JP2007256535A - Electric element and its manufacturing method - Google Patents

Electric element and its manufacturing method Download PDF

Info

Publication number
JP2007256535A
JP2007256535A JP2006079743A JP2006079743A JP2007256535A JP 2007256535 A JP2007256535 A JP 2007256535A JP 2006079743 A JP2006079743 A JP 2006079743A JP 2006079743 A JP2006079743 A JP 2006079743A JP 2007256535 A JP2007256535 A JP 2007256535A
Authority
JP
Japan
Prior art keywords
gas
electrodes
electric element
arc extinguishing
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006079743A
Other languages
Japanese (ja)
Inventor
Futoshi Yamamoto
太 山本
Junichiro Ichikawa
潤一郎 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2006079743A priority Critical patent/JP2007256535A/en
Publication of JP2007256535A publication Critical patent/JP2007256535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric element which can stably operate even on increase drive voltages with reduced spaces between electrodes, and its manufacturing method. <P>SOLUTION: The electric element having electrodes formed on an insulation substrate or insulation film is housed in a case. The minimum distance at least between a pair of electrodes is 20 μm or less and a gas higher in insulation than dried nitrogen is filled between these electrodes. Especially, it is preferable that the high insulation gas contains an arc-suppressing gas. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、絶縁体基板あるいは絶縁体膜に複数の電極を形成した電気素子及びその製造方法に関し、特に、該電極間隔の最小値が20μm以下である電気素子及びその製造方法に関する。   The present invention relates to an electric element in which a plurality of electrodes are formed on an insulating substrate or an insulating film, and a method for manufacturing the electric element, and more particularly, to an electric element having a minimum value of the electrode interval of 20 μm or less and a method for manufacturing the electric element.

各種電子デバイスや半導体の微細加工技術を駆使して作製された微小な部品から構成される電気機械システムの総称であるMEMS(Micro Electro Mechanical System)デバイス、プリント基板、あるいは光通信分野で用いられる光制御デバイスなど、絶縁体基板上あるいは絶縁体膜上に複数の電極を形成する電気素子においては、消費電力の低減や生産性向上のために素子サイズの低減が図られてきており、電極幅と電極間隔の縮小が進んでいる。   Light used in MEMS (Micro Electro Mechanical System) devices, printed circuit boards, or optical communication fields, which is a general term for electromechanical systems composed of minute parts manufactured using various electronic devices and semiconductor microfabrication technology In electrical devices that form a plurality of electrodes on an insulator substrate or insulator film, such as control devices, the element size has been reduced to reduce power consumption and improve productivity. The electrode spacing is being reduced.

電極幅の縮小は線路の電気抵抗の増大を招き駆動電圧が増大することから、低抵抗材料への置き換えが求められている。電極間隔が狭くなると、印加される電界が実質的に増大する。   The reduction of the electrode width leads to an increase in the electric resistance of the line and the drive voltage increases. Therefore, replacement with a low resistance material is required. As the electrode spacing decreases, the applied electric field substantially increases.

また、特許文献1に示すように、高周波デバイスにおいては電極間にポリイミドやベンゾシクロブテンなどの低誘電率材料が埋め込まれ、配線間に発生する静電容量の低減を図ることが行なわれている。これら低誘電率材料は一般に絶縁性が高いため、低誘電率材料で充填された微細電極は高電界においても電極間の放電を抑制しうる。しかしながら、これら材料自身の製造コストが高く、また、微細化電極を形成するためには低誘電率材用のエッチング加工、あるいは微細な該電極間に気体を含泡することなく、かつ低応力条件で硬化した後に給電用に一部を露出する工程の技術開発が必須である。
特開2001−68375号公報
Moreover, as shown in Patent Document 1, in a high-frequency device, a low dielectric constant material such as polyimide or benzocyclobutene is embedded between electrodes to reduce the capacitance generated between wirings. . Since these low dielectric constant materials generally have high insulation properties, a fine electrode filled with the low dielectric constant material can suppress discharge between the electrodes even in a high electric field. However, the manufacturing cost of these materials themselves is high, and in order to form a miniaturized electrode, etching processing for a low dielectric constant material, or gas is not included between the fine electrodes, and low stress conditions are used. It is essential to develop a technology for the process of exposing a part for power supply after curing at.
JP 2001-68375 A

本発明が解決しようとする課題は、上述したような問題を解決し、駆動電圧の増加や電極間隔をより狭くした場合においても、製造工程の複雑化や製造コストの増加を抑制し、安定的に動作可能な電気素子及びその製造方法を提供することである。   The problem to be solved by the present invention is to solve the above-mentioned problems, and suppress the complication of the manufacturing process and the increase of the manufacturing cost even when the drive voltage is increased or the electrode interval is narrowed, and is stable. It is another object of the present invention to provide an electric element operable and a method for manufacturing the same.

