JP2007255333A - Common rail fuel injection device - Google Patents

Common rail fuel injection device Download PDF

Info

Publication number
JP2007255333A
JP2007255333A JP2006082021A JP2006082021A JP2007255333A JP 2007255333 A JP2007255333 A JP 2007255333A JP 2006082021 A JP2006082021 A JP 2006082021A JP 2006082021 A JP2006082021 A JP 2006082021A JP 2007255333 A JP2007255333 A JP 2007255333A
Authority
JP
Japan
Prior art keywords
fuel injection
valve
pressure reducing
common rail
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006082021A
Other languages
Japanese (ja)
Other versions
JP4506699B2 (en
Inventor
Masahito Somiya
雅人 宗宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006082021A priority Critical patent/JP4506699B2/en
Publication of JP2007255333A publication Critical patent/JP2007255333A/en
Application granted granted Critical
Publication of JP4506699B2 publication Critical patent/JP4506699B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a common rail fuel injection device in which power is savely fed to a drive circuit part prepared commonly for a fuel injection valve and a pressure reducing valve. <P>SOLUTION: A control circuit 50 switches on/off of a MOSFET 36 to supply power from a common power supply system to the fuel injection valve and the pressure reducing valve according to injection signals and pressure reduction signals. As a reference for switching on/off of the MOSFET 36, the control circuit 50 has a voltage dividing circuit in which resistors 51, 52 are connected in series between a constant-voltage source Vcc and the ground to provide a voltage Vp equivalent to a peak current threshold. The resistor 52 is formed by connecting the resistors 52a, 52b in series to each other. The intermediate part of the emitters and the intermediate part of the collectors of a transistor 53 are so connected to each other parallel with the resistor 52b that the pressure reduction signals are input into the base of the transistor 53. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電磁駆動式の減圧弁を有するコモンレール式燃料噴射装置に関する。   The present invention relates to a common rail fuel injection device having an electromagnetically driven pressure reducing valve.

例えば、ディーゼルエンジンにおいては、各気筒共通のコモンレールに燃料を高圧状態で蓄圧し、その蓄圧した燃料を電磁駆動式のインジェクタ(燃料噴射弁)を用いてエンジンに噴射供給するコモンレール式燃料噴射システムが用いられている。このようなコモンレール式燃料噴射システムでは、コモンレールに燃料を加圧供給する高圧ポンプが接続されている。高圧ポンプの吸入部には吸入調量弁が設けられており、この吸入調量弁の開度を調整することにより高圧ポンプによるコモンレールへの燃料の圧送量が調整され、コモンレール内の燃料圧が所望とする圧力に保持される。   For example, in a diesel engine, there is a common rail fuel injection system in which fuel is stored in a common rail common to each cylinder in a high pressure state, and the stored fuel is injected into the engine using an electromagnetically driven injector (fuel injection valve). It is used. In such a common rail type fuel injection system, a high pressure pump that pressurizes and supplies fuel to the common rail is connected. A suction metering valve is provided in the suction part of the high-pressure pump. By adjusting the opening of the suction metering valve, the amount of fuel pumped to the common rail by the high-pressure pump is adjusted, and the fuel pressure in the common rail is adjusted. The desired pressure is maintained.

近年では、コモンレールに電磁駆動式の減圧弁を設けたものがある。かかるコモンレール式燃料噴射システムでは、コモンレール内の燃料圧が所望とする圧力よりも大きくなった場合に、減圧弁を開弁させることにより、コモンレール内の燃料を排出して、コモンレール内の燃料圧を減少させることが可能である。   In recent years, some common rails are provided with electromagnetically driven pressure reducing valves. In such a common rail type fuel injection system, when the fuel pressure in the common rail becomes larger than a desired pressure, the fuel in the common rail is discharged by opening the pressure reducing valve to reduce the fuel pressure in the common rail. It is possible to reduce.

しかしながら、このような減圧弁を備えるコモンレール式燃料噴射システムにおいては、インジェクタ、吸入調量弁に加え、減圧弁を駆動させるための駆動回路が必要となり、コストアップが生じる問題があった。この問題に対し、例えば特許文献1では、共通の駆動回路より吸入調量弁と減圧弁とに給電を行い、それら吸入調量弁と減圧弁とを駆動させるように構成している。
特開2003−322067号公報
However, in the common rail fuel injection system provided with such a pressure reducing valve, a drive circuit for driving the pressure reducing valve is required in addition to the injector and the intake metering valve. To solve this problem, for example, in Patent Document 1, power is supplied to a suction metering valve and a pressure reducing valve from a common drive circuit, and the suction metering valve and the pressure reducing valve are driven.
JP 2003-332067 A

ところで、インジェクタと減圧弁とが同様の電磁ソレノイドをそれぞれ有している場合には、インジェクタと減圧弁との駆動回路を共通にする構成が考えられる。しかしながら、インジェクタは望み通りの噴射時期及び噴射量にて燃料を供給するために高速駆動させる必要がある一方、減圧弁は単に開状態になれば良いため、それぞれが必要とする駆動電流の大きさが異なる。このため、共通の駆動回路より単に給電を行う構成では、減圧弁の駆動に際して余剰な電流が流れることになる。   By the way, when the injector and the pressure reducing valve each have the same electromagnetic solenoid, a configuration in which the drive circuits of the injector and the pressure reducing valve are made common is conceivable. However, the injectors need to be driven at high speed in order to supply fuel at the desired injection timing and injection amount, while the pressure reducing valves need only be opened, so the magnitude of the drive current required by each injector Is different. For this reason, in a configuration in which power is simply supplied from a common drive circuit, excess current flows when the pressure reducing valve is driven.

本発明は、燃料噴射弁及び減圧弁の駆動回路部を共通にした構成において、無駄なく給電を行うことのできるコモンレール式燃料噴射装置を提供することを主たる目的とするものである。   The main object of the present invention is to provide a common rail fuel injection device capable of supplying power without waste in a configuration in which the drive circuit unit of the fuel injection valve and the pressure reducing valve is shared.

以下、上記課題を解決するための手段及びその作用効果について説明する。   Hereinafter, means for solving the above-described problems and the effects thereof will be described.

本発明のコモンレール式燃料噴射装置は、前提として、燃料を高圧状態で蓄えるコモンレールと、コモンレールに燃料を加圧供給する燃料ポンプと、コモンレールに蓄えられた燃料をエンジンに噴射供給する燃料噴射弁と、コモンレール内の燃料を排出させる減圧弁とを備えるシステムに適用される。   The common rail fuel injection device of the present invention is premised on a common rail that stores fuel in a high pressure state, a fuel pump that pressurizes and supplies the fuel to the common rail, and a fuel injection valve that injects and supplies fuel stored in the common rail to the engine. And a system including a pressure reducing valve for discharging fuel in the common rail.

請求項1に記載の発明では、エンジンの運転状態に応じて生成される噴射信号に基づいて燃料噴射弁に給電を行い同燃料噴射弁を開弁駆動させるとともに、燃料圧の減圧要求時に生成される減圧信号に基づいて減圧弁に給電を行い同減圧弁を開弁駆動させる駆動回路部を備える。ここで、前記駆動回路部を、減圧弁を開弁駆動させる際の駆動電流が燃料噴射弁を開弁駆動させる際の駆動電流よりも小さくなるように構成した。   According to the first aspect of the present invention, the fuel injection valve is powered on the basis of an injection signal generated in accordance with the operating state of the engine to drive the fuel injection valve to open, and is generated when the fuel pressure is requested to be reduced. A drive circuit unit that feeds power to the pressure reducing valve based on the pressure reducing signal and opens the pressure reducing valve. Here, the drive circuit unit is configured such that the drive current when the decompression valve is driven to open is smaller than the drive current when the fuel injection valve is driven to open.

