JP2007255740A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2007255740A
JP2007255740A JP2006077657A JP2006077657A JP2007255740A JP 2007255740 A JP2007255740 A JP 2007255740A JP 2006077657 A JP2006077657 A JP 2006077657A JP 2006077657 A JP2006077657 A JP 2006077657A JP 2007255740 A JP2007255740 A JP 2007255740A
Authority
JP
Japan
Prior art keywords
storage chamber
cooler
air passage
cold air
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006077657A
Other languages
Japanese (ja)
Inventor
Hideki Nakane
英樹 中根
Akira Hirano
明良 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2006077657A priority Critical patent/JP2007255740A/en
Publication of JP2007255740A publication Critical patent/JP2007255740A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator, efficiently cooling the respective storing chambers. <P>SOLUTION: This refrigerator 1 includes: a first storage chamber 2a; a coldness storage type freezer having a cooler 4 for generating cold air; a blowing air duct 8 for sending the generated cold air from the cooler 4 to the first storage chamber 2a; a return air duct 9 for returning the cold air from the first storage chamber 2a to the cooler; a second storage chamber 2b controlled to a temperature higher than the temperature of the first storage chamber 2a; and a damper 5b provided in the return air duct 9 for introducing the cold air into the second storage chamber 2b, wherein the damper 5b is constructed to switch between the open state where the total quantity of cold air is returned from the first storage chamber 2a through the second storage chamber 2b to the cooler 4 and the close state where the total quantity of cold air is returned from the first storage chamber 2a directly to the cooler 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、スターリング冷凍機、パルス管冷凍機等の蓄冷型冷凍機を用いた冷蔵庫に関するものである。   The present invention relates to a refrigerator using a regenerative refrigerator such as a Stirling refrigerator or a pulse tube refrigerator.

本発明に関する公知の冷蔵庫が、後述の特許文献1に記載されている。図5は、特許文献1に記載の冷蔵庫の構成を示す図、図6は図5のXX断面図である。冷蔵庫101は、室内温度の異なる3つの貯蔵室102a、102b、102cとスターリング冷凍機103を備えており、スターリング冷凍機103の吸熱部104には、熱伝導板105を介し冷却器106が設けられている。冷却器106の入口106aは、戻り風路109a、109b、109cの一端に接続され、冷却器106の出口106bは、送り風路108a、108b、108cの一端に接続されている。送り風路108a、108b、108cの途中には、ダンパー110a、110b、110cがそれぞれ配置されている。送り風路108a、108b、108cの他端は、貯蔵室102a、102b、102cにそれぞれ接続され、戻り風路109a、109b、109cの他端は、貯蔵室102a、102b、102cに接続されている。冷却器106によって生成された冷気は、送風機107によって送風され、送り風路108a、108b、108cを通って貯蔵室102a、102b、102cに流入する。貯蔵室102a、102b、102cを冷却後、冷気は、戻り風路109a、109b、109cを通って冷却器106の入口106aに戻り、冷却器106により再び冷却される。
特開2003−279222号公報
A known refrigerator relating to the present invention is described in Patent Document 1 described later. FIG. 5 is a diagram showing the configuration of the refrigerator described in Patent Document 1, and FIG. 6 is a sectional view taken along line XX in FIG. The refrigerator 101 includes three storage chambers 102 a, 102 b, 102 c having different indoor temperatures and a Stirling refrigerator 103, and a heat sink 104 of the Stirling refrigerator 103 is provided with a cooler 106 via a heat conduction plate 105. ing. The inlet 106a of the cooler 106 is connected to one end of the return air passages 109a, 109b, and 109c, and the outlet 106b of the cooler 106 is connected to one end of the feed air passages 108a, 108b, and 108c. Dampers 110a, 110b, and 110c are disposed in the middle of the feed air passages 108a, 108b, and 108c, respectively. The other ends of the feed air passages 108a, 108b, 108c are connected to the storage chambers 102a, 102b, 102c, respectively, and the other ends of the return air passages 109a, 109b, 109c are connected to the storage chambers 102a, 102b, 102c. . The cool air generated by the cooler 106 is blown by the blower 107 and flows into the storage chambers 102a, 102b, and 102c through the feed air passages 108a, 108b, and 108c. After cooling the storage chambers 102a, 102b, 102c, the cool air returns to the inlet 106a of the cooler 106 through the return air passages 109a, 109b, 109c, and is cooled again by the cooler 106.
JP 2003-279222 A

上述の冷蔵庫においては、複数の貯蔵室のそれぞれに送り風路と戻り風路が設けられている。通例、冷蔵庫においては、外形寸法や貯蔵室容量等の制約から、風路を設けるためのスペースが限られている。したがって、貯蔵室ごとに風路が設けられる構造だと、各々の風路においては十分な流路断面積を確保できなくなる可能性がある。風路においては、流路断面積が小さくなると、圧力損失が増大する。風路の圧力損失が増大すると、貯蔵室に一度に送られる冷気の流量が減少するため、各貯蔵室の効率的な冷却が困難となる。   In the above-described refrigerator, a feed air path and a return air path are provided in each of the plurality of storage rooms. Usually, in a refrigerator, a space for providing an air passage is limited due to restrictions such as external dimensions and storage room capacity. Therefore, if the air passage is provided for each storage chamber, there is a possibility that a sufficient cross-sectional area cannot be secured in each air passage. In the air passage, the pressure loss increases as the cross-sectional area of the flow path decreases. When the pressure loss of the air passage increases, the flow rate of the cool air sent to the storage chamber at a time decreases, and it becomes difficult to efficiently cool each storage chamber.

よって、本発明は上記の問題点に鑑みてなされたものであり、各貯蔵室を効率的に冷却できる冷蔵庫を提供することを課題とする。   Therefore, this invention is made | formed in view of said problem, and makes it a subject to provide the refrigerator which can cool each store room efficiently.

上記課題を解決するために、本発明にて講じた技術的手段は、請求項1に記載の様に、第1貯蔵室と、冷気を生成するための冷却器を有する蓄冷型冷凍機と、生成された冷気を前記冷却器から前記第1貯蔵室に送る送り風路と、前記冷気を前記冷却器と前記第1貯蔵室との間で循環させるべく、前記冷気を前記第1貯蔵室から前記冷却器に戻す戻り風路と、該戻り風路に連通し、前記第1貯蔵室の温度より高い温度に制御される第2貯蔵室と、該戻り風路に設けられ、前記冷気を前記第2貯蔵室に導入するためのダンパーと、を冷蔵庫が備え、前記ダンパーは、前記冷気の全量が前記第1貯蔵室から前記第2貯蔵室を経由して前記冷却器に戻される開状態、及び前記冷気の全量が前記第1貯蔵室から前記冷却器に直接戻される閉状態の何れか一方に切り替えられる構成としたことである。   In order to solve the above-mentioned problem, the technical means taken in the present invention is, as described in claim 1, a first storage chamber, a regenerative refrigerator having a cooler for generating cold air, A feed air passage that sends the generated cold air from the cooler to the first storage chamber, and the cold air from the first storage chamber to circulate the cold air between the cooler and the first storage chamber. A return air path that returns to the cooler; a second storage chamber that communicates with the return air path and is controlled to a temperature higher than the temperature of the first storage chamber; and is provided in the return air path; A refrigerator for introducing into the second storage chamber, and the damper is in an open state in which the entire amount of the cold air is returned from the first storage chamber to the cooler via the second storage chamber; And any of the closed states in which the entire amount of the cold air is returned directly from the first storage chamber to the cooler. It is that you have configured to be switched to the people.

好ましくは、請求項2に記載の様に、前記第1貯蔵室は、鉛直方向に関して、前記第2貯蔵室の上方に設けられると良い。   Preferably, as described in claim 2, the first storage chamber may be provided above the second storage chamber in the vertical direction.

好ましくは、請求項3に記載の様に、前記ダンパーが前記閉状態にある場合、前記冷却部にて生成された冷気が前記第1貯蔵室だけに送られると良い。   Preferably, as described in claim 3, when the damper is in the closed state, the cool air generated in the cooling unit may be sent only to the first storage chamber.

好ましくは、請求項4に記載の様に、前記第1貯蔵室の温度を測定する第1温度センサをさらに備え、該第1温度センサでの測定温度に応じて、前記蓄冷型冷凍機の入力が制御されると良い。   Preferably, as described in claim 4, the apparatus further comprises a first temperature sensor for measuring the temperature of the first storage chamber, and the input of the regenerator type refrigerator according to the temperature measured by the first temperature sensor. Should be controlled.

好ましくは、請求項5に記載の様に、前記第2貯蔵室の温度を測定する第2温度センサをさらに備え、該第2温度センサでの測定温度に応じて、前記ダンパーが前記開状態と前記閉状態の何れか一方に切り替えられると良い。   Preferably, as described in claim 5, further comprising a second temperature sensor for measuring the temperature of the second storage chamber, and the damper is in the open state according to the temperature measured by the second temperature sensor. It may be switched to either one of the closed states.

上記課題を解決するために、本発明にて講じた技術的手段は、請求項6に記載の様に、第1貯蔵室と、冷気を生成するための冷却器を有する冷凍機と、前記第1貯蔵室に連通し、前記冷却器にて生成された冷気が循環する循環風路と、該循環風路に設けられ、前記冷気を前記第1貯蔵室に導入する第1ダンパーと、前記循環風路に連通し、前記第1貯蔵室の温度とは異なる温度に制御される第2貯蔵室と、前記循環風路に設けられ、前記冷気を前記第2貯蔵室に導入する第2ダンパーと、を冷蔵庫が備える構成としたことである。   In order to solve the above-mentioned problem, the technical means taken in the present invention includes, as described in claim 6, a first storage chamber, a refrigerator having a cooler for generating cold air, A circulation air passage that communicates with one storage chamber and through which the cool air generated by the cooler circulates, a first damper that is provided in the circulation air passage and introduces the cold air into the first storage chamber, and the circulation A second storage chamber that communicates with the air passage and is controlled to a temperature different from the temperature of the first storage chamber; a second damper that is provided in the circulation air passage and introduces the cold air into the second storage chamber; This is a configuration in which the refrigerator is provided.

請求項1に記載の発明によれば、冷却器によって生成された冷気は、送り風路を介して第1貯蔵室に送られた後、戻り風路を介して第1貯蔵室から冷却器に戻される。戻り風路は、第1貯蔵室の温度より高い温度に制御される第2貯蔵室に連通し、戻り風路には、冷気を第2貯蔵室に導入するためのダンパーが設けられている。この構造において、送り風路及び戻り風路は、冷却器と第1貯蔵室との間で冷気を循環させるための風路としてだけでなく、冷却器と第2貯蔵室との間で冷気を循環させるための風路としても機能する。つまり、第1貯蔵室と第2貯蔵室とが、送り風路と戻り風路を共有している。したがって、本発明の冷蔵庫は、冷却器から第2貯蔵室に冷気を送るための風路と、第2貯蔵室から冷却器に冷気を戻すための風路を必要とせず、冷蔵庫の限られたスペースの中で、冷気を送るための2つの風路(送り風路、戻り風路)の流路断面積を最大限に確保できる。これにより、風路における圧力損失が低減されるので、風路における冷気の流量が十分に確保され、各貯蔵室の効率的な冷却が可能となる。なお、第1貯蔵室、第2貯蔵室に加え、例えば、これらの貯蔵室と異なる温度に制御される第3貯蔵室、第4貯蔵室が設けられる場合であっても、これらの貯蔵室に対応するダンパーを戻り風路に設けることで、4つの貯蔵室が送り風路と戻り風路を共有できるため、貯蔵室の数に関わらず、各貯蔵室の効率的な冷却が可能となる。   According to the first aspect of the present invention, the cool air generated by the cooler is sent to the first storage chamber via the feed air passage, and then from the first storage chamber to the cooler via the return air passage. Returned. The return air passage communicates with the second storage chamber controlled to a temperature higher than that of the first storage chamber, and the return air passage is provided with a damper for introducing cool air into the second storage chamber. In this structure, the feed air passage and the return air passage not only serve as an air passage for circulating cool air between the cooler and the first storage chamber, but also cool air between the cooler and the second storage chamber. It also functions as a wind path for circulation. That is, the first storage chamber and the second storage chamber share the feed air passage and the return air passage. Therefore, the refrigerator of the present invention does not require an air passage for sending cold air from the cooler to the second storage chamber and an air passage for returning cold air from the second storage chamber to the cooler, and the refrigerator is limited. In the space, the cross-sectional area of two air paths (feed air path and return air path) for sending cool air can be secured to the maximum. Thereby, since the pressure loss in an air path is reduced, the flow volume of the cold air in an air path is fully ensured, and efficient cooling of each store room is attained. In addition to the first storage chamber and the second storage chamber, for example, even when a third storage chamber and a fourth storage chamber that are controlled to temperatures different from these storage chambers are provided, By providing a corresponding damper in the return air passage, the four storage chambers can share the feed air passage and the return air passage, so that each storage compartment can be efficiently cooled regardless of the number of storage compartments.

また、請求項6に記載の発明によれば、冷却器によって冷気が生成された冷気は、循環風路を循環する。循環風路は、第1貯蔵室と、第1貯蔵室の温度とは異なる温度に制御される第2貯蔵室に連通する。循環風路を循環する冷気は、第1ダンパーによって第1貯蔵室に導入されると共に、第2ダンパーによって第2貯蔵室に導入される。この構造において、循環風路は、冷却器と第1貯蔵室との間で冷気を循環させるための風路としてだけでなく、冷却器と第2貯蔵室との間で冷気を循環させるための風路としても機能する。つまり、第1貯蔵室と第2貯蔵室とが、循環風路を共有している。したがって、本発明の冷蔵庫は、冷却器に生成された冷気を循環させるための風路を1つだけ備えればよく、冷蔵庫の限られたスペースの中で、冷気を送るための風路(循環風路)の流路断面積を最大限に確保できる。これにより、風路における圧力損失が低減されるので、風路における冷気の流量が十分に確保され、各貯蔵室の効率的な冷却が可能となる。なお、第1貯蔵室、第2貯蔵室に加え、例えば、これらの貯蔵室と異なる温度に制御される第3貯蔵室、第4貯蔵室が設けられる場合であっても、これらの貯蔵室に対応するダンパーを循環風路に設けることで、4つの貯蔵室が循環風路を共有できるため、貯蔵室の数に関わらず、各貯蔵室の効率的な冷却が可能となる。   According to the invention described in claim 6, the cold air generated by the cooler circulates in the circulation air passage. The circulation air passage communicates with the first storage chamber and the second storage chamber controlled to a temperature different from the temperature of the first storage chamber. The cool air circulating through the circulation air passage is introduced into the first storage chamber by the first damper and is introduced into the second storage chamber by the second damper. In this structure, the circulation air passage not only serves as an air passage for circulating cold air between the cooler and the first storage chamber, but also for circulating cold air between the cooler and the second storage chamber. It also functions as an air path. That is, the first storage chamber and the second storage chamber share a circulation air path. Therefore, the refrigerator of the present invention only needs to have one air path for circulating the cold air generated in the cooler, and the air path (circulation) for sending the cold air in a limited space of the refrigerator. The cross-sectional area of the air path) can be maximized. Thereby, since the pressure loss in an air path is reduced, the flow volume of the cold air in an air path is fully ensured, and efficient cooling of each store room is attained. In addition to the first storage chamber and the second storage chamber, for example, even when a third storage chamber and a fourth storage chamber that are controlled to temperatures different from these storage chambers are provided, By providing the corresponding damper in the circulation air passage, the four storage chambers can share the circulation air passage, and therefore, each of the storage compartments can be efficiently cooled regardless of the number of the storage compartments.

(実施例1)
図1は、本発明の実施例1に係る冷蔵庫1の構成を示す図で、室内温度が異なる貯蔵室を3室設けた実施例である。図2は、図1のAA断面図である。冷蔵庫1の下部には、スターリング冷凍機、パルス管冷凍機等の蓄冷型冷凍機3が設けられている。蓄冷型冷凍機3には、冷気を生成するための冷却器4が設けられている。冷蔵庫1には、鉛直方向に関し、上方から下方に順次、第1貯蔵室2a、第2貯蔵室2b、第3貯蔵室2cが収納される。各貯蔵室の設定温度は第1貯蔵室2a、第2貯蔵室2b、第3貯蔵室2cの順に高くなっている。例えば、各々の貯蔵室の設定温度は、第1貯蔵室2aが−60℃、第2貯蔵室2bが−40℃、第3貯蔵室2cが−20℃に設定してある。第1貯蔵室2a、第2貯蔵室2b、第3貯蔵室2cには、温度センサ7a〜7cと、扉12a〜12cがそれぞれ設けられている。
Example 1
FIG. 1 is a diagram illustrating a configuration of a refrigerator 1 according to a first embodiment of the present invention, and is an embodiment in which three storage rooms having different indoor temperatures are provided. 2 is a cross-sectional view taken along the line AA in FIG. A regenerator type refrigerator 3 such as a Stirling refrigerator or a pulse tube refrigerator is provided below the refrigerator 1. The cool storage type refrigerator 3 is provided with a cooler 4 for generating cold air. The first storage chamber 2a, the second storage chamber 2b, and the third storage chamber 2c are stored in the refrigerator 1 sequentially from the upper side to the lower side in the vertical direction. The set temperature of each storage room becomes higher in the order of the first storage room 2a, the second storage room 2b, and the third storage room 2c. For example, the set temperature of each storage chamber is set to -60 ° C for the first storage chamber 2a, -40 ° C for the second storage chamber 2b, and -20 ° C for the third storage chamber 2c. The first storage chamber 2a, the second storage chamber 2b, and the third storage chamber 2c are provided with temperature sensors 7a to 7c and doors 12a to 12c, respectively.

第1貯蔵室2a、第2貯蔵室2b、第3貯蔵室2cには、冷気を流入するための流路口10a、10b、10cと、冷気を流出させるための流路口11a、11b、11cがそれぞれ設けてある。流路口10aは、送り風路8を介して、蓄冷型冷凍機3における冷却器4の出口4bに接続され、流路口11aは、戻り風路9を介して、冷却器4の入口4aに接続されている。流路口11a、流路口10b、流路口11b、流路口10c、流路口11cは、冷気の流れ方向に従って順次、戻り風路9に接続される。  In the first storage chamber 2a, the second storage chamber 2b, and the third storage chamber 2c, there are channel ports 10a, 10b, and 10c for injecting cool air, and channel ports 11a, 11b, and 11c for allowing cool air to flow out, respectively. It is provided. The flow path port 10 a is connected to the outlet 4 b of the cooler 4 in the regenerative refrigerator 3 through the feed air path 8, and the flow path port 11 a is connected to the inlet 4 a of the cooler 4 through the return air path 9. Has been. The channel port 11a, the channel port 10b, the channel port 11b, the channel port 10c, and the channel port 11c are sequentially connected to the return air channel 9 according to the flow direction of the cold air.

戻り風路9の途中には、戻り風路9の流れ方向順に、ダンパー5b、5cが設けられている。ダンパー5bは、戻り風路9と流路口10bとを導通・遮断し、ダンパー5cは、戻り風路9と流路口10cとを導通・遮断する。ダンパー5bが開状態にある場合、戻り風路9と流路口10bとが導通し、戻り風路9を流れる冷気の全量が第2貯蔵室2bに導入される。ダンパー5bが閉状態にある場合、戻り風路9と流路口10bとが遮断され、戻り風路9を流れる冷気が第2貯蔵室2bには導入されない。ダンパー5bは、開状態及び閉状態の何れか一方に切り替えられる。ダンパー5cも、ダンパー5bと同様で、ダンパー5cが開状態にある場合、戻り風路9と流路口10cとが導通し、戻り風路9を流れる冷気の全量が第3貯蔵室2cに導入される。ダンパー5cが閉状態にある場合、戻り風路9と流路口10cとが遮断され、戻り風路9を流れる冷気が第3貯蔵室2cには導入されない。ダンパー5cも、ダンパー5bと同様に、開状態及び閉状態の何れか一方に切り替えられる。ダンパー5b、5cが何れも開状態にある場合、戻り風路9は、ダンパー5b、5cによって、上流から下流方向に、戻り風路上流側9a、戻り風路中流側9b、戻り風路下流側9cの3つに仕切られる。  In the middle of the return air passage 9, dampers 5 b and 5 c are provided in the order of the flow direction of the return air passage 9. The damper 5b conducts / cuts off the return air passage 9 and the flow passage port 10b, and the damper 5c conducts / cuts off the return air passage 9 and the flow passage port 10c. When the damper 5b is in the open state, the return air passage 9 and the flow passage opening 10b are electrically connected, and the entire amount of cool air flowing through the return air passage 9 is introduced into the second storage chamber 2b. When the damper 5b is in the closed state, the return air passage 9 and the flow passage opening 10b are blocked, and the cold air flowing through the return air passage 9 is not introduced into the second storage chamber 2b. The damper 5b is switched to either the open state or the closed state. The damper 5c is the same as the damper 5b. When the damper 5c is in the open state, the return air passage 9 and the flow passage port 10c are electrically connected, and the entire amount of cold air flowing through the return air passage 9 is introduced into the third storage chamber 2c. The When the damper 5c is in the closed state, the return air passage 9 and the flow passage opening 10c are blocked, and the cold air flowing through the return air passage 9 is not introduced into the third storage chamber 2c. Similarly to the damper 5b, the damper 5c is switched to either the open state or the closed state. When both of the dampers 5b and 5c are in the open state, the return air passage 9 is returned upstream from the upstream side by the dampers 5b and 5c, the return air passage upstream side 9a, the return air passage midstream side 9b, and the return air passage downstream side. 9c is divided into three.

送り風路8には、送風機6が設けられている。なお、送風機6の設置場所は、この場所に限らず、冷気を循環できる場所であればどこでもよい。例えば、冷却器4の入口4aに配置してもよく、また本実施例の場合では、第1貯蔵室2aの流路口10aでもよい。  A blower 6 is provided in the feed air passage 8. In addition, the installation place of the air blower 6 is not limited to this place, and may be any place as long as it can circulate cold air. For example, it may be disposed at the inlet 4a of the cooler 4, and in the case of the present embodiment, may be the flow path port 10a of the first storage chamber 2a.

