JP2006291756A - Solenoid valve drive control device - Google Patents

Solenoid valve drive control device Download PDF

Info

Publication number
JP2006291756A
JP2006291756A JP2005110347A JP2005110347A JP2006291756A JP 2006291756 A JP2006291756 A JP 2006291756A JP 2005110347 A JP2005110347 A JP 2005110347A JP 2005110347 A JP2005110347 A JP 2005110347A JP 2006291756 A JP2006291756 A JP 2006291756A
Authority
JP
Japan
Prior art keywords
injection
valve
energization
charge value
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005110347A
Other languages
Japanese (ja)
Inventor
Takehiko Daiku
武彦 大工
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005110347A priority Critical patent/JP2006291756A/en
Priority to DE200610000157 priority patent/DE102006000157A1/en
Publication of JP2006291756A publication Critical patent/JP2006291756A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make residual magnetic force generated at a time of stop of excitation of a solenoid valve small. <P>SOLUTION: The solenoid valve 32 is used for a fuel injection valve 3 injecting and supplying fuel to an engine 1, and includes a valve element 32a and a core 32b attracting the valve element 32a by electromagnetic force generated by a coil, and influences on response of injection stop by intensity of residual magnetic force generated at a time of stop of excitation of the coil. The solenoid valve drive control device controlling excitation characteristics of the coil of the solenoid vale 32 according to an operation condition of the engine 1 is provided with a solenoid valve individual difference adjustment means setting excitation electric charge value before injection stop of excitation characteristics during injection to the minimum excitation electric charge value Ihc (Ihco) with which injection condition of the fuel injection valve 3 having the solenoid valve 32 mounted thereon can be maintained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電磁弁駆動制御装置に関し、例えば内燃機関に燃料を噴射供給する燃料噴射弁に用いられる電磁弁の駆動制御装置に適用して好適なものである。   The present invention relates to a solenoid valve drive control device, and is suitably applied to, for example, a drive control device for a solenoid valve used in a fuel injection valve that injects and supplies fuel to an internal combustion engine.

従来より、内燃機関の燃料噴射装置として、例えばディーゼル機関の気筒内に燃料を噴射供給する装置が知られている。この装置では、電磁弁式の燃料噴射弁によって燃料が噴射供給されている。この種の電磁弁は、燃料を噴射および噴射停止する燃料噴射弁本体側のニードルを直接的もしくは間接的に駆動する弁体と、コイルに発生する電磁力で弁体を吸引する吸引部材としてのコアを備えており、コイルへの通電および通電停止の通電制御することで、ニードルを開弁および閉弁させて燃料の噴射および噴射停止をするものである。   Conventionally, as a fuel injection device for an internal combustion engine, for example, a device for injecting and supplying fuel into a cylinder of a diesel engine is known. In this apparatus, fuel is injected and supplied by an electromagnetic valve type fuel injection valve. This type of solenoid valve is a valve body that directly or indirectly drives a needle on the fuel injection valve main body that injects and stops fuel injection, and a suction member that sucks the valve body by electromagnetic force generated in a coil. A core is provided, and by controlling energization of the coil and energization stop, the needle is opened and closed to inject and stop the fuel injection.

ディーゼル機関には、近年、排気ガス規制の強化や燃焼音低減の社会的要請があり、これに対応して電磁弁に高応答性の要求がある。   In recent years, there have been social demands for diesel engines to tighten exhaust gas regulations and reduce combustion noise. Correspondingly, there is a demand for high responsiveness of solenoid valves.

これに対して特許文献1の開示する技術では、1噴射中の電磁弁への通電特性として、開弁後の通電電流より大きな過渡電流を通電初期に流すことで開弁応答性を向上させている。なお、この技術では、開弁後の通電電流を、所定の一定電流値に制御することで、開弁状態の維持と消費電力の低減が図られている。
特開平8−177583公報
On the other hand, in the technique disclosed in Patent Document 1, the valve opening responsiveness is improved by flowing a transient current larger than the energizing current after the valve opening as the energizing characteristic to the solenoid valve during one injection. Yes. In this technology, the valve opening state is maintained and the power consumption is reduced by controlling the energization current after the valve opