JP2007256026A - Flow direction/flow rate measuring method and system for low flow rate groundwater - Google Patents

Flow direction/flow rate measuring method and system for low flow rate groundwater Download PDF

Info

Publication number
JP2007256026A
JP2007256026A JP2006079749A JP2006079749A JP2007256026A JP 2007256026 A JP2007256026 A JP 2007256026A JP 2006079749 A JP2006079749 A JP 2006079749A JP 2006079749 A JP2006079749 A JP 2006079749A JP 2007256026 A JP2007256026 A JP 2007256026A
Authority
JP
Japan
Prior art keywords
groundwater
measurement
flow
tracer particles
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006079749A
Other languages
Japanese (ja)
Other versions
JP4714833B2 (en
Inventor
Keita Iwano
圭太 岩野
Katsu Toida
克 戸井田
Mayumi Tanaka
真弓 田中
Makoto Nishigaki
誠 西垣
Toshiaki Oe
俊昭 大江
Kokichi Sato
光吉 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Toshiba Corp
Tokai University
Original Assignee
Kajima Corp
Toshiba Corp
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Toshiba Corp, Tokai University filed Critical Kajima Corp
Priority to JP2006079749A priority Critical patent/JP4714833B2/en
Publication of JP2007256026A publication Critical patent/JP2007256026A/en
Application granted granted Critical
Publication of JP4714833B2 publication Critical patent/JP4714833B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a system allowing to measure the flow direction and flow rate of low flow rate groundwater with high precision and easily. <P>SOLUTION: A measuring section 3 partitioned by a pair of packers 11, 12 is formed at the depth of low flow rate groundwater within an underground boring 2. The groundwater G within the section 3 is replaced with a liquid W having a predetermined density, and tracer particles S having the same density as the liquid W are allowed to flow into the section 3. The floating three-dimensional position of the tracer particles S is continuously detected by position detecting sensors 30a, 30b supported by the packer 11 or 12. The flow direction and flow rate of the groundwater G are measured from a temporal change in the detected value of the floating three-dimensional position. Preferably, an inflow path 21 to the section 3 for the tracer particles S includes a storage tank 20 for storing the tracer particles S together with the liquid W, allowing the tracer particles S floating within the storage tank 20 to selectively flow into the section 3. More preferably, the temperature and pressure in the section 3 are measured to correct the density of the liquid W with the measured temperature and pressure values, and the tracer particles S with its density corrected are allowed to flow thereinto. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は低流速地下水の流向流速計測方法及び装置に関し、とくに地下深部の低流速の地下水の流向及び流速を正確に計測する方法及び装置に関する。   The present invention relates to a method and an apparatus for measuring a flow direction flow velocity of a low flow velocity groundwater, and more particularly to a method and an apparatus for accurately measuring the flow direction and flow velocity of a low flow velocity groundwater in a deep underground.

地下構造物等を構築する場合に、その安全性や周囲への影響を予測・評価するため、周辺の地下水の流向、流速その他の流動特性を把握することが求められる。例えば地下数百〜千m程度の安定した地層(天然バリア)中に高レベル放射性廃棄物の埋設処分場(地層処分場)を構築する場合は、地下水で漏洩した廃棄物の放射能が生物圏に到達する時点で十分低いレベルまで減衰しているか否かという安全性を評価する必要があり、廃棄物を覆う天然バリアを流れる地下水の流動特性を正確に把握することが求められる。   When building an underground structure, it is required to understand the flow direction, flow velocity, and other flow characteristics of the surrounding groundwater in order to predict and evaluate its safety and impact on the surroundings. For example, when building a high-level radioactive waste buried disposal site (geological disposal site) in a stable geological layer (natural barrier) of several hundred to 1,000 meters underground, the radioactivity of waste leaked from groundwater is the biosphere. Therefore, it is necessary to evaluate the safety of whether or not it has attenuated to a sufficiently low level, and it is required to accurately grasp the flow characteristics of groundwater flowing through the natural barrier covering waste.

従来から地下水の流動特性を調査する方法として、地中に複数のボーリング孔(観測孔)を穿ち、各ボーリング孔の地下水位と孔間距離とから地下水の流向及び流速を求める方法(多孔法)が行われている。しかし、地下深部の地下水を調査する場合は、経済性や作業性の観点から、単一のボーリング孔によって地下水の流向及び流速を求める方法(単孔法)が有効である。単孔法では一般にボーリング孔内に投入したトレーサの三次元位置を追跡することによって地下水の流向及び流速を検出するが、使用するトレーサの種類・トレーサの追跡方法等が異なる幾つかの方式が開発されている。   Conventionally, as a method of investigating the flow characteristics of groundwater, multiple boreholes (observation holes) are drilled in the ground, and the flow direction and flow velocity of groundwater are determined from the groundwater level and distance between holes (porous method). Has been done. However, when investigating deep underground water, a method (single hole method) that determines the flow direction and flow velocity of groundwater with a single borehole is effective from the viewpoint of economy and workability. In the single hole method, the flow direction and flow velocity of groundwater are generally detected by tracking the three-dimensional position of the tracer thrown into the borehole, but several types of tracer types and tracer tracking methods have been developed. Has been.

例えば特許文献1は、図6に示すように、地盤1の帯水層に穿設したボーリング孔2内のパッカー11、12で仕切られた計測区間に指向性の中性子水分計41を挿入し、注入装置44により中性子水分計41の周辺にトレーサ液(例えば、熱中性子吸収断面積の大きいホウ素化合物を溶解した水溶液)42を注入し、中性子水分計41で検知される熱中性子の方位別の計数率を計測装置45で把握して地下水の流向及び流速を計測する方法を開示する。中性子水分計41で検知される熱中性子の計数率は、トレーサ液41の注入により低下するが、地下水の流動でトレーサ液41が希釈されるに応じて徐々に回復する。計測装置45において、その計数率の回復速度から地下水の流速を求め、方位別の回復速度の相違(平面分布)から地下水の流向を求めることができる。また特許文献2は、トレーサ液42として蒸留水を用い、中性子水分計41に代えて所定間隔の複数の電極群を用い、電極間における電位差(電気的抵抗値差)の変化から地下水の流向及び流速を計測する方法を開示する。トレーサ液42として加熱水や塩水等を用い、熱量や比抵抗の変化から地下水の流向及び流速を計測する方法も開発されている。   For example, in Patent Document 1, as shown in FIG. 6, a directional neutron moisture meter 41 is inserted into a measurement section partitioned by packers 11 and 12 in a borehole 2 drilled in an aquifer of the ground 1, The injection device 44 injects a tracer liquid (for example, an aqueous solution in which a boron compound having a large thermal neutron absorption cross-section is dissolved) 42 around the neutron moisture meter 41 and counts the thermal neutrons detected by the neutron moisture meter 41 according to the orientation. A method for measuring the flow rate and flow velocity of groundwater by measuring the rate with the measuring device 45 is disclosed. The counting rate of thermal neutrons detected by the neutron moisture meter 41 is reduced by the injection of the tracer liquid 41, but gradually recovers as the tracer liquid 41 is diluted by the flow of groundwater. In the measuring device 45, the flow rate of the groundwater can be obtained from the recovery rate of the count rate, and the flow direction of the groundwater can be obtained from the difference in recovery rate (plane distribution) for each direction. Further, Patent Document 2 uses distilled water as the tracer liquid 42, uses a plurality of electrode groups at predetermined intervals instead of the neutron moisture meter 41, and changes the groundwater flow direction and the change in potential difference (electrical resistance difference) between the electrodes. A method for measuring flow velocity is disclosed. A method of measuring the flow direction and flow velocity of groundwater from changes in heat quantity and specific resistance using heated water or salt water as the tracer liquid 42 has been developed.

ただし特許文献1及び2の方法は、流速が小さい地下水の流動特性の計測には適していない。例えば図6に示すように、ホウ素水溶液等のトレーサ液42はそれ自体が移流・拡散する性質を有するため、地下水の流速が小さくなるとトレーサ液42自体の拡散速度が無視できなくなり、地下水の正確な流向及び流速の計測が難しくなる。ホウ素水溶液・加熱水・蒸留水・塩水等を用いた従来の計測方法の適用範囲は流速10-7〜10-3m/s程度と考えられており、それより低速の流速場に適用すると計測誤差が大きくなる。他方、高レベル放射性廃棄物の地層処分場等では、万年オーダーの極めて長期間にわたる安全性評価が求められ、従来の計測範囲外の極めて低流速(10-10m/s程度)の地下水の流動特性を正確に調査することが要求される。このような極低流速の地下水の流動特性を正確に計測するには、トレーサ液42の拡散等に影響されない計測方法が必要である。 However, the methods of Patent Documents 1 and 2 are not suitable for measuring the flow characteristics of groundwater with a low flow velocity. For example, as shown in FIG. 6, the tracer liquid 42 such as an aqueous boron solution has a property of advancing and diffusing itself. Therefore, when the flow rate of the groundwater is reduced, the diffusion rate of the tracer liquid 42 itself cannot be ignored, and the accurate groundwater Measurement of flow direction and flow velocity becomes difficult. The application range of the conventional measurement method using boron aqueous solution, heated water, distilled water, salt water, etc. is considered to be about 10 -7 to 10 -3 m / s, and it is measured when applied to a lower velocity field. The error increases. On the other hand, in geological disposal sites for high-level radioactive waste, safety assessment over an extremely long time of the order of a thousand years is required, and groundwater with extremely low flow rates (about 10 -10 m / s) outside the conventional measurement range is required. It is required to investigate the flow characteristics accurately. In order to accurately measure the flow characteristics of groundwater at such an extremely low flow rate, a measurement method that is not affected by the diffusion of the tracer liquid 42 is required.