冷蔵庫1においては、鉛直方向に関し、上方から下方に順次、第1貯蔵室2a、第2貯蔵室2b、第3貯蔵室2cが収納され、各貯蔵室2a、2b、2cの設定温度は、第1貯蔵室2a、第2貯蔵室2b、第3貯蔵室2cの順に高くなっている。各貯蔵室2a、2b、2cを流れる冷気は、鉛直方向に関し、上方から下方の方向に温度が高くなり、上方から下方の方向に密度は低くなる。従って、重力の作用により自然に、戻り風路9を流れる冷気は鉛直下方向に流れるので、送風機6の所要電力を軽減することができる。  In the refrigerator 1, with respect to the vertical direction, the first storage chamber 2a, the second storage chamber 2b, and the third storage chamber 2c are accommodated sequentially from the top to the bottom, and the set temperatures of the storage chambers 2a, 2b, and 2c are The first storage chamber 2a, the second storage chamber 2b, and the third storage chamber 2c increase in this order. The cold air flowing through the storage chambers 2a, 2b, and 2c increases in temperature from the upper side to the lower side and decreases in density from the upper side to the lower side in the vertical direction. Accordingly, the cool air naturally flowing through the return air passage 9 flows downward in the vertical direction due to the action of gravity, so that the required power of the blower 6 can be reduced.

次に、本実施例の作用について説明する。なお、スターリング冷凍機、パルス管冷凍機等の蓄冷型冷凍機3の作動は、よく知られているので説明は省略する。   Next, the operation of this embodiment will be described. The operation of the regenerative refrigerator 3 such as a Stirling refrigerator or a pulse tube refrigerator is well known and will not be described.

第1貯蔵室2a、第2貯蔵室2b、第2貯蔵室2cの温度は、例えば各々−60℃、−40℃、−20℃に設定されている。各貯蔵室が各設定温度より2℃以上高い場合(ケース1)、蓄冷型冷凍機3と送風機6は運転に入っており、冷蔵庫1は冷却運転の状態にある。この時、ダンパー5b、5cは何れも開状態で、流路口10b、10cは戻り風路9に導通している。従って、送風機6によって送られる冷気は、全量、送り風路8、第1貯蔵室2a、戻り風路上流側9a、第2貯蔵室2b、戻り風路中流側9b、第3貯蔵室2c、戻り風路下流側9cを通って冷却器4に戻り、そこで再び冷却される。第1貯蔵室2a、第2貯蔵室2b、第3貯蔵室2cに流入した冷気は、各貯蔵室を冷却し、各貯蔵室の温度を下げる。この時、冷気の温度は、各貯蔵室での熱交換によって上昇する。ケース1においては、冷却器4によって生成される冷気の全量(送風機6が送風する流量)が、第1貯蔵室2a、第2貯蔵室2b、第3貯蔵室2cに流入するので、第1貯蔵室2a、第2貯蔵室2b、第3貯蔵室2cにおいて熱伝達が良好に行われ、各貯蔵室の冷却量が向上する。   The temperatures of the first storage chamber 2a, the second storage chamber 2b, and the second storage chamber 2c are set to, for example, −60 ° C., −40 ° C., and −20 ° C., respectively. When each storage room is 2 ° C. or more higher than each set temperature (case 1), the cold storage type refrigerator 3 and the blower 6 are in operation, and the refrigerator 1 is in a cooling operation state. At this time, the dampers 5b and 5c are all in an open state, and the flow passage openings 10b and 10c are electrically connected to the return air passage 9. Accordingly, the entire amount of the cool air sent by the blower 6 is the feed air passage 8, the first storage chamber 2a, the return air passage upstream side 9a, the second storage chamber 2b, the return air passage midstream side 9b, the third storage chamber 2c, and the return air. It returns to the cooler 4 through the air path downstream side 9c, and is cooled again there. The cold air that has flowed into the first storage chamber 2a, the second storage chamber 2b, and the third storage chamber 2c cools each storage chamber and lowers the temperature of each storage chamber. At this time, the temperature of the cool air rises by heat exchange in each storage room. In case 1, since the total amount of cold air generated by the cooler 4 (flow rate blown by the blower 6) flows into the first storage chamber 2a, the second storage chamber 2b, and the third storage chamber 2c, the first storage Heat transfer is performed well in the chamber 2a, the second storage chamber 2b, and the third storage chamber 2c, and the cooling amount of each storage chamber is improved.

ケース1において時間が経過し、第3貯蔵室2cは設定温度より2℃低い温度(−22℃)に達し、第1貯蔵室2a、第2貯蔵室2bは依然として設定温度より2℃以上高い(それぞれ−58℃、−38℃以上)ような場合(ケース2)、ダンパー5cは閉状態に切り替えられ、ダンパー5bは開状態を維持する。この時、流路口10bにおいては、戻り風路上流側9aとの導通状態が維持される。従って、送風機6によって送られる冷気は、全量、送り風路8、第1貯蔵室2a、戻り風路9上流側9a、第2貯蔵室2b、戻り風路中流側9b、戻り風路下流側9cを通って冷却器4に戻り、再び冷却される。第1貯蔵室2a、第2貯蔵室2bに流入した冷気は、第1貯蔵室2a及び第2貯蔵室2bを冷却し、第1貯蔵室2a、第2貯蔵室2bの温度を下げる。この時、冷気の温度は、第1貯蔵室2a、第2貯蔵室2bでの熱交換によって上昇する。ケース2においては、ケース1と同様の理由により、第1貯蔵室2a、第2貯蔵室2bにおいて熱伝達が良好に行われ、第1貯蔵室2a、第2貯蔵室2bの冷却量が向上する。   In case 1, time elapses, the third storage chamber 2c reaches 2 ° C. lower than the set temperature (−22 ° C.), and the first storage chamber 2a and the second storage chamber 2b are still 2 ° C. higher than the set temperature ( In each case (−58 ° C., −38 ° C. or higher) (case 2), the damper 5c is switched to the closed state, and the damper 5b is maintained in the open state. At this time, in the flow path port 10b, the conduction state with the return air path upstream side 9a is maintained. Therefore, the entire amount of the cool air sent by the blower 6 is the feed air passage 8, the first storage chamber 2a, the return air passage 9 upstream side 9a, the second storage chamber 2b, the return air passage midstream side 9b, and the return air passage downstream side 9c. It returns to the cooler 4 through and is cooled again. The cool air flowing into the first storage chamber 2a and the second storage chamber 2b cools the first storage chamber 2a and the second storage chamber 2b, and lowers the temperatures of the first storage chamber 2a and the second storage chamber 2b. At this time, the temperature of the cold air rises due to heat exchange in the first storage chamber 2a and the second storage chamber 2b. In the case 2, for the same reason as the case 1, heat transfer is performed well in the first storage chamber 2a and the second storage chamber 2b, and the cooling amount of the first storage chamber 2a and the second storage chamber 2b is improved. .

さらに時間が経過し、第2貯蔵室2bも設定温度より2℃低い温度(−42℃)に達し、第3貯蔵室2cは−22℃〜−18℃の範囲を維持し、第1貯蔵室2aは依然として設定温度より2℃以上高い(−58℃以上)ような場合(ケース3)、ダンパー5bは閉状態に切り替えられ、ダンパー5cは閉状態を維持する。この時、流路口10bは、戻り風路上流側9aと遮断される。従って、送風機6により送られる冷気は、全量、送り風路8、第1貯蔵室2a、戻り風路上流側9a、戻り風路中流側9b、戻り風路下流側9cを通って冷却器4に戻り、再び冷却される。第1貯蔵室2aに流入した冷気は、第1貯蔵室2aを冷却し、第1貯蔵室2aの温度を下げる。この時、冷気の温度は、第1貯蔵室2aでの熱交換によって上昇する。ケース3においても、ケース1及びケース2と同様の理由により、第1貯蔵室2aにおいて熱伝達が良好に行われることとなり、第1貯蔵室2aの冷却量が向上する。  Further, time elapses, the second storage chamber 2b reaches 2 ° C. lower than the set temperature (−42 ° C.), the third storage chamber 2c maintains the range of −22 ° C. to −18 ° C., and the first storage chamber When 2a is still higher than the set temperature by 2 ° C. or more (−58 ° C. or more) (case 3), the damper 5b is switched to the closed state, and the damper 5c maintains the closed state. At this time, the flow path port 10b is blocked from the upstream side 9a of the return air path. Accordingly, all the cool air sent by the blower 6 passes through the feed air passage 8, the first storage chamber 2a, the return air passage upstream side 9a, the return air passage middle flow side 9b, and the return air passage downstream side 9c to the cooler 4. Return and cool again. The cold air flowing into the first storage chamber 2a cools the first storage chamber 2a and lowers the temperature of the first storage chamber 2a. At this time, the temperature of the cold air rises due to heat exchange in the first storage chamber 2a. Also in case 3, for the same reason as in case 1 and case 2, heat transfer is performed well in the first storage chamber 2a, and the cooling amount of the first storage chamber 2a is improved.

実施例1の冷蔵庫1においては、第1貯蔵室2a、第2貯蔵室2b、第3貯蔵室2cが送り風路8と戻り風路9を共有し、蓄冷型冷凍機3によって生成された冷気が送り風路8と戻り風路9を分流することなく循環する構造となっている。したがって、貯蔵室2a〜2cの各々に独立した風路を設ける必要がないため、冷蔵庫1の限られたスペースの中で送り風路8と戻り風路9の流路断面積を十分確保でき、送り風路8と戻り風路9における圧力損失が減少する。これにより、貯蔵室2a〜2cに流入する冷気の適正な流量を確保できるので、貯蔵室2a〜2cでの冷気の熱伝達は良好になり、貯蔵室2a〜2cの冷却量が向上する。   In the refrigerator 1 of the first embodiment, the first storage chamber 2 a, the second storage chamber 2 b, and the third storage chamber 2 c share the feed air passage 8 and the return air passage 9, and the cold air generated by the regenerator type refrigerator 3. Is circulated without diverting the feed air path 8 and the return air path 9. Therefore, since it is not necessary to provide an independent air passage in each of the storage chambers 2a to 2c, the flow passage cross-sectional areas of the feed air passage 8 and the return air passage 9 can be sufficiently secured in the limited space of the refrigerator 1, Pressure loss in the feed air path 8 and the return air path 9 is reduced. Thereby, since an appropriate flow rate of the cold air flowing into the storage chambers 2a to 2c can be secured, the heat transfer of the cold air in the storage chambers 2a to 2c is improved, and the cooling amount of the storage chambers 2a to 2c is improved.

また、3つの貯蔵室2a〜2cがあるにも拘らず、送り風路8と戻り風路9をそれぞれ1つずつ、ダンパー5a、5bをそれぞれ1つずつ設ければ良いので、冷蔵庫1における部品点数が少なくなり、構造が簡略化される。   Further, although there are three storage chambers 2a to 2c, it is only necessary to provide one feed air passage 8 and one return air passage 9 and one damper 5a and 5b, respectively. The number of points is reduced and the structure is simplified.

また、第2貯蔵室2b、第3貯蔵室2cの温度を温度センサ7b、7cでそれぞれ測定し、温度センサ7b、7cの測定温度に応じてダンパー5b、5cが開状態と閉状態の何れかに切り替えられるので、第2貯蔵室2b、第3貯蔵室2cの温度を設定温度の範囲内に維持でき、第2貯蔵室2b、第3貯蔵室2cが冷え過ぎたり、温まり過ぎたりすることはなく、これらの貯蔵室2b、2cを効率的に冷却できる。   Moreover, the temperature of the 2nd storage chamber 2b and the 3rd storage chamber 2c is measured with the temperature sensors 7b and 7c, respectively, and the dampers 5b and 5c are either an open state or a closed state according to the measured temperature of the temperature sensors 7b and 7c. Therefore, the temperatures of the second storage chamber 2b and the third storage chamber 2c can be maintained within the set temperature range, and the second storage chamber 2b and the third storage chamber 2c are too cold or too warm. The storage chambers 2b and 2c can be efficiently cooled.

なお、第1貯蔵室2aだけを短時間で冷却したい場合(ケース4)、第2貯蔵室2b、第3貯蔵室2cの温度に係らず、ダンパー5b、5cを何れも閉状態に切り替える。これにより、流路口10bが戻り風路上流側9aと遮断されると共に、流路口10cが戻り風路中流側9bと遮断される。従って、送風機6によって送られる冷気は、全量、送り風路8、第1貯蔵室2a、戻り風路9上流側9a、戻り風路中流側9b、戻り風路下流側9cを通って冷却器4に戻り、そこで再び冷却される。第1貯蔵室2aに流入した冷気は、第1貯蔵室2aを冷却し、第1貯蔵室2aの温度を下げる。この時、冷気の温度は、第1貯蔵室2aでの熱交換によって上昇する。ケース4においては、第2貯蔵室2b、第3貯蔵室2cの温度に係らず、ダンパー5b、5cがともに閉状態に切り替えられ、冷却器4によって生成された冷気が第1貯蔵室2aだけを冷却する。これにより、第2貯蔵室2bと第3貯蔵室2cの冷却量分、第1貯蔵室2aの冷却量が増大し、第1貯蔵室2aの急速冷凍が可能となる。   When only the first storage chamber 2a is desired to be cooled in a short time (case 4), the dampers 5b and 5c are all switched to the closed state regardless of the temperatures of the second storage chamber 2b and the third storage chamber 2c. As a result, the flow path port 10b is blocked from the return air path upstream side 9a, and the flow path port 10c is blocked from the return air path midstream side 9b. Therefore, all the cool air sent by the blower 6 passes through the cooler 4 through the feed air passage 8, the first storage chamber 2a, the return air passage 9 upstream side 9a, the return air passage middle flow side 9b, and the return air passage downstream side 9c. And then cooled again. The cold air flowing into the first storage chamber 2a cools the first storage chamber 2a and lowers the temperature of the first storage chamber 2a. At this time, the temperature of the cold air rises due to heat exchange in the first storage chamber 2a. In case 4, the dampers 5 b and 5 c are both switched to the closed state regardless of the temperatures of the second storage chamber 2 b and the third storage chamber 2 c, and the cold air generated by the cooler 4 passes only the first storage chamber 2 a. Cooling. Thereby, the cooling amount of the 1st storage chamber 2a increases by the cooling amount of the 2nd storage chamber 2b and the 3rd storage chamber 2c, and the quick freezing of the 1st storage chamber 2a is attained.

(実施例2)
次に、本発明の実施例2について説明する。図3は、本発明の実施例2に係る冷蔵庫19の構成を示す図で、室内温度が異なる貯蔵室を3室設けた実施例である。図4は、図3のBB断面図である。なお、実施例1の図1及び図2に示される部材と同一な名称の部材には、同一の符号を付している。また、図1及び図2と同一の構成と作用については、説明を省略し、異なる構成と作用について、図3及び図4を用いて説明する。
(Example 2)
Next, a second embodiment of the present invention will be described. FIG. 3 is a diagram illustrating the configuration of the refrigerator 19 according to the second embodiment of the present invention, and is an embodiment in which three storage rooms having different indoor temperatures are provided. 4 is a cross-sectional view taken along the line BB in FIG. In addition, the same code | symbol is attached | subjected to the member of the same name as the member shown by FIG.1 and FIG.2 of Example 1. FIG. Moreover, description is abbreviate | omitted about the structure and effect | action same as FIG.1 and FIG.2, and a different structure and effect | action are demonstrated using FIG.3 and FIG.4.

冷蔵庫19において、循環風路20の上流端は、蓄冷型冷凍機3に設けられた冷却器4の出口4bに接続し、循環風路20の下流端は冷却器4の入口4aに接続されている。第1貯蔵室2a、第2貯蔵室2b、第3貯蔵室2cには、冷気を流入するための第1流路口10d、第2流路口10e、第3流路口10fと、冷気を流出させるための第1流路口11d、第2流路口11e、第3流路口11fがそれぞれ設けられている。第1流路口10d、第1流路口11d、第2流路口10e、第2流路口11e、第3流路口10f、第3流路口11fは、冷気の流れ方向に従って順次、循環風路20に接続される。   In the refrigerator 19, the upstream end of the circulation air passage 20 is connected to the outlet 4 b of the cooler 4 provided in the regenerative refrigerator 3, and the downstream end of the circulation air passage 20 is connected to the inlet 4 a of the cooler 4. Yes. The first storage chamber 2a, the second storage chamber 2b, and the third storage chamber 2c are supplied with a first flow path port 10d, a second flow path port 10e, and a third flow path port 10f for allowing cold air to flow into them. The first flow path port 11d, the second flow path port 11e, and the third flow path port 11f are provided. The first flow path port 10d, the first flow path port 11d, the second flow path port 10e, the second flow path port 11e, the third flow path port 10f, and the third flow path port 11f are sequentially connected to the circulation air path 20 according to the flow direction of the cold air. Is done.

循環風路20の途中には、冷気の流れ方向順に、ダンパー5a、ダンパー5b、ダンパー5cが設けられている。ダンパー5a、5b、5cは、循環風路20と第1流路口10d、循環風路20と第2流路口10e、循環風路20と第3流路口10f、をそれぞれ導通・遮断する。ダンパー5aが開状態にある場合、循環風路20と第1流路口10dとが導通し、循環風路20を流れる冷気の全量が第1貯蔵室2aに導入される。ダンパー5aが閉状態にある場合、循環風路20と第1流路口10dとが遮断され、循環風路20を流れる冷気が第1貯蔵室2aに導入されない。ダンパー5aは、開状態及び閉状態の何れか一方に切り替えられる。なお、ダンパー5b、5cの作動に関しても、ダンパー5aと同様であるので、ここでは説明を省略する。  In the middle of the circulation air passage 20, a damper 5a, a damper 5b, and a damper 5c are provided in the order of the flow direction of the cold air. The dampers 5a, 5b, and 5c conduct and block the circulation air passage 20 and the first passage opening 10d, the circulation air passage 20 and the second passage opening 10e, and the circulation air passage 20 and the third passage opening 10f, respectively. When the damper 5a is in the open state, the circulation air passage 20 and the first passage opening 10d are brought into conduction, and the entire amount of cool air flowing through the circulation air passage 20 is introduced into the first storage chamber 2a. When the damper 5a is in the closed state, the circulation air passage 20 and the first passage opening 10d are blocked, and the cold air flowing through the circulation air passage 20 is not introduced into the first storage chamber 2a. The damper 5a is switched to either the open state or the closed state. Note that the operation of the dampers 5b and 5c is the same as that of the damper 5a, and the description thereof is omitted here.

実施例2の構成において実施例1と異なるのは、送り風路8の上部と送り風路9の上部とが連通して1つの循環風路20を形成したことと、循環風路20にダンパー5aが設置され、ダンパー5aが循環風路20と第1貯蔵室2aの第1流路口10dとを導通・遮断することである。なお、実施例1と同様に、第1貯蔵室2a、第2貯蔵室2b、第3貯蔵室2cの設定温度は、−60℃、−40℃、−20℃にそれぞれ設定される。また、実施例2の作用において実施例1と異なるのは、ダンパー5aの開閉状態によっては、冷却器4にて生成された冷気が第1貯蔵室2aを流れない点である。例えば、第1貯蔵室2aが設定温度より2℃以上低い温度(−62℃以下)に達した場合には、ダンパー5aが閉状態に切り替えられ、循環風路20と第1流路口10dとが遮断され、送風機6によって送風される冷気が第1貯蔵室2aには流入しない。   The configuration of the second embodiment is different from the first embodiment in that the upper part of the feed air path 8 and the upper part of the feed air path 9 communicate with each other to form one circulation air path 20, and a damper is provided in the circulation air path 20. 5a is installed, and the damper 5a conducts / blocks the circulation air passage 20 and the first flow passage port 10d of the first storage chamber 2a. As in the first embodiment, the set temperatures of the first storage chamber 2a, the second storage chamber 2b, and the third storage chamber 2c are set to −60 ° C., −40 ° C., and −20 ° C., respectively. Further, the operation of the second embodiment is different from the first embodiment in that the cool air generated by the cooler 4 does not flow through the first storage chamber 2a depending on the open / close state of the damper 5a. For example, when the first storage chamber 2a reaches a temperature 2 ° C. or more lower than the set temperature (−62 ° C. or less), the damper 5a is switched to the closed state, and the circulation air passage 20 and the first flow passage port 10d are connected. The cold air that is blocked and blown by the blower 6 does not flow into the first storage chamber 2a.

実施例2の構造においては、最も設定温度の低い第1貯蔵室2aが設定温度に達した後は、第1貯蔵室2aに冷気が送られず、第1貯蔵室2aよりも設定温度の高い第2貯蔵室2b、第3貯蔵室2cに冷気が送られることになる。この場合、蓄冷型冷凍機3は、第1貯蔵室2aを冷却できるだけの冷気を生成する必要がなく、より温度の高い冷気を生成すればよい。これにより、蓄冷型冷凍機3への入力(電圧または電流、回転数)が小さくてすみ、蓄冷型冷凍機3の所要電力を低減できる。
以上説明した様に、実施例1に係る冷蔵庫1によれば、蓄冷型冷凍機3の冷却器4によって生成された冷気は、送り風路8を介して第1貯蔵室2aに送られた後、戻り風路9を介して第1貯蔵室2aから冷却器4に戻される。戻り風路9は、第1貯蔵室2aの温度より高い温度に制御される第2貯蔵室2b、第3貯蔵室2cに連通し、戻り風路9には、冷気を第2貯蔵室2bに導入するためのダンパー5bと、冷気を第3貯蔵室2cに導入するためのダンパー5cとが設けられている。この構造において、送り風路8及び戻り風路9は、冷却器4と第1貯蔵室2aとの間で冷気を循環させるための風路としてだけでなく、冷却器4と第2貯蔵室2b、冷却器4と第3貯蔵室2cとの間で冷気を循環させるための風路としても機能する。つまり、第1貯蔵室2a、第2貯蔵室2b及び第3貯蔵室2cが、送り風路8と戻り風路9を共有している。したがって、本発明の実施例1に係る冷蔵庫1は、冷却器4から第2貯蔵室2b、第3貯蔵室2cに冷気を送るための風路と、第2貯蔵室2b、第3貯蔵室2cから冷却器4に冷気を戻すための風路を必要とせず、冷蔵庫1の限られたスペースの中で、冷気を送るための2つの風路(送り風路8、戻り風路9)の流路断面積を最大限に確保できる。これにより、風路における圧力損失が低減されるので、風路における冷気の流量が十分に確保され、貯蔵室2a〜2cの効率的な冷却が可能となる。なお、第1貯蔵室2a、第2貯蔵室2b、第3貯蔵室2cに加え、例えば、これらの貯蔵室と異なる温度に制御される第4貯蔵室、第5貯蔵室が設けられる場合であっても、これらの貯蔵室に対応するダンパーを戻り風路9に設けることで、5つの貯蔵室が送り風路8と戻り風路9を共有できるため、貯蔵室の数に関わらず、各貯蔵室の効率的な冷却が可能となる。
In the structure of the second embodiment, after the first storage chamber 2a having the lowest set temperature reaches the set temperature, the cool air is not sent to the first storage chamber 2a, and the set temperature is higher than that of the first storage chamber 2a. Cold air is sent to the second storage chamber 2b and the third storage chamber 2c. In this case, the regenerative refrigerator 3 does not need to generate enough cold air to cool the first storage chamber 2a, and may generate cold air having a higher temperature. Thereby, the input (voltage or electric current, rotation speed) to the cool storage type refrigerator 3 can be small, and the required power of the cool storage type refrigerator 3 can be reduced.
As described above, according to the refrigerator 1 according to the first embodiment, the cold air generated by the cooler 4 of the regenerator type refrigerator 3 is sent to the first storage chamber 2a via the feed air passage 8. The first storage chamber 2a is returned to the cooler 4 through the return air passage 9. The return air passage 9 communicates with the second storage chamber 2b and the third storage chamber 2c which are controlled to a temperature higher than the temperature of the first storage chamber 2a, and the return air passage 9 has cold air to the second storage chamber 2b. A damper 5b for introduction and a damper 5c for introducing cold air into the third storage chamber 2c are provided. In this structure, the feed air passage 8 and the return air passage 9 are not only air passages for circulating cool air between the cooler 4 and the first storage chamber 2a, but also the cooler 4 and the second storage chamber 2b. Also, it functions as an air path for circulating cold air between the cooler 4 and the third storage chamber 2c. That is, the first storage chamber 2a, the second storage chamber 2b, and the third storage chamber 2c share the feed air passage 8 and the return air passage 9. Therefore, the refrigerator 1 according to the first embodiment of the present invention includes an air passage for sending cold air from the cooler 4 to the second storage chamber 2b and the third storage chamber 2c, and the second storage chamber 2b and the third storage chamber 2c. The flow of the two air passages (feed air passage 8 and return air passage 9) for sending the cold air in the limited space of the refrigerator 1 without requiring the air passage for returning the cold air to the cooler 4 Maximum road cross-sectional area can be secured. Thereby, since the pressure loss in an air path is reduced, the flow volume of the cold air in an air path is fully ensured, and the cooling of the storage chambers 2a-2c is attained. In addition to the first storage chamber 2a, the second storage chamber 2b, and the third storage chamber 2c, for example, a fourth storage chamber and a fifth storage chamber that are controlled at temperatures different from those storage chambers are provided. However, by providing dampers corresponding to these storage chambers in the return air passage 9, five storage chambers can share the feed air passage 8 and the return air passage 9, so that each storage can be performed regardless of the number of storage chambers. Efficient cooling of the chamber is possible.

また、実施例2に係る冷蔵庫19によれば、蓄冷型冷凍機3の冷却器4によって冷気が生成された冷気は、循環風路20を循環する。循環風路20は、第1貯蔵室2aと、第1貯蔵室2aの温度とは異なる温度に制御される第2貯蔵室2b、第3貯蔵室2cに連通する。循環風路20を循環する冷気は、ダンパー5aによって第1貯蔵室2aに導入されると共に、ダンパー5b、5cによって第2貯蔵室2b、第3貯蔵室2cにそれぞれ導入される。この構造において、循環風路20は、冷却器4と第1貯蔵室2aとの間で冷気を循環させるための風路としてだけでなく、冷却器4と第2貯蔵室2b、冷却器4と第3貯蔵室2cとの間で冷気を循環させるための風路としても機能する。つまり、第1貯蔵室2a、第2貯蔵室2b及び第3貯蔵室2cが、循環風路20を共有している。したがって、本発明の実施例2に係る冷蔵庫19は、冷却器4に生成された冷気を循環させるための風路を1つだけ備えればよく、冷蔵庫19の限られたスペースの中で、冷気を送るための風路(循環風路20)の流路断面積を最大限に確保できる。これにより、風路における圧力損失が低減されるので、風路における冷気の流量が十分に確保され、貯蔵室2a〜2cの効率的な冷却が可能となる。なお、第1貯蔵室2a、第2貯蔵室2b、第3貯蔵室2cに加え、例えば、これらの貯蔵室と異なる温度に制御される第4貯蔵室、第5貯蔵室が設けられる場合であっても、これらの貯蔵室に対応するダンパーを循環風路20に設けることで、5つの貯蔵室が循環風路を共有できるため、貯蔵室の数に関わらず、各貯蔵室の効率的な冷却が可能となる。   Further, according to the refrigerator 19 according to the second embodiment, the cold air generated by the cooler 4 of the regenerator type refrigerator 3 circulates in the circulation air passage 20. The circulation air passage 20 communicates with the first storage chamber 2a and the second storage chamber 2b and the third storage chamber 2c which are controlled to a temperature different from the temperature of the first storage chamber 2a. The cold air circulating through the circulation air passage 20 is introduced into the first storage chamber 2a by the damper 5a and introduced into the second storage chamber 2b and the third storage chamber 2c by the dampers 5b and 5c, respectively. In this structure, the circulation air passage 20 is not only an air passage for circulating cold air between the cooler 4 and the first storage chamber 2a, but also the cooler 4, the second storage chamber 2b, the cooler 4, and the like. It also functions as an air passage for circulating cold air between the third storage chamber 2c. In other words, the first storage chamber 2 a, the second storage chamber 2 b, and the third storage chamber 2 c share the circulation air path 20. Therefore, the refrigerator 19 according to the second embodiment of the present invention only needs to have one air path for circulating the cool air generated in the cooler 4, and the cool air is limited in the limited space of the refrigerator 19. The cross-sectional area of the air passage for circulating the air (circulation air passage 20) can be maximized. Thereby, since the pressure loss in an air path is reduced, the flow volume of the cold air in an air path is fully ensured, and the cooling of the storage chambers 2a-2c is attained. In addition to the first storage chamber 2a, the second storage chamber 2b, and the third storage chamber 2c, for example, a fourth storage chamber and a fifth storage chamber that are controlled at temperatures different from those storage chambers are provided. However, by providing dampers corresponding to these storage chambers in the circulation air passage 20, since the five storage chambers can share the circulation air passage, efficient cooling of each storage chamber regardless of the number of storage chambers. Is possible.

本発明の実施例1に係る冷蔵庫1の構成を示す図。The figure which shows the structure of the refrigerator 1 which concerns on Example 1 of this invention. 図1のAA断面図。AA sectional drawing of FIG. 本発明の実施例2に係る冷蔵庫19の構成を示す図。The figure which shows the structure of the refrigerator 19 which concerns on Example 2 of this invention. 図3のBB断面図。BB sectional drawing of FIG. 公知の冷蔵庫の構成を示す図。The figure which shows the structure of a well-known refrigerator. 図5のXX断面図。XX sectional drawing of FIG.

符号の説明Explanation of symbols

1 冷蔵庫
2a 第1貯蔵室
2b 第2貯蔵室
2c 第3貯蔵室
3 蓄冷型冷凍機
4 冷却器
5a ダンパー(第1ダンパー)
5b ダンパー(第2ダンパー)
5c ダンパー
7a 温度センサ(第1温度センサ)
7b 温度センサ(第2温度センサ)
7c 温度センサ
8 送り風路
9 戻り風路
19 冷蔵庫
20 循環風路
1 Refrigerator
2a 1st storage room 2b 2nd storage room 2c 3rd storage room 3 Cold storage type refrigerator 4 Cooler 5a Damper (1st damper)
5b Damper (second damper)
5c Damper 7a Temperature sensor (first temperature sensor)
7b Temperature sensor (second temperature sensor)
7c Temperature sensor 8 Feed air passage 9 Return air passage 19 Refrigerator 20 Circulation air passage

Claims (6)

第1貯蔵室と、
冷気を生成するための冷却器を有する蓄冷型冷凍機と、
生成された冷気を前記冷却器から前記第1貯蔵室に送る送り風路と、
前記冷気を前記冷却器と前記第1貯蔵室との間で循環させるべく、前記冷気を前記第1貯蔵室から前記冷却器に戻す戻り風路と、
該戻り風路に連通し、前記第1貯蔵室の温度より高い温度に制御される第2貯蔵室と、
該戻り風路に設けられ、前記冷気を前記第2貯蔵室に導入するためのダンパーと、
を備え、
前記ダンパーは、前記冷気の全量が前記第1貯蔵室から前記第2貯蔵室を経由して前記冷却器に戻される開状態、及び前記冷気の全量が前記第1貯蔵室から前記冷却器に直接戻される閉状態の何れか一方に切り替えられることを特徴とする冷蔵庫。
A first storage room;
A regenerative refrigerator having a cooler for generating cold air;
A feed air passage for sending the generated cold air from the cooler to the first storage chamber;
A return air path for returning the cold air from the first storage chamber to the cooler to circulate the cold air between the cooler and the first storage chamber;
A second storage chamber that communicates with the return air passage and is controlled at a temperature higher than the temperature of the first storage chamber;
A damper provided in the return air passage for introducing the cold air into the second storage chamber;
With
The damper is in an open state in which the total amount of cold air is returned from the first storage chamber to the cooler via the second storage chamber, and the total amount of cold air is directly transferred from the first storage chamber to the cooler. A refrigerator that is switched to one of the closed states to be returned.
前記第1貯蔵室は、鉛直方向に関して、前記第2貯蔵室の上方に設けられることを特徴とする請求項1に記載の冷蔵庫。   The refrigerator according to claim 1, wherein the first storage room is provided above the second storage room in the vertical direction. 前記ダンパーが前記閉状態にある場合、前記冷却部にて生成された冷気が前記第1貯蔵室だけに送られることを特徴とする請求項1に記載の冷蔵庫。   The refrigerator according to claim 1, wherein when the damper is in the closed state, the cold air generated in the cooling unit is sent only to the first storage chamber. 前記第1貯蔵室の温度を測定する第1温度センサをさらに備え、該第1温度センサでの測定温度に応じて、前記蓄冷型冷凍機の入力が制御されることを特徴とする請求項1に記載の冷蔵庫。   2. The apparatus according to claim 1, further comprising a first temperature sensor that measures a temperature of the first storage chamber, wherein the input of the regenerator is controlled according to a temperature measured by the first temperature sensor. Refrigerator. 前記第2貯蔵室の温度を測定する第2温度センサをさらに備え、該第2温度センサでの測定温度に応じて、前記ダンパーが前記開状態と前記閉状態の何れか一方に切り替えられることを特徴とする請求項1に記載の冷蔵庫。   A second temperature sensor for measuring the temperature of the second storage chamber, wherein the damper is switched between the open state and the closed state according to the temperature measured by the second temperature sensor; The refrigerator according to claim 1. 第1貯蔵室と、
冷気を生成するための冷却器を有する冷凍機と、
前記第1貯蔵室に連通し、前記冷却器にて生成された冷気が循環する循環風路と、
該循環風路に設けられ、前記冷気を前記第1貯蔵室に導入する第1ダンパーと、
前記循環風路に連通し、前記第1貯蔵室の温度とは異なる温度に制御される第2貯蔵室と、
前記循環風路に設けられ、前記冷気を前記第2貯蔵室に導入する第2ダンパーと、
を備えることを特徴とする冷蔵庫。
A first storage room;
A refrigerator having a cooler for generating cold air;
A circulation air passage that communicates with the first storage chamber and through which the cool air generated by the cooler circulates;
A first damper provided in the circulation air passage, for introducing the cold air into the first storage chamber;
A second storage chamber that communicates with the circulation air passage and is controlled to a temperature different from the temperature of the first storage chamber;
A second damper provided in the circulation air passage, for introducing the cold air into the second storage chamber;
A refrigerator comprising:
JP2006077657A 2006-03-20 2006-03-20 Refrigerator Pending JP2007255740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006077657A JP2007255740A (en) 2006-03-20 2006-03-20 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006077657A JP2007255740A (en) 2006-03-20 2006-03-20 Refrigerator

Publications (1)

Publication Number Publication Date
JP2007255740A true JP2007255740A (en) 2007-10-04

Family

ID=38630163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077657A Pending JP2007255740A (en) 2006-03-20 2006-03-20 Refrigerator

Country Status (1)

Country Link
JP (1) JP2007255740A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100126205A1 (en) * 2008-11-26 2010-05-27 Oh Min Kyu Refrigerator and method of controlling the same
KR101570348B1 (en) * 2008-11-19 2015-11-19 엘지전자 주식회사 Bottom freezer refregerator and contorlling method of the same
CN111473586A (en) * 2019-01-23 2020-07-31 青岛海尔电冰箱有限公司 Multi-path air supply structure of refrigerator and refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101570348B1 (en) * 2008-11-19 2015-11-19 엘지전자 주식회사 Bottom freezer refregerator and contorlling method of the same
US20100126205A1 (en) * 2008-11-26 2010-05-27 Oh Min Kyu Refrigerator and method of controlling the same
US8341974B2 (en) * 2008-11-26 2013-01-01 Lg Electronics Inc. Refrigerator and method of controlling the same
CN111473586A (en) * 2019-01-23 2020-07-31 青岛海尔电冰箱有限公司 Multi-path air supply structure of refrigerator and refrigerator

Similar Documents

Publication Publication Date Title
WO2018107644A1 (en) Cabinet, and cooling control system, method and device therefor
US8499575B2 (en) Air-conditioning system for electronic components
JP2007255740A (en) Refrigerator
JP3452781B2 (en) refrigerator
US9625203B2 (en) Moisture control system for an appliance and method for controlling moisture within an appliance
JP2015102320A (en) Refrigerator
JP2018091509A (en) refrigerator
WO2008120906A2 (en) Cooling air passage for storage chambers of a refrigerator
JPH05157279A (en) Underfloor type air conditioner
JPH04103984A (en) Refrigerator
CN219063871U (en) Refrigerator with a refrigerator body
JP2009002543A (en) Cold water supply device
JP5323102B2 (en) Cooling device for electronic components
JPH10205966A (en) Electrical refrigerator
CN221444915U (en) Cold storage box and cold storage and releasing system
JP2020008189A (en) refrigerator
JP2020029980A (en) Air conditioning system and cold water producing device for air conditioning system
KR20020088279A (en) A storage chamber with peltier element
CN219346922U (en) Refrigerating and freezing device
JP2000329442A (en) Cooling storage chamber
CN221444914U (en) Cold accumulation device and air conditioning system
JP2002295949A (en) Refrigerator
CN219199625U (en) Refrigerating and freezing device
CN221324805U (en) Refrigerator with a refrigerator body
CN216905709U (en) Internal and external circulation adjustable refrigeration system and data center