請求項1に係る発明では、絶縁体基板あるいは絶縁体膜に複数の電極を形成した電気素子において、該電気素子が筐体内に設置され、少なくとも一対の該電極間隔の最小値が20μm以下であり、該電極間には乾燥窒素よりも絶縁性の高い気体が導入されていることを特徴とする。
本発明における「電極間隔」とは、例えば、同一絶縁体基板上に形成された複数の電極との間隔を意味するだけでなく、同一絶縁体基板の表裏に各々形成された電極との間隔や、異なる絶縁体基板に各々形成された電極との間隔など、多様な形態を含むものである。
In the invention according to claim 1, in the electric element in which a plurality of electrodes are formed on the insulating substrate or the insulating film, the electric element is installed in the casing, and the minimum value of at least a pair of the electrodes is 20 μm or less. A gas having a higher insulating property than dry nitrogen is introduced between the electrodes.
The “electrode interval” in the present invention means not only the interval between a plurality of electrodes formed on the same insulator substrate, but also the interval between the electrodes formed on the front and back of the same insulator substrate, It includes various forms such as an interval between electrodes formed on different insulator substrates.

請求項2に係る発明は、請求項1に記載の電気素子において、該ガスは消弧性ガスを含むことを特徴とする。   The invention according to claim 2 is the electrical element according to claim 1, wherein the gas contains an arc extinguishing gas.

請求項3に係る発明は、請求項2に記載の電気素子において、該消弧性ガスがSFであることを特徴とする。 The invention according to claim 3 is the electric device according to claim 2, wherein the digestion arc gas is SF 6.

請求項4に係る発明は、請求項2又は3に記載の電気素子において、該消弧性ガスの分圧が0.1気圧以上であることを特徴とする。   The invention according to claim 4 is the electric element according to claim 2 or 3, wherein the partial pressure of the arc extinguishing gas is 0.1 atm or more.

請求項5に係る発明は、請求項1乃至4のいずれかに記載の電気素子において、該絶縁体基板又は該絶縁体膜が、圧電効果、焦電効果、または電気光学効果のいずれかを有することを特徴とする。   The invention according to claim 5 is the electrical element according to any one of claims 1 to 4, wherein the insulator substrate or the insulator film has any one of a piezoelectric effect, a pyroelectric effect, and an electro-optic effect. It is characterized by that.

請求項6に係る発明は、請求項5に記載の電気素子において、該絶縁体基板または該絶縁体膜には光導波路が形成され、該電極は該光導波路を伝搬する光波を制御するための電極であることを特徴とする。   According to a sixth aspect of the present invention, in the electrical element according to the fifth aspect, an optical waveguide is formed on the insulator substrate or the insulator film, and the electrode is used for controlling a light wave propagating through the optical waveguide. It is an electrode.

請求項7に係る発明は、絶縁体基板あるいは絶縁体膜に複数の電極が形成され、該電極間隔の最小値が20μm以下である電気素子の製造方法において、該電気素子が筐体内に設置され、該筐体を真空パージし、その後、該筐体内を消弧性ガスを含むガスで充填させ、該筐体を封止することを特徴とする。   According to a seventh aspect of the present invention, in the method of manufacturing an electric element in which a plurality of electrodes are formed on an insulating substrate or an insulating film, and the minimum value of the electrode interval is 20 μm or less, the electric element is installed in a casing. The casing is vacuum purged, and then the casing is filled with a gas containing an arc extinguishing gas to seal the casing.

請求項8に係る発明は、請求項7に記載の電気素子の製造方法において、該筐体を真空パージした後、消弧性ガスの分圧が0.1気圧以上5気圧以下の気体中で放置し、該筐体内に消弧性を含むガスを充填させ、該筐体を封止することを特徴とする。   According to an eighth aspect of the present invention, in the electrical element manufacturing method according to the seventh aspect, after the casing is vacuum purged, the partial pressure of the arc extinguishing gas is 0.1 to 5 atm. The case is characterized in that the case is filled with a gas containing an arc extinguishing property and the case is sealed.

請求項1に係る発明により、絶縁体基板あるいは絶縁体膜に複数の電極を形成した電気素子にあって、該電極間隔の最小値が20μm以下であっても、該電極間には乾燥窒素よりも絶縁性の高い気体が導入されていることにより、該電極間に低誘電率材料を充填しなくとも、電極間の放電を効果的に抑制できるため、電極の破断や破壊を生じず、従来よりも電極間隔をより狭くした高密度な電気素子を提供することが出来る。また、電極間に気体を導入するだけであるため、高アスペクト電極間などに対しても従来の低誘電率材料を電極間に埋め込む方法と比較して、極めて容易に導入することが出来る。   According to the first aspect of the present invention, there is provided an electric element in which a plurality of electrodes are formed on an insulator substrate or an insulator film, and even if the minimum value of the electrode interval is 20 μm or less, the gap between the electrodes is less than dry nitrogen. In addition, since a highly insulating gas is introduced, the discharge between the electrodes can be effectively suppressed without filling the electrodes with a low dielectric constant material. It is possible to provide a high-density electric element in which the electrode interval is narrower than that. Further, since only gas is introduced between the electrodes, it can be introduced very easily even between high aspect electrodes as compared with the conventional method of embedding a low dielectric constant material between the electrodes.

しかも、電気素子が筐体内に設置され、該筐体内を乾燥窒素よりも絶縁性の高いガスで充填するため、長期間に渡り電極間の放電現象を防止することが可能となる。また、筐体を用いるため、充填圧を大気圧よりも大きくとることが可能となり、より効果的に放電を抑制するとともに、実質的により高電界を印加可能な素子を提供することが可能となる。   In addition, since the electric element is installed in the casing and the casing is filled with a gas having a higher insulating property than dry nitrogen, the discharge phenomenon between the electrodes can be prevented over a long period of time. In addition, since the housing is used, the filling pressure can be made larger than the atmospheric pressure, and it is possible to provide an element that can suppress discharge more effectively and can substantially apply a higher electric field. .

請求項2に係る発明により、ガスは消弧性ガスを用いるため、極めて安定的に放電を抑制でき、仮に放電が生じても瞬時にこれを打ち消すため、電極の破断や破損を防止することが可能となる。   According to the invention according to claim 2, since the gas uses an arc extinguishing gas, the discharge can be suppressed extremely stably, and even if a discharge occurs, it is canceled instantly, so that the electrode can be prevented from being broken or damaged. It becomes possible.

請求項3に係る発明により、消弧性ガスはSFであるため、より効果的に放電を抑制することが可能となる。 According to the invention of claim 3, since the arc extinguishing gas is SF 6 , it becomes possible to suppress the discharge more effectively.

請求項4に係る発明により、消弧性ガスの分圧が0.1気圧以上であるため、放電抑制効果を有効に発現させることが可能となる。   According to the fourth aspect of the present invention, since the partial pressure of the arc extinguishing gas is 0.1 atm or more, the discharge suppressing effect can be effectively expressed.

請求項5に係る発明により、絶縁体基板又は該絶縁体膜が、圧電効果、焦電効果、または電気光学効果のいずれかを有するため、放電現象が発生し易い電気素子に対しても、効果的に放電を抑制することが可能となる。   According to the invention of claim 5, since the insulator substrate or the insulator film has any one of the piezoelectric effect, the pyroelectric effect, and the electro-optic effect, it is also effective for an electric element that easily generates a discharge phenomenon. Therefore, it is possible to suppress discharge.

請求項6に係る発明により、電気素子において、絶縁体基板または該絶縁体膜には光導波路が形成され、該電極は該光導波路を伝搬する光波を制御するための電極であるため、
本発明を用いることにより、電極間隔を小さく設定することが可能となり、電界をより高効率に印加でき、低駆動電圧型光変調器の作製など、より大きな変調度を得ることが可能な電気素子を提供することができる。
According to the invention of claim 6, in the electrical element, an optical waveguide is formed on the insulator substrate or the insulator film, and the electrode is an electrode for controlling a light wave propagating through the optical waveguide.
By using the present invention, it is possible to set an electrode interval small, an electric field can be applied more efficiently, and a larger modulation degree can be obtained, such as production of a low drive voltage type optical modulator. Can be provided.

請求項7に係る発明により、電気素子の製造方法において、電気素子を筐体内に設置し、該筐体を真空パージし、その後、該筐体内を消弧性ガスを含むガスで充填させ、該筐体を封止するため、電気素子が常に消弧性ガスと接触する雰囲気を形成できると共に、この状態を長期間に渡り維持することが可能なるため、放電現象を効果的に防止することが可能となる。   According to the invention of claim 7, in the method of manufacturing an electric element, the electric element is installed in the casing, the casing is vacuum purged, and then the casing is filled with a gas containing an arc extinguishing gas, Since the casing is sealed, it is possible to form an atmosphere in which the electric element is always in contact with the arc extinguishing gas, and this state can be maintained for a long period of time, so that the discharge phenomenon can be effectively prevented. It becomes possible.

請求項8に係る発明により、筐体を真空パージした後、消弧性ガスの分圧が0.1気圧以上5気圧以下の気体中で放置し、該筐体内に消弧性を含むガスを充填させ、該筐体を封止するため、消弧性ガスを電気素子に必要十分に供給することが可能となると共に、消弧性ガスが液化するなどの不具合も防止することが可能なる。   According to the invention of claim 8, after vacuum purging the casing, the arc extinguishing gas partial pressure is left in a gas of 0.1 atm or more and 5 atm or less, and the gas containing the arc extinguishing property is contained in the casing. Filling and sealing the housing makes it possible to supply the arc-extinguishing gas to the electric element as necessary and to prevent problems such as liquefaction of the arc-extinguishing gas.

以下、本発明を好適例を用いて詳細に説明する。
本発明は、絶縁体基板あるいは絶縁体膜に複数の電極を形成した電気素子において、該電気素子が筐体内に設置され、少なくとも一対の該電極間隔の最小値が20μm以下であり、該電極間には乾燥窒素よりも絶縁性の高い気体が導入されていることを特徴とする。
特に、充填ガスが消弧性ガス(SF,H,CO)を含むものであることが好ましい。
なお、一般に空気や乾燥窒素も絶縁体とされるが、1cmあたり5kV以上を印加すると放電を生じる。本発明に用いるガスは、このような乾燥窒素よりも高い絶縁性を有するガスに限定される。
Hereinafter, the present invention will be described in detail using preferred examples.
The present invention provides an electrical element in which a plurality of electrodes are formed on an insulator substrate or an insulator film, wherein the electrical element is installed in a housing, and a minimum value of at least a pair of the electrodes is 20 μm or less. Is characterized in that a gas having a higher insulating property than dry nitrogen is introduced.
In particular, the filling gas preferably contains an arc extinguishing gas (SF 6 , H 2 , CO 2 ).
In general, air or dry nitrogen is also used as an insulator, but discharge occurs when 5 kV or more is applied per 1 cm. The gas used in the present invention is limited to a gas having higher insulation than such dry nitrogen.

本発明が適用される電気素子には、SOI(silicon on Insulator)基板、Al、MgOなどの絶縁体基板上あるいは絶縁体膜上に複数の電極を形成した電子デバイス素子やMEMS素子、又は、ガラスエポキシ樹脂上に形成されたプリント基板、電気光学効果を有する基板を用いた光変調器や光スイッチなどの光制御素子などがあり、より好適には、これら電気素子を筐体内に収容し、筐体内を気密封止するものであれば、特に限定されるものではない。 The electrical element to which the present invention is applied includes an electronic device element or MEMS element in which a plurality of electrodes are formed on an insulator substrate such as an SOI (silicon on insulator) substrate, Al 2 O 3 , MgO, or an insulator film, Or, there are printed circuit boards formed on glass epoxy resin, light control elements such as optical modulators and optical switches using a substrate having an electro-optic effect, and more preferably, these electric elements are accommodated in a housing. However, there is no particular limitation as long as the inside of the housing is hermetically sealed.

電気素子に用いる絶縁体基板又は該絶縁体膜が、圧電効果、焦電効果、または電気光学効果のいずれかを有する場合には、特に、本発明が利用可能である。
例えば、電気光学効果、圧電効果または焦電効果を有する基板として、ニオブ酸リチウム、タンタル酸リチウム、PLZT(ジルコン酸チタン酸鉛ランタン)、及び石英系の材料などが挙げられる。これらの基板は、温度変化に伴い、焦電効果や、圧力変化によるピエゾ効果が発生するが、電気素子を絶縁性の高いガスで取り囲んでいるため、蓄積した電荷による放電も効果的に抑制される。
The present invention is particularly applicable when the insulator substrate or the insulator film used for the electric element has any one of a piezoelectric effect, a pyroelectric effect, and an electro-optic effect.
For example, examples of the substrate having an electro-optic effect, a piezoelectric effect, or a pyroelectric effect include lithium niobate, lithium tantalate, PLZT (lead lanthanum zirconate titanate), and a quartz-based material. These substrates generate pyroelectric effects and piezo effects due to pressure changes with changes in temperature, but since the electrical elements are surrounded by highly insulating gas, discharge due to accumulated charges is effectively suppressed. The

電気素子を収容する筐体は、機械的強度が高く、電気素子を構成する基板(絶縁体膜を利用する場合には、絶縁膜体自体又は絶縁体膜を支持する支持体)と同様な線膨張係数を持つ材料が好ましく、SUS303やSUS304などのステンレス材料やコバール、樹脂パッケージなどが好適に利用可能である。筐体は、電気素子を収容した後、気密封止可能なようなように、ケースと蓋から構成されている。   The housing that houses the electric element has high mechanical strength, and is the same wire as the substrate (the insulating film body itself or a support body that supports the insulating film when the insulating film is used) constituting the electric element. A material having an expansion coefficient is preferable, and a stainless material such as SUS303 or SUS304, Kovar, or a resin package can be suitably used. The housing is composed of a case and a lid so that the housing can be hermetically sealed after accommodating the electric element.

電気素子を収納した筐体は、ケースと蓋とがシーム溶接され気密封止される。この際に、筐体内には、SF,H,COなどの消弧性ガスが充填される。
特に、SFガスは、化学的に安定した、無毒・無臭なガスであり、空気の約3倍の絶縁性能と約100倍の消弧能力(高温の放電(火花)を消す能力)を有している。使用方法としては、圧力を高めるほど消弧効果は高くなるが、充填圧力が高すぎると液化するため、0.3Paから0.5MPaの範囲で使用することが望ましい。
The case housing the electric element is hermetically sealed by seam welding the case and the lid. At this time, the casing is filled with an arc extinguishing gas such as SF 6 , H 2 , and CO 2 .
In particular, SF 6 gas is a chemically stable, non-toxic and odorless gas that has about three times the insulation performance and about 100 times the arc extinguishing ability (the ability to extinguish a high-temperature discharge (spark)). is doing. As a method of use, the arc extinguishing effect becomes higher as the pressure is increased. However, since the liquid is liquefied when the filling pressure is too high, it is desirable to use in a range of 0.3 Pa to 0.5 MPa.

消弧能力は、消弧性ガスの絶対量が大きく影響するため、より好ましくは、消弧性ガスの分圧が0.1気圧以上とすることにより、消弧能力の発現が十分に期待できる。また、充填圧力の増加に伴い消弧性ガスが液化するのを防ぐため、5気圧以下(0.5MPa)で使用することが好ましい。
さらに、消弧性ガスと組合わせる他のガスとしては、CO,CF,NやHeが、消弧性ガスの性能を安定的に発現させる上で好ましい。また、これらのガスは、筐体の密閉状態を検査するリークテストにも使用でき、より好ましい気体である。また、N/CO/SF混合ガスでは、SF単独で使用する場合より、高い絶縁特性を持つ混合比があることも知られている。
The arc extinguishing capability is greatly affected by the absolute amount of arc extinguishing gas. More preferably, the arc extinguishing capability can be expected to be sufficiently expressed by setting the partial pressure of the arc extinguishing gas to 0.1 atm or more. . Further, in order to prevent the arc extinguishing gas from being liquefied as the filling pressure is increased, it is preferable to use it at 5 atm or less (0.5 MPa).
Furthermore, as other gas to be combined with the arc-extinguishing gas, CO 2 , CF 4 , N 2 and He are preferable for stably expressing the performance of the arc-extinguishing gas. Moreover, these gases can be used also for the leak test which test | inspects the sealing state of a housing | casing, and are more preferable gas. It is also known that the N 2 / CO 2 / SF 6 mixed gas has a higher mixing ratio than the case of using SF 6 alone.

なお、本発明が対象としている分野は、例えば、1kVを超えるような大電圧を扱う変圧器や、断路器、遮断器、接地装置、避雷器等へガス封入された絶縁開閉装置などのように、外部から絶対的に大きな電圧が加えられ、これ自身が放電する現象の抑制を対象としたものではない。本発明に係る電気素子に印加される外部電圧は、概ね50V以下程度である。しかしながら、電極間隔が20μm以下と極めて狭いため、電極間に印加される電界は実質的に大きくなるような電気素子を対象としている。このような電気素子においては、電極を保護する機能が必要となるためである。   The fields targeted by the present invention are, for example, transformers that handle large voltages exceeding 1 kV, insulating switchgears that are gas-filled in disconnectors, circuit breakers, grounding devices, lightning arresters, etc. It is not intended to suppress the phenomenon in which a large voltage is applied from the outside and discharges itself. The external voltage applied to the electric element according to the present invention is about 50 V or less. However, since the distance between the electrodes is as narrow as 20 μm or less, it is intended for an electric element in which the electric field applied between the electrodes is substantially increased. This is because such an electric element needs a function of protecting the electrode.

さらに、半導体を基板に用いたデバイスでは、基板自体に半導電性があるために基板内部にリーク電流が流れ、過電圧が印加された場合には、基板内部の絶縁層やpn接合などが破壊されて故障に至る。一方、誘電体基板を用いたデバイスでは、電流のリークがほとんど無く、過電圧が印加された場合には、通電電極間の放電や、基板や膜界面に沿った沿面放電が発生する。小型、高周波デバイスの場合、大電圧、大電流が通電されることは無い。しかしながら、電極間隔が小さいために、印加電圧は低くとも電界は大きくなり放電が生じやすく、また電極の断面積が小さいために、微弱な放電が発生しただけでも電極が破壊し、デバイスが故障する。   Furthermore, in a device using a semiconductor as a substrate, a leakage current flows inside the substrate because the substrate itself is semiconductive, and when an overvoltage is applied, an insulating layer or a pn junction inside the substrate is destroyed. Leading to failure. On the other hand, in a device using a dielectric substrate, there is almost no current leakage, and when an overvoltage is applied, discharge between current-carrying electrodes and creeping discharge along the substrate or film interface occur. In the case of a small, high-frequency device, a large voltage and a large current are not energized. However, because the electrode spacing is small, even if the applied voltage is low, the electric field is large and discharge is likely to occur, and since the cross-sectional area of the electrode is small, even if a weak discharge occurs, the electrode breaks down and the device fails. .

一般に、放電を抑制するには、絶縁油、高絶縁性樹脂や絶縁性の高い気体で覆うことが有効である。絶縁油や絶縁性樹脂は、真空や気体に比べて、誘電率が大きく、高周波デバイスの設計、製作上で不利であるとともに、マイクロ波の損失が大きいといった欠点がある。一方、高絶縁性ガスは、絶縁油や絶縁性樹脂に比較して、誘電率が低く、損失も少ないうえ、不燃性、軽量といった利点があり、小型、高周波デバイスの作製に適している。また、放電の発生を抑えるには、単に雰囲気ガスの絶縁性を高めて放電を抑制するだけでなく、消弧性気体を用いて電荷を消去することが一層効果的である。   In general, in order to suppress discharge, it is effective to cover with insulating oil, highly insulating resin, or highly insulating gas. Insulating oils and insulating resins have a dielectric constant larger than that of vacuum or gas, which is disadvantageous in designing and manufacturing a high-frequency device, and has a disadvantage that microwave loss is large. On the other hand, a highly insulating gas has advantages such as low dielectric constant, low loss, nonflammability, and light weight compared to insulating oil and insulating resin, and is suitable for manufacturing a small and high frequency device. Further, in order to suppress the occurrence of discharge, it is more effective not only to suppress the discharge by simply increasing the insulation of the atmospheric gas, but also to erase the charge using an arc extinguishing gas.

また、筐体内に消弧性ガスを含むガスを充填は、次の手順で行うことができる。
(1)電気素子を筐体内に設置する。
(2)筐体を真空容器内に収容し、真空パージを行う。好ましくは加熱しながら真空パージする方がより不要なガスを排出することが可能である。加熱時間は1〜6時間が好ましい。
(3)真空パージした真空容器内に、消弧性ガスの分圧が0.1気圧以上5気圧以下となる、消弧性ガスを含むガスを導入する。
(4)真空容器内に筐体を暫らく放置し、筐体内に消弧性ガスを含むガスを十分に充填する。
(5)筐体を封止し、筐体を真空容器から取り出す。
Moreover, the gas containing the arc extinguishing gas can be filled in the casing by the following procedure.
(1) An electric element is installed in a housing.
(2) The housing is accommodated in a vacuum vessel and vacuum purge is performed. Preferably, unnecessary gas can be discharged by vacuum purging while heating. The heating time is preferably 1 to 6 hours.
(3) A gas containing the arc-extinguishing gas, in which the partial pressure of the arc-extinguishing gas is 0.1 atm or more and 5 atm or less is introduced into the vacuum-purged vacuum vessel.
(4) The case is left in the vacuum container for a while, and the case is sufficiently filled with a gas containing an arc extinguishing gas.
(5) Seal the housing and take the housing out of the vacuum vessel.

(実施例1)
電気素子として光制御素子を作製した。
LiNbO基板上にTi拡散法を用いて光導波路を形成した後、コプレナー型電極をレジストパターンをガイドとして電解メッキにより形成した。該Au電極の高さは20μm、電極間隔の最小値は5μmである。
ダイシングソーを用いて光制御素子へ切り分けた後、SUS303製筐体内に該光素子を固定した。該光素子に接続される光ファイバーの導入孔はハンダを用いて密閉した。
該光素子を収納した筐体内には、SFガスを充填した。充填圧力は1気圧とした。筐体を構成するケースと蓋とはシーム溶接され気密封止した。
Example 1
A light control element was produced as an electric element.
An optical waveguide was formed on a LiNbO 3 substrate using a Ti diffusion method, and then a coplanar electrode was formed by electrolytic plating using a resist pattern as a guide. The height of the Au electrode is 20 μm, and the minimum value of the electrode interval is 5 μm.
After dicing into a light control element using a dicing saw, the light element was fixed in a case made of SUS303. The introduction hole of the optical fiber connected to the optical element was sealed with solder.
The housing containing the optical element was filled with SF 6 gas. The filling pressure was 1 atm. The case and lid constituting the housing were seam welded and hermetically sealed.

(評価方法)
電極間にそれぞれ直流電圧を20,50,100、200Vで印加し、電極破断の有無を実体顕微鏡にて調べた。電極の破断状況を、以下の3段階で評価した。
○:電極に破断も破断もないもの
△:破損は確認されるが、素子の動作には影響がないもの
×:破断が確認され、素子の動作に影響を及ぼすもの
(Evaluation methods)
A direct voltage was applied between the electrodes at 20, 50, 100, and 200 V, respectively, and the presence or absence of electrode breakage was examined with a stereomicroscope. The breaking condition of the electrode was evaluated in the following three stages.
○: No breakage or breakage in the electrode △: Damage is confirmed but does not affect the operation of the element ×: Breakage is confirmed and affects the operation of the element

(比較例1)
電極間にポリイミドを充填すると共に、筐体内に封入するガスとして乾燥窒素を使用した以外は実施例1と同様に製作し、同様に評価した。
(Comparative Example 1)
It was manufactured in the same manner as in Example 1 except that polyimide was filled between the electrodes and dry nitrogen was used as a gas to be sealed in the housing, and evaluation was performed in the same manner.

(比較例2)
筐体内に封入するガスをHeを僅かに含む合成空気とした以外は、実施例1と同様に製作し、同様に評価した。
(Comparative Example 2)
It was produced in the same manner as in Example 1 except that the gas enclosed in the housing was synthetic air containing a slight amount of He, and was similarly evaluated.

評価結果を表1に示した。表1に示す評価結果より、本発明の実施例1は、従来の電極間にポリイミドを充填した場合(比較例1)と同じ程度に、電極の破断・破損が効果的に抑止できることが明らかとなった。   The evaluation results are shown in Table 1. From the evaluation results shown in Table 1, it is clear that Example 1 of the present invention can effectively prevent electrode breakage and breakage to the same extent as in the case of filling polyimide between conventional electrodes (Comparative Example 1). became.

Figure 2007256535
Figure 2007256535

本実施例は、LiNbO基板を用いた光制御素子を中心に説明したが、これに限らず、他の材料においても本発明が適用できることは言うまでもない。 In the present embodiment, the light control element using the LiNbO 3 substrate has been mainly described, but it is needless to say that the present invention can be applied to other materials as well.

以上説明したように、本発明によれば、絶縁体基板あるいは絶縁体膜に複数の電極を形成した電気素子及びその製造方法において、該電極間には乾燥窒素よりも絶縁性の高い気体が導入されていることによって、該電極間隔の最小値が20μm以下であっても、より安定的に動作可能な電気素子及びその製造方法を提供することが可能となる。しかも、従来のポリイミドなどの低誘電率材料を用いる必要が無く、製造工程の複雑化や製造コストの増加を抑制することも可能となる。   As described above, according to the present invention, in an electrical element in which a plurality of electrodes are formed on an insulator substrate or an insulator film and a method for manufacturing the same, a gas having a higher insulating property than dry nitrogen is introduced between the electrodes. As a result, it is possible to provide an electric element that can operate more stably even when the minimum value of the electrode interval is 20 μm or less, and a manufacturing method thereof. In addition, it is not necessary to use a conventional low dielectric constant material such as polyimide, and it becomes possible to suppress the complexity of the manufacturing process and the increase in manufacturing cost.

Claims (8)

絶縁体基板あるいは絶縁体膜に複数の電極を形成した電気素子において、
該電気素子が筐体内に設置され、
少なくとも一対の該電極間隔の最小値が20μm以下であり、
該電極間には乾燥窒素よりも絶縁性の高い気体が導入されていることを特徴とする電気素子。
In an electrical element having a plurality of electrodes formed on an insulator substrate or insulator film,
The electrical element is installed in a housing;
At least the minimum value of the distance between the pair of electrodes is 20 μm or less,
An electric element, wherein a gas having a higher insulating property than dry nitrogen is introduced between the electrodes.
請求項1に記載の電気素子において、該ガスは消弧性ガスを含むことを特徴とする電気素子。   The electric element according to claim 1, wherein the gas contains an arc extinguishing gas. 請求項2に記載の電気素子において、該消弧性ガスがSFであることを特徴とする電気素子。 The electric element according to claim 2, wherein the arc extinguishing gas is SF 6 . 請求項2又は3に記載の電気素子において、該消弧性ガスの分圧が0.1気圧以上であることを特徴とする電気素子。   The electric element according to claim 2 or 3, wherein the partial pressure of the arc extinguishing gas is 0.1 atm or more. 請求項1乃至4のいずれかに記載の電気素子において、該絶縁体基板又は該絶縁体膜が、圧電効果、焦電効果、または電気光学効果のいずれかを有することを特徴とする電気素子。   5. The electrical element according to claim 1, wherein the insulator substrate or the insulator film has any one of a piezoelectric effect, a pyroelectric effect, and an electro-optic effect. 6. 請求項5に記載の電気素子において、該絶縁体基板または該絶縁体膜には光導波路が形成され、該電極は該光導波路を伝搬する光波を制御するための電極であることを特徴とする電気素子。   6. The electric element according to claim 5, wherein an optical waveguide is formed on the insulator substrate or the insulator film, and the electrode is an electrode for controlling a light wave propagating through the optical waveguide. Electrical element. 絶縁体基板あるいは絶縁体膜に複数の電極が形成され、該電極間隔の最小値が20μm以下である電気素子の製造方法において、
該電気素子が筐体内に設置され、
該筐体を真空パージし、
その後、該筐体内を消弧性ガスを含むガスで充填させ、該筐体を封止することを特徴とする電気素子の製造方法。
In the method of manufacturing an electric element in which a plurality of electrodes are formed on an insulator substrate or an insulator film, and the minimum value of the electrode interval is 20 μm or less.
The electrical element is installed in a housing;
Vacuum purging the housing;
Then, the casing is filled with a gas containing an arc extinguishing gas, and the casing is sealed.
請求項7に記載の電気素子の製造方法において、該筐体を真空パージした後、消弧性ガスの分圧が0.1気圧以上5気圧以下の気体中で放置し、該筐体内に消弧性を含むガスを充填させ、該筐体を封止することを特徴とする電気素子の製造方法。
8. The method of manufacturing an electric element according to claim 7, wherein after the casing is vacuum purged, the arc extinguishing gas partial pressure is left in a gas of 0.1 atm or more and 5 atm or less to be extinguished in the casing. A method for manufacturing an electrical element, wherein an arc-containing gas is filled and the casing is sealed.
JP2006079743A 2006-03-22 2006-03-22 Electric element and its manufacturing method Pending JP2007256535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006079743A JP2007256535A (en) 2006-03-22 2006-03-22 Electric element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006079743A JP2007256535A (en) 2006-03-22 2006-03-22 Electric element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007256535A true JP2007256535A (en) 2007-10-04

Family

ID=38630847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006079743A Pending JP2007256535A (en) 2006-03-22 2006-03-22 Electric element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007256535A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219008A (en) * 1990-12-19 1992-08-10 Fujitsu Ltd Surface acoustic wave device
JPH0583832A (en) * 1991-09-20 1993-04-02 Mitsubishi Electric Corp Gas insulated electric apparatus
JPH07330491A (en) * 1994-06-10 1995-12-19 Sumitomo Electric Ind Ltd Orienting material and surface acoustic wave element
JP2003297196A (en) * 2002-03-29 2003-10-17 Toshiba Corp Switch
JP2004309832A (en) * 2003-04-08 2004-11-04 Mitsubishi Electric Corp Method for manufacturing electrooptic element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219008A (en) * 1990-12-19 1992-08-10 Fujitsu Ltd Surface acoustic wave device
JPH0583832A (en) * 1991-09-20 1993-04-02 Mitsubishi Electric Corp Gas insulated electric apparatus
JPH07330491A (en) * 1994-06-10 1995-12-19 Sumitomo Electric Ind Ltd Orienting material and surface acoustic wave element
JP2003297196A (en) * 2002-03-29 2003-10-17 Toshiba Corp Switch
JP2004309832A (en) * 2003-04-08 2004-11-04 Mitsubishi Electric Corp Method for manufacturing electrooptic element

Similar Documents

Publication Publication Date Title
AU2012260855A1 (en) Mixture of decafluoro-2-methylbutan-3-one and a carrier gas as a medium for electrical insulation and/or for electric arc extinction in medium-voltage.
WO2007032344A1 (en) Gas-insulated switching device and gas circuit breaker
CN106200172A (en) A kind of array base palte and display device
JP2017511568A (en) Circuit breaker
CN101958223B (en) Excimer lamp
JP2007256535A (en) Electric element and its manufacturing method
JP2010223841A (en) Electric characteristic measurement system and method for measuring electric characteristic
WO2017187839A1 (en) Surge protection element
JP2007256534A (en) Optical control element and method of manufacturing same
RU2341448C1 (en) Method and device for fire protection of ozone generator
TWI440271B (en) Surge absorber
EP1451527A1 (en) Current control biasing to protect electrode seals of a ring laser gyroscope
CN108120904A (en) A kind of SF6 gas sensors and preparation method thereof
CN1929220B (en) Sheet type surge absorbing device
JP6590124B1 (en) Voltage measuring device and gas insulated switchgear
CN114270550A (en) Device with an electroceramic component
JP7161144B2 (en) surge protective element
JP5365543B2 (en) surge absorber
JP2011124102A (en) Chip type surge absorber and its manufacturing method
JP2009077579A (en) Insulator and switching device
Rigit et al. Degradation of a dielectric barrier discharge plasma actuator
US7301740B2 (en) Surge protector device and its fabrication method
JP2000166034A (en) Gas insulated switchgear
JP6579443B2 (en) Surge protective element
JP2018156800A (en) Surge protective element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412