これに対し特許文献3及び4は、地下水中に投入したトレーサ粒子の三次元位置を超音波センサ又は光学式撮像装置で追跡して地下水の流向及び流速を計測する方法を開示する。例えば図5に示すように、ボーリング孔2内に吊り下げ装置60で吊り下げたパッカー11、12によって計測区間3を形成し、支持部材52によって計測区間3内に整流板53と複数の超音波センサ55又は光学式撮像装置58とが取り付けられた計測部51(同図(B)参照)を吊り下げ、トレーサ導入管54を介して計測区間3の地下水G中にその地下水Gと略同等の比重を有するトレーサ粒子Sを供給する。地下水Gの流れに沿って流動するトレーサ粒子Sに複数の超音波センサ55から超音波を一定時間毎に送信して反射波(超音波エコー)を検出し、その検出データを信号伝送ユニット61及び伝送ライン63を介して計測装置62へ伝送し、計測装置62において検出データと地下水G中の音速とからトレーサ粒子Sの三次元的な連続移動位置を計測し、その計測結果に基づき地下水Gの流向および流速を計測する。整流板53の透明窓59を介して撮影した光学式撮像装置58によるトレーサ粒子Sの画像データを計測装置62へ伝送し、その画像データからトレーサ粒子Sの三次元的な連続移動位置を計測することも可能である。   On the other hand, Patent Documents 3 and 4 disclose a method of measuring the flow direction and flow velocity of groundwater by tracking the three-dimensional position of the tracer particles introduced into the groundwater with an ultrasonic sensor or an optical imaging device. For example, as shown in FIG. 5, the measurement section 3 is formed by the packers 11 and 12 suspended in the boring hole 2 by the suspension device 60, and the current plate 53 and the plurality of ultrasonic waves are formed in the measurement section 3 by the support member 52. The measuring unit 51 (see FIG. 5B) to which the sensor 55 or the optical imaging device 58 is attached is suspended, and the groundwater G in the measuring section 3 is approximately equivalent to the groundwater G through the tracer introduction pipe 54. Tracer particles S having a specific gravity are supplied. Ultrasonic waves are transmitted from the plurality of ultrasonic sensors 55 to the tracer particles S flowing along the flow of the groundwater G at regular intervals to detect reflected waves (ultrasonic echoes), and the detected data is transmitted to the signal transmission unit 61 and The data is transmitted to the measuring device 62 via the transmission line 63, and the measuring device 62 measures the three-dimensional continuous movement position of the tracer particles S from the detection data and the sound velocity in the groundwater G. Measure flow direction and flow velocity. Image data of the tracer particles S taken by the optical imaging device 58 photographed through the transparent window 59 of the rectifying plate 53 is transmitted to the measuring device 62, and the three-dimensional continuous movement position of the tracer particles S is measured from the image data. It is also possible.

トレーサ粒子Sとして、特許文献3は牛乳の凝集タンパク質、蛍光塗料を混入したエスレン粒子等を提案している。また特許文献4は、比重が1より小さいポリエチレンやポリプロピレン等からなる粒径100〜数百μm程度の内部球体の表面に、比重が1より大きい金属等の蒸着コーティング層を形成した密度可変型の人工トレーサ粒子Sを用いることを提案している。このようなトレーサ粒子Sの三次元位置を追跡する方法によれば、図6のトレーサ液42において問題となった拡散速度を無視することができ、極めて低流速の地下水の流向及び流速を正確に計測することが期待できる。   As the tracer particle S, Patent Document 3 proposes agglomerated protein of milk, eslene particles mixed with a fluorescent paint, and the like. Patent Document 4 discloses a variable density type in which a vapor-deposited coating layer of a metal having a specific gravity greater than 1 is formed on the surface of an inner sphere having a particle size of about 100 to several hundreds of μm made of polyethylene or polypropylene having a specific gravity smaller than 1. It has been proposed to use artificial tracer particles S. According to such a method of tracking the three-dimensional position of the tracer particles S, the diffusion speed that has become a problem in the tracer liquid 42 in FIG. 6 can be ignored, and the flow direction and flow speed of groundwater with a very low flow rate can be accurately determined. It can be expected to measure.

特開平6−273538号公報JP-A-6-273538 特公平2−046904号公報Japanese Patent Publication No. 2-046904 特開2001−183471号公報JP 2001-183471 A 特開2002−107370号公報JP 2002-107370 A

しかし特許文献3及び4の方法は、トレーサ粒子Sの密度を計測区間3の地下水Gの密度と厳密に一致させることが難しい問題点がある。トレーサ粒子Sの密度が地下水Gの密度と相違すると、地下水G中でトレーサ粒子Sが徐々に落下又は浮上し、地下水Gの流向及び流速の精確な計測、とくに鉛直方向の流向及び流速の計測ができなくなる。極めて低流速の地下水Gの流動特性を計測するには計測期間として2〜3日間程度が必要と考えられ、特許文献3及び4において計測精度を高めるためには、その計測期間中におけるトレーサ粒子Sの落下又は浮上距離を小さく抑えることが必要である。   However, the methods of Patent Documents 3 and 4 have a problem that it is difficult to make the density of the tracer particles S exactly match the density of the groundwater G in the measurement section 3. When the density of the tracer particles S is different from the density of the groundwater G, the tracer particles S gradually fall or float in the groundwater G, and the precise measurement of the flow direction and flow velocity of the groundwater G, particularly the measurement of the vertical flow direction and flow velocity, is possible. become unable. In order to improve the measurement accuracy in Patent Documents 3 and 4, it is considered that measuring the flow characteristics of groundwater G at an extremely low flow rate requires about 2 to 3 days. Therefore, it is necessary to keep the distance of falling or flying down small.

図4は、3日間で3mm落下又は浮上するトレーサ粒子Sと地下水Gとの密度差(g/cm3)と、トレーサ粒子Sの粒径(μm)との関係を、ストークスの法則に基づき算出したグラフを示す。同図から分かるように、地下水G中におけるトレーサ粒子Sの落下又は浮上距離を小さく抑えるには、トレーサ粒子Sの粒径を小さくすることが有効である。しかし本発明者の実験によれば、トレーサ粒子Sの粒径が100μm以下になると粒子の帯電が発生し、トレーサ粒子Sが相互に反発して計測誤差の原因となるため、トレーサ粒子Sの粒径を100μm以下とすることは望ましくない。図4に示すように、粒径100〜150μm程度のトレーサ粒子Sの計測期間中における落下又は浮上距離を3mm以下に抑えるには、トレーサ粒子Sと地下水Gとの密度差を1.0×10-6g/cm3程度以下とする必要があるが、このような微細粒子の調製精度を密度1.0×10-6g/cm3以下の範囲内に抑えることは極めて困難である。 Figure 4 shows the relationship between the density difference (g / cm 3 ) between the tracer particles S that fall or float 3 mm in 3 days and the groundwater G and the particle size (μm) of the tracer particles S based on Stokes' law. The graph is shown. As can be seen from the figure, it is effective to reduce the particle size of the tracer particles S in order to keep the tracer particles S falling or floating in the groundwater G to a small distance. However, according to the experiments by the present inventors, when the particle size of the tracer particles S becomes 100 μm or less, the particles are charged and the tracer particles S repel each other and cause measurement errors. It is not desirable that the diameter be 100 μm or less. As shown in FIG. 4, in order to keep the tracer particle S having a particle size of about 100 to 150 μm in the measurement period to a drop or lift distance of 3 mm or less, the density difference between the tracer particle S and the groundwater G is 1.0 × 10 −6. Although it is necessary to set it as about g / cm < 3 > or less, it is very difficult to suppress the preparation precision of such a fine particle in the range of density 1.0 * 10 < -6 > g / cm < 3 > or less.

この問題を解決するため、密度の異なる多数のトレーサ粒子Sを用意し、計測区間3の地下水Gの密度を測定した上で、地下水Gの測定密度に応じてトレーサ粒子Sを選択する方法も考えられる。しかし、地下水Gの密度は深度毎に温度・圧力等の影響を受けて変化するので、計測区間3の地下水Gの密度を測定するには、地下水Gを原位置の温度及び圧力状態に保持したまま採水して測定する必要がある。このような原位置の地下水Gの密度測定は、作業が面倒であるだけでなく、測定誤差が生じやすい。従って、地下水Gの測定密度に応じてトレーサ粒子Sを選択する方法では、地下水Gの密度とトレーサ粒子Sの密度とを厳密に一致させることが難しく、低流速の地下水Gの流向及び流速の正確な計測は非常に難しいのが現状である。   In order to solve this problem, a method of preparing a large number of tracer particles S having different densities, measuring the density of the groundwater G in the measurement section 3, and selecting the tracer particles S according to the measured density of the groundwater G is also considered. It is done. However, since the density of the groundwater G changes due to the influence of temperature and pressure at each depth, the groundwater G is kept at the original temperature and pressure state in order to measure the density of the groundwater G in the measurement section 3. It is necessary to measure water as it is. Such in-situ measurement of the density of groundwater G is not only troublesome but also tends to cause measurement errors. Therefore, in the method of selecting the tracer particles S according to the measured density of the groundwater G, it is difficult to precisely match the density of the groundwater G and the density of the tracer particles S. Currently, it is very difficult to measure.

そこで本発明の目的は、低流速の地下水の流向及び流速を精度よく且つ簡単に計測できる方法及び装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a method and an apparatus capable of accurately and easily measuring the flow direction and flow velocity of groundwater having a low flow velocity.

図1の実施例を参照するに、本発明による低流速地下水の流向流速計測方法は、地中ボーリング孔2内の低流速の地下水深度にパッカー対11、12で仕切った計測区間3を形成し、計測区間3内の地下水Gを所定密度の液体Wで置換したのちその液体Wと同じ密度のトレーサ粒子Sを計測区間3内へ流入させ、パッカー対11又は12に支持した位置検出センサ30a、30bによりトレーサ粒子Sの浮遊三次元位置を継続的に検出し、浮遊三次元位置の検出値の経時的変化から地下水Gの流向及び流速を計測してなるものである。   Referring to the embodiment of FIG. 1, the flow velocity measurement method of low flow velocity groundwater according to the present invention forms a measurement section 3 partitioned by packer pairs 11 and 12 at a low flow velocity in the underground borehole 2. Then, after replacing the ground water G in the measurement section 3 with the liquid W having a predetermined density, the tracer particles S having the same density as the liquid W are caused to flow into the measurement section 3 and supported by the packer pair 11 or 12; The floating three-dimensional position of the tracer particle S is continuously detected by 30b, and the flow direction and the flow velocity of the groundwater G are measured from the change over time of the detected value of the floating three-dimensional position.

また図2の実施例を参照するに、本発明による低流速地下水の流向流速計測装置は、地中ボーリング孔2内の低流速の地下水深度に隣接深度から仕切られた計測区間3を形成するパッカー対11、12、計測区間3内の一方のパッカー12(又は11)近傍部位から地下水Gを吸水する吸水路18、計測区間3内の他方のパッカー11(又は12)近傍部位に所定密度の液体Wを送入する送入路17、パッカー対11又は12に支持されて計測区間3内の所定検出部位33(図2(B)参照)の浮遊物の三次元位置を検出する位置検出センサ30a、30b、計測区間3内の所定検出部位33に液体Wと同じ密度のトレーサ粒子Sを流入させる流入路21、及び位置検出センサ30a、30bによるトレーサ粒子Sの浮遊三次元位置の検出値信号を伝送する伝送装置34を備えてなるものである。   Referring to the embodiment of FIG. 2, the low-flow-rate groundwater flow velocity measuring apparatus according to the present invention is a packer that forms a measurement section 3 partitioned from the adjacent depth by the low-flow-rate groundwater depth in the underground borehole 2. Pair 11, 12, a water absorption path 18 that absorbs groundwater G from the site near one packer 12 (or 11) in the measurement section 3, and a liquid of a predetermined density in the site near the other packer 11 (or 12) in the measurement section 3 Position detection sensor 30a for detecting the three-dimensional position of a suspended substance at a predetermined detection portion 33 (see FIG. 2B) in the measurement section 3 supported by an infeed path 17 for feeding W, a packer pair 11 or 12 30b, an inflow path 21 for allowing the tracer particles S having the same density as the liquid W to flow into the predetermined detection site 33 in the measurement section 3, and a detection value signal of the floating three-dimensional position of the tracer particles S by the position detection sensors 30a and 30b. A transmission device 34 for transmission is provided.

好ましくは、トレーサ粒子Sの計測区間3内への流入路21にトレーサ粒子Sを液体Wと共に貯留する貯留槽20を設け、貯留槽20内に浮遊するトレーサ粒子Sを選択的に計測区間3内に流入させる。この場合、貯留槽20と計測空間3との間に計測空間3側の開口が対向する一対の流路21、22を設け、その一方をトレーサ粒子Sの流入路21とし、その他方をトレーサ粒子Sの回収路22とすることができる。更に好ましくは、計測区間3の温度及び圧力を測定する測定センサ27と、液体Wの密度を測定センサ27の測定値により補正し且つ補正後の密度のトレーサ粒子Sを流入路21に供給する供給手段7(図1参照)とを設ける。   Preferably, a storage tank 20 for storing the tracer particles S together with the liquid W is provided in the inflow channel 21 into the measurement section 3 for the tracer particles S, and the tracer particles S floating in the storage tank 20 are selectively placed in the measurement section 3. To flow into. In this case, a pair of flow passages 21 and 22 are provided between the storage tank 20 and the measurement space 3 so that the opening on the measurement space 3 side faces each other, one of which serves as the inflow passage 21 for the tracer particles S, and the other is the tracer particles. The S recovery path 22 can be used. More preferably, a measurement sensor 27 for measuring the temperature and pressure in the measurement section 3 and a supply for correcting the density of the liquid W by the measurement value of the measurement sensor 27 and supplying the corrected tracer particles S to the inflow passage 21 Means 7 (see FIG. 1) are provided.

本発明による低流速地下水の流向流速計測方法及び装置は、地中ボーリング孔2内の計測区間3内の地下水Gを所定密度の液体Wで置換したのち、その液体Wと同じ密度のトレーサ粒子Sを計測区間3内へ流入させ、そのトレーサ粒子Sの液体W中における浮遊三次元位置を位置検出センサ30a、30bで継続的に検出することにより地下水Gの流向及び流速を計測するので、次の顕著な効果を奏する。   The low flow velocity groundwater flow direction velocity measurement method and apparatus according to the present invention replaces the groundwater G in the measurement section 3 in the underground borehole 2 with the liquid W having a predetermined density, and then the tracer particles S having the same density as the liquid W. The flow direction and flow velocity of the groundwater G are measured by continuously detecting the three-dimensional floating position of the tracer particles S in the liquid W by the position detection sensors 30a and 30b. Has a remarkable effect.

(イ)計測区間を密度既知の液体で置換したうえでトレーサ粒子を流入させるので、計測区間内の液体密度とトレーサ粒子密度とを厳密に一致させることができ、10-5〜10-10m/sの低流速の地下水の流動特性を正確に計測することが可能となる。
(ロ)また、計測区間の地下水の密度を厳密に測定する必要がなく、所定密度の液体の送入とトレーサ粒子の流入とからなる簡単な作業によって地下水の正確な流向及び流速を把握することができる。
(ハ)あらゆる深度の地下水の計測に同じ液体及び/又はトレーサ粒子を適用できるが、トレーサ粒子は深度に応じて異なるものを選択してもよい。
(B) Since the tracer particles are allowed to flow after the measurement section is replaced with a liquid of known density, the liquid density and the tracer particle density in the measurement section can be matched exactly, 10 -5 to 10 -10 m It is possible to accurately measure the flow characteristics of groundwater with a low flow rate of / s.
(B) In addition, it is not necessary to strictly measure the density of groundwater in the measurement section, and the precise flow direction and flow velocity of groundwater can be ascertained by a simple operation consisting of feeding a liquid of a predetermined density and inflow of tracer particles. Can do.
(C) The same liquid and / or tracer particles can be applied to the measurement of groundwater at any depth, but different tracer particles may be selected depending on the depth.

(ニ)置換する液体の密度は計測区間の温度及び圧力に応じて変化しうるため、必要に応じて計測区間の温度及び圧力を計測して液体密度を補正することができ、その補正密度に応じた最適のトレーサ粒子を選択することができる。
(ホ)トレーサ粒子を液体と共に貯留する貯留槽を設け、貯留槽内に浮遊するトレーサ粒子を選択的に計測区間内へ流入させることにより、計測区間内の液体密度とトレーサ粒子密度とを更に厳密に一致させることができる。
(ヘ)大量のトレーサ粒子を計測区間に投入するとボーリング孔周囲の岩盤亀裂の目詰まり等が懸念されるが、貯留槽から計測空間内に開口が対向する一対の流路を設けることにより、不要なトレーサ粒子を回収することが可能である。
(D) Since the density of the liquid to be replaced can vary depending on the temperature and pressure in the measurement section, the liquid density can be corrected by measuring the temperature and pressure in the measurement section as necessary. The optimum tracer particles can be selected according to the conditions.
(E) A storage tank for storing the tracer particles together with the liquid is provided, and the tracer particles floating in the storage tank are selectively introduced into the measurement section, thereby further stricter the liquid density and the tracer particle density in the measurement section. Can match.
(F) When a large amount of tracer particles are introduced into the measurement section, there is a concern about clogging of rock cracks around the borehole, but it is not necessary by providing a pair of channels facing the opening in the measurement space from the storage tank Tracer particles can be recovered.