燃料噴射弁と減圧弁とでは要求される応答性の違いなどに起因して開弁駆動に必要な駆動電流が異なる。特に、単に開状態になれば良い減圧弁は、燃料噴射弁に比べて駆動に必要な駆動電流が小さい。すなわち、本発明によれば、減圧弁を開弁駆動させる際の駆動電流が燃料噴射弁を開弁駆動させる際の駆動電流よりも小さくなるため、余剰な給電が行われることが回避される。したがって、無駄なく給電が行われ、駆動電流の低減を図るとともに、減圧弁の発熱を軽減することができる。   The drive current required for the valve opening drive differs between the fuel injection valve and the pressure reducing valve due to the difference in response required. In particular, a pressure reducing valve that only needs to be in an open state requires a smaller driving current for driving than a fuel injection valve. That is, according to the present invention, since the drive current when the pressure reducing valve is driven to open is smaller than the drive current when the fuel injection valve is driven to open, excessive power feeding is avoided. Therefore, power can be supplied without waste, and the driving current can be reduced and the heat generation of the pressure reducing valve can be reduced.

請求項2に記載の発明では、駆動電流の大きさを検出する検出手段と、検出手段により検出した駆動電流の大きさと所定の電流しきい値とを比較する比較手段とを備え、比較手段による比較結果に応じて駆動電流が流れる電流経路を断続する構成において、減圧弁の開弁駆動に際し、燃料噴射弁の開弁駆動時に比べて駆動電流が小さくなるように電流しきい値を変更する。すなわち、所定の電流しきい値に基づき給電を断続して行う構成においては、電流しきい値を変更することによって駆動電流の大きさを変更することができる。   According to a second aspect of the present invention, there is provided detection means for detecting the magnitude of the drive current, and comparison means for comparing the magnitude of the drive current detected by the detection means with a predetermined current threshold value. In the configuration in which the current path through which the drive current flows is interrupted according to the comparison result, the current threshold is changed so that the drive current is smaller when the pressure reducing valve is opened, compared to when the fuel injector is opened. That is, in a configuration in which power supply is intermittently performed based on a predetermined current threshold, the magnitude of the drive current can be changed by changing the current threshold.

請求項3に記載の発明では、第1の分圧抵抗及び第2の分圧抵抗からなる分圧回路を備え、この分圧回路の出力電圧を電流しきい値として用いる構成において、第1の分圧抵抗又は第2の分圧抵抗のいずれかの分圧抵抗を2つ直列に接続して構成するとともに、その2つの抵抗のうちのいずれかの抵抗と並列に分圧回路用スイッチ素子を接続し、減圧弁の開弁駆動に際し、燃料噴射弁の開弁駆動時に比べて電流しきい値が小さくなるように分圧回路用スイッチ素子を導通又は遮断する。   According to a third aspect of the present invention, in a configuration including a voltage dividing circuit including a first voltage dividing resistor and a second voltage dividing resistor, the output voltage of the voltage dividing circuit is used as a current threshold value. The voltage dividing resistor or the second voltage dividing resistor is configured by connecting two voltage dividing resistors in series, and a voltage dividing circuit switching element is provided in parallel with one of the two resistors. When the pressure reducing valve is driven to open, the voltage dividing circuit switch element is turned on or off so that the current threshold value becomes smaller than when the fuel injection valve is driven to open.

上記構成によれば、分圧回路用スイッチ素子の導通/遮断に伴い、分圧回路の分圧比が変化して分圧回路の出力電圧が変わり、電流しきい値が変更される。したがって、減圧弁の開弁駆動に際し、燃料噴射弁の開弁駆動時に比べて電流しきい値が小さくなるように分圧回路用スイッチ素子を導通又は遮断させることにより、減圧弁の駆動電流が燃料噴射弁の駆動電流に比べて小さくなる。ここで、電流しきい値を変更可能な分圧回路を3つの抵抗と1つのスイッチ素子とからなる簡素な構成により実現したため、コストの面で有利である。   According to the above configuration, with the conduction / cutoff of the voltage divider circuit switch element, the voltage dividing ratio of the voltage dividing circuit changes, the output voltage of the voltage dividing circuit changes, and the current threshold value changes. Accordingly, when the pressure reducing valve is driven to open, the voltage dividing circuit switch element is turned on or off so that the current threshold is smaller than when the fuel injection valve is driven to open. It becomes smaller than the drive current of the injection valve. Here, the voltage dividing circuit capable of changing the current threshold is realized by a simple configuration including three resistors and one switch element, which is advantageous in terms of cost.

請求項4に記載の発明では、減圧弁の開弁駆動に際し、駆動電流の大きさをエンジンの運転状態に応じて変更する。すなわち、減圧弁に求められる応答性や必要な駆動電流の大きさは、エンジン回転速度やコモンレール内の燃料圧やその減圧量などによって変化するものである。したがって、それらエンジンの運転状態に応じて駆動電流の大きさを変更することにより、駆動電流を適正にすることができる。   In the fourth aspect of the invention, when the pressure reducing valve is driven to open, the magnitude of the drive current is changed according to the operating state of the engine. That is, the responsiveness required for the pressure reducing valve and the magnitude of the required drive current vary depending on the engine speed, the fuel pressure in the common rail, the amount of pressure reduction, and the like. Therefore, the drive current can be made appropriate by changing the magnitude of the drive current in accordance with the operating state of the engines.

特に三方式の減圧弁を備える構成においては、コモンレール内の燃料圧が大きいほど駆動電流が小さくなるようにすると良い。三方式の減圧弁は、背圧室内の高圧の燃料により弁部材が閉じられ、その背圧室内の燃料をリークすることに伴って弁部材が開かれるものである。このため、駆動電流の大きさが同じ場合には、コモンレール内の燃料圧が高いほど高速に開弁される。したがって、減圧弁に求められる応答性が一定であれば、燃料圧が高いほど駆動電流を小さくすることができる。これにより、減圧弁が必要とする駆動電流がより適切に供給され、駆動電流をさらに低減することができる。   In particular, in a configuration including three types of pressure reducing valves, the drive current is preferably decreased as the fuel pressure in the common rail increases. In the three-type pressure reducing valve, the valve member is closed by high-pressure fuel in the back pressure chamber, and the valve member is opened as the fuel in the back pressure chamber leaks. For this reason, when the magnitude of the drive current is the same, the higher the fuel pressure in the common rail, the faster the valve is opened. Therefore, if the responsiveness required for the pressure reducing valve is constant, the drive current can be reduced as the fuel pressure increases. Thereby, the drive current required for the pressure reducing valve is supplied more appropriately, and the drive current can be further reduced.

請求項5に記載の発明では、燃料噴射弁及び減圧弁の開弁当初に所定の開弁時駆動電流を供給する構成において、減圧弁の開弁駆動に際し、燃料噴射弁の開弁駆動時に比べて開弁時駆動電流を小さくする。   According to the fifth aspect of the present invention, in the configuration in which a predetermined opening-time drive current is supplied at the beginning of opening of the fuel injection valve and the pressure reducing valve, when the pressure reducing valve is driven to open, the fuel injection valve is driven to open. Reduce the drive current when opening the valve.

燃料噴射弁や減圧弁の開弁駆動に際しては、その開弁当初において速やかに開弁させるべく、所定の開弁時駆動電流として比較的大きな駆動電流(いわゆるピーク電流)が供給される。このため、減圧弁を開弁駆動させる際の開弁時駆動電流を燃料噴射弁の開弁駆動させる際の開弁時駆動電流に比べて小さくすると、駆動電流の低減分が大きく、その駆動電流の低減の効果が大きい。   When the fuel injection valve or the pressure reducing valve is opened, a relatively large drive current (so-called peak current) is supplied as a predetermined valve-opening drive current in order to quickly open the valve at the beginning. For this reason, if the valve-opening drive current when the pressure reducing valve is driven to open is smaller than the valve-opening drive current when the fuel injection valve is driven to open, the reduction in the drive current is large. The effect of reducing is great.

請求項6に記載の発明では燃料噴射弁及び減圧弁の開弁状態を維持するための開弁維持電流を供給する構成において、減圧弁の開弁駆動に際し、燃料噴射弁の開弁駆動時に比べて開弁維持電流を小さくする。   According to the sixth aspect of the present invention, in the configuration in which the valve opening maintaining current for maintaining the valve open state of the fuel injection valve and the pressure reducing valve is supplied, the valve opening drive of the pressure reducing valve is compared with the time of the fuel injection valve opening driving. To reduce the valve opening maintenance current.

燃料噴射弁や減圧弁の開弁駆動時には、燃料噴射弁による燃料噴射及び減圧弁による燃料の排出を維持するべく、比較的長い期間にわたり開弁維持電流(いわゆるホールド電流)が供給される。このため、減圧弁を開弁駆動させる際の開弁維持電流を燃料噴射弁の開弁駆動させる際の開弁維持電流に比べて小さくすると、長期にわたって駆動電流が低減され、その駆動電流の低減の効果が大きい。   When the fuel injection valve or the pressure reducing valve is driven to open, a valve opening maintaining current (so-called hold current) is supplied over a relatively long period of time in order to maintain fuel injection by the fuel injection valve and fuel discharge by the pressure reducing valve. For this reason, if the valve opening maintenance current when the pressure reducing valve is driven to open is made smaller than the valve opening maintenance current when the fuel injection valve is driven to open, the drive current is reduced over a long period of time, and the drive current is reduced. The effect is great.

以下、本発明を具体化した一実施の形態を図面に従って説明する。本実施の形態は、車載多気筒ディーゼルエンジン用のコモンレール式燃料噴射システムとして本発明を具体化している。先ずは、図1を用いて本コモンレール式燃料噴射システムの全体概略構成を説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings. This embodiment embodies the present invention as a common rail fuel injection system for an on-vehicle multi-cylinder diesel engine. First, the overall schematic configuration of the common rail fuel injection system will be described with reference to FIG.

図1において、4気筒ディーゼルエンジン(以下、エンジンという)10には、気筒毎に電磁駆動式のインジェクタ11が配設され、これらのインジェクタ11は各気筒共通のコモンレール12に接続されている。コモンレール12には高圧ポンプ13が接続されている。高圧ポンプ13にはその吸入部に吸入調量弁14が設けられ、吸入調量弁14はフィードポンプ15を介して燃料タンク16に接続されている。かかる構成により、燃料タンク16内の燃料がフィードポンプ15により汲み上げられるとともに、吸入調量弁14により調量されて高圧ポンプ13に吸入される。そして、高圧ポンプ13に吸入された燃料がコモンレール12に加圧供給され、高圧状態で蓄圧される。また、コモンレール12には電磁駆動式の減圧弁17が設けられており、減圧弁17を開弁させることによってコモンレール12内の燃料が燃料タンク16に排出される。コモンレール12には、コモンレール12内の燃料圧を検出する燃料圧センサ18が設けられている。   In FIG. 1, a four-cylinder diesel engine (hereinafter referred to as an engine) 10 is provided with an electromagnetically driven injector 11 for each cylinder, and these injectors 11 are connected to a common rail 12 common to each cylinder. A high pressure pump 13 is connected to the common rail 12. The high-pressure pump 13 is provided with an intake metering valve 14 at its suction portion, and the intake metering valve 14 is connected to a fuel tank 16 via a feed pump 15. With this configuration, the fuel in the fuel tank 16 is pumped up by the feed pump 15, metered by the suction metering valve 14, and sucked into the high-pressure pump 13. Then, the fuel sucked into the high-pressure pump 13 is pressurized and supplied to the common rail 12 and accumulated in a high-pressure state. The common rail 12 is provided with an electromagnetically driven pressure reducing valve 17, and the fuel in the common rail 12 is discharged to the fuel tank 16 by opening the pressure reducing valve 17. The common rail 12 is provided with a fuel pressure sensor 18 that detects the fuel pressure in the common rail 12.

電子制御ユニット20は、周知の通り、CPU、ROM、RAM等からなるマイクロコンピュータを主体として構成されるものである。電子制御ユニット20には、燃料圧センサ18の検出信号やエンジン回転速度及びアクセル操作量などの運転情報が逐次入力される。電子制御ユニット20は、ROMに記憶された種々の制御プログラムを実行することにより、入力された都度の運転情報に基づいて燃圧制御や燃料噴射制御等のエンジン10の運転にかかる各種制御を行う。   As is well known, the electronic control unit 20 is mainly composed of a microcomputer including a CPU, a ROM, a RAM, and the like. The electronic control unit 20 is sequentially inputted with operation information such as a detection signal of the fuel pressure sensor 18, an engine speed and an accelerator operation amount. The electronic control unit 20 executes various control programs stored in the ROM, thereby performing various controls related to the operation of the engine 10 such as fuel pressure control and fuel injection control based on the inputted operation information.

すなわち燃圧制御では、エンジン回転速度やアクセル操作量などの運転情報を取得するとともに、それらの運転情報に基づきコモンレール12内の目標燃料圧を算出する。そして、燃料圧センサ18よりコモンレール12内の実燃料圧を取得するとともに、目標燃料圧と実燃料圧との差から吸入調量弁14の開度量を算出し、その開度量に応じて吸入調量弁14を開弁させる。また、燃料噴射制御では、エンジン回転速度やアクセル操作量などの運転情報を取得するとともに、それらの運転情報に基づいて最適な燃料噴射時期及び噴射量を算出し、噴射時期及び噴射量に応じた噴射信号を出力する。ここで噴射信号は、各気筒に設けられたインジェクタ11ごとに与えられ、インジェクタ11の開弁により燃料噴射を行う期間、Hレベルになるパルス状の信号である。   That is, in the fuel pressure control, operation information such as the engine rotation speed and the accelerator operation amount is acquired, and the target fuel pressure in the common rail 12 is calculated based on the operation information. Then, the actual fuel pressure in the common rail 12 is acquired from the fuel pressure sensor 18, the opening amount of the intake metering valve 14 is calculated from the difference between the target fuel pressure and the actual fuel pressure, and the intake adjustment is performed according to the opening amount. The quantity valve 14 is opened. In the fuel injection control, the operation information such as the engine speed and the accelerator operation amount is acquired, and the optimum fuel injection timing and injection amount are calculated based on the operation information, and the fuel injection control is performed according to the injection timing and the injection amount. Outputs an injection signal. Here, the injection signal is a pulse-like signal which is given to each injector 11 provided in each cylinder and becomes H level during a period in which fuel injection is performed by opening the injector 11.

この他、電子制御ユニット20は、コモンレール12内の実燃料圧が目標燃料圧よりも高くなった場合に、減圧弁17を開弁させてコモンレール12内の燃料を排出する減圧弁制御を行う。かかる減圧弁制御では、燃圧制御にて算出した目標燃料圧を取得するとともに、燃料圧センサ18よりコモンレール12内の実燃料圧を取得する。そして、実燃料圧が目標燃料圧よりも所定以上高い場合に、減圧弁17を開弁してコモンレール12内の燃料を排出するべく、排出量に応じた期間、減圧弁17を開弁させる旨の減圧信号を出力する。ここで減圧信号は、減圧弁17の開弁により燃料を排出する期間、Hレベルになるパルス状の信号である。   In addition, when the actual fuel pressure in the common rail 12 becomes higher than the target fuel pressure, the electronic control unit 20 performs pressure reducing valve control for opening the pressure reducing valve 17 and discharging the fuel in the common rail 12. In the pressure reducing valve control, the target fuel pressure calculated by the fuel pressure control is acquired, and the actual fuel pressure in the common rail 12 is acquired from the fuel pressure sensor 18. When the actual fuel pressure is higher than the target fuel pressure by a predetermined amount or more, the pressure reducing valve 17 is opened for a period corresponding to the discharge amount in order to open the pressure reducing valve 17 and discharge the fuel in the common rail 12. The decompression signal is output. Here, the decompression signal is a pulse-like signal that becomes H level during the period in which fuel is discharged by opening the decompression valve 17.

エレクトロニックドライバユニット(以下、EDUという)30は、電子制御ユニット20から噴射信号及び減圧信号を入力し、それら各種信号に応じて給電を行うことによりインジェクタ11及び減圧弁17を駆動させるものである。本実施の形態のインジェクタ11及び減圧弁17は、同様の電磁ソレノイドをそれぞれ有しており、インジェクタ11の電磁ソレノイドを通電することによりインジェクタ11から燃料が噴射され、減圧弁17の電磁ソレノイドを通電することによりコモンレール12から燃料が排出される。このため、共通のEDU30により給電を行うこととしている。また、EDU30は、その内部における異常の有無を知らせるフェイル信号などを出力するように構成されている。   An electronic driver unit (hereinafter referred to as EDU) 30 inputs an injection signal and a pressure reduction signal from the electronic control unit 20, and drives the injector 11 and the pressure reduction valve 17 by supplying power in accordance with these various signals. The injector 11 and the pressure reducing valve 17 of the present embodiment each have the same electromagnetic solenoid, and when the electromagnetic solenoid of the injector 11 is energized, fuel is injected from the injector 11 and the electromagnetic solenoid of the pressure reducing valve 17 is energized. As a result, the fuel is discharged from the common rail 12. For this reason, power is supplied by a common EDU 30. Further, the EDU 30 is configured to output a fail signal for informing the presence or absence of an abnormality in the EDU 30.

図2は、インジェクタ11及び減圧弁17を駆動させるEDU30の電気的構成を示す回路図である。図2に示すように、EDU30には、インジェクタ11の電磁ソレノイド11a,11b,11c,11dが接続されるとともに、減圧弁17の電磁ソレノイド17aが接続されている。また、EDU30は、前述したように電子制御ユニット20と接続されており、電子制御ユニット20から気筒ごとの噴射信号#1〜#4及び減圧信号を入力する。一方で、EDU30は、その内部における異常の有無を知らせるフェイル信号を電子制御ユニット20に出力する。EDU30は、バッテリ21と接続されており、バッテリ21からの電源供給を受ける。   FIG. 2 is a circuit diagram showing an electrical configuration of the EDU 30 that drives the injector 11 and the pressure reducing valve 17. As shown in FIG. 2, the electromagnetic solenoids 11 a, 11 b, 11 c, and 11 d of the injector 11 are connected to the EDU 30, and the electromagnetic solenoid 17 a of the pressure reducing valve 17 is connected to the EDU 30. Further, the EDU 30 is connected to the electronic control unit 20 as described above, and inputs injection signals # 1 to # 4 and a decompression signal for each cylinder from the electronic control unit 20. On the other hand, the EDU 30 outputs a fail signal that notifies the electronic control unit 20 of the presence or absence of an abnormality in the EDU 30. The EDU 30 is connected to the battery 21 and receives power supply from the battery 21.

なお、本実施の形態では、EDU30の内部に異常が生じた場合であってもいずれかの気筒のインジェクタ11を駆動可能とするべく、EDU30は複数の駆動系統を有している。すなわち、第1及び第4気筒におけるインジェクタ11の電磁ソレノイド11a,11dを組とする第1の駆動系統と、第2及び第3気筒におけるインジェクタ11の電磁ソレノイド11b,11cを組とする第2の駆動系統とを有している。減圧弁17の電磁ソレノイド17aは、第2の駆動系統に接続されている。   In the present embodiment, the EDU 30 has a plurality of drive systems so that the injector 11 of any cylinder can be driven even when an abnormality occurs in the EDU 30. That is, the first drive system that combines the electromagnetic solenoids 11a and 11d of the injector 11 in the first and fourth cylinders and the second drive system that combines the electromagnetic solenoids 11b and 11c of the injector 11 in the second and third cylinders. Drive system. The electromagnetic solenoid 17a of the pressure reducing valve 17 is connected to the second drive system.

さて、EDU30は、バッテリ電圧(例えば12ボルト)を入力して所定の高電圧(例えば100ボルト程度)を出力する高電圧発生回路31を備えている。高電圧発生回路31は、第1の駆動系統として、MOSFET32を介して電磁ソレノイド11a,11dのハイサイドに接続されている。また、電磁ソレノイド11a,11dのハイサイドは、MOSFET33及びダイオード34を介してバッテリ21に接続されるとともに、ダイオード35を介して接地されている。ここでダイオード34,35は、電磁ソレノイド11a,11dのハイサイドに向かって電流が流れる向きを順方向として接続されている。一方で、電磁ソレノイド11a,11dのローサイドはMOSFET41a,41dにそれぞれ接続され、それらMOSFET41a,41dは通電電流検出用の抵抗43を介して接地されている。   The EDU 30 includes a high voltage generation circuit 31 that inputs a battery voltage (for example, 12 volts) and outputs a predetermined high voltage (for example, about 100 volts). The high voltage generation circuit 31 is connected to the high side of the electromagnetic solenoids 11a and 11d via the MOSFET 32 as a first drive system. The high side of the electromagnetic solenoids 11 a and 11 d is connected to the battery 21 through the MOSFET 33 and the diode 34 and is grounded through the diode 35. Here, the diodes 34 and 35 are connected with the direction in which the current flows toward the high side of the electromagnetic solenoids 11a and 11d as the forward direction. On the other hand, the low sides of the electromagnetic solenoids 11a and 11d are connected to MOSFETs 41a and 41d, respectively, and the MOSFETs 41a and 41d are grounded via a resistance 43 for detecting an energization current.

次いで第2駆動系統として、高電圧発生回路31は、MOSFET36を介して電磁ソレノイド11b,11c,17aのハイサイドに接続されている。また、電磁ソレノイド11b,11c,17aのハイサイドは、MOSFET37及びダイオード38を介してバッテリ21に接続されるとともに、ダイオード39を介して接地されている。ここでダイオード38,39は、電磁ソレノイド11b,11c,17aのハイサイドに向かって電流が流れる向きを順方向として接続されている。一方で、電磁ソレノイド11b,11c,17aのローサイドはMOSFET41b,41c,42aにそれぞれ接続され、それらMOSFET41b,41c,42aは通電電流検出用の抵抗44を介して接地されている。   Next, as a second drive system, the high voltage generation circuit 31 is connected to the high side of the electromagnetic solenoids 11b, 11c, and 17a via the MOSFET 36. The high side of the electromagnetic solenoids 11 b, 11 c, and 17 a is connected to the battery 21 via the MOSFET 37 and the diode 38 and is grounded via the diode 39. Here, the diodes 38 and 39 are connected with the direction of current flowing toward the high side of the electromagnetic solenoids 11b, 11c and 17a as the forward direction. On the other hand, the low sides of the electromagnetic solenoids 11b, 11c, and 17a are connected to MOSFETs 41b, 41c, and 42a, respectively, and the MOSFETs 41b, 41c, and 42a are grounded through a resistance 44 for detecting an energization current.

制御回路50は、噴射信号#1〜#4及び減圧信号に応じて各MOSFETのオン/オフ(導通/遮断)を切り替えるものである。以下、制御回路50による各MOSFETのオン/オフの切り替え動作について、第1気筒のインジェクタ11の駆動を対象とし、図3を用いて説明する。すなわち、図3に示すように、タイミングt1において噴射信号#1がHレベルになると、制御回路50は、電磁ソレノイド11aのローサイドのMOSFET41aをオンするとともに、同電磁ソレノイド11aのハイサイドのMOSFET32をオンする。すると、高電圧発生回路31の高電圧の出力電圧が電磁ソレノイド11aに印加されるため、電磁ソレノイド11aの通電電流が急激に増加する。タイミングt2において電磁ソレノイド11aの通電電流が所定のピーク電流しきい値Ithに達すると、制御回路50はMOSFET32をオフする。その後、噴射信号#1がHレベルである期間、電磁ソレノイド11aの通電電流を所定のホールド電流しきい値以上に維持するように、MOSFET33を繰り返しオン/オフする。そして、タイミングt3において、噴射信号#1がLレベルになると、MOSFET41aをオフする。   The control circuit 50 switches on / off (conduction / cutoff) of each MOSFET according to the injection signals # 1 to # 4 and the pressure reduction signal. Hereinafter, the on / off switching operation of each MOSFET by the control circuit 50 will be described with reference to FIG. 3 for the drive of the injector 11 of the first cylinder. That is, as shown in FIG. 3, when the injection signal # 1 becomes H level at timing t1, the control circuit 50 turns on the low-side MOSFET 41a of the electromagnetic solenoid 11a and turns on the high-side MOSFET 32 of the electromagnetic solenoid 11a. To do. Then, since the high output voltage of the high voltage generation circuit 31 is applied to the electromagnetic solenoid 11a, the energization current of the electromagnetic solenoid 11a increases rapidly. When the energizing current of the electromagnetic solenoid 11a reaches a predetermined peak current threshold Ith at timing t2, the control circuit 50 turns off the MOSFET 32. Thereafter, the MOSFET 33 is repeatedly turned on / off so that the energization current of the electromagnetic solenoid 11a is maintained at a predetermined hold current threshold value or more during the period when the injection signal # 1 is at the H level. At timing t3, when the injection signal # 1 becomes L level, the MOSFET 41a is turned off.

以上のようにMOSFET32,33,41aをオン/オフさせることにより、噴射信号#1の立ち上がり時に電磁ソレノイド11aに比較的大きな電流(ピーク電流)が通電され、インジェクタ11が速やかに開弁されて燃料噴射が開始される。その後噴射信号#1がHレベルである期間、電磁ソレノイド11aに燃料噴射を維持するための一定の電流(ホールド電流)が通電され、インジェクタ11の開弁状態が維持されて燃料噴射が継続して行われる。制御回路50は、他の気筒のインジェクタ11の電磁ソレノイド11b,c,dや、減圧弁17の電磁ソレノイド17aへの給電に際しても同様に、各MOSFETのオン/オフの切り替える。   By turning on / off the MOSFETs 32, 33, 41a as described above, a relatively large current (peak current) is supplied to the electromagnetic solenoid 11a when the injection signal # 1 rises, and the injector 11 is quickly opened to provide fuel. Injection starts. Thereafter, during a period when the injection signal # 1 is at the H level, the electromagnetic solenoid 11a is energized with a constant current (hold current) to maintain the fuel injection, the injector 11 is kept open, and the fuel injection continues. Done. Similarly, the control circuit 50 switches each MOSFET on / off when supplying power to the electromagnetic solenoids 11b, c, d of the injectors 11 of the other cylinders and the electromagnetic solenoid 17a of the pressure reducing valve 17.

ところで、インジェクタ11の駆動に際しては、噴射時期及び噴射量に従って燃料を噴射供給するべく応答性が求められるため、その電磁ソレノイド11a〜11dにはピーク電流として16アンペア程度の比較的大きな電流を流す必要がある。これに対し、減圧弁17の駆動に際しては、単に開弁されれば良く、その電磁ソレノイド17aにはピーク電流として10アンペア程度の比較的小さな電流を流せば良い。このため、上記構成の制御回路50により、インジェクタ11の駆動時と減圧弁17の駆動時とで各MOSFETのオン/オフを同様に切り替えると、減圧弁17の電磁ソレノイド17aに必要以上の電流が流れることになる。そこで、本実施の形態では、インジェクタ11の駆動時と減圧弁17の駆動時とでピーク電流しきい値Ithを変更できるように制御回路50を構成する。   By the way, when the injector 11 is driven, responsiveness is required to inject and supply fuel according to the injection timing and the injection amount. Therefore, it is necessary to flow a relatively large current of about 16 amperes as a peak current to the electromagnetic solenoids 11a to 11d. There is. On the other hand, when the pressure reducing valve 17 is driven, it is only necessary to open the valve, and a relatively small current of about 10 amperes as a peak current may flow through the electromagnetic solenoid 17a. For this reason, if the control circuit 50 having the above-described configuration is used to similarly switch the MOSFETs on and off when the injector 11 is driven and when the pressure reducing valve 17 is driven, an excessive current flows in the electromagnetic solenoid 17 a of the pressure reducing valve 17. Will flow. Therefore, in the present embodiment, the control circuit 50 is configured such that the peak current threshold value Ith can be changed between when the injector 11 is driven and when the pressure reducing valve 17 is driven.

図4は、インジェクタ11の電磁ソレノイド11b及び11cの通電時と、減圧弁17の電磁ソレノイド17aの通電時とにおいて、ピーク電流しきい値Ithを変更可能とする制御回路50の電気的構成を示す回路図である。図4では、制御回路50の回路図として、MOSFET36のオン/オフを切り替える部分の回路のみを示す。   FIG. 4 shows an electrical configuration of the control circuit 50 that can change the peak current threshold Ith when the electromagnetic solenoids 11b and 11c of the injector 11 are energized and when the electromagnetic solenoid 17a of the pressure reducing valve 17 is energized. It is a circuit diagram. In FIG. 4, as a circuit diagram of the control circuit 50, only a circuit of a part for switching on / off of the MOSFET 36 is shown.

図4に示すように、制御回路50は、EDU内部回路の定電圧源Vccと接地との間に、抵抗51,52を直列に接続した分圧回路を有する。ここで抵抗52は抵抗52a,52bを直列に接続しており、そのうちの抵抗52bと並列にトランジスタ53のエミッタ−コレクタ間が接続されている。トランジスタ53のベースには減圧信号が入力されるようになっており、トランジスタ53は減圧信号がHレベルである場合にオンされる。   As shown in FIG. 4, the control circuit 50 has a voltage dividing circuit in which resistors 51 and 52 are connected in series between the constant voltage source Vcc of the EDU internal circuit and the ground. Here, the resistor 52 has resistors 52a and 52b connected in series, and the emitter and collector of the transistor 53 are connected in parallel with the resistor 52b. A decompression signal is inputted to the base of the transistor 53, and the transistor 53 is turned on when the decompression signal is at the H level.

また、制御回路50は電磁ソレノイド11b,11c,17aの通電電流値とピーク電流しきい値Ithとの大小を比較するためのコンパレータ54を備える。コンパレータ54の−端子は抵抗51と抵抗52の間と接続され、同−端子には抵抗51,52により分圧された電圧Vpが入力される。かかる電圧Vpがピーク電流しきい値Ithに相当する。一方で、コンパレータ54の+端子は電流検出用の抵抗44のハイサイドと接続され、同+端子には電磁ソレノイド11b,11c,17aの通電電流値に相当する電圧Viが入力される。コンパレータ54の出力端子はMOS駆動回路55に接続され、このMOS駆動回路55がMOSFET36のゲート端子に接続されている。MOS駆動回路55は、噴射信号#2,#3及び減圧信号とコンパレータ54の出力とに応じてMOSFET36のオン/オフを切り替えるものである。詳しくは、噴射信号#2,#3及び減圧信号がHレベルに立ち上がるとMOSFET36をオンする。その後、通電電流値に相当する電圧Viがピーク電流しきい値Ithに相当する電圧Vpよりも大きくなり、コンパレータ54の出力が反転するとMOSFET36をオフする動作を行う。   The control circuit 50 also includes a comparator 54 for comparing the magnitudes of the energization current values of the electromagnetic solenoids 11b, 11c, and 17a with the peak current threshold value Ith. The negative terminal of the comparator 54 is connected between the resistors 51 and 52, and the voltage Vp divided by the resistors 51 and 52 is input to the negative terminal. Such voltage Vp corresponds to the peak current threshold Ith. On the other hand, the + terminal of the comparator 54 is connected to the high side of the resistor 44 for current detection, and the voltage Vi corresponding to the energization current value of the electromagnetic solenoids 11b, 11c, and 17a is input to the + terminal. The output terminal of the comparator 54 is connected to the MOS drive circuit 55, and this MOS drive circuit 55 is connected to the gate terminal of the MOSFET 36. The MOS drive circuit 55 switches on / off of the MOSFET 36 in accordance with the injection signals # 2 and # 3, the decompression signal, and the output of the comparator 54. Specifically, the MOSFET 36 is turned on when the injection signals # 2 and # 3 and the decompression signal rise to H level. Thereafter, when the voltage Vi corresponding to the energization current value becomes larger than the voltage Vp corresponding to the peak current threshold Ith and the output of the comparator 54 is inverted, the MOSFET 36 is turned off.

ここで、前述したように分圧回路を構成したことにより、インジェクタ11の電磁ソレノイド11b,11cへの給電時と減圧弁17の電磁ソレノイド17aへの給電時とで、ピーク電流しきい値に相当する電圧Vpが変化する。すなわち、インジェクタ11を駆動するべく電磁ソレノイド11b,11cを通電する場合には、トランジスタ53がオフされた状態であり、ピーク電流しきい値Ithに相当する電圧Vpは、抵抗52,53a,53bの抵抗比によって決まる(16アンペアに相当)。一方で、減圧弁17を駆動するべく電磁ソレノイド17aを通電する場合には、トランジスタ53がオンされた状態であり、ピーク電流しきい値Ithに相当する電圧Vpは、抵抗51,52aの抵抗比によって決まる(10アンペアに相当)。   Here, since the voltage dividing circuit is configured as described above, it corresponds to the peak current threshold value when power is supplied to the electromagnetic solenoids 11b and 11c of the injector 11 and when power is supplied to the electromagnetic solenoid 17a of the pressure reducing valve 17. The voltage Vp to be changed changes. That is, when the electromagnetic solenoids 11b and 11c are energized to drive the injector 11, the transistor 53 is turned off, and the voltage Vp corresponding to the peak current threshold value Ith is applied to the resistors 52, 53a, and 53b. Determined by the resistance ratio (equivalent to 16 amps). On the other hand, when the electromagnetic solenoid 17a is energized to drive the pressure reducing valve 17, the transistor 53 is turned on, and the voltage Vp corresponding to the peak current threshold value Ith is the resistance ratio of the resistors 51 and 52a. (Corresponding to 10 amps).

以上、詳述した実施の形態によれば、以下の優れた効果が得られる。   As described above, according to the embodiment described in detail, the following excellent effects can be obtained.

減圧弁17の駆動に際し、ピーク電流用しきい値Ithを変更するように制御回路50を構成した。本実施の形態では、ピーク電流用しきい値Ithに基づいてMOSFET36のオン/オフが切り替えられるため、電磁ソレノイド17aの通電電流が小さくなるようにピーク電流用しきい値Ithが変更される。これにより減圧弁17の電磁ソレノイド17aに流れるピーク電流の大きさがインジェクタ11の電磁ソレノイド11a〜11dに流れるピーク電流の大きさに比べて小さくなる。すなわち、電磁ソレノイド17aに余剰な電流が流れることが回避され、ひいては、駆動電流の低減が図られるとともに、電磁ソレノイド17aにおける発熱が軽減される。   When the pressure reducing valve 17 is driven, the control circuit 50 is configured to change the peak current threshold Ith. In the present embodiment, since the MOSFET 36 is switched on / off based on the peak current threshold value Ith, the peak current threshold value Ith is changed so that the energization current of the electromagnetic solenoid 17a is reduced. Thereby, the magnitude of the peak current flowing through the electromagnetic solenoid 17a of the pressure reducing valve 17 becomes smaller than the magnitude of the peak current flowing through the electromagnetic solenoids 11a to 11d of the injector 11. That is, it is possible to avoid an excessive current from flowing through the electromagnetic solenoid 17a. As a result, the drive current is reduced and the heat generation in the electromagnetic solenoid 17a is reduced.

特に、ピーク電流用しきい値Ithを変更するために、抵抗51,52からなり、ピーク電流用しきい値Ithに相当する電圧Vpを出力する分圧回路において、2つの抵抗52a,52bを直列に接続して抵抗52を構成するとともに、抵抗52bと並列にトランジスタ53を接続し、同トランジスタ53のベースに減圧信号を入力するように構成した。かかる構成により、インジェクタ11の駆動時と減圧弁17の駆動時とでトランジスタ53のオン/オフが切り替わって分圧回路の分圧比が変化し、ピーク電流用しきい値Ithが変更される。また、上述した構成によれば、3つの抵抗(抵抗51,52a,52b)及び1つのスイッチ素子(トランジスタ53)からなる分圧回路によってピーク電流用しきい値Ithが変更されるため、コストの面で有利である。   Particularly, in order to change the peak current threshold value Ith, two resistors 52a and 52b are connected in series in a voltage dividing circuit that includes resistors 51 and 52 and outputs a voltage Vp corresponding to the peak current threshold value Ith. The resistor 52 is connected to the transistor 52, the transistor 53 is connected in parallel with the resistor 52b, and a decompression signal is input to the base of the transistor 53. With this configuration, the transistor 53 is turned on / off when the injector 11 is driven and when the pressure reducing valve 17 is driven, the voltage dividing ratio of the voltage dividing circuit is changed, and the peak current threshold value Ith is changed. Further, according to the configuration described above, the peak current threshold value Ith is changed by the voltage dividing circuit including three resistors (resistors 51, 52a, 52b) and one switch element (transistor 53). Is advantageous.

また、ピーク電流しきい値Ithを変更するようにしたことにより、ピーク電流としてインジェクタ11が必要とする16アンペアの電流と、減圧弁17が必要とする10アンペアの電流とがそれぞれ適切に給電される。すなわち、6アンペア分の駆動電流が低減され、その効果が大きい。   Further, by changing the peak current threshold Ith, the 16 ampere current required by the injector 11 as the peak current and the 10 ampere current required by the pressure reducing valve 17 are supplied appropriately. The That is, the driving current for 6 amperes is reduced, and the effect is great.

なお、本発明は以上説明した実施の形態に限定されるものではなく、以下のように実施しても良い。   The present invention is not limited to the embodiment described above, and may be implemented as follows.

上記実施の形態では、インジェクタ11の駆動時と減圧弁17の駆動時とでピーク電流しきい値Ithを変更する構成としたがこれに限らない。図5は、減圧弁17を駆動するために減圧信号が立ち上げられた際の減圧弁17の開度量の変化を示すものである。図5に示すように、減圧弁17は、コモンレール12内の燃料圧が大きいほど速やかに開状態になる。したがって、減圧弁17の駆動に際し、インジェクタ11の駆動時に比べてピーク電流しきい値Ithを小さく設定することに加え、コモンレール12内の燃料圧が大きいほどピーク電流しきい値Ithをさらに小さくする構成としても良い。これにより、所望とする応答性を確保しつつ、駆動電流をさらに低減させることができる。   In the above embodiment, the peak current threshold value Ith is changed between when the injector 11 is driven and when the pressure reducing valve 17 is driven. FIG. 5 shows a change in the amount of opening of the pressure reducing valve 17 when a pressure reducing signal is raised to drive the pressure reducing valve 17. As shown in FIG. 5, the pressure reducing valve 17 is quickly opened as the fuel pressure in the common rail 12 increases. Therefore, when the pressure reducing valve 17 is driven, the peak current threshold value Ith is set smaller than when the injector 11 is driven, and the peak current threshold value Ith is further reduced as the fuel pressure in the common rail 12 increases. It is also good. As a result, it is possible to further reduce the drive current while ensuring the desired response.

上記実施の形態では、インジェクタ11の駆動時と減圧弁17の駆動時とでピーク電流しきい値Ithを変更する構成としたが、これに限らずホールド電流しきい値を変更するように構成しても良い。インジェクタ11の開弁状態を維持するためのホールド電流と、減圧弁17の開弁状態を維持するためのホールド電流との大きさは異なる。このため、減圧弁17の開弁駆動に際し、インジェクタ11の開弁駆動時に比べてホールド電流が小さくなるようにホールド電流しきい値を変更すると良い。ここで、ホールド電流はインジェクタ11及び減圧弁17の開弁状態を維持するべく比較的長期間にわたって供給されるため、ホールド電流の低減の効果は大きい。   In the above embodiment, the peak current threshold Ith is changed between when the injector 11 is driven and when the pressure reducing valve 17 is driven. However, the configuration is not limited to this, and the hold current threshold is changed. May be. The magnitudes of the hold current for maintaining the open state of the injector 11 and the hold current for maintaining the open state of the pressure reducing valve 17 are different. For this reason, when the pressure reducing valve 17 is driven to open, it is preferable to change the hold current threshold value so that the hold current becomes smaller than when the injector 11 is driven to open. Here, since the hold current is supplied over a relatively long period in order to maintain the open state of the injector 11 and the pressure reducing valve 17, the effect of reducing the hold current is great.

コモンレール式燃料噴射システムの概略構成を示す構成図である。It is a block diagram which shows schematic structure of a common rail type fuel injection system. EDUの電気的構成を示す回路図である。It is a circuit diagram which shows the electric constitution of EDU. MOSFETのオン/オフの切り替え動作を説明するための図である。It is a figure for demonstrating switching operation | movement of MOSFET on / off. EDUの制御回路の電気的構成を示す回路図である。It is a circuit diagram which shows the electrical constitution of the control circuit of EDU. 減圧弁の開度量の変化を示す図である。It is a figure which shows the change of the opening amount of a pressure-reduction valve.

符号の説明Explanation of symbols

11…燃料噴射弁としてのインジェクタ、12…コモンレール、13…燃料ポンプとしての高圧ポンプ、17…減圧弁、20…電子制御ユニット、30…EDU、44…検出手段としての抵抗、50…制御回路、51,52…分圧抵抗、53…分圧回路用スイッチ素子としてのトランジスタ、54…比較手段としてのコンパレータ。   DESCRIPTION OF SYMBOLS 11 ... Injector as fuel injection valve, 12 ... Common rail, 13 ... High pressure pump as fuel pump, 17 ... Pressure reducing valve, 20 ... Electronic control unit, 30 ... EDU, 44 ... Resistance as detection means, 50 ... Control circuit, 51, 52... Voltage dividing resistors, 53... Transistors as voltage dividing circuit switch elements, 54.

Claims (6)

燃料を高圧状態で蓄えるコモンレールと、該コモンレールに燃料を加圧供給する燃料ポンプと、前記コモンレールに蓄えられた燃料をエンジンに噴射供給する電磁駆動式の燃料噴射弁と、前記コモンレール内の燃料を排出する電磁駆動式の減圧弁とを備えるシステムに適用され、
前記エンジンの運転状態に応じて生成される噴射信号に基づいて前記燃料噴射弁に給電を行い同燃料噴射弁を開弁駆動させるとともに、燃料圧の減圧要求時に生成される減圧信号に基づいて前記減圧弁に給電を行い同減圧弁を開弁駆動させる駆動回路部を備え、
前記減圧弁を開弁駆動させる際の駆動電流が前記燃料噴射弁を開弁駆動させる際の駆動電流よりも小さくなるように前記駆動回路部を構成したことを特徴とするコモンレール式燃料噴射装置。
A common rail that stores fuel in a high-pressure state, a fuel pump that pressurizes and supplies fuel to the common rail, an electromagnetically driven fuel injection valve that injects fuel stored in the common rail to the engine, and fuel in the common rail. Applied to a system comprising an electromagnetically driven pressure reducing valve for discharging,
The fuel injection valve is powered based on an injection signal generated according to the operating state of the engine to drive the fuel injection valve to open, and based on a pressure reduction signal generated when a fuel pressure reduction request is made. Provided with a drive circuit unit that feeds power to the pressure reducing valve and drives the pressure reducing valve to open,
The common rail type fuel injection device, wherein the drive circuit unit is configured such that a drive current when the pressure reducing valve is driven to open is smaller than a drive current when the fuel injection valve is driven to open.
前記燃料噴射弁及び前記減圧弁に流れる駆動電流の大きさを検出する検出手段と、該検出手段により検出した駆動電流の大きさと所定の電流しきい値とを比較する比較手段とを備え、該比較手段による比較結果に応じて前記駆動電流が流れる電流経路を断続するようにしたコモンレール式燃料噴射装置において、
前記減圧弁の開弁駆動に際し、前記燃料噴射弁の開弁駆動時に比べて前記駆動電流が小さくなるように前記電流しきい値を変更することを特徴とする請求項1に記載のコモンレール式燃料噴射装置。
Detection means for detecting the magnitude of the drive current flowing through the fuel injection valve and the pressure reducing valve, and comparison means for comparing the magnitude of the drive current detected by the detection means with a predetermined current threshold, In the common rail fuel injection device configured to intermittently pass a current path through which the drive current flows according to a comparison result by the comparison unit,
2. The common rail fuel according to claim 1, wherein when the pressure reducing valve is driven to open, the current threshold is changed so that the driving current is smaller than when the fuel injection valve is driven to open. Injection device.
第1の分圧抵抗及び第2の分圧抵抗からなる分圧回路を備え、該分圧回路の出力電圧を前記電流しきい値として用いるコモンレール式燃料噴射装置において、
前記第1の分圧抵抗又は第2の分圧抵抗のいずれかの分圧抵抗を2つの抵抗を直列に接続して構成するとともに、その2つの抵抗のうちのいずれかの抵抗と並列に分圧回路用スイッチ素子を接続し、前記減圧弁の開弁駆動に際し、前記燃料噴射弁の開弁駆動時に比べて前記電流しきい値が小さくなるように前記分圧回路用スイッチ素子を導通又は遮断することを特徴とする請求項2に記載のコモンレール式燃料噴射装置。
In a common rail fuel injection device comprising a voltage dividing circuit comprising a first voltage dividing resistor and a second voltage dividing resistor, and using an output voltage of the voltage dividing circuit as the current threshold value,
The voltage dividing resistor of either the first voltage dividing resistor or the second voltage dividing resistor is configured by connecting two resistors in series, and is divided in parallel with one of the two resistors. A pressure circuit switch element is connected, and when the pressure reducing valve is driven to open, the voltage divider circuit switch element is turned on or off so that the current threshold value is smaller than when the fuel injection valve is driven to open. The common rail fuel injection device according to claim 2, wherein
前記減圧弁の開弁駆動に際し、前記駆動電流の大きさを前記エンジンの運転状態に応じて変更するように前記駆動回路を構成したことを特徴とする請求項1又は2に記載のコモンレール式燃料噴射装置。   3. The common rail fuel according to claim 1, wherein the drive circuit is configured to change a magnitude of the drive current in accordance with an operating state of the engine when the pressure reducing valve is driven to open. 4. Injection device. 前記燃料噴射弁及び前記減圧弁の開弁当初に所定の開弁時駆動電流を供給するようにしたコモンレール式燃料噴射装置において、
前記減圧弁の開弁駆動に際し、前記燃料噴射弁の開弁駆動時に比べて前記開弁時駆動電流を小さくするようにしたことを特徴とする請求項1乃至4のいずれかに記載のコモンレール式燃料噴射装置。
In the common rail fuel injection device configured to supply a predetermined opening-time drive current at the beginning of opening of the fuel injection valve and the pressure reducing valve,
5. The common rail system according to claim 1, wherein, when the pressure reducing valve is driven to open, the valve opening drive current is made smaller than when the fuel injection valve is driven to open. Fuel injection device.
前記燃料噴射弁及び前記減圧弁の開弁状態を維持するための開弁維持電流を供給するようにした前記コモンレール式燃料噴射装置において、
前記減圧弁の開弁駆動に際し、前記燃料噴射弁の開弁駆動時に比べて前記開弁維持電流を小さくするようにしたことを特徴とする請求項1乃至5のいずれかに記載のコモンレール式燃料噴射装置。
In the common rail fuel injection device configured to supply a valve opening maintaining current for maintaining the valve opening state of the fuel injection valve and the pressure reducing valve,
6. The common rail fuel according to claim 1, wherein when the pressure reducing valve is driven to open, the valve maintenance current is made smaller than when the fuel injection valve is driven to open. Injection device.
JP2006082021A 2006-03-24 2006-03-24 Common rail fuel injection system Expired - Fee Related JP4506699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082021A JP4506699B2 (en) 2006-03-24 2006-03-24 Common rail fuel injection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082021A JP4506699B2 (en) 2006-03-24 2006-03-24 Common rail fuel injection system

Publications (2)

Publication Number Publication Date
JP2007255333A true JP2007255333A (en) 2007-10-04
JP4506699B2 JP4506699B2 (en) 2010-07-21

Family

ID=38629814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082021A Expired - Fee Related JP4506699B2 (en) 2006-03-24 2006-03-24 Common rail fuel injection system

Country Status (1)

Country Link
JP (1) JP4506699B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208264A1 (en) * 2013-06-28 2014-12-31 いすゞ自動車株式会社 Control device for common rail fuel injection device
CN104747332A (en) * 2015-03-11 2015-07-01 中国重汽集团济南动力有限公司 Driving circuit of diesel engine electrical control common rail oil injector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107784A (en) * 1999-10-07 2001-04-17 Denso Corp Injector driving circuit
JP2003056386A (en) * 2001-08-09 2003-02-26 Denso Corp Driving device and fuel supply system using it
JP2003322067A (en) * 2002-04-26 2003-11-14 Denso Corp Accumulator fuel injection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107784A (en) * 1999-10-07 2001-04-17 Denso Corp Injector driving circuit
JP2003056386A (en) * 2001-08-09 2003-02-26 Denso Corp Driving device and fuel supply system using it
JP2003322067A (en) * 2002-04-26 2003-11-14 Denso Corp Accumulator fuel injection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208264A1 (en) * 2013-06-28 2014-12-31 いすゞ自動車株式会社 Control device for common rail fuel injection device
JP2015010541A (en) * 2013-06-28 2015-01-19 いすゞ自動車株式会社 Control device of common rail type fuel injection system
EP3015700A4 (en) * 2013-06-28 2017-03-08 Isuzu Motors, Ltd. Control device for common rail fuel injection device
CN104747332A (en) * 2015-03-11 2015-07-01 中国重汽集团济南动力有限公司 Driving circuit of diesel engine electrical control common rail oil injector

Also Published As

Publication number Publication date
JP4506699B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
US8081498B2 (en) Internal combustion engine controller
US7124742B1 (en) Supplemental fuel injector trigger circuit
US6892708B2 (en) Fuel injection system and control method
US7823860B2 (en) Drive of an electromagnetic valve with a coil by supplying high voltage from a discharging capacitor to the coil
US9653200B2 (en) Electromagnetic-valve controller
JP7316030B2 (en) Injection control device
JP2010255444A (en) Device and method for fuel injection control of internal combustion engine
JP6245009B2 (en) Fuel injection control device
US10655613B2 (en) High-pressure pump control unit
CN108138712B (en) Vehicle control device
JP5541245B2 (en) Fuel injection control device
JP4506699B2 (en) Common rail fuel injection system
JP2013137028A (en) Device and method for fuel injection control of internal combustion engine
JP2013194579A (en) Control device of high-pressure pump
EP1669577B1 (en) Inductive load driver with overcurrent detection
JP2020094570A (en) Fuel injection valve drive unit
US20110017178A1 (en) Canister purge control valve control systems
JP2010216278A (en) Boosting circuit for driving fuel injection valve
JP2010270713A (en) Actuator control device
JP2002295293A (en) Fuel injection device
JP2006291756A (en) Solenoid valve drive control device
JP2020096125A (en) Solenoid drive device
US10957474B2 (en) Injection control device
JP6748743B2 (en) Fuel injection control device and fuel injection control method
JP2014224479A (en) Electronic control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4506699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees