JP2007256718A - 光学補償シート - Google Patents

光学補償シート Download PDF

Info

Publication number
JP2007256718A
JP2007256718A JP2006082150A JP2006082150A JP2007256718A JP 2007256718 A JP2007256718 A JP 2007256718A JP 2006082150 A JP2006082150 A JP 2006082150A JP 2006082150 A JP2006082150 A JP 2006082150A JP 2007256718 A JP2007256718 A JP 2007256718A
Authority
JP
Japan
Prior art keywords
liquid crystal
optical compensation
film
compensation sheet
liquid crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006082150A
Other languages
English (en)
Inventor
Kentaro Toyooka
健太郎 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006082150A priority Critical patent/JP2007256718A/ja
Publication of JP2007256718A publication Critical patent/JP2007256718A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】高い光学補償機能を有し、かつ液晶表示装置における温湿度変化や連続点灯による画面周辺部における光漏れを改善することができる光学補償シートの提供。
【解決手段】セルロースアシレートフィルム等のポリマーフィルムからなる透明支持体上に液晶化合物を含む組成物からなる光学異方性層を有する光学補償シートであって、該透明支持体の少なくとも一方向の弾性率が3GPa以下である光学補償シート。

Description

光学補償シートは、画像着色を解消、および視野角の拡大などのために、様々な液晶表示装置で用いられている。従来、光学補償シートとしては、延伸複屈折フィルムが使用されている。また、近年、延伸複屈折フィルムに代えて、透明支持体上にディスコティック液晶性化合物からなる光学異方性層を有する光学補償シートを使用することが提案されている。この光学異方性層は、通常、ディスコティック液晶性化合物を含むディスコティック液晶組成物を配向膜の上に塗布し、配向温度よりも高い温度で加熱してディスコティック液晶性化合物を配向させ、その配向状態を固定することにより形成される。一般に、ディスコティック液晶性化合物は、大きな複屈折率を有するとともに、多様な配向形態がある。ディスコティック液晶性化合物を用いることで、従来の延伸複屈折フィルムでは得ることができない光学的性質を実現することが可能になった。しかし、ディスコティック液晶の配向形態を自由に制御することは容易ではなかった。
また、近年、液晶表示装置は大型化、高輝度化が急速に進んでおり、偏光板の収縮応力による黒表示時の画面周辺部における光漏れが問題となってきている。偏光板は環境の温湿度の変化により収縮しようとするが、粘着層により液晶セルに固定されているため、偏光板に組み込まれている光学補償シートに局所的(特に画面周辺部)に応力が発生し、その光弾性による複屈折の変化により光漏れが生じる。
偏光板を貼り付けた液晶セルを高温下で処理した場合には、偏光板中の水分が放出されることによって偏光板の収縮が大きく、高温処理中及び高温処理から常温常湿下に取り出した直後に光漏れが強く発生する。その後偏光板を常温常湿下で放置すると、偏光板が水分を吸収し偏光板の収縮力が減少するのに伴い光漏れも弱くなる。なお常温常湿下であっても、バックライトを連続点灯すると偏光板の温度が上昇し、高温処理と同様の光漏れが発生する。
偏光板を貼り付けた液晶セルを高温高湿下で処理した場合には、偏光板が水分を吸収し、常温常湿下に放置することで偏光板中の水分が放出されることにより偏光板の収縮力が増大する。この収縮力の増大に伴い光漏れが強くなる。
そのため、このような温湿度変化や連続点灯による画面周辺部における光漏れの改善が要望されている。
本発明の目的は、高い光学補償機能を有し、かつ液晶表示装置における温湿度変化や連続点灯による画面周辺部における光漏れを改善することができる光学補償シートを提供することである。本発明はまた、該光学補償シートを有する偏光板および該偏光板を用いた液晶表示装置を提供することを目的とする。
本発明者らは、鋭意検討した結果、偏光板の収縮の原因となる偏光板に組み込まれている光学補償シートにかかる応力を抑制するために、光学補償シートの弾性率を小さくすることが有効であることを見出し、また、弾性率を小さくした光学補償シートを用いた液晶表示装置においては、温湿度変化や連続点灯による画面周辺部における光漏れが改善できることを見出した。
すなわち、本発明の上記目的は、下記の光学補償シート、偏光板及び液晶表示装置により達成される。
[1]ポリマーフィルムからなる透明支持体上に液晶化合物を含む組成物からなる光学異方性層を有する光学補償シートであって、該透明支持体の少なくとも一方向の弾性率が3GPa以下である光学補償シート。
[2]ポリマーフィルムからなる透明支持体上に液晶化合物を含む組成物からなる光学異方性層を有する光学補償シートであって、少なくとも一方向の弾性率が3GPa以下である光学補償シート。
[3]前記ポリマーフィルムがセルロースアシレートフィルムである[1]または[2]に記載の光学補償シート。
[4]前記セルロースアシレートフィルム中の可塑剤の含有量が該フィルム中のセルロースエステルの総質量の20〜40質量%である[3]に記載の光学補償シート。
[5]前記透明支持体の少なくとも一方向の光弾性係数が12×10-13cm2/dyn以下である[1]〜[4]のいずれか一項に記載の光学補償シート。
[6]前記透明支持体の厚みが20〜70μm以下である[1]〜[5]のいずれか一項に記載の光学補償シート。
[7] [1]〜[6]のいずれか一項に記載の光学補償シートを有する偏光板。
[8] [7]に記載の偏光板を有する液晶表示装置。
本発明の光学補償シートは、高い光学補償機能を有し、液晶表示装置における温湿度変化や連続点灯による画面周辺部における光漏れを改善することができる。
発明の実施の形態
以下、本発明について詳細に説明する。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本明細書において、Re(λ)、Rth(λ)は各々、波長λにおける面内のリターデーションおよび厚さ方向のリターデーションを表す。Re(λ)はKOBRA 21ADH(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADHにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して−50度から+50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADHが算出する。ここで平均屈折率の仮定値は ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する: セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHはnx、ny、nzを算出する。
なお、本発明の光学補償シートの支持体としては、Rthが正の値を示し、負の複屈折性を示すものが好ましい。
また、本明細書において、「平行」、「直交」とは、厳密な角度±10゜未満の範囲内であることを意味する。この範囲は厳密な角度との誤差は、±5゜未満であることが好ましく、±2゜未満であることがより好ましい。また、「遅相軸」は、屈折率が最大となる方向を意味する。さらに屈折率および位相差の測定波長は特別な記述がない限り、可視光域のλ=550nmでの値である。
また、本明細書において「偏光板」とは、特に断らない限り、長尺の偏光板及び液晶装置に組み込まれる大きさに裁断された(本明細書において、「裁断」には「打ち抜き」及び「切り出し」等も含むものとする)偏光板の両者を含む意味で用いられる。また、本明細書では、「偏光膜」及び「偏光板」を区別して用いるが、「偏光板」は「偏光膜」の少なくとも片面に該偏光膜を保護する透明保護膜を有する積層体を意味するものとする。また、本明細書において、「(メタ)アクリレート」との記載は、「アクリレート及びメタクリレートの少なくともいずれか」の意味を表す。「(メタ)アクリル酸」等も同様である。
以下、本発明の光学補償シートの作製に用いられる材料、作製方法等について詳細に説明する。
<透明支持体>
本発明の光学補償シートにおける透明支持体は、光透過率が80%以上であることが好ましい。ポリマーフィルムからなる透明支持体を構成するポリマーの例には、セルロースエステル(例、セルロースアセテート、セルロースジアセテート)、ノルボルネン系ポリマーおよびポリメチルメタクリレートなどが含まれる。市販のポリマー(ノルボルネン系ポリマーでは、アートンおよびゼオネックスいずれも商品名))を用いてもよい。
中でもセルロースエステルが好ましく、セルロースの低級脂肪酸エステルがさらに好ましい。低級脂肪酸とは、炭素原子数が6以下の脂肪酸を意味する。特に炭素原子数が2(セルロースアセテート)、3(セルロースプロピオネート)または4(セルロースブチレート)が好ましい。セルロースアセテートが特に好ましい。セルロースアセテートプロピオネートやセルロースアセテートブチレートのような混合脂肪酸エステルを用いてもよい。
なお、従来知られているポリカーボネートやポリスルホンのような複屈折の発現しやすいポリマーであっても、WO00/26705号公報に記載のように、分子を修飾することで複屈折の発現性を制御すれば、本発明の光学補償シートに用いることもできる。
偏光板保護フィルム、もしくは位相差フィルムに本発明の光学補償フィルムを使用する場合は、ポリマーフィルムとしては、酢化度が55.0〜62.5%であるセルロースアセテートを使用することが好ましい。酢化度は、57.0〜62.0%であることがさらに好ましい。
酢化度とは、セルロース単位質量当たりの結合酢酸量を意味する。酢化度は、ASTM:D−817−91(セルロースアセテート等の試験法)におけるアセチル化度の測定および計算によって求められる。
セルロースアセテートの粘度平均重合度(DP)は、250以上であることが好ましく、290以上であることがさらに好ましい。また、セルロースアセテートは、ゲルパーミエーションクロマトグラフィーによるMw/Mn(Mwは質量平均分子量、Mnは数平均分子量)の分子量分布が狭いことが好ましい。具体的なMw/Mnの値としては、1.0〜1.7であることが好ましく、1.0〜1.65であることがさらに好ましく、1.0〜1.6であることが最も好ましい。
セルロースアセテートでは、セルロースの2位、3位、6位のヒドロキシルが均等に置換されるのではなく、6位の置換度が小さくなる傾向がある。本発明に用いるポリマーフィルムでは、セルロースの6位置換度が、2位、3位に比べて同程度または多い方が好ましい。
2位、3位、6位の置換度の合計に対する、6位の置換度の割合は、30〜40%であることが好ましく、31〜40%であることがさらに好ましく、32〜40%であることが最も好ましい。6位の置換度は、0.88以上であることが好ましい。
各位置の置換度は、NMRによって測定することできる。
6位置換度が高いセルロースアセテートは、特開平11−5851号公報の段落番号0043〜0044に記載の合成例1、段落番号0048〜0049に記載の合成例2、そして段落番号0051〜0052に記載の合成例3の方法を参照して合成することができる。
[弾性率]
液晶表示装置に用いられる偏光板は、適当な角度、および大きさに打ち抜かれ、粘着剤を介してパネルに貼り合わせられる。パネルに熱が加わると、光学補償シートは収縮(もしくは膨張)しようとするが、粘着剤にその変形が抑制されるために、見かけ上、延伸(もしくは圧縮)されることで複屈折が発生し、黒表示状態で光漏れが生じる。この、外力が加わったときに、内部に発生する応力に応じて光学異方性(複屈折)を生じる現象を光弾性という。
光漏れの少ない表示品位に優れる大きなパネルサイズの液晶表示装置を作製するには、この光弾性を小さくする必要がある。光弾性を小さくするためには、液晶表示装置が発生する熱や、使用環境における熱により光学補償シート内部に発生する応力を減少させるか、または透明支持体の光弾性係数を小さくすればよいと考えられる。光弾性係数は、芳香族化合物の添加および延伸処理等によって調整できることが知られているが、著しい効果となるほど光弾性係数を小さくすることは一般に難しい。
本発明の光学補償シートは、弾性率が制御され、特に支持体の弾性率が小さい。このため光学補償シート内部に発生する応力を減少させることができ、本発明の光学補償シートを有する偏光板においては、光学補償シートと反対側の偏光板保護フィルム等に応力を集中させることができると考えられる。この反対側のフィルムは液晶表示装置において偏光子の外側に位置しているため複屈折を発現しても光漏れに影響を与えない。したがって、該偏光板を有する液晶表示装置では光漏れを劇的に小さくすることができる。
[弾性率制御]
本明細書において、弾性率とは、引っ張り試験機に幅50mm、厚み80μm、長さ100mmのストリプスを装着し、25℃60%の雰囲気での応力−歪曲線より計算で求められる値を意味する。
本発明の光学補償シートの透明支持体の弾性率は、少なくとも一方向の弾性率が3GPa以下であることが好ましく、2GPa以下であることがより好ましい。下限としては、ポリマーフィルムを安定して搬送するために、0.5GPa以上であることが好ましい。
また、透明支持体上に光学異方性層を形成したあとの光学補償シートとしても、少なくとも一方向の弾性率が3Gpa以下であることが好ましく、2Gpa以下であることがより好ましい。下限としては、ポリマーフィルムを安定して搬送するために、0.5GPa以上であることが好ましい。
このような弾性率を有する光学補償シートを得るためには、弾性率の低いポリマー素材を用いて透明支持体を形成する手段、または、ポリマー中に可塑剤を添加することによって弾性率を調整する手段等が挙げられる。光学補償シートを偏光板保護膜として使用する場合には、光学補償シートの光学的性質や偏光板加工適性等も重要となってくるため、ポリマー素材としてはセルロースアシレートを使用し、可塑剤等で弾性率を調整する手段が望ましい。
可塑剤としては、リン酸エステルまたはカルボン酸エステルが挙げられる。リン酸エステルの例には、トリフェニルフォスフェート(TPP)、ビフェニルジフェニルホスフェート(BDP)およびトリクレジルホスフェート(TCP)が含まれる。カルボン酸エステルとしては、フタル酸エステルおよびクエン酸エステルが代表的である。フタル酸エステルの例には、ジメチルフタレート(DMP)、ジエチルフタレート(DEP)、ジブチルフタレート(DBP)、ジオクチルフタレート(DOP)、ジフェニルフタレート(DPP)およびジエチルヘキシルフタレート(DEHP)が含まれる。クエン酸エステルの例には、O−アセチルクエン酸トリエチル(OACTE)およびO−アセチルクエン酸トリブチル(OACTB)が含まれる。その他のカルボン酸エステルの例には、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、種々のトリメリット酸エステルが含まれる。フタル酸エステル系可塑剤(DMP、DEP、DBP、DOP、DPP、DEHP)が好ましく用いられる。これらの可塑剤は1種でもよいし2種以上併用してもよい。
可塑剤の添加量を増加させることにより弾性率を減少させることができる。透明支持体における可塑剤の含有量は、透明支持体中のセルロースエステルの総質量の3〜50質量%であることが好ましく、10〜40質量%であることがより好ましく、20〜40質量%であることがさらに好ましい。
透明支持体の厚みは20〜120μmであることが好ましく、20〜70μmであることがさらに好ましい。
また、透明支持体の光弾性係数は、12×10-13cm2/dyn以下であることが好ましく、6×10-13cm2/dyn以下であることがさらに好ましい。
<光学異方性層>
光学異方性層は、液晶表示装置の黒表示における液晶セル中の液晶性化合物を補償するように設計することが好ましい。黒表示における液晶セル中の液晶性化合物の配向状態は、液晶表示装置のモードにより異なる。この液晶セル中の液晶性化合物の配向状態に関しては、IDW'00、FMC7−2のP411〜414等に記載されている。
光学異方性層は、支持体上に直接液晶性化合物から形成するか、もしくは配向膜を介して液晶性化合物から形成する。配向膜は、10μm以下の膜厚を有することが好ましい。
光学異方性層に用いる液晶性化合物には、棒状液晶性化合物およびディスコティック液晶性化合物が含まれる。棒状液晶性化合物およびディスコティック液晶性化合物は、高分子液晶でも低分子液晶でもよく、さらに、低分子液晶が架橋され液晶性を示さなくなったものも含まれる。光学異方性層は、液晶性化合物および必要に応じて重合性開始剤や任意の成分を含む塗布液を、配向膜の上に塗布することで形成できる。本発明の配向膜として好ましい例は、特開平8−338913号公報に記載されている。
(棒状液晶性化合物)
棒状液晶性化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。
なお、棒状液晶性化合物には、金属錯体も含まれる。また、棒状液晶性化合物を繰り返し単位中に含む液晶ポリマーも、棒状液晶性化合物として用いることができる。すなわち、棒状液晶性化合物は、(液晶)ポリマーと結合していてもよい。
棒状液晶性化合物については、例えば、季刊化学総説第22巻液晶の化学(1994)日本化学会編の第4章、第7章および第11章、および液晶デバイスハンドブック日本学術振興会第142委員会編の第3章に記載のものを採用できる。
棒状液晶性化合物の複屈折率は、0.001〜0.7の範囲にあることが好ましい。
棒状液晶性化合物は、その配向状態を固定するために、重合性基を有することが好ましい。重合性基は、不飽和重合性基またはエポキシ基が好ましく、不飽和重合性基がさらに好ましく、エチレン性不飽和重合性基が最も好ましい。
(ディスコティック液晶性化合物)
ディスコティック液晶性化合物には、C.Destradeらの研究報告(Mol.Cryst.71巻、111頁(1981年))に記載されているベンゼン誘導体、C.Destradeらの研究報告(Mol.Cryst.122巻、141頁(1985年)、Physics lett,A,78巻、82頁(1990))に記載されているトルキセン誘導体、B.Kohneらの研究報告(Angew.Chem.96巻、70頁(1984年))に記載されたシクロヘキサン誘導体およびJ.M.Lehnらの研究報告(J.C.S.,Chem.Commun.,1794頁(1985年))、J.Zhangらの研究報告(J.Am.Chem.Soc.116巻、2655頁(1994年))に記載されているアザクラウン系やフェニルアセチレン系マクロサイクルが含まれる。
ディスコティック液晶性化合物としては、分子中心の母核に対して、直鎖のアルキル基、アルコキシ基、置換ベンゾイルオキシ基が母核の側鎖として放射線状に置換した構造の化合物も含まれる。分子または分子の集合体が、回転対称性を有し、一定の配向を付与できる化合物であることが好ましい。ディスコティック液晶性化合物から形成する光学異方性層は、最終的に光学異方性層に含まれる化合物がディスコティック液晶性化合物である必要はなく、例えば、低分子のディスコティック液晶性分子が熱や光で反応する基を有しており、結果的に熱、光で反応により重合または架橋し、高分子量化し液晶性を失った化合物も含まれる。ディスコティック液晶性化合物の好ましい例は、特開平8−50206号公報に記載されている。また、ディスコティック液晶性化合物の重合については、特開平8−27284号公報に記載がある。
ディスコティック液晶性化合物を重合により固定するためには、ディスコティック液晶性化合物の円盤状コアに、置換基として重合性基を結合させる必要がある。ただし、円盤状コアに重合性基を直結させると、重合反応において配向状態を保つことが困難になる。そこで、円盤状コアと重合性基との間に、連結基を導入する。従って、重合性基を有するディスコティック液晶性化合物は、下記式(5)で表わされる化合物であることが好ましい。
一般式(5)
D(−LQ)r
(一般式(5)中、Dは円盤状コアであり、Lは二価の連結基であり、Qは重合性基であり、rは4〜12の整数である。)
円盤状コア(D)の例を以下に示す。以下の各例において、LQ(またはQL)は、二価の連結基(L)と重合性基(Q)との組み合わせを意味する。
Figure 2007256718
Figure 2007256718
Figure 2007256718
Figure 2007256718
Figure 2007256718
Figure 2007256718
Figure 2007256718
Figure 2007256718
Figure 2007256718
一般式(5)において、二価の連結基(L)は、アルキレン基、アルケニレン基、アリーレン基、−CO−、−NH−、−O−、−S−およびそれらの組み合わせからなる群より選ばれる二価の連結基であることが好ましい。二価の連結基(L)は、アルキレン基、アリーレン基、−CO−、−NH−、−O−および−S−からなる群より選ばれる二価の基を少なくとも二つ組み合わせた二価の連結基であることがさらに好ましい。二価の連結基(L)は、アルキレン基、アリーレン基、−CO−および−O−からなる群より選ばれる二価の基を少なくとも二つ組み合わせた二価の連結基であることが最も好ましい。アルキレン基の炭素原子数は、1〜12であることが好ましい。アルケニレン基の炭素原子数は、2〜12であることが好ましい。アリーレン基の炭素原子数は、6〜10であることが好ましい。
二価の連結基(L)の例を以下に示す。左側が円盤状コア(D)に結合し、右側が重合性基(Q)に結合する。ALはアルキレン基またはアルケニレン基、ARはアリーレン基を意味する。なお、アルキレン基、アルケニレン基およびアリーレン基は、置換基(例、アルキル基)を有していてもよい。
L1:−AL−CO−O−AL−、
L2:−AL−CO−O−AL−O−、
L3:−AL−CO−O−AL−O−AL−、
L4:−AL−CO−O−AL−O−CO−、
L5:−CO−AR−O−AL−、
L6:−CO−AR−O−AL−O−、
L7:−CO−AR−O−AL−O−CO−、
L8:−CO−NH−AL−、
L9:−NH−AL−O−、
L10:−NH−AL−O−CO−、
L11:−O−AL−、
L12:−O−AL−O−、
L13:−O−AL−O−CO−、
L14:−O−AL−O−CO−NH−AL−、
L15:−O−AL−S−AL−、
L16:−O−CO−AL−AR−O−AL−O−CO−、
L17:−O−CO−AR−O−AL−CO−、
L18:−O−CO−AR−O−AL−O−CO−、
L19:−O−CO−AR−O−AL−O−AL−O−CO−、
L20:−O−CO−AR−O−AL−O−AL−O−AL−O−CO−、
L21:−S−AL−、
L22:−S−AL−O−、
L23:−S−AL−O−CO−、
L24:−S−AL−S−AL−、
L25:−S−AR−AL−。
一般式(5)の重合性基(Q)は、重合反応の種類に応じて決定する。重合性基(Q)の例を以下に示す。
Figure 2007256718
重合性基(Q)は、不飽和重合性基(Q1、Q2、Q3、Q7、Q8、Q15、Q16、Q17)またはエポキシ基(Q6、Q18)であることが好ましく、不飽和重合性基であることがさらに好ましく、エチレン性不飽和重合性基(Q1、Q7、Q8、Q15、Q16、Q17)であることが最も好ましい。具体的なrの値は、円盤状コア(D)の種類に応じて決定される。なお、複数のLとQの組み合わせは、異なっていてもよいが、同一であることが好ましい。
ハイブリッド配向では、ディスコティック液晶性化合物の長軸(円盤面)と支持体の面との角度、すなわち傾斜角が、光学異方性層の深さ(すなわち、透明支持体に垂直な)方向でかつ偏光膜の面からの距離の増加と共に増加または減少している。角度は、距離の増加と共に増加することが好ましい。さらに、傾斜角の変化としては、連続的増加、連続的減少、間欠的増加、間欠的減少、連続的増加と連続的減少を含む変化、あるいは、増加および減少を含む間欠的変化が可能である。間欠的変化は、厚さ方向の途中で傾斜角が変化しない領域を含んでいる。角度が変化しない領域を含んでいても、全体として増加または減少していればよい。しかしながら、傾斜角は連続的に変化することが好ましい。
ディスコティック液晶性化合物の長軸(円盤面)の平均方向(各分子の長軸方向の平均)は、一般にディスコティック液晶性化合物あるいは配向膜の材料を選択することにより、またはラビング処理方法を選択することにより、調整することができる。また、表面側(空気側)のディスコティック液晶性化合物の長軸(円盤面)方向は、一般にディスコティック液晶性化合物あるいはディスコティック液晶性化合物と共に使用する添加剤の種類を選択することにより調整することができる。
ディスコティック液晶性化合物と共に使用する添加剤の例としては、可塑剤、界面活性剤、重合性モノマーおよびポリマーなどを挙げることができる。長軸の配向方向の変化の程度も、上記と同様に、液晶性分子と添加剤との選択により調整できる。
ディスコティック液晶性化合物と共に使用する可塑剤、界面活性剤および重合性モノマーは、ディスコティック液晶性化合物と相溶性を有し、ディスコティック液晶性化合物の傾斜角の変化を与えられるか、あるいは配向を阻害しないことが好ましい。添加成分の中でも重合性モノマー(例、ビニル基、ビニルオキシ基、アクリロイル基およびメタクリロイル基を有する化合物)の添加が好ましい。上記化合物の添加量は、ディスコティック液晶性化合物に対して一般に1〜50質量%の範囲にあり、5〜30質量%の範囲にあることが好ましい。なお、重合性の反応性官能基数が4以上のモノマーを混合して用いると、配向膜と光学異方性層間の密着性を高めることができる。
前記光学異方性層は、ディスコティック液晶性化合物とともにポリマーを含有していてもよい。該ポリマーは、ディスコティック液晶性化合物とある程度の相溶性を有し、ディスコティック液晶性化合物に傾斜角の変化を与えられることが好ましい。ポリマーの例としては、セルロースエステルを挙げることができる。セルロースエステルの好ましい例としては、セルロースアセテート、セルロースアセテートプロピオネート、ヒドロキシプロピルセルロースおよびセルロースアセテートブチレートを挙げることができる。ディスコティック液晶性化合物の配向を阻害しないように、上記ポリマーの添加量は、ディスコティック液晶性化合物に対して0.1〜10質量%の範囲にあることが好ましく、0.1〜8質量%の範囲にあることがより好ましく、0.1〜5質量%の範囲にあることがさらに好ましい。
ディスコティック液晶性化合物のディスコティックネマティック液晶相−固相転移温度は、70〜300℃が好ましく、70〜170℃がさらに好ましい。
(液晶性分子の配向状態の固定)
配向させた液晶性分子を、配向状態を維持して固定することができる。固定化は、重合反応により実施することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。
光重合開始剤の例には、α−カルボニル化合物(米国特許2367661号、同2367670号の各公報記載)、アシロインエーテル(米国特許2448828号公報記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許2722512号公報記載)、多核キノン化合物(米国特許3046127号、同2951758号の各公報記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許3549367号公報記載)、アクリジンおよびフェナジン化合物(特開昭60−105667号、米国特許4239850号の各公報記載)およびオキサジアゾール化合物(米国特許4212970号公報記載)が含まれる。
光重合開始剤の使用量は、塗布液の固形分の0.01〜20質量%の範囲にあることが好ましく、0.5〜5質量%の範囲にあることがさらに好ましい。
液晶性分子の重合のための光照射は、紫外線を用いることが好ましい。
照射エネルギーは、20mJ/cm2〜50J/cm2の範囲にあることが好ましく、20mJ/cm2〜5000mJ/cm2の範囲にあることがより好ましく、100mJ/cm2〜800mJ/cm2の範囲にあることがさらに好ましい。また、光重合反応を促進するため、加熱条件下で光照射を実施してもよい。
保護層を、光学異方性層の上に設けてもよい。
前記光学異方性層は、前記液晶性化合物の少なくとも一種と、所望により重合性開始剤、フッ素系ポリマー等の添加剤を含有する塗布液を調製し、該塗布液を配向膜表面に塗布・乾燥することで形成することができる。
フッ素系化合物としては、従来公知の化合物が挙げられるが、具体的には、例えば特開2001−330725号公報明細書中の段落番号[0028]〜[0056]に記載のフッ素系化合物等が挙げられる。
塗布液の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N−ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン、テトラクロロエタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2−ジメトキシエタン)が含まれる。アルキルハライドおよびケトンが好ましい。2種類以上の有機溶媒を併用してもよい。
均一性の高い光学補償フィルムを作製する場合には、前記塗布液の表面張力が25mN/m以下であることが好ましく、22mN/m以下であることが更に好ましい。
塗布液の塗布は、公知の方法(例、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。
[偏光板]
次に、本発明に関する偏光板について説明する。
(偏光膜)
本発明の偏光板に使用可能な偏光膜は、Optiva社製のものに代表される塗布型偏光膜、またはバインダーとヨウ素もしくは二色性色素とからなる偏光膜が好ましい。
偏光膜におけるヨウ素および二色性色素は、バインダー中で配向することで偏向性能を発現する。ヨウ素および二色性色素は、バインダー分子に沿って配向するか、もしくは二色性色素が液晶のような自己組織化により一方向に配向することが好ましい。
汎用の偏光子は、例えば、延伸したポリマーを、浴槽中のヨウ素もしくは二色性色素の溶液に浸漬し、バインダー中にヨウ素、もしくは二色性色素をバインダー中に浸透させることで作製することができる。
汎用の偏光膜は、ポリマー表面から4μm程度(両側合わせて8μm程度)にヨウ素もしくは二色性色素が分布しており、十分な偏光性能を得るためには、少なくとも10μmの厚みが必要である。浸透度は、ヨウ素もしくは二色性色素の溶液濃度、同浴槽の温度、同浸漬時間により制御することができる。
上記のように、バインダー厚みの下限は、10μmであることが好ましい。一方、厚みの上限については、特に限定はしないが、偏光板を液晶表示装置に使用した場合に発生する光漏れ現象の観点からは、薄ければ薄い程よい。現在、汎用の偏光板(約30μm)以下であることが好ましく、25μm以下が好ましく、20μm以下がさらに好ましい。20μm以下であると、光漏れ現象は、17インチの液晶表示装置では、観察されなくなる。
偏光膜のバインダーは架橋していてもよい。架橋しているバインダーは、それ自体架橋可能なポリマーを用いることができる。官能基を有するポリマーあるいはポリマーに官能基を導入して得られるバインダーを、光、熱あるいはpH変化により、バインダー間で反応させて偏光膜を形成することができる。
また、架橋剤によりポリマーに架橋構造を導入してもよい。反応活性の高い化合物である架橋剤を用いてバインダー間に架橋剤に由来する結合基を導入して、バインダー間を架橋することにより形成することができる。
架橋は一般に、ポリマーまたはポリマーと架橋剤の混合物を含む塗布液を、透明支持体上に塗布したのち、加熱を行なうことにより実施される。最終商品の段階で耐久性が確保できればよいため、架橋させる処理は、最終の偏光板を得るまでのいずれの段階で行なってもよい。
偏光膜のバインダーは、それ自体架橋可能なポリマーあるいは架橋剤により架橋されるポリマーのいずれも使用することができる。ポリマーの例には、ポリメチルメタクリレート、ポリアクリル酸、ポリメタクリル酸、ポリスチレン、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール、ポリ(N−メチロールアクリルアミド)、ポリビニルトルエン、クロロスルホン化ポリエチレン、ニトロセルロース、塩素化ポリオレフィン(例、ポリ塩化ビニル)、ポリエステル、ポリイミド、ポリ酢酸ビニル、ポリエチレン、カルボキシメチルセルロース、ポリプロピレン、ポリカーボネートおよびそれらのコポリマー(例、アクリル酸/メタクリル酸重合体、スチレン/マレインイミド重合体、スチレン/ビニルトルエン重合体、酢酸ビニル/塩化ビニル重合体、エチレン/酢酸ビニル重合体)が含まれる。水溶性ポリマー(例、ポリ(N−メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコールおよび変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコールおよび変性ポリビニルアルコールがさらに好ましく、ポリビニルアルコールおよび変性ポリビニルアルコールが最も好ましい。
ポリビニルアルコールおよび変性ポリビニルアルコールのケン化度は、70〜100%が好ましく、80〜100%がさらに好ましく、95〜100%が最も好ましい。ポリビニルアルコールの重合度は、100〜5000が好ましい。
変性ポリビニルアルコールは、ポリビニルアルコールに対して、共重合変性、連鎖移動変性あるいはブロック重合変性により変性基を導入して得られる。共重合変性では、変性基として、−COONa、−Si(OH)3、N(CH33・Cl、C919COO−、−SO3Na、−C1225を導入することができる。連鎖移動変性では、変性基として、−COONa、−SH、−SC1225を導入することができる。変性ポリビニルアルコールの重合度は、100〜3000が好ましい。変性ポリビニルアルコールについては、特開平8−338913号、同9−152509号および同9−316127号の各公報に記載がある。
ケン化度が85〜95%の未変性ポリビニルアルコールおよびアルキルチオ変性ポリビニルアルコールが特に好ましい。
ポリビニルアルコールおよび変性ポリビニルアルコールは、2種以上を併用してもよい。
バインダーの架橋剤は、多く添加すると、偏光膜の耐湿熱性を向上させることができる。ただし、バインダーに対して架橋剤を50質量%以上添加すると、ヨウ素、もしくは二色性色素の配向性が低下する。架橋剤の添加量は、バインダーに対して、0.1〜20質量%が好ましく、0.5〜15質量%がさらに好ましい。
バインダーは、架橋反応が終了した後でも、反応しなかった架橋剤をある程度含んでいる。ただし、残存する架橋剤の量は、バインダー中に1.0質量%以下であることが好ましく、0.5質量%以下であることがさらに好ましい。バインダー層中に1.0質量%を超える量で架橋剤が含まれていると、耐久性に問題が生じる場合がある。すなわち、架橋剤の残留量が多い偏光膜を液晶表示装置に組み込み、長期使用、あるいは高温高湿の雰囲気下に長期間放置した場合に、偏光度の低下が生じることがある。
架橋剤については、米国再発行特許23297号公報に記載がある。また、ホウ素化合物(例、ホウ酸、硼砂)も、架橋剤として用いることができる。
二色性色素としては、アゾ系色素、スチルベン系色素、ピラゾロン系色素、トリフェニルメタン系色素、キノリン系色素、オキサジン系色素、チアジン系色素あるいはアントラキノン系色素が用いられる。二色性色素は、水溶性であることが好ましい。二色性色素は、親水性置換基(例、スルホ、アミノ、ヒドロキシル)を有することが好ましい。
二色性色素の例には、C.I.ダイレクト・イエロー12、C.I.ダイレクト・オレンジ39、C.I.ダイレクト・オレンジ72、C.I.ダイレクト・レッド39、C.I.ダイレクト・レッド79、C.I.ダイレクト・レッド81、C.I.ダイレクト・レッド83、C.I.ダイレクト・レッド89、C.I.ダイレクト・バイオレット48、C.I.ダイレクト・ブルー67、C.I.ダイレクト・ブルー90、C.I.ダイレクト・グリーン59、C.I.アシッド・レッド37が含まれる。二色性色素については、特開平1−161202号、同1−172906号、同1−172907号、同1−183602号、同1−248105号、同1−265205号、同7−261024号の各公報に記載がある。二色性色素は、遊離酸、あるいはアルカリ金属塩、アンモニウム塩またはアミン塩として用いられる。2種類以上の二色性色素を配合することにより、各種の色相を有する偏光膜を製造することができる。偏光軸を直交させた時に黒色を呈する化合物(色素)を用いた偏光膜、あるいは黒色を呈するように各種の二色性分子を配合した偏光膜または偏光板が、単板透過率および偏光率とも優れており好ましい。
液晶表示装置のコントラスト比を高めるためには、偏光板の透過率は高い方が好ましく、偏光度も高い方が好ましい。偏光板の透過率は、波長550nmの光において、30〜50%の範囲にあることが好ましく、35〜50%の範囲にあることがさらに好ましく、40〜50%の範囲にある(偏光板の単板透過率の最大値は50%である)ことが最も好ましい。偏光度は、波長550nmの光において、90〜100%の範囲にあることが好ましく、95〜100%の範囲にあることがさらに好ましく、99〜100%の範囲にあることが最も好ましい。
偏光膜と光学異方性層、あるいは、偏光膜と配向膜を、接着剤を介して配置することも可能である。接着剤は、ポリビニルアルコール系樹脂(アセトアセチル基、スルホン酸基、カルボキシル基、オキシアルキレン基による変性ポリビニルアルコールを含む)やホウ素化合物水溶液を用いることができる。その中でもポリビニルアルコール系樹脂が好ましい。接着剤層の厚みは、乾燥後に0.01〜10μmの範囲にあることが好ましく、0.05〜5μmの範囲にあることが特に好ましい。
(偏光板の製造)
偏光膜は、歩留まりの観点から、バインダーを偏光膜の長手方向(MD方向)に対して、10〜80度傾斜して延伸するか(延伸法)、もしくはラビングした(ラビング法)後に、ヨウ素、二色性染料で染色することが好ましい。傾斜角度は、LCDを構成する液晶セルの両側に貼り合わされる2枚の偏光板の透過軸と液晶セルの縦または横方向のなす角度にあわせるように延伸することが好ましい。
通常の傾斜角度は45度である。しかし、最近は、透過型、反射型および半透過型LCDにおいて必ずしも45度でない装置が開発されており、延伸方向はLCDの設計にあわせて任意に調整できることが好ましい。
延伸法の場合、延伸倍率は2.5〜30.0倍が好ましく、3.0〜10.0倍がさらに好ましい。延伸は、空気中でのドライ延伸で実施できる。また、水に浸漬した状態でのウェット延伸を実施してもよい。ドライ延伸の延伸倍率は、2.5〜5.0倍が好ましく、ウェット延伸の延伸倍率は、3.0〜10.0倍が好ましい。延伸工程は、斜め延伸を含め数回に分けて行ってもよい。数回に分けることによって、高倍率延伸でもより均一に延伸することができる。斜め延伸前に、横あるいは縦に若干の延伸(幅方向の収縮を防止する程度)を行ってもよい。
延伸は、二軸延伸におけるテンター延伸を左右異なる工程で行うことによって実施できる。上記二軸延伸は、通常のフィルム製膜において行われている延伸方法と同様である。二軸延伸では、左右異なる速度によって延伸されるため、延伸前のバインダーフイルムの厚みが左右で異なるようにする必要がある。流延製膜では、ダイにテーパーを付けることにより、バインダー溶液の流量に左右の差をつけることができる。
以上のように、偏光膜のMD方向に対して10〜80度斜め延伸されたバインダーフイルムが製造される。
ラビング法では、LCDの液晶配向処理工程として広く採用されているラビング処理方法を応用することができる。すなわち、膜の表面を、紙やガーゼ、フェルト、ゴムあるいはナイロン、ポリエステル繊維を用いて一定方向に擦ることにより配向を得る。一般には、長さおよび太さが均一な繊維を平均的に植毛した布を用いて数回程度ラビングを行うことにより実施される。ロール自身の真円度、円筒度、振れ(偏芯)がいずれも30μm以下であるラビングロールを用いて実施することが好ましい。ラビングロールへのフィルムのラップ角度は、0.1〜90度が好ましい。ただし、特開平8−160430号公報に記載されているように、360度以上巻き付けることで、安定なラビング処理を得ることもできる。
長尺フィルムをラビング処理する場合は、フィルムを搬送装置により一定張力の状態で1〜100m/minの速度で搬送することが好ましい。ラビングロールは、任意のラビング角度設定のためフィルム進行方向に対し水平方向に回転自在とされることが好ましい。0〜60度の範囲で適切なラビング角度を選択することが好ましい。液晶表示装置に使用する場合は、40〜50度が好ましい。45度が特に好ましい。
[液晶表示装置]
本発明の光学補償フィルム及び偏光板は、種々のモードの液晶表示装置に用いることができる。以下、各液晶モードにおける光学異方性層の好ましい形態について説明する。
(TNモード液晶表示装置)
TNモードの液晶セルは、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。
TNモードの黒表示における液晶セル中の配向状態は、セル中央部で棒状液晶性分子が立ち上がり、セルの基板近傍では棒状液晶性化合物が寝た配向状態にある。
セル中央部分の棒状液晶性化合物に対しては、ホメオトロピック配向(円盤面が寝ている水平配向)のディスコティック液晶性化合物もしくは(透明)支持体で補償し、セルの基板近傍の棒状液晶性化合物に対しては、ハイブリット配向(長軸の傾きが偏光膜との距離に伴って変化している配向)のディスコティック液晶性化合物で補償することができる。
また、セル中央部分の棒状液晶性化合物に対しては、ホモジニアス配向(長軸が寝ている水平配向)の棒状液晶性化合物もしくは(透明)支持体で補償し、セルの基板近傍の棒状液晶性化合物に対しては、ハイブリット配向のディスコティック液晶性化合物で補償することもできる。
ホメオトロピック配向の液晶性化合物は、液晶性化合物の長軸の平均配向方向と偏光膜の面との角度が85〜95度の状態で配向している。
ホモジニアス配向の液晶性化合物は、液晶性化合物の長軸の平均配向方向と偏光膜の面との角度が5度未満の状態で配向している。
ハイブリット配向の液晶性化合物は、液晶性化合物の長軸の平均配向方向と偏光膜の面との角度が15度以上であることが好ましく、15度〜85度であることがさらに好ましい。
(透明)支持体もしくはディスコティック液晶性化合物がホメオトロピック配向している光学異方性層、もしくは、棒状液晶性化合物がホモジニアス配向している光学異方性層、さらにはホメオトロピック配向したディスコティック液晶性化合物とホモジニアス配向した棒状液晶性化合物の混合体からなる光学異方性層は、Rthレターデーション値が40nm〜200nmであり、Reレターデーション値が0〜70nmであることが好ましい。
ホメオトロピック配向(水平配向)しているディスコティック液晶性化合物層およびホモジニアス配向(水平配向)している棒状液晶性化合物層に関しては、特開平12−304931号および同12−304932号の各公報に記載されている。ハイブリット配向しているディスコティック液晶性化合物層に関しては、特開平8−50206号公報に記載がある。
(OCBモード液晶表示装置)
OCBモードの液晶セルは、棒状液晶性化合物を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルである。ベンド配向モードの液晶セルを用いた液晶表示装置は、米国特許4583825号、同5410422号の各公報に開示されている。棒状液晶性化合物が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため、この液晶モードは、OCB(Optically Compensatory Bend)液晶モードと呼ばれる。
OCBモードの液晶セルもTNモード同様、黒表示においては、液晶セル中の配向状態は、セル中央部で棒状液晶性化合物が立ち上がり、セルの基板近傍では棒状液晶性化合物が寝た配向状態にある。
黒表示にTNモードと液晶の配向は同じ状態であるため、好ましい態様もTNモード対応を同じである。ただし、TNモードに比べ、OCBモードの方がセル中央部で液晶性化合物が立ち上がった範囲が大きいために、ディスコティック液晶性化合物がホメオトロピック配向している光学異方性層、もしくは、棒状液晶性化合物がホモジニアス配向している光学異方性層について、若干のレターデーション値の調整が必要である。具体的には、(透明)支持体上のディスコティック液晶性化合物がホメオトロピック配向している光学異方性層、もしくは、棒状液晶性化合物がホモジニアス配向している光学異方性層は、Rthレターデーション値が150nm〜500nmであり、Reレターデーション値が20〜70nmであることが好ましい。
(VAモード液晶表示装置)
VAモードの液晶セルでは、電圧無印加時に棒状液晶性化合物が実質的に垂直に配向している。
VAモードの液晶セルには、(1)棒状液晶性化合物を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech. Papers(予稿集)28(1997)845記載)、(3)棒状液晶性化合物を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード)の液晶セル(日本液晶討論会の予稿集58〜59(1998)記載)および(4)SURVAIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。
VAモードの液晶表示装置の黒表示において、液晶セル中の棒状液晶性化合物は、そのほとんどが、立ち上がった状態であるため、ディスコティック液晶性化合物がホメオトロピック配向している光学異方性層、もしくは、棒状液晶性化合物がホモジニアス配向している光学異方性層で液晶性化合物を補償し、別に、棒状液晶性化合物がホモジニアス配向し、棒状液晶性化合物の長軸の平均配向方向と偏光膜の透過軸方向との角度が5度未満である光学異方性層で偏光板の視角依存性を補償することが好ましい。
(透明)支持体もしくはディスコティック液晶性化合物がホメオトロピック配向している光学異方性層、もしくは、棒状液晶性化合物がホモジニアス配向している光学異方性層は、Rthレターデーション値が150nm〜500nmであり、Reレターデーション値が20〜70nmであることが好ましい。
(その他液晶表示装置)
ECBモードおよびSTNモードの液晶表示装置に対しては、上記と同様の考え方で光学的に補償することができる。
以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、割合、操作等は、本発明の精神から逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例に制限されるものではない。
[実施例1]
(透明支持体の作製)
下記の組成物をミキシングタンクに投入し、30℃に加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
────────────────────────────────────
セルロースアセテート溶液組成(質量部) 内層 外層
────────────────────────────────────
酢化度60.9%のセルロースアセテート 100 100
トリフェニルホスフェート(可塑剤) 24 24
ビフェニルジフェニルホスフェート(可塑剤) 12 12
メチレンクロライド(第1溶媒) 293 314
メタノール(第2溶媒) 71 76
1−ブタノール(第3溶媒) 1.5 1.6
シリカ微粒子(AEROSIL R972、日本アエロジル(株)製)
0 0.8
下記レターデーション上昇剤 2.0 0
────────────────────────────────────
Figure 2007256718
得られた内層用ドープおよび外層用ドープを、三層共流延ダイを用いて、0℃に冷却したドラム上に流延した。残留溶剤量が70質量%のフィルムをドラムから剥ぎ取り、両端をピンテンターにて固定して搬送方向のドロー比を110%として搬送しながら80℃で乾燥させ、残留溶剤量が10%となったところで、110℃で乾燥させた。その後、140℃の温度で30分乾燥し、残留溶剤が0.3質量%のセルロースアセテートフィルム(外層:3μm、内層:74μm、外層:3μm)を製造した。作製したセルロースアセテートフィルム(CF−02)について、光学特性および弾性率を測定した。弾性率は、引っ張り試験機に幅50 mm、厚み80μm、長さ100 mmのストリプスを装着し、25℃60%の雰囲気での応力−歪曲線より計算で求めた。ストリプスは長い方向がロールの長手方向に垂直になるようにした。
得られたセルロースアセテートの幅は1340mmであり、厚さは、65μmであった。上記方法により、波長500nmにおけるレターデーション値(Re)を測定したところ、6nmであった。また、波長500nmにおけるレターデーション値(Rth)を測定したところ、90nmであった。
また、作製したセルロースアセテートの弾性率を測定したところ2.5MPaであった。光弾性係数を日本分光製、エリプソメーターM−220で測定したところ11×10-13cm2/dynであった。
作製したセルロースアセテートを2.0Nの水酸化カリウム溶液(25℃)に2分間浸漬した後、硫酸で中和し、純水で水洗、乾燥した。このPK−1の表面エネルギーを接触角法により求めたところ、63mN/mであった。
<光学異方性層用の配向膜の作製>
このセルロースアセテートフィルム上に、下記の組成の塗布液を#16のワイヤーバーコーターで28mL/m2塗布した。60℃の温風で60秒、さらに90℃の温風で150秒乾燥した。
(配向膜塗布液組成)
下記の変性ポリビニルアルコール 20質量部
水 360質量部
メタノール 120質量部
グルタルアルデヒド(架橋剤) 1.0質量部
Figure 2007256718
<光学異方性層の作製>
配向膜上に、下記塗布液を、#3.2のワイヤーバーを1171回転でフィルムの搬送方向と同じ方向に回転させて、30m/分で搬送されている上記ロールフィルムの配向膜面に連続的に塗布した。室温から100℃に連続的に加温する工程で、溶媒を乾燥させ、その後、135℃の乾燥ゾーンで、ディスコティック液晶化合物層にあたる膜面風速がフィルム搬送方向に平行に1.5m/secとなるようにし、約90秒間加熱し、ディスコティック液晶化合物を配向させた。次に、80℃の乾燥ゾーンに搬送させて、フィルムの表面温度が約100℃の状態で、紫外線照射装置(紫外線ランプ:出力160W/cm、発光長1.6m)により、照度600mWの紫外線を4秒間照射し、架橋反応を進行させ、ディスコティック液晶化合物をその配向に固定した。その後、室温まで放冷し、円筒状に巻き取ってロール状の形態にした。光学異方性層の厚みは1.3μmであった。
また、得られた光学補償シートの弾性率を測定したところ2.4MPaであった。
(光学異方性層の塗布液組成)
下記の組成物を、97質量部のメチルエチルケトンに溶解して塗布液を調製した。
下記のディスコティック液晶性化合物(1) 41.01質量部
エチレンオキサイド変成トリメチロールプロパントリアクリレート
(V#360、大阪有機化学(株)製 4.06質量部
セルロースアセテートブチレート
(CAB551−0.2、イーストマンケミカル社製) 0.34質量部
セルロースアセテートブチレート
(CAB531−1、イーストマンケミカル社製) 0.11質量部
下記フルオロ脂肪族基含有ポリマー1 0.56質量部
下記フルオロ脂肪族基含有ポリマー2 0.06質量部
光重合開始剤(イルガキュアー907、チバガイギー社製) 1.35質量部
増感剤(カヤキュアーDETX、日本化薬(株)製) 0.45質量部
ディスコティック液晶性化合物(1)
Figure 2007256718
Figure 2007256718
Figure 2007256718
偏光板をクロスニコル配置とし、得られた光学補償シートのムラを観察したところ、正面、および法線から60度まで傾けた方向から見ても、ムラは検出されなかった。
(偏光板の作製)
厚さ80μmのポリビニルアルコール(PVA)フィルムを、ヨウ素濃度0.05質量%のヨウ素水溶液中に30℃で60秒浸漬して染色し、次いでホウ酸濃度4質量%濃度のホウ酸水溶液中に60秒浸漬している間に元の長さの5倍に縦延伸した後、50℃で4分間乾燥させて、厚さ20μmの偏光膜を得た。
光学補償シートを1.5モル/Lで55℃の水酸化ナトリウム水溶液中に浸漬した後、水で十分に水酸化ナトリウムを洗い流した。その後、0.005モル/Lで35℃の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。
前記のように鹸化処理を行った光学補償シートを、同じく鹸化処理を行った市販のセルロースアシレートフィルムと組合せて前記の偏光膜を挟むようにポリビニルアルコール系接着剤を用いて貼り合せ偏光板を得た。ここで市販のセルロースアシレートフィルムとしてはフジタックTF80UL(富士写真フイルム(株)製)を用いた。このとき、偏光膜および偏光膜両側の保護膜はロール形態で作製されているため各ロールフィルムの長手方向が平行となっており連続的に貼り合わされる。従って光学補償シートロール長手方向(セルロースアシレートフィルムの流延方向)と偏光子吸収軸とは平行な方向となった。
(TN液晶パネルでの評価)
TN型液晶パネルを使用した液晶表示装置(MDT−191S、三菱電(株)製)に設けられている一対の偏光板を剥がし、代わりに上記の作製した偏光板を、光学補償シートが液晶セル側となるように粘着剤を介して、観察者側およびバックライト側に一枚ずつ貼り付けた。観察者側の偏光板の透過軸と、バックライト側の偏光板の透過軸とは、Oモードとなるように配置した。
[耐久試験による光漏れ]
作製した液晶表示装置を下記の2条件で耐久試験を行った。
(1)60℃90%RHの環境に200時間保持し、25℃60%RH環境に取り出し24時間後に液晶表示装置を黒表示させ、光漏れ強度を評価した。
(2)80℃dryの環境に200時間保持し、25℃60%RH環境に取り出し1時間後に液晶表示装置を黒表示させ、光漏れ強度を評価した。
光漏れの評価は以下のように行った。
光漏れ発生状況 実用上の問題 光漏れ度
発生無し なし 1
非常に弱い なし 2
弱い なし 3
強い あり 4
非常に強い あり 5

評価結果を表1に示す。
Figure 2007256718
[実施例2]
実施例1のセルロースアセテート溶液組成中のトリフェニルホスフェート(可塑剤)、ビフェニルジフェニルホスフェート(可塑剤)の添加量をそれぞれ16.0重量部、8.0重量部とした以外は実施例1と同様に透明支持体、光学補償シート、偏光板を作製した。評価結果を表1に示す。
[比較例1]
実施例1のセルロースアセテート溶液組成中のトリフェニルホスフェート(可塑剤)、ビフェニルジフェニルホスフェート(可塑剤)の添加量をそれぞれ7.8重量部、3.9重量部とし、レターデーション上昇剤の添加量を1.7重量部とし、フィルム膜厚が80μmとなるように調整した以外は実施例1と同様に透明支持体、光学補償シート、偏光板を作製した。評価結果を表1に示す。

Claims (8)

  1. ポリマーフィルムからなる透明支持体上に液晶化合物を含む組成物からなる光学異方性層を有する光学補償シートであって、該透明支持体の少なくとも一方向の弾性率が3GPa以下である光学補償シート。
  2. ポリマーフィルムからなる透明支持体上に液晶化合物を含む組成物からなる光学異方性層を有する光学補償シートであって、少なくとも一方向の弾性率が3GPa以下である光学補償シート。
  3. 前記ポリマーフィルムがセルロースアシレートフィルムである請求項1または2に記載の光学補償シート。
  4. 前記セルロースアシレートフィルム中の可塑剤の含有量が該フィルム中のセルロースエステルの総質量の20〜40質量%である請求項3に記載の光学補償シート。
  5. 前記透明支持体の少なくとも一方向の光弾性係数が12×10-13cm2/dyn以下である請求項1〜4のいずれか一項に記載の光学補償シート。
  6. 前記透明支持体の厚みが20〜70μm以下である請求項1〜5のいずれか一項に記載の光学補償シート。
  7. 請求項1〜6のいずれか一項に記載の光学補償シートを有する偏光板。
  8. 請求項7に記載の偏光板を有する液晶表示装置。
JP2006082150A 2006-03-24 2006-03-24 光学補償シート Pending JP2007256718A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082150A JP2007256718A (ja) 2006-03-24 2006-03-24 光学補償シート

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082150A JP2007256718A (ja) 2006-03-24 2006-03-24 光学補償シート

Publications (1)

Publication Number Publication Date
JP2007256718A true JP2007256718A (ja) 2007-10-04

Family

ID=38631005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082150A Pending JP2007256718A (ja) 2006-03-24 2006-03-24 光学補償シート

Country Status (1)

Country Link
JP (1) JP2007256718A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013178507A (ja) * 2012-02-03 2013-09-09 Fujifilm Corp 偏光板及びそれを用いた液晶表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013178507A (ja) * 2012-02-03 2013-09-09 Fujifilm Corp 偏光板及びそれを用いた液晶表示装置

Similar Documents

Publication Publication Date Title
JP4284221B2 (ja) 液晶表示装置
JP2008250234A (ja) 液晶表示装置
JP4881340B2 (ja) 光学フィルム、偏光板及び液晶表示装置
US20090237599A1 (en) Optical film, polarizing plate, and liquid crystal display device
JP4686301B2 (ja) 光学補償フィルムの製造方法、光学補償フィルム、偏光板および液晶表示装置
JP2006235578A (ja) 液晶表示装置
JP4344566B2 (ja) 光学補償フィルムの製造方法
JP2006243179A (ja) 液晶表示装置
JP2009086379A (ja) 光学補償フィルム、偏光板及び液晶表示装置
JP2008250237A (ja) 液晶表示装置
JP2009020495A (ja) 液晶表示装置
JP2009098642A (ja) 積層光学フィルム、偏光板及び液晶表示装置
KR20060101346A (ko) 광학보상필름, 편광판 및 액정표시장치
JP2009098633A (ja) 積層光学フィルム、偏光板及び液晶表示装置
US7787084B2 (en) Optical compensation film, polarizing plate and liquid crystal display device
JP2007272136A (ja) 液晶表示装置
JP2007193276A (ja) 光学補償フィルム、偏光板及び液晶表示装置
JP2007256718A (ja) 光学補償シート
JP2009086378A (ja) 光学補償フィルム、偏光板及び液晶表示装置
WO2013061965A1 (ja) 液晶表示装置
JP2004333720A (ja) ロール状光学補償フィルムの製造方法、ロール状光学補償フィルム、偏光板及び液晶表示装置
JP2005157330A (ja) 光学補償シートおよび液晶表示装置
JP2008164921A (ja) 光学補償フィルム及びその製造方法、偏光板、並びに液晶表示装置
JP2007264449A (ja) 光学補償シート、光学補償シートの製造方法、偏光板及び液晶表示装置
JP2006259210A (ja) 偏光板及び液晶表示装置