図1は、本発明の流向流速計測装置10を、地盤1に数百〜千m程度の深度で掘削したボーリング孔2内の計測区間3に適用した実施例を示す。本発明は、地下水の流れが非常に遅く、計測区間3内の地下水Gが全て入れ替わる日数(以下、入れ替わり期間ということがある)が計測期間より大きい低流速の計測区間3に適用することができる。入れ替わり期間が計測期間より大きければ、計測区間3の地下水Gを所定密度の液体Wに置換しても、その深度における地下水Gの流向及び流速の計測に対する影響を小さく抑えることができる。本発明の計測装置10は、例えば10-5〜10-10m/s程度の低流速場に適用することが期待できる。 FIG. 1 shows an embodiment in which a flow direction flow velocity measuring device 10 of the present invention is applied to a measurement section 3 in a borehole 2 excavated in the ground 1 at a depth of about several hundred to 1,000 m. The present invention can be applied to the measurement section 3 having a low flow velocity in which the groundwater flow is very slow and the number of days in which the groundwater G in the measurement section 3 is completely replaced (hereinafter sometimes referred to as a replacement period) is larger than the measurement period. . If the replacement period is longer than the measurement period, even if the groundwater G in the measurement section 3 is replaced with the liquid W having a predetermined density, the influence on the measurement of the flow direction and the flow velocity of the groundwater G at the depth can be suppressed. The measuring device 10 of the present invention can be expected to be applied to a low flow velocity field of about 10 −5 to 10 −10 m / s, for example.

例えばボーリング孔2内の計測区間3の口径の半径Rが50mm(=0.05m)であり、計測区間3の地下水Gが水平方向に流動すると仮定した場合、(3)式により、地下水Gの流速vが10-7m/sであると計測区間3内の入れ替わり期間は約5.8日となり、流速vが10-8m/sであると入れ替わり期間は約58日となる。このような計測区間3に本発明を適用した場合、2〜3日以上の計測期間を確保できる。地下水Gの流速vが10-7m/sより大きい場合は、ボーリング孔2の口径を大きくすることにより、入れ替わり期間を計測期間より長くすることができる。 For example, assuming that the radius R of the measurement section 3 in the borehole 2 is 50 mm (= 0.05 m) and the groundwater G in the measurement section 3 flows in the horizontal direction, the flow velocity of the groundwater G is calculated according to equation (3). When v is 10 −7 m / s, the replacement period in the measurement section 3 is about 5.8 days, and when the flow velocity v is 10 −8 m / s, the replacement period is about 58 days. When the present invention is applied to such a measurement section 3, a measurement period of 2 to 3 days or more can be secured. When the flow velocity v of the groundwater G is larger than 10 −7 m / s, the replacement period can be made longer than the measurement period by increasing the diameter of the borehole 2.

[数1]
計測区間の容積Q=πR2H(m3) ……………………………………………(1)
計測区間の1日で入れ替わる地下水量q
=計測区間の表面積(m2)×(1/2)×流速v(m/s)
=πRH×v×(60×60×24) ……………………………(2)
入れ替わり期間=Q/q=R/(v×(60×60×24)) ……………………(3)
[Equation 1]
Measurement section volume Q = πR 2 H (m 3 ) ……………………………………… (1)
The amount of groundwater q to be replaced in one day of the measurement section
= Surface area of measurement section (m 2 ) x (1/2) x flow velocity v (m / s)
= ΠRH × v × (60 × 60 × 24) …………………………… (2)
Replacement period = Q / q = R / (v × (60 × 60 × 24)) …………………… (3)

図2は、ボーリング孔2内に挿入する本発明の計測装置10の一例を示す。図示例の計測装置10は、ボーリング孔2内に計測区間3を形成するパッカー対11、12と、計測区間3内の一方のパッカー12の近傍部位から地下水Gを吸水する吸水路18と、計測区間3内の他方のパッカー11の近傍部位に所定密度の液体Wを送入する送入路17と、計測区間3の所定部位33(同図(B)参照)に液体Wと同じ密度のトレーサ粒子Sを流入する流入路21とを有する。パッカー対11、12は、結合部材13により所定相互間隔に保持され、地盤1上に設けた吊り下げ装置60(図5参照)及び拡張・収縮を制御するパッカー制御装置43(図6参照)等と接続される。パッカー対11、12の一例は、液体(水等)又は気体(空気等)の注入・回収により拡張・収縮する遮水パッカー又はメカニカルパッカーである。   FIG. 2 shows an example of the measuring device 10 of the present invention inserted into the boring hole 2. The measuring device 10 in the illustrated example includes a pair of packers 11 and 12 that form a measurement section 3 in the borehole 2, a water absorption path 18 that absorbs groundwater G from the vicinity of one packer 12 in the measurement section 3, and a measurement. A feed path 17 for feeding a liquid W having a predetermined density into the vicinity of the other packer 11 in the section 3, and a tracer having the same density as the liquid W in a predetermined section 33 (see FIG. 5B) of the measurement section 3. And an inflow passage 21 through which the particles S flow. The packer pairs 11 and 12 are held at a predetermined interval by the coupling member 13, and are a suspension device 60 (see FIG. 5) provided on the ground 1 and a packer control device 43 (see FIG. 6) for controlling expansion / contraction. Connected. An example of the packer pairs 11 and 12 is a water-impervious packer or a mechanical packer that expands and contracts by injecting and collecting a liquid (water or the like) or a gas (air or the like).

計測装置10の送入路17及び吸水路18の上端は、それぞれ供給路14及び排出路15を介して地盤1上の供給装置7と接続し(図1参照)、送入路17及び吸水路18の下端は、それぞれ計測区間3内の鉛直方向及び水平方向に離れた部位に開口させる。地下深部の計測区間3は高圧であるが、供給装置7によって吸水路18の下端口を比較的低圧の吸水部とすることにより、吸水路18を介して地下水Gを吸水すると同時に送入路17を介して液体Wを送入し、計測区間3内の送入路17の下端口と吸水路18の下端口との間の領域の地下水Gを所定密度の液体Wで置換することができる。液体Wの一例は予め密度が測定された水である。   The upper ends of the inflow path 17 and the water intake path 18 of the measuring device 10 are connected to the supply device 7 on the ground 1 via the supply path 14 and the discharge path 15 (see FIG. 1), respectively. The lower ends of 18 are opened at portions separated in the vertical direction and the horizontal direction in the measurement section 3, respectively. Although the measurement section 3 in the deep underground is high-pressure, the supply device 7 makes the lower end of the water absorption path 18 a relatively low-pressure water absorption section, so that the ground water G is absorbed through the water absorption path 18 and at the same time the inlet path 17 Then, the liquid W can be fed through the groundwater G, and the groundwater G in the region between the lower end port of the inflow channel 17 and the lower end port of the water absorption channel 18 in the measurement section 3 can be replaced with the liquid W having a predetermined density. An example of the liquid W is water whose density has been measured in advance.

計測装置10の流入路21の上端は供給路14を介して地盤1上の供給装置7と接続し(図1参照)、流入路21の下端は計測区間3内の送入路17と吸水路18との間の所定部位33に開口させる。同図(B)に示すように、流入路21の下端を開口させる所定部位33は、後述する位置検出センサ30の焦点範囲(検出部位)と一致させることが望ましい。図示例の計測装置10は、流入路21の下端口と対向する開口を有して計測区間3の所定部位33から液体Wを回収する回収路22を設け、回収路22の上端を排出路15経由で供給装置7と接続し、供給装置7により回収路22の下端口を低圧部とすることにより、供給装置7から流入路21を介してトレーサ粒子Sを計測区間3の所定部位33に流入させる。ただし、回収路22は本発明に必須のものではなく、回収路22に代えて吸水路18の下端口を低圧部としてトレーサ粒子Sを流入させることも可能である。   The upper end of the inflow channel 21 of the measuring device 10 is connected to the supply device 7 on the ground 1 via the supply channel 14 (see FIG. 1), and the lower end of the inflow channel 21 is the inlet channel 17 and the water absorption channel in the measurement section 3. An opening is made at a predetermined portion 33 between the two. As shown in FIG. 5B, it is desirable that the predetermined portion 33 that opens the lower end of the inflow passage 21 coincides with a focal range (detection portion) of the position detection sensor 30 described later. The measuring device 10 in the illustrated example has an opening facing the lower end of the inflow passage 21 and has a recovery path 22 for recovering the liquid W from the predetermined portion 33 of the measurement section 3, and the upper end of the recovery path 22 is connected to the discharge path 15. The tracer particles S flow into the predetermined portion 33 of the measurement section 3 from the supply device 7 through the inflow passage 21 by connecting to the supply device 7 via the supply device 7 and setting the lower end of the recovery passage 22 to the low pressure portion. Let However, the recovery path 22 is not essential for the present invention, and instead of the recovery path 22, the tracer particles S can be allowed to flow in by using the lower end port of the water absorption path 18 as a low pressure portion.

トレーサ粒子Sの一例は、特許文献4の場合と同様に、比重が1より小さい粒径100〜150μm程度の樹脂製球体を比重が1より大きい有機系物質で被覆し、液体Wと同じ密度(比重)に調製したものである。ただし、液体Wと同じ密度の単一材料を用いて調製した粒径100〜150μm程度のトレーサ粒子Sを用いることも可能である。   As an example of the tracer particle S, a resin sphere having a particle size of about 100 to 150 μm having a specific gravity smaller than 1 is coated with an organic material having a specific gravity larger than 1, and the same density ( Specific gravity). However, it is also possible to use tracer particles S having a particle size of about 100 to 150 μm prepared using a single material having the same density as the liquid W.

図示例の計測装置10は、流入路21と回収路22との交差部位にトレーサ粒子Sを液体Wと共に貯留する貯留槽20を設け、流入路21により貯留槽20の液相部と計測区間3の所定部位33とを開閉弁V5経由で連通させている(図1参照)。また、回収路22により貯留槽20と計測区間3の所定部位33とを開閉弁V6経由で連通し、貯留槽20と排出路15とを連通路23で接続している(図1参照)。トレーサ粒子Sは粒径100〜150μm程度の微小粒子であるため、全てを液体Wと同じ密度に調製することは難しいが、供給装置7から供給するトレーサ粒子Sを液体Wと共に貯留槽20へ一旦貯留し、貯留槽20の液相部からトレーサ粒子Sを計測区間3内へ流入させることにより、貯留槽20の液相部に浮遊する液体Wと同じ密度のトレーサ粒子Sのみを選択的に流入させることができる。また、図示例のように計測区間3の近傍の貯留槽20にトレーサ粒子Sを液体Wと共に貯留することにより、計測区間3の温度及び圧力に応じて変化する液体Wの密度に最適のトレーサ粒子を選択することができる。ただし後述するように、本発明では供給装置7において計測区間3の温度及び圧力の測定値に応じてトレーサ粒子Sを選択することも可能であり、貯留槽20は本発明に必須のものではない。   The measuring device 10 in the illustrated example is provided with a storage tank 20 that stores the tracer particles S together with the liquid W at the intersection of the inflow path 21 and the recovery path 22. The predetermined portion 33 is communicated with the on-off valve V5 (see FIG. 1). Further, the storage tank 20 and the predetermined portion 33 of the measurement section 3 are communicated with each other via the on-off valve V6 by the recovery path 22, and the storage tank 20 and the discharge path 15 are connected by the communication path 23 (see FIG. 1). Since the tracer particles S are fine particles having a particle diameter of about 100 to 150 μm, it is difficult to prepare all of them at the same density as the liquid W. However, the tracer particles S supplied from the supply device 7 are once stored in the storage tank 20 together with the liquid W. By storing and flowing the tracer particles S from the liquid phase part of the storage tank 20 into the measurement section 3, only the tracer particles S having the same density as the liquid W floating in the liquid phase part of the storage tank 20 are selectively introduced. Can be made. Further, by storing the tracer particles S together with the liquid W in the storage tank 20 in the vicinity of the measurement section 3 as in the illustrated example, the optimum tracer particles for the density of the liquid W that changes according to the temperature and pressure in the measurement section 3. Can be selected. However, as will be described later, in the present invention, it is possible to select the tracer particles S according to the temperature and pressure measured values in the measurement section 3 in the supply device 7, and the storage tank 20 is not essential to the present invention. .

なお、図示例では単独の供給路14を流入路21と送入路17とで共用するため、図1に示すように三方弁A1(開閉弁V1及びV2)を介して供給路14と流入路21と送入路17とを接続しているが、複数の供給路14を設ければ三方弁A1を省略できる。また、単独の排出路15を回収路22(連通路23)と吸水路18とで共用するため、三方弁A2(開閉弁V3及びV4)を介して排出路15と回収路22(連通路23)と吸水路18とを接続しているが、上述したように回収路22は省略することができ、三方弁A2も省略可能である。   In the illustrated example, since the single supply path 14 is shared by the inflow path 21 and the inflow path 17, the supply path 14 and the inflow path are connected via a three-way valve A1 (open / close valves V1 and V2) as shown in FIG. 21 and the inlet / outlet path 17 are connected, but if a plurality of supply paths 14 are provided, the three-way valve A1 can be omitted. Further, since the single discharge path 15 is shared by the recovery path 22 (communication path 23) and the water absorption path 18, the discharge path 15 and the recovery path 22 (communication path 23) via the three-way valve A2 (open / close valves V3 and V4). ) And the water absorption path 18 are connected, but as described above, the recovery path 22 can be omitted, and the three-way valve A2 can also be omitted.

更に図示例の計測装置10は、計測区間3の所定部位33に流入したトレーサ粒子Sの三次元位置を検出する位置検出センサ30a、30bと、位置検出センサ30a、30bによるトレーサ粒子Sの三次元位置の検出値信号を信号伝送路16経由で地盤1上の信号処理装置8に伝送する信号伝送装置34とを有する。位置検出センサ30a、30bと信号伝送装置34とは信号ケーブル39で接続されている。位置検出センサ30a、30bの一例は、図2(B)に示すようにトレーサ粒子Sの流入部位33と対向させて相互に直交する向きに配置した複数のアレイ型超音波センサ、又は図5と同様の光学式撮像装置58である。   Furthermore, the measuring apparatus 10 in the illustrated example includes position detection sensors 30a and 30b that detect the three-dimensional position of the tracer particle S that has flowed into the predetermined portion 33 of the measurement section 3, and the three-dimensional shape of the tracer particle S by the position detection sensors 30a and 30b. And a signal transmission device 34 for transmitting the position detection value signal to the signal processing device 8 on the ground 1 via the signal transmission path 16. The position detection sensors 30a and 30b and the signal transmission device 34 are connected by a signal cable 39. One example of the position detection sensors 30a and 30b is a plurality of array-type ultrasonic sensors arranged in directions orthogonal to each other so as to face the inflow portion 33 of the tracer particle S as shown in FIG. A similar optical imaging device 58 is provided.

図2(C)の位置検出センサ30は、多数の圧電振動子31、32を表面の所定位置に平面状に配置したアレイ型超音波センサの一例である。信号伝送装置34の制御部37からの発信指令に基づき、送信部35で選択した何れかの圧電振動子31に高電圧パルスを印加し、その圧電振動子31から所定部位33に向けて超音波を発信する。発信された超音波はトレーサ粒子Sにより反射されるが、受信部36で選択した何れかの圧電振動子32で反射波を受信し、受信信号をデジタル信号に変換して信号処理部38に入力する。信号処理部38において、送信圧電振動子31及び受信圧電振動子32の位置を焦点とし且つ送信及び受信時刻の時間差(超音波の伝播時間)に対応する距離の楕円面を想定し、複数の受信圧電振動子32に応じた楕円面の交差位置としてトレーサ粒子Sの三次元位置を検出する。信号処理部38において検出したトレーサ粒子Sの三次元位置は、信号伝送路16を介して信号処理装置8に伝送し、例えば画像に構成されて出力装置9に表示される(図1参照)。   The position detection sensor 30 in FIG. 2C is an example of an array type ultrasonic sensor in which a large number of piezoelectric vibrators 31 and 32 are arranged in a plane at predetermined positions on the surface. Based on a transmission command from the control unit 37 of the signal transmission device 34, a high voltage pulse is applied to any one of the piezoelectric vibrators 31 selected by the transmission unit 35, and ultrasonic waves are directed from the piezoelectric vibrator 31 toward the predetermined portion 33. To send. The transmitted ultrasonic wave is reflected by the tracer particle S, but the reflected wave is received by any of the piezoelectric vibrators 32 selected by the receiving unit 36, and the received signal is converted into a digital signal and input to the signal processing unit 38. To do. In the signal processing unit 38, a plurality of receptions are assumed, assuming an ellipsoid with a distance corresponding to a time difference (transmission time of ultrasonic waves) between the transmission and reception times with the position of the transmission piezoelectric transducer 31 and the reception piezoelectric transducer 32 as a focal point. The three-dimensional position of the tracer particle S is detected as the intersection position of the ellipsoids corresponding to the piezoelectric vibrator 32. The three-dimensional position of the tracer particle S detected by the signal processing unit 38 is transmitted to the signal processing device 8 through the signal transmission path 16 and is displayed on the output device 9 as an image, for example (see FIG. 1).

図2の計測装置10を用いて地下水Gの流向及び流速を計測する場合は、先ず図1に示すように、パッカー11、12が収縮した状態の計測装置10をボーリング孔2内の計測対象の地下水深さまで吊り下げ、パッカー11、12を拡張して計測区間3を形成する。次いて図3(A)に示すように、三方弁A1の開閉弁V1を開放して開閉弁V2を閉鎖することにより供給路14と送入路17とを接続し、三方弁A2の開閉弁V3を開放して開閉弁V4を閉鎖することにより排出路15と吸入路18とを接続する。この状態で供給装置7を駆動して液槽5に貯えた所定密度の液体Wを計測区間3に送入し、計測区間3の地下水Gを液体Wで置換する。液体Wの送入は、計測区間3の外乱とならないように、できるだけ緩やかに進めることが望ましい。   When measuring the flow direction and flow velocity of the groundwater G using the measuring device 10 of FIG. 2, first, as shown in FIG. 1, the measuring device 10 in a state where the packers 11 and 12 are contracted is used as a measurement target in the borehole 2. The measurement section 3 is formed by extending the packers 11 and 12 by suspending them to the groundwater depth. Next, as shown in FIG. 3 (A), the on-off valve V1 of the three-way valve A1 is opened and the on-off valve V2 is closed to connect the supply path 14 and the inflow path 17 and the on-off valve of the three-way valve A2. The discharge path 15 and the suction path 18 are connected by opening V3 and closing the on-off valve V4. In this state, the supply device 7 is driven to feed the liquid W having a predetermined density stored in the liquid tank 5 into the measurement section 3, and the ground water G in the measurement section 3 is replaced with the liquid W. It is desirable that the feeding of the liquid W proceeds as slowly as possible so as not to cause a disturbance in the measurement section 3.

計測区間3を液体Wで置換したのち、図3(B)に示すように、開閉弁V1、V5を閉鎖して開閉弁V2を開放することにより供給路14と貯留槽20とを接続し、開閉弁V3、V6を閉鎖して開閉弁V4を開放することにより排出路15と貯留槽20とを接続する。この状態で、供給装置7からトレーサ槽6に貯えたトレーサ粒子Sを液体Wと共に貯留槽20へ供給し、トレーサ粒子Sを液体Wと共に貯留槽20へ一旦貯留する。更に図3(C)に示すように、開閉弁V2を閉鎖して開閉弁V5を開放することにより貯留槽20と流入路21とを接続し、開閉弁V4を閉鎖して開閉弁V6を開放することにより貯留槽20と回収路22とを接続する。この状態で流入装置24を駆動することにより、貯留槽20の液相部に浮遊するトレーサ粒子Sを、液体Wと共に計測区間3の所定部位33へ流入させる。流入装置24は、例えば回収路22の下端口を低圧部とする適当なピストン又は小型ポンプである。   After replacing the measurement section 3 with the liquid W, as shown in FIG. 3B, the supply path 14 and the storage tank 20 are connected by closing the on-off valves V1 and V5 and opening the on-off valve V2. The discharge path 15 and the storage tank 20 are connected by closing the on-off valves V3 and V6 and opening the on-off valve V4. In this state, the tracer particles S stored in the tracer tank 6 from the supply device 7 are supplied to the storage tank 20 together with the liquid W, and the tracer particles S are temporarily stored in the storage tank 20 together with the liquid W. Further, as shown in FIG. 3C, the open / close valve V2 is closed and the open / close valve V5 is opened to connect the storage tank 20 and the inflow passage 21, and the open / close valve V4 is closed and the open / close valve V6 is opened. By doing so, the storage tank 20 and the recovery path 22 are connected. By driving the inflow device 24 in this state, the tracer particles S floating in the liquid phase portion of the storage tank 20 are caused to flow together with the liquid W into the predetermined portion 33 of the measurement section 3. The inflow device 24 is, for example, a suitable piston or a small pump having a lower end port of the recovery path 22 as a low pressure portion.

トレーサ粒子Sを計測区間3内へ流入させたのち、位置検出センサ30a、30bによってトレーサ粒子Sの三次元位置を継続的に検出し、三次元位置の検出信号を信号処理装置8に伝送し、信号処理装置8においてトレーサ粒子Sの三次元位置の経時的変化から地下水Gの流向及び流速を計測する。本発明の計測方法によれば、計測区間3内の液体Wの密度とトレーサ粒子Sの密度とを厳密に一致させることができ、地下水Gの流速vが極めて低い場合でも、その流速vを正確に計測することが可能となる。また、計測区間3の地下水Gの密度を測定する必要がなく、液体Wと同じ密度のトレーサ粒子Sを用意しておけば、液体Wの送入とトレーサ粒子Sの流入とからなる比較的簡単な作業で様々な深度の地下水Gの流向及び流速を把握することができる。   After flowing the tracer particle S into the measurement section 3, the position detection sensors 30a and 30b continuously detect the three-dimensional position of the tracer particle S, and transmit a detection signal of the three-dimensional position to the signal processing device 8, In the signal processing device 8, the flow direction and flow velocity of the groundwater G are measured from the temporal change of the three-dimensional position of the tracer particles S. According to the measurement method of the present invention, the density of the liquid W in the measurement section 3 and the density of the tracer particles S can be matched exactly, and even when the flow velocity v of the groundwater G is extremely low, the flow velocity v is accurately determined. It becomes possible to measure. In addition, it is not necessary to measure the density of the groundwater G in the measurement section 3, and if the tracer particles S having the same density as the liquid W are prepared, the liquid W is fed in and the tracer particles S are flowed in relatively easily. It is possible to grasp the flow direction and flow velocity of the groundwater G at various depths with a simple operation.

こうして本発明の目的である「低流速の地下水の流向及び流速を精度よく且つ簡単に計測できる方法及び装置」の提供を達成することができる。   Thus, it is possible to achieve the “method and apparatus capable of accurately and easily measuring the flow direction and flow velocity of groundwater having a low flow velocity”, which is an object of the present invention.

なお図3(D)は、地下水Gの流向及び流速の計測が終了したのち、計測区間3に浮遊する不要なトレーサ粒子Sを回収する処理を示す。この場合は、開閉弁V1を開放して開閉弁V2を閉鎖することにより供給路14と送入路17とを接続し、開閉弁V3、V5を閉鎖して開閉弁V4、V6を開放することにより排出路15と回収路22とを接続する。この状態で供給装置7を駆動して液槽5に貯えた所定密度の液体Wを計測区間3に送入し、不要なトレーサ粒子Sを回収路22経由で貯留槽20に回収する。必要に応じて同図(A)のように開閉弁V3を開放して開閉弁V4を閉鎖することにより排出路15と吸入路18とを接続し、吸入路18経由で不要なトレーサ粒子Sを計測区間3から排出することも可能である。大量のトレーサ粒子Sを計測区間3に投入すると、ボーリング孔2の周囲の岩盤亀裂にトレーサ粒子Sが進入して目詰まり等が発生するおそれがあるが、図示例のように不要なトレーサ粒子Sを回収することにより、大量のトレーサ粒子Sを投入した場合でも目詰まり等を最小限に抑えることができる。   FIG. 3D shows a process of collecting unnecessary tracer particles S floating in the measurement section 3 after the measurement of the flow direction and flow velocity of the groundwater G is completed. In this case, open the on-off valve V1 and close the on-off valve V2 to connect the supply path 14 and the feed-in path 17 and close the on-off valves V3 and V5 to open the on-off valves V4 and V6. Thus, the discharge path 15 and the recovery path 22 are connected. In this state, the supply device 7 is driven to feed the liquid W having a predetermined density stored in the liquid tank 5 into the measurement section 3, and unnecessary tracer particles S are recovered in the storage tank 20 via the recovery path 22. If necessary, open / close valve V3 is opened and open / close valve V4 is closed as shown in FIG. 5A to connect discharge passage 15 and suction passage 18 and to remove unnecessary tracer particles S via suction passage 18. It is also possible to discharge from the measurement section 3. When a large amount of tracer particles S are introduced into the measurement section 3, the tracer particles S may enter a rock crack around the borehole 2 and clogging may occur. However, unnecessary tracer particles S as shown in the illustrated example. By collecting the clogging, clogging and the like can be minimized even when a large amount of the tracer particles S is introduced.

図1及び図2の流向流速計測装置10では、計測区間3の温度及び圧力を測定する測定センサ27を設け、測定センサ27の測定値を信号伝送路16経由で信号処理装置8に伝送し、信号処理装置8において測定センサ27の測定値に基づき計測区間3の液体Wの密度を補正し、供給装置7のトレーサ選択手段7aにおいて補正後の密度のトレーサ粒子Sを流入路21に選択的に供給している。本発明は、予め密度が既知の液体Wを用いるが、液体Wの密度は計測区間3の深度、すなわち温度及び圧力等に応じて変化するので、その密度の変化が計測誤差の原因となりうる。しかし、予め液体Wの密度と温度及び圧力との関係を校正しておくことにより、温度・圧力測定センサ27の測定値によって計測区間3内の液体Wの密度を簡単に補正することができる。従って、密度の異なる複数のトレーサ粒子Sを用意し、補正後の密度のトレーサ粒子Sを選択して計測区間3へ流入させることにより、液体Wの密度変化に起因する計測誤差を比較的容易に回避できる。また、この温度・圧力測定センサ27の測定値によるトレーサ粒子Sの選択と、上述した貯留槽20によるトレーサ粒子Sの選択とを組み合わせることにより、地下水Gの流向及び流速の計測精度を更に高めることが期待できる。   1 and 2 includes a measurement sensor 27 for measuring the temperature and pressure in the measurement section 3, and transmits the measurement value of the measurement sensor 27 to the signal processing device 8 via the signal transmission path 16. The signal processor 8 corrects the density of the liquid W in the measurement section 3 based on the measurement value of the measurement sensor 27, and the tracer selection means 7 a of the supply device 7 selectively selects the corrected tracer particles S in the inflow channel 21. Supply. In the present invention, the liquid W whose density is known in advance is used. However, since the density of the liquid W changes according to the depth of the measurement section 3, that is, temperature, pressure, and the like, the change in density can cause a measurement error. However, by calibrating the relationship between the density of the liquid W and the temperature and pressure in advance, the density of the liquid W in the measurement section 3 can be easily corrected by the measured value of the temperature / pressure measurement sensor 27. Therefore, by preparing a plurality of tracer particles S having different densities, selecting the corrected tracer particles S and allowing them to flow into the measurement section 3, measurement errors due to the density change of the liquid W can be made relatively easy. Can be avoided. Further, by combining the selection of the tracer particles S by the measurement values of the temperature / pressure measurement sensor 27 and the selection of the tracer particles S by the storage tank 20 described above, the accuracy of measuring the flow direction and the flow velocity of the groundwater G can be further improved. Can be expected.

本発明装置の一実施例の構成を示す図式的説明図である。It is a schematic explanatory drawing which shows the structure of one Example of this invention apparatus. 本発明装置の一実施例の構成を示す斜視図である。It is a perspective view which shows the structure of one Example of this invention apparatus. 本発明方法の手順を示す説明図である。It is explanatory drawing which shows the procedure of this invention method. 異なる粒径のトレーサ粒子が地下水中において3日間で3mm落下(浮上)する場合の地下水密度とトレーサ粒子密度との密度差の関係を示すグラフである。It is a graph which shows the relationship of the density difference of a groundwater density and tracer particle density in case the tracer particle | grains of a different particle size fall 3 mm in 3 days in groundwater. 従来の地下水の流速・流向計測装置の一例の説明図である。It is explanatory drawing of an example of the conventional flow velocity and flow direction measuring apparatus of groundwater. 従来の地下水の流速・流向計測装置の他の一例の説明図である。It is explanatory drawing of another example of the conventional flow velocity and flow direction measuring apparatus of groundwater.

符号の説明Explanation of symbols

1…地盤(岩盤) 2…ボーリング孔
3…計測区間
5…液槽 6…トレーサ槽
7…供給装置 7a…トレーサ選択手段
8…信号処理装置 9…出力装置
10…流向流速計測装置 11…上部パッカー
12…下部パッカー 13…結合部材
14…供給路 15…排出路
16…信号伝送路 17…送入路
18…吸水路
20…貯留槽 21…流入路
22…回収路 23…連通路
24…流入装置
27…温度・圧力測定センサ
30…位置検出センサ(超音波センサ)
31…送信圧電振動子 32…受信圧電振動子
33…センサ検出部位(焦点範囲)
34…信号伝送装置 35…送信部
36…受信部 37…制御部
38…信号処理部 39…信号ケーブル
41…中性子水分計 42…トレーサ液(ホウ酸水溶液)
43…パッカー制御装置 44…トレーサ液注入装置
45…計測装置
51…計測部 52…支持部材
53…整流板 54…トレーサ導入管
55…超音波センサ 56…同軸ケーブル
57…基準反射板 58…光学式撮像装置
59…透明窓 60…吊り下げ装置
61…信号伝送ユニット 62…計測装置
63…伝送ライン
G…地下水 S…トレーサ粒子
W…所定密度の液体
DESCRIPTION OF SYMBOLS 1 ... Ground (bedrock) 2 ... Boring hole 3 ... Measurement area 5 ... Liquid tank 6 ... Tracer tank 7 ... Supply apparatus 7a ... Tracer selection means 8 ... Signal processing apparatus 9 ... Output apparatus
10 ... Flow direction flow velocity measuring device 11 ... Upper packer
12… Lower packer 13… Coupling member
14 ... Supply path 15 ... Discharge path
16 ... Signal transmission line 17 ... In / out path
18 ... Water absorption channel
20 ... Reservoir 21 ... Inlet channel
22 ... Recovery path 23 ... Communication path
24 ... Inflow device
27 ... Temperature / pressure sensor
30 ... Position detection sensor (ultrasonic sensor)
31 ... Transmission piezoelectric vibrator 32 ... Reception piezoelectric vibrator
33 ... Sensor detection part (focal range)
34… Signal transmission device 35… Transmitter
36 ... Receiving unit 37 ... Control unit
38 ... Signal processing unit 39 ... Signal cable
41 ... neutron moisture meter 42 ... tracer solution (boric acid aqueous solution)
43 ... Packer control device 44 ... Tracer liquid injection device
45 ... Measuring equipment
51… Measurement part 52… Support member
53 ... Rectifying plate 54 ... Tracer introduction pipe
55 ... Ultrasonic sensor 56 ... Coaxial cable
57 ... Reference reflector 58 ... Optical imaging device
59… Transparent window 60… Hanging device
61 ... Signal transmission unit 62 ... Measurement device
63 ... Transmission line G ... Groundwater S ... Tracer particles W ... Liquid with a predetermined density

Claims (10)

地中ボーリング孔内の低流速の地下水深度にパッカー対で仕切った計測区間を形成し、計測区間内の地下水を所定密度の液体で置換したのち当該液体と同じ密度のトレーサ粒子を計測区間内へ流入させ、前記パッカー対に支持した位置検出センサにより前記トレーサ粒子の浮遊三次元位置を継続的に検出し、前記浮遊三次元位置の検出値の経時的変化から地下水の流向及び流速を計測してなる低流速地下水の流向流速計測方法。   Forming a measurement section partitioned by a packer pair at a low flow velocity groundwater depth in the underground borehole, replacing the groundwater in the measurement section with a liquid of a predetermined density, and then moving tracer particles with the same density into the measurement section Inflow, the position detection sensor supported by the packer pair continuously detects the floating three-dimensional position of the tracer particles, and measures the flow direction and flow velocity of groundwater from the change over time of the detected value of the floating three-dimensional position. This is a low-flow-rate groundwater flow direction flow velocity measurement method. 請求項1の計測方法において、前記トレーサ粒子の計測区間内への流入路に当該トレーサ粒子を前記液体と共に貯留する貯留槽を設け、前記貯留槽内に浮遊するトレーサ粒子を選択的に計測区間内に流入させてなる低流速地下水の流向流速計測方法。   2. The measurement method according to claim 1, wherein a storage tank for storing the tracer particles together with the liquid is provided in an inflow path into the measurement section for the tracer particles, and the tracer particles floating in the storage tank are selectively included in the measurement section. A method for measuring the flow velocity of low-flow groundwater flowing into the ground. 請求項2の計測方法において、前記貯留槽と計測空間との間に計測空間側の開口が対向する一対の流路を設け、前記流路の一方から計測区間内へ流入させたトレーサ粒子を前記流路の他方経由で貯留槽に回収してなる低流速地下水の流向流速計測方法。   3. The measurement method according to claim 2, wherein a pair of flow paths are provided between the storage tank and the measurement space so that the openings on the measurement space side face each other, and the tracer particles introduced from one of the flow paths into the measurement section are A method for measuring the flow direction flow velocity of low flow velocity groundwater collected in a storage tank via the other side of the flow path. 請求項1から3の何れかの計測方法において、前記計測区間内の温度及び圧力を測定し、前記液体の密度を温度及び圧力の測定値により補正し、前記補正後の密度のトレーサ粒子を流入させてなる低流速地下水の流向流速計測方法。   4. The measurement method according to claim 1, wherein the temperature and pressure in the measurement section are measured, the density of the liquid is corrected by the measured values of temperature and pressure, and the tracer particles having the corrected density are introduced. A method for measuring the flow velocity of low-flowing groundwater. 請求項1から4の何れかの計測方法において、前記地下水の流速を10-5〜10-10m/sとしてなる低流速地下水の流向流速計測方法。 5. The flow direction flow velocity measurement method according to claim 1, wherein a flow velocity of the groundwater is 10 −5 to 10 −10 m / s. 地中ボーリング孔内の低流速の地下水深度に隣接深度から仕切られた計測区間を形成するパッカー対、前記計測区間内の一方のパッカー近傍部位から地下水を吸水する吸水路、前記計測区間内の他方のパッカー近傍部位に所定密度の液体を送入する送入路、前記パッカー対に支持されて計測区間内の所定検出部位の浮遊物の三次元位置を検出する位置検出センサ、前記計測区間内の所定検出部位に前記液体と同じ密度のトレーサ粒子を流入させる流入路、及び前記センサによるトレーサ粒子の浮遊三次元位置の検出値信号を伝送する信号伝送装置を備えてなる低流速地下水の流向流速計測装置。   The packer pair that forms a measurement section partitioned from the adjacent depth by the low flow velocity groundwater depth in the underground borehole, the water absorption path that absorbs groundwater from one packer vicinity part in the measurement section, the other in the measurement section An inflow path for injecting a liquid of a predetermined density into a portion near the packer, a position detection sensor that is supported by the packer pair and detects a three-dimensional position of a suspended matter at a predetermined detection portion in the measurement section, Low-flow-rate groundwater flow velocity measurement comprising an inflow path through which tracer particles having the same density as the liquid flow into a predetermined detection site, and a signal transmission device that transmits a detection value signal of the floating three-dimensional position of the tracer particles by the sensor apparatus. 請求項6の計測装置において、前記流入路にトレーサ粒子を前記液体と共に貯留する貯留槽を設け、前記流入路により貯留槽内に浮遊するトレーサ粒子を選択的に計測区間内に流入させてなる低流速地下水の流向流速計測装置。   The measuring device according to claim 6, wherein a storage tank for storing the tracer particles together with the liquid is provided in the inflow path, and the tracer particles floating in the storage tank are selectively allowed to flow into the measurement section by the inflow path. Flow velocity measurement device for groundwater flow direction. 請求項7の計測装置において、前記貯留槽と計測空間内の所定検出部位との間に計測空間側の開口が対向する一対の流路を設け、前記流路の一方をトレーサ粒子の流入路とし、前記流路の他方をトレーサ粒子の回収路としてなる低流速地下水の流向流速計測装置。   8. The measurement apparatus according to claim 7, wherein a pair of flow paths are provided between the storage tank and a predetermined detection site in the measurement space so that the opening on the measurement space side faces each other, and one of the flow paths is used as an inflow path for tracer particles. A flow direction flow velocity measuring device for low flow velocity groundwater in which the other of the flow paths is used as a tracer particle recovery path. 請求項6から8の何れかの計測装置において、前記計測区間の温度及び圧力を測定する測定センサ、及び前記液体の密度を前記測定センサの測定値により補正し且つ補正後の密度のトレーサ粒子を前記流入路に供給する供給手段を設けてなる低流速地下水の流向流速計測装置。   9. The measurement device according to claim 6, wherein the measurement sensor that measures the temperature and pressure in the measurement section, and the density of the liquid is corrected by the measurement value of the measurement sensor, and the tracer particles having the corrected density are obtained. A low flow velocity groundwater flow direction flow velocity measuring device provided with supply means for supplying to the inflow channel. 請求項6から9の何れかの計測装置において、前記位置検出センサを、相互に直交する向きに配置した複数のアレイ型超音波センサとしてなる低流速地下水の流向流速計測装置。   10. The flow direction flow velocity measurement device according to claim 6, wherein the position detection sensors are a plurality of array type ultrasonic sensors arranged in directions orthogonal to each other.
JP2006079749A 2006-03-22 2006-03-22 Low-flow velocity groundwater flow direction velocity measurement method and apparatus Expired - Fee Related JP4714833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006079749A JP4714833B2 (en) 2006-03-22 2006-03-22 Low-flow velocity groundwater flow direction velocity measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006079749A JP4714833B2 (en) 2006-03-22 2006-03-22 Low-flow velocity groundwater flow direction velocity measurement method and apparatus

Publications (2)

Publication Number Publication Date
JP2007256026A true JP2007256026A (en) 2007-10-04
JP4714833B2 JP4714833B2 (en) 2011-06-29

Family

ID=38630428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006079749A Expired - Fee Related JP4714833B2 (en) 2006-03-22 2006-03-22 Low-flow velocity groundwater flow direction velocity measurement method and apparatus

Country Status (1)

Country Link
JP (1) JP4714833B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101813A (en) * 2008-10-25 2010-05-06 Kajima Corp Method and device for measuring vertical flow velocity of ground water
CN104198759A (en) * 2014-08-28 2014-12-10 华中科技大学 Device capable of measuring three-dimensional flowing information of turbid fluids
CN105374064A (en) * 2015-11-17 2016-03-02 中国矿业大学(北京) Three-dimensional streamline visualization method for groundwater flow field
US10208585B2 (en) 2015-08-11 2019-02-19 Intrasen, LLC Groundwater monitoring system and method
WO2019233105A1 (en) * 2018-06-04 2019-12-12 安徽理工大学 Device and method for measuring flow rate, flow direction, and geological parameter of deep-well cross-hole groundwater
CN113267231A (en) * 2021-05-19 2021-08-17 重庆市地质灾害防治中心 Underground water level monitoring device and monitoring method thereof
CN114324969A (en) * 2022-03-10 2022-04-12 河海大学智能感知技术创新研究院 Device for detecting underground water flow rate and liquid pressure
CN114382463A (en) * 2022-01-18 2022-04-22 河南省科学院同位素研究所有限责任公司 Radioactive isotope well logging tracer screening device in pit
CN114382464A (en) * 2022-01-18 2022-04-22 河南省科学院同位素研究所有限责任公司 Method for screening radioactive isotope logging tracer agent underground
CN117420319A (en) * 2023-10-23 2024-01-19 山东省煤田地质局第五勘探队 Single well underground water flow velocity and direction measuring method and measuring instrument

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5471624B2 (en) * 2010-03-08 2014-04-16 国立大学法人山口大学 Method for measuring groundwater flow direction flow velocity and apparatus therefor
KR101802310B1 (en) 2017-10-17 2017-11-28 한국지질자원연구원 Groundwater sampling system with improved replacement ratio

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106589A (en) * 1986-10-23 1988-05-11 Oyo Chishitsu Kk Method and apparatus for measuring flow of underground water
JPH0246904B2 (en) * 1985-12-20 1990-10-17 Denryoku Chuo Kenkyusho
JPH06273538A (en) * 1993-03-24 1994-09-30 Kajima Corp Method and system for measuring moving gradient of underground water
JP2001183471A (en) * 1999-12-22 2001-07-06 Tobishima Corp Method and device for measuring flow of underground water
JP2002107370A (en) * 2000-10-03 2002-04-10 Toshiba Corp Method and equipment for measuring current flow direction and current speed of high-pressure high- temperature fluid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246904B2 (en) * 1985-12-20 1990-10-17 Denryoku Chuo Kenkyusho
JPS63106589A (en) * 1986-10-23 1988-05-11 Oyo Chishitsu Kk Method and apparatus for measuring flow of underground water
JPH06273538A (en) * 1993-03-24 1994-09-30 Kajima Corp Method and system for measuring moving gradient of underground water
JP2001183471A (en) * 1999-12-22 2001-07-06 Tobishima Corp Method and device for measuring flow of underground water
JP2002107370A (en) * 2000-10-03 2002-04-10 Toshiba Corp Method and equipment for measuring current flow direction and current speed of high-pressure high- temperature fluid

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101813A (en) * 2008-10-25 2010-05-06 Kajima Corp Method and device for measuring vertical flow velocity of ground water
CN104198759A (en) * 2014-08-28 2014-12-10 华中科技大学 Device capable of measuring three-dimensional flowing information of turbid fluids
CN104198759B (en) * 2014-08-28 2017-12-22 华中科技大学 A kind of device of measurable muddy fluid Three-dimensional Flow information
US10208585B2 (en) 2015-08-11 2019-02-19 Intrasen, LLC Groundwater monitoring system and method
CN105374064A (en) * 2015-11-17 2016-03-02 中国矿业大学(北京) Three-dimensional streamline visualization method for groundwater flow field
CN105374064B (en) * 2015-11-17 2017-11-28 中国矿业大学(北京) The three-dimensional streamline method for visualizing of ground water field
WO2019233105A1 (en) * 2018-06-04 2019-12-12 安徽理工大学 Device and method for measuring flow rate, flow direction, and geological parameter of deep-well cross-hole groundwater
US11480050B2 (en) * 2018-06-04 2022-10-25 Anhui University of Science and Technology Device and method for measuring flow velocity and flow direction and geological parameters of groundwater through cross holes of deep wells
CN113267231A (en) * 2021-05-19 2021-08-17 重庆市地质灾害防治中心 Underground water level monitoring device and monitoring method thereof
CN114382463A (en) * 2022-01-18 2022-04-22 河南省科学院同位素研究所有限责任公司 Radioactive isotope well logging tracer screening device in pit
CN114382464A (en) * 2022-01-18 2022-04-22 河南省科学院同位素研究所有限责任公司 Method for screening radioactive isotope logging tracer agent underground
CN114324969A (en) * 2022-03-10 2022-04-12 河海大学智能感知技术创新研究院 Device for detecting underground water flow rate and liquid pressure
CN117420319A (en) * 2023-10-23 2024-01-19 山东省煤田地质局第五勘探队 Single well underground water flow velocity and direction measuring method and measuring instrument
CN117420319B (en) * 2023-10-23 2024-03-22 山东省煤田地质局第五勘探队 Single well underground water flow velocity and direction measuring method and measuring instrument

Also Published As

Publication number Publication date
JP4714833B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4714833B2 (en) Low-flow velocity groundwater flow direction velocity measurement method and apparatus
Paulsen et al. Development and evaluation of an ultrasonic ground water seepage meter
US20090230295A1 (en) Measurement of hydraulic conductivity using a radioactive or activatable tracer
CN103790594A (en) Method for exploring and processing interior of boulder hole in front for shield method construction
BR112012015949B1 (en) frontal sensing apparatus and automated methods of operation of frontal sensing tool, formation assessment and well control
US7107859B2 (en) Ultrasonic seepage meter
CN101627176A (en) Electromagnetic guide drilling well with respect to existing wellhole
AU2012216617A1 (en) Apparatus and method for measuring the acoustic impedance of wellbore fluids
CN110146939A (en) A kind of Deep Groundwater measurement of rate of flow method
US20200292365A1 (en) Flowmeter profiling system for use in groundwater production wells and boreholes
CN105823902A (en) Low-flow-rate sonar measurement method, device and application
Kempf et al. Field performance of point velocity probes at a tidally influenced site
CN101446194B (en) Drilling fluid leak hunting device based on transient electromagnetic method
Fisher et al. Preparation and injection of fluid tracers during IODP Expedition 327, eastern flank of Juan de Fuca Ridge
CN103282796A (en) Logging tool
Godinaud et al. Clogging detection and productive layers identification along boreholes using Active Distributed Temperature Sensing
KR102027933B1 (en) Radon monitoring apparatus for groundwater monitoring well of aerator linked type structure
US20160040526A1 (en) System and method for communicating complex downhole information
JP4276367B2 (en) Method and apparatus for measuring flow direction and flow velocity of high pressure and high temperature fluid
CN114324120A (en) Deep hole multi-category comprehensive detection equipment and method for geological exploration
JP4793883B2 (en) Method and apparatus for measuring vertical flow velocity of groundwater
Lasher Application of fluid electrical conductivity logging for fractured rock aquifer characterisation at the University of the Western Cape's Franschhoek and Rawsonville research sites
CN204575868U (en) Geological Defects nondestructive detection system
CN217055130U (en) Pressure-bearing artesian well drainage test device
Maldaner Discrete-depth measurements of natural gradient groundwater flow in fractures using borehole tracer methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees