JP2007256676A - Electro-optic element - Google Patents

Electro-optic element Download PDF

Info

Publication number
JP2007256676A
JP2007256676A JP2006081596A JP2006081596A JP2007256676A JP 2007256676 A JP2007256676 A JP 2007256676A JP 2006081596 A JP2006081596 A JP 2006081596A JP 2006081596 A JP2006081596 A JP 2006081596A JP 2007256676 A JP2007256676 A JP 2007256676A
Authority
JP
Japan
Prior art keywords
electro
optic
electrode pair
electric field
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006081596A
Other languages
Japanese (ja)
Other versions
JP4792310B2 (en
Inventor
Toshihiro Ito
敏洋 伊藤
Kazuo Fujiura
和夫 藤浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006081596A priority Critical patent/JP4792310B2/en
Publication of JP2007256676A publication Critical patent/JP2007256676A/en
Application granted granted Critical
Publication of JP4792310B2 publication Critical patent/JP4792310B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain excellent electro-optic characteristics by arranging a plurality of electrodes in a traveling direction of light and applying electric fields to the electrodes in opposite directions. <P>SOLUTION: The electro-optic element using an electro-optic crystal 40 having secondary electro-optic effect for an applied electric field has two electrode pairs 42 and 43, as electrode pairs for applying electric fields to the electro-optic crystal 40 perpendicularly to the traveling direction of the light, in the traveling direction of the light. The direction of the electric field applied to the first electrode pair 42 is made opposite from the direction of the electric field applied to the second electrode pair 43. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気光学素子に関し、より詳細には、電気光学結晶を用いて電気信号により光の位相を変える電気光学素子に関する。   The present invention relates to an electro-optical element, and more particularly to an electro-optical element that changes the phase of light by an electric signal using an electro-optical crystal.

従来、電気光学結晶を用いた様々な光機能部品が実用化されている。これら光機能部品は、電気光学結晶に電圧を印加すると、電気光学効果により結晶の屈折率が変化することを利用している。例えば、電気光学結晶を用いた光位相変調器は、結晶の屈折率の変化により、結晶を通過する光の速度を変化させて、光の位相を変化させる。また、この光位相変調器を利用して、光スイッチ、光強度変調器を構成することもできる。   Conventionally, various optical functional parts using electro-optic crystals have been put into practical use. These optical functional parts utilize the fact that when a voltage is applied to the electro-optic crystal, the refractive index of the crystal changes due to the electro-optic effect. For example, an optical phase modulator using an electro-optic crystal changes the phase of light by changing the speed of light passing through the crystal by changing the refractive index of the crystal. In addition, an optical switch and an optical intensity modulator can be configured using this optical phase modulator.

図1に、従来の光位相変調器の構成を示す(例えば、特許文献1)。LiNbO基板10に形成された導波路11の両側に、2つの電極、陽極12aおよび陰極12bが形成されている(図1(a))。陽極12aおよび陰極12b間に、電圧を印加し、導波路11にかかる電界を変化させる(図1(b))。これにより、電気光学材料の屈折率を変化させて、導波路11を通過する光信号の位相を変調する。 FIG. 1 shows a configuration of a conventional optical phase modulator (for example, Patent Document 1). Two electrodes, an anode 12a and a cathode 12b are formed on both sides of the waveguide 11 formed on the LiNbO 3 substrate 10 (FIG. 1A). A voltage is applied between the anode 12a and the cathode 12b to change the electric field applied to the waveguide 11 (FIG. 1B). Thereby, the phase of the optical signal passing through the waveguide 11 is modulated by changing the refractive index of the electro-optic material.

図1に示した光位相変調器において、変調される光の位相ΔΦは、光の伝搬方向において電界の印加される部分の長さをLとし、光の波長をλとし、変化する屈折率をΔnとすると、
ΔΦ=2π×Δn×L/λ (1)
と表される。さらに、Δnは、
Δn=−0.5nrE (2)
と表される。ここで、Eは導波路に印加された電界、rは一次の電気光学係数、nは屈折率である。
In the optical phase modulator shown in FIG. 1, the phase ΔΦ of light to be modulated is defined by the length of a portion to which an electric field is applied in the light propagation direction being L, the wavelength of light being λ, If Δn,
ΔΦ = 2π × Δn × L / λ (1)
It is expressed. Furthermore, Δn is
Δn = −0.5n 3 rE (2)
It is expressed. Here, E is the electric field applied to the waveguide, r is the primary electro-optic coefficient, and n is the refractive index.

近年、電気光学係数の大きなKTa1−xNb(KTN)結晶が着目されている。KTN結晶は、電気光学係数が大きいために、小さなサイズ、小さな駆動電圧で光スイッチを構成することができる。図2に、従来のKTN結晶を用いた光位相変調器の構成を示す。光位相変調器は、方形のKTN結晶20の対向する面に、陽極22aおよび陰極22bが形成されている。陽極22aおよび陰極22b間に、バイアス電界を印加し、さらにそのバイアス電界の下で、2つの電極間に信号電界を重畳する。これにより、KTN結晶20の電界が信号によって変化し、2つの電極間の屈折率が変化するので、KTN結晶20を通過する入射光の位相を信号に応じて変化させることができる。この光位相変調器を利用して、光強度変調器、光スイッチ、Qスイッチなどの光機能素子を構成することができる。 In recent years, KTa 1-x Nb x O 3 (KTN) crystals having a large electro-optic coefficient have attracted attention. Since the KTN crystal has a large electro-optic coefficient, an optical switch can be configured with a small size and a small driving voltage. FIG. 2 shows a configuration of an optical phase modulator using a conventional KTN crystal. In the optical phase modulator, an anode 22 a and a cathode 22 b are formed on opposite surfaces of the square KTN crystal 20. A bias electric field is applied between the anode 22a and the cathode 22b, and a signal electric field is superimposed between the two electrodes under the bias electric field. Thereby, the electric field of the KTN crystal 20 changes according to the signal, and the refractive index between the two electrodes changes, so that the phase of incident light passing through the KTN crystal 20 can be changed according to the signal. Using this optical phase modulator, optical functional elements such as a light intensity modulator, an optical switch, and a Q switch can be configured.

バイアス電界は、初期位相を適切な位相に保持するために使用される。加えて、常誘電相のKTN結晶など、主に2次の電気光学効果を有する材料の場合は、バイアス電界が強いほど電気光学効果が大きくなるという特徴がある。図3に、2次の電気光学効果を有する材料における印加電圧と屈折率の関係を示す。バイアス電圧Vbiasが大きいほど、信号電圧Vによって変調される屈折率の変化Δnは大きくなる。 The bias field is used to keep the initial phase in the proper phase. In addition, a material having a secondary electro-optic effect such as a paraelectric KTN crystal has a feature that the stronger the bias electric field, the greater the electro-optic effect. FIG. 3 shows the relationship between applied voltage and refractive index in a material having a secondary electro-optic effect. The larger the bias voltage V bias , the larger the refractive index change Δn modulated by the signal voltage V s .

特開平05−346560号公報JP 05-346560 A

しかしながら、KTN結晶は、電界を印加すると電界方向に光が偏向するという問題があった。図2に示すように、電圧を印加して入射光の位相を変調すると、出射光は、電界の印加方向に角度aだけ偏向し、所望の経路から光がそれてしまい、光位相変調器として一様な変調特性が得られない。この偏向特性は、電圧0Vを中心にして極性を変えると、反転して起こるので、電極に印加する電圧を逆にすれば、偏向は逆方向に起こる。また、偏向の影響を抑えるために、印加するバイアス電圧を低く設定すると、良好な電気光学特性が得られないという問題もあった。   However, the KTN crystal has a problem that light is deflected in the direction of the electric field when an electric field is applied. As shown in FIG. 2, when a voltage is applied to modulate the phase of incident light, the emitted light is deflected by an angle a in the direction of application of the electric field, and the light is diverted from a desired path. Uniform modulation characteristics cannot be obtained. This deflection characteristic is reversed when the polarity is changed around the voltage 0V. Therefore, if the voltage applied to the electrode is reversed, the deflection occurs in the reverse direction. Further, if the bias voltage to be applied is set low in order to suppress the influence of deflection, there is a problem that good electro-optical characteristics cannot be obtained.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、複数の電極を光の進行方向に並べ、逆方向の電界を印加して、偏向現象を抑圧することにより、良好な電気光学特性が得られる電気光学素子を提供することにある。   The present invention has been made in view of such a problem, and an object of the present invention is to suppress a deflection phenomenon by arranging a plurality of electrodes in the traveling direction of light and applying an electric field in the opposite direction. An object of the present invention is to provide an electro-optic element that can obtain good electro-optic characteristics.

本発明は、このような目的を達成するために、請求項1に記載の発明は、印加された電界に対して2次の電気光学効果を有する電気光学結晶を用いた電気光学素子において、前記電気光学結晶に対して光の進行方向に垂直に電界を印加する電極対であって、前記光の進行方向に並んだ2組の電極対を備え、第1の電極対に印加する電界の方向と、第2の電極対に印加する電界の方向とが逆方向であることを特徴とする。   In order to achieve the above object, the present invention provides an electro-optic element using an electro-optic crystal having a secondary electro-optic effect with respect to an applied electric field. An electrode pair for applying an electric field perpendicular to the traveling direction of light with respect to the electro-optic crystal, comprising two electrode pairs arranged in the traveling direction of the light, and the direction of the electric field applied to the first electrode pair And the direction of the electric field applied to the second electrode pair is opposite.

請求項2に記載の発明は、請求項1に記載の前記第1の電極対および前記第2の電極対とは、前記光の進行方向にそれぞれm個(mは正の整数)に分割されていることを特徴とする。   According to a second aspect of the present invention, the first electrode pair and the second electrode pair of the first aspect are each divided into m pieces (m is a positive integer) in the light traveling direction. It is characterized by.

前記電気光学結晶を、KTa1−xNb(0<x<1)またはK1−yLiTa1−xNb(0<x<1,0<y<0.1)とすることができ、前記電気光学結晶は、常誘電相であることを特徴とする。 The electro-optic crystal is made of KTa 1-x Nb x O 3 (0 <x <1) or K 1-y Li y Ta 1-x Nb x O 3 (0 <x <1, 0 <y <0.1 The electro-optic crystal is a paraelectric phase.

以上説明したように、本発明によれば、電気光学結晶に対して光の進行方向に垂直に電界を印加する電極対であって、光の進行方向に2組の電極対を備え、第1の電極対に印加する電界の方向と、第2の電極対に印加する電界の方向とが逆方向であるので、偏向を抑圧し、良好な電気光学特性を得ることができる。   As described above, according to the present invention, the electrode pair that applies an electric field perpendicular to the light traveling direction with respect to the electro-optic crystal, the electrode pair includes two electrode pairs in the light traveling direction, Since the direction of the electric field applied to the first electrode pair is opposite to the direction of the electric field applied to the second electrode pair, deflection can be suppressed and good electro-optical characteristics can be obtained.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。本実施形態においては、2組の電極を光の進行方向に並べ、逆方向の電界を印加することにより、偏向を相殺する。第1の電極対の間を通過した光が角度aだけ偏向し、第2の電極対の間に入力される。第2の電極対には、第1の電極対とは逆方向で同じ値の電界が印加されているので、角度−aだけ偏向して、第1の電極対による偏向を相殺する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In this embodiment, two sets of electrodes are arranged in the light traveling direction, and an electric field in the opposite direction is applied to cancel the deflection. The light that has passed between the first electrode pair is deflected by an angle a and is input between the second electrode pair. Since the electric field of the same value is applied to the second electrode pair in the opposite direction to that of the first electrode pair, the second electrode pair is deflected by the angle −a to cancel the deflection by the first electrode pair.

同様に、2m組(mは正の整数)の電極を光の進行方向に並べて、m個の電極の電界の印加方向と、残りのm個の電極の電界の印加方向とを逆方向に設定する。言い換えると、第1の電極対および第2の電極対を、光の進行方向にそれぞれm個に分割することにより、偏向を相殺する。   Similarly, 2m sets of electrodes (m is a positive integer) are arranged in the light traveling direction, and the electric field application direction of the m electrodes and the electric field application direction of the remaining m electrodes are set in opposite directions. To do. In other words, the deflection is canceled by dividing the first electrode pair and the second electrode pair into m pieces in the light traveling direction.

図4に、本発明の実施例1にかかる電気光学素子の構成を示す。電気光学素子は、方形のKTN結晶40の対向する面に、第1の電極対である陽極42aおよび陰極42bと、第2の電極対である陽極43aおよび陰極43bとが形成されている。KTN結晶40は、光の進行方向の長さ5mm、光の進行方向に垂直な方向の幅1.0mmであり、2つの電極対の間の厚さ0.5mmの結晶である。第1の電極対42および第2の電極対43の光の進行方向の長さは、それぞれ1.5mmである。   FIG. 4 shows the configuration of the electro-optic element according to Example 1 of the invention. In the electro-optic element, an anode 42a and a cathode 42b, which are a first electrode pair, and an anode 43a and a cathode 43b, which are a second electrode pair, are formed on opposing surfaces of a square KTN crystal 40. The KTN crystal 40 is a crystal having a length of 5 mm in the light traveling direction, a width of 1.0 mm in a direction perpendicular to the light traveling direction, and a thickness of 0.5 mm between the two electrode pairs. The lengths in the light traveling direction of the first electrode pair 42 and the second electrode pair 43 are 1.5 mm, respectively.

KTN結晶40の相転移温度は0度であり、20度で動作するように温度保持されている。バイアス電圧Vbias=100Vを第1の電極対42に印加し、バイアス電圧Vbias=100Vを第2の電極対43に、電界が逆方向になるように印加する。さらに、信号電圧V=20Vppを第1の電極対42に印加し、信号電圧V=20Vppを第2の電極対43に、電界が逆方向になるように同じ位相で印加する。従って、それぞれの電極対には、80V〜120Vの電圧が印加される。 The phase transition temperature of the KTN crystal 40 is 0 degree, and the temperature is maintained so as to operate at 20 degrees. A bias voltage Vbias = 100V is applied to the first electrode pair 42, and a bias voltage Vbias = 100V is applied to the second electrode pair 43 so that the electric field is in the opposite direction. Furthermore, the signal voltage V s = 20V pp is applied to the first electrode pair 42, and the signal voltage V s = 20V pp is applied to the second electrode pair 43 in the same phase so that the electric field is in the opposite direction. Accordingly, a voltage of 80V to 120V is applied to each electrode pair.

偏向特性は、電圧0Vを中心にして極性を変えると、反転して起こるので、第1の電極対42に生じる偏向と、第2の電極対43に生じる偏向とが相殺されて、偏向のない直進した光を取り出すことができる。   When the polarity is changed around the voltage 0V, the deflection characteristic is reversed, so that the deflection generated in the first electrode pair 42 and the deflection generated in the second electrode pair 43 are offset, and there is no deflection. The light that goes straight can be taken out.

なお、電圧に対する偏向特性の反転が完全でない場合でも、およそ反転していれば、偏向の大部分を相殺することができる。また、第1の電極対42と第2の電極対43のバイアス電圧と信号電圧とは、必ずしも同じ絶対値を有する必要はなく、印加する方向を逆にした上で、上述した相違を補償するように調整することもできる。   Even if the reversal of the deflection characteristics with respect to the voltage is not complete, the majority of the deflection can be canceled if it is approximately reversed. In addition, the bias voltage and the signal voltage of the first electrode pair 42 and the second electrode pair 43 do not necessarily have the same absolute value, and the above-described difference is compensated after the application direction is reversed. It can also be adjusted.

また、実施例1では、1つの結晶に2組の電極を取り付けたが、2つの結晶に分割して、それぞれに1組の電極を取り付け、光が2つの結晶を通過するようにしてもよい。第1の結晶において、入射光の光軸と陽極との間の距離dによって、入射光の偏向量が変わる場合には、第2の結晶において、入射光の光軸と陰極との間の距離がdとなるように結晶の相対位置を調整して、偏向を相殺するようにしてもよい。   Further, in Example 1, two sets of electrodes are attached to one crystal. However, it may be divided into two crystals, and one set of electrodes is attached to each of the two crystals so that light passes through the two crystals. . In the first crystal, when the deflection amount of the incident light varies depending on the distance d between the optical axis of the incident light and the anode, the distance between the optical axis of the incident light and the cathode in the second crystal. The relative position of the crystal may be adjusted so that becomes d, so that the deflection may be canceled out.

図5に、本発明の実施例2にかかる電気光学素子の構成を示す。電気光学素子は、方形のKTN結晶50の対向する面に、4つの電極対である陽極52a〜55aおよび陰極52b〜55bが形成されている。KTN結晶50は、光の進行方向の長さ14mm、光の進行方向に垂直な方向の幅1.0mmであり、4つの電極対の間の厚さ0.5mmの結晶である。4つの電極対の光の進行方向の長さは、それぞれ2.0mmであり、2mmの間隔で並べられている。   FIG. 5 shows the configuration of an electro-optic element according to Example 2 of the present invention. In the electro-optic element, four electrode pairs, anodes 52a to 55a and cathodes 52b to 55b, are formed on opposing surfaces of the square KTN crystal 50. The KTN crystal 50 is a crystal having a length of 14 mm in the light traveling direction, a width of 1.0 mm in a direction perpendicular to the light traveling direction, and a thickness of 0.5 mm between the four electrode pairs. The lengths of the light propagation directions of the four electrode pairs are each 2.0 mm, and are arranged at intervals of 2 mm.

KTN結晶50の相転移温度は0度であり、20度で動作するように温度保持されている。バイアス電圧Vbias=100Vを第1および第3の電極対52,54に印加し、バイアス電圧Vbias=100Vを第2および第4の電極対53,55に逆方向に印加する。さらに、信号電圧V=20Vppを第1および第3の電極対52,54に印加し、信号電圧V=20Vppを第2および第4の電極対53,55に逆方向に、同じ位相で印加する。従って、それぞれの電極対には、80V〜120Vの電圧が印加される。 The phase transition temperature of the KTN crystal 50 is 0 degree, and the temperature is maintained so as to operate at 20 degrees. A bias voltage V bias = 100 V is applied to the first and third electrode pairs 52 and 54, and a bias voltage V bias = 100 V is applied to the second and fourth electrode pairs 53 and 55 in the reverse direction. Further, the signal voltage V s = 20V pp is applied to the first and third electrode pairs 52 and 54, and the signal voltage V s = 20V pp is the same in the opposite direction to the second and fourth electrode pairs 53 and 55. Apply in phase. Accordingly, a voltage of 80V to 120V is applied to each electrode pair.

実施例1と同様に、第1および第3の電極対52,54に生じる偏向と、第2および第4の電極対53,55に生じる偏向とが相殺されて、偏向のない直進した光を取り出すことができる。   Similar to the first embodiment, the deflection generated in the first and third electrode pairs 52 and 54 and the deflection generated in the second and fourth electrode pairs 53 and 55 are canceled out, so that the light traveling straight without deflection can be obtained. It can be taken out.

本実施形態では、位相変調器を用いて説明したが、この位相変調器を利用した光強度変調器、光スイッチ、Qスイッチなどの光機能素子に適用することができる。また、電気光学結晶は、KTN結晶に限らず、K1−yLiTa1−xNb(0<x<1,0<y<0.1)結晶とすることができ、それぞれ常誘電相で適用する。 Although this embodiment has been described using a phase modulator, the present invention can be applied to optical functional elements such as a light intensity modulator, an optical switch, and a Q switch using this phase modulator. The electro-optic crystal is not limited to a KTN crystal but can be a K 1-y Li y Ta 1-x Nb x O 3 (0 <x <1, 0 <y <0.1) crystal, Applies in the paraelectric phase.

従来の光位相変調器の構成を示す図である。It is a figure which shows the structure of the conventional optical phase modulator. 従来のKTN結晶を用いた光位相変調器の構成を示す図である。It is a figure which shows the structure of the optical phase modulator using the conventional KTN crystal | crystallization. 2次の電気光学効果を有する材料における印加電圧と屈折率の関係を示す図である。It is a figure which shows the relationship between the applied voltage and refractive index in the material which has a secondary electro-optic effect. 本発明の実施例1にかかる電気光学素子の構成を示す図である。1 is a diagram illustrating a configuration of an electro-optic element according to Example 1 of the invention. FIG. 本発明の実施例2にかかる電気光学素子の構成を示す図である。FIG. 6 is a diagram illustrating a configuration of an electro-optic element according to Example 2 of the invention.

符号の説明Explanation of symbols

10 LiNbO基板
11 導波路
12a,22a,42a,43a,52a,53a,54a,55a 陽極
12b,22b,42b,43b,52b,53b,54b,55b 陰極
20,40,50 KTN結晶
10 LiNbO 3 substrate 11 Waveguide 12a, 22a, 42a, 43a, 52a, 53a, 54a, 55a Anode 12b, 22b, 42b, 43b, 52b, 53b, 54b, 55b Cathode 20, 40, 50 KTN crystal

Claims (5)

印加された電界に対して2次の電気光学効果を有する電気光学結晶を用いた電気光学素子において、
前記電気光学結晶に対して光の進行方向に垂直に電界を印加する電極対であって、前記光の進行方向に並んだ2組の電極対を備え、
第1の電極対に印加する電界の方向と、第2の電極対に印加する電界の方向とが逆方向であることを特徴とする電気光学素子。
In an electro-optic element using an electro-optic crystal having a secondary electro-optic effect with respect to an applied electric field,
An electrode pair for applying an electric field perpendicular to the traveling direction of light with respect to the electro-optic crystal, comprising two pairs of electrodes arranged in the traveling direction of the light,
An electro-optic element, wherein the direction of the electric field applied to the first electrode pair is opposite to the direction of the electric field applied to the second electrode pair.
前記第1の電極対および前記第2の電極対とは、前記光の進行方向にそれぞれm個(mは正の整数)に分割されていることを特徴とする請求項1に記載の電気光学素子。   2. The electro-optic according to claim 1, wherein the first electrode pair and the second electrode pair are each divided into m pieces (m is a positive integer) in the light traveling direction. element. 前記電気光学結晶は、KTa1−xNb(0<x<1)であることを特徴とする請求項1または2に記載の電気光学素子。 The electro-optic element according to claim 1, wherein the electro-optic crystal is KTa 1-x Nb x O 3 (0 <x <1). 前記電気光学結晶は、K1−yLiTa1−xNb(0<x<1,0<y<0.1)であることを特徴とする請求項1または2に記載の電気光学素子。 3. The electro-optic crystal according to claim 1 , wherein the electro-optic crystal is K 1-y Li y Ta 1-x Nb x O 3 (0 <x <1, 0 <y <0.1). Electro-optic element. 前記電気光学結晶は、常誘電相であることを特徴とする請求項3または4に記載の電気光学素子。
5. The electro-optic element according to claim 3, wherein the electro-optic crystal is a paraelectric phase.
JP2006081596A 2006-03-23 2006-03-23 Electro-optic element Expired - Fee Related JP4792310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006081596A JP4792310B2 (en) 2006-03-23 2006-03-23 Electro-optic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006081596A JP4792310B2 (en) 2006-03-23 2006-03-23 Electro-optic element

Publications (2)

Publication Number Publication Date
JP2007256676A true JP2007256676A (en) 2007-10-04
JP4792310B2 JP4792310B2 (en) 2011-10-12

Family

ID=38630969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006081596A Expired - Fee Related JP4792310B2 (en) 2006-03-23 2006-03-23 Electro-optic element

Country Status (1)

Country Link
JP (1) JP4792310B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104070A (en) * 2007-10-25 2009-05-14 Nippon Telegr & Teleph Corp <Ntt> Light modulator
JP2009109773A (en) * 2007-10-30 2009-05-21 Nippon Telegr & Teleph Corp <Ntt> Optical device
JP2011247912A (en) * 2010-05-21 2011-12-08 Mitsubishi Electric Corp Optical waveguide type q-switching element and q-switching laser device
JP2016014793A (en) * 2014-07-02 2016-01-28 日本電信電話株式会社 Optical deflector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249417A (en) * 1992-03-09 1993-09-28 Nippon Telegr & Teleph Corp <Ntt> Optical phase modulation system
JPH07335959A (en) * 1994-06-07 1995-12-22 Toshiba Corp Laser beam phase modulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249417A (en) * 1992-03-09 1993-09-28 Nippon Telegr & Teleph Corp <Ntt> Optical phase modulation system
JPH07335959A (en) * 1994-06-07 1995-12-22 Toshiba Corp Laser beam phase modulator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6010056923, 藤浦和夫、他, ""KTN結晶導波路を用いた高効率位相変調器"", 電子情報通信学会技術研究報告, 20040128, Vol.103, No. 616, p.25−30 *
JPN6010056924, 藤浦和夫、他, ""KTN結晶導波路を用いた高速光スイッチ"", 電子情報通信学会技術研究報告, 20030829, Vol.103, No.272, p.65−70 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104070A (en) * 2007-10-25 2009-05-14 Nippon Telegr & Teleph Corp <Ntt> Light modulator
JP2009109773A (en) * 2007-10-30 2009-05-21 Nippon Telegr & Teleph Corp <Ntt> Optical device
JP2011247912A (en) * 2010-05-21 2011-12-08 Mitsubishi Electric Corp Optical waveguide type q-switching element and q-switching laser device
JP2016014793A (en) * 2014-07-02 2016-01-28 日本電信電話株式会社 Optical deflector

Also Published As

Publication number Publication date
JP4792310B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
US10620469B2 (en) Display panel and display device
US9575366B2 (en) Fast switchable and high diffraction efficiency grating ferroelectric liquid crystal cell
JP2004252298A (en) Liquid crystal display element
US20050078237A1 (en) Liquid crystal variable wavelength filter unit, and driving method thereof
US8570483B2 (en) Liquid crystal lens
JP4792310B2 (en) Electro-optic element
JP2007304427A (en) Optical switching element
US20130136388A1 (en) Optical modulation apparatus, method for controlling optical modulation apparatus
JP2012118272A (en) Optical modulation device, control method of optical modulator and control device of optical modulator
US20060250547A1 (en) Optically compensated birefringence (OCB) mode liquid crystal display device
JP2009122212A (en) Liquid crystal display device
WO2019174240A1 (en) Display panel, driving method therefor, and display device
JP2007322599A (en) Optical device
JP2007248674A (en) Optical element, optical deflector, and image forming apparatus
JP5411089B2 (en) Variable focus lens
JP4792309B2 (en) Electro-optic element
JP2007333985A (en) Electro-optical element
CN105629555B (en) Liquid crystal display device having a plurality of pixel electrodes
JP6375167B2 (en) Optical device, projector, manufacturing method, and manufacturing support apparatus
JPH0949996A (en) Waveguide type optical device
JP4557894B2 (en) Deflector
JP2002006353A (en) Polarization reversal crystal
Mamonova et al. Liquid crystal metasurfaces for versatile electrically tunable diffraction
WO2014065202A1 (en) Liquid crystal display device
JP2008009314A (en) Optical waveguide element, optical modulator, and optical communication device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100513

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100513

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4792310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees