2014-06-09 Toshiba Corp Lithium ion battery
KR101801440B1 (en) 2014-10-22 2017-11-24 주식회사 엘지화학 Secondary battery
KR20180136752A (en) * 2017-06-15 2018-12-26 주식회사 엘지화학 Secondary battery
KR102038562B1 (en) 2017-06-15 2019-10-30 주식회사 엘지화학 Secondary battery
US11322811B2 (en) 2017-11-08 2022-05-03 Lg Energy Solution, Ltd. Method for improving lifespan of lithium secondary battery
US11777184B2 (en) 2020-05-19 2023-10-03 Contemporary Amperex Technology Co., Limited End cover assembly, secondary battery, battery module, apparatus, liquid-injection method and device
CN114365346A (en) * 2020-05-19 2022-04-15 宁德时代新能源科技股份有限公司 End cover assembly, secondary battery, battery module, device, liquid injection method and device
CN114365346B (en) * 2020-05-19 2023-02-28 宁德时代新能源科技股份有限公司 End cover assembly, secondary battery, battery module, device, liquid injection method and device
JP7507249B2 (en) 2020-09-02 2024-06-27 寧徳時代新能源科技股▲分▼有限公司 End cover assembly, battery cell, battery, power consuming device and liquid injection method
JP2023521121A (en) * 2020-09-02 2023-05-23 寧徳時代新能源科技股▲分▼有限公司 End cover assembly, battery cell, battery, power consumption device and filling method
JP2022139497A (en) * 2021-03-12 2022-09-26 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing secondary battery and secondary battery assembly
US11843135B2 (en) 2021-03-12 2023-12-12 Prime Planet Energy & Solutions, Inc. Method for manufacturing secondary battery and secondary battery assembly
JP7412378B2 (en) 2021-03-12 2024-01-12 プライムプラネットエナジー&ソリューションズ株式会社 Secondary battery manufacturing method and secondary battery assembly
CN115084803B (en) * 2021-03-12 2024-04-09 泰星能源解决方案有限公司 Method for manufacturing secondary battery and secondary battery assembly
CN115084803A (en) * 2021-03-12 2022-09-20 泰星能源解决方案有限公司 Method for manufacturing secondary battery and secondary battery assembly

Similar Documents

Publication Publication Date Title
JP2008041548A (en) Nonaqueous electrolyte secondary battery
JP2007257942A (en) Nonaqueous secondary battery
CN101373850B (en) Non-aqueous secondary battery
JP4470124B2 (en) battery
US20120328917A1 (en) Secondary battery and method for producing same
JP2006294282A (en) Manufacturing method of lithium-ion secondary battery
JP2009004139A (en) Lithium secondary battery
JP4383781B2 (en) Battery manufacturing method
JP2013125650A (en) Sealed lithium secondary battery and manufacturing method of the same
CN104969407A (en) Method for manufacturing lithium ion secondary battery
JP2012059489A (en) Laminated battery
CN104518242A (en) Method of manufacturing nonaqueous electrolyte secondary battery
WO2013047379A1 (en) Lithium secondary battery and method for producing same
JP4880811B2 (en) Battery manufacturing method
JP4606334B2 (en) Nonaqueous electrolyte secondary battery
US10411232B2 (en) Secondary battery
JP2005222757A (en) Finishing charge/discharge gas exhaustion method of lithium-ion secondary battery
JP6738865B2 (en) Lithium ion secondary battery
JP2008243704A (en) Cylindrical type nonaqueous electrolyte battery
JP2012142099A (en) Secondary battery and manufacturing method thereof
JP2002343337A (en) Method of infusion and draining of electrolytic solution for lithium secondary battery
JP2010015784A (en) Seal member for battery, battery, and those manufacturing methods
JP2006331933A (en) Lithium secondary battery and its manufacturing method
JP2002231196A (en) Method of manufacturing thin battery
JP2003217549A (en) Sealed battery and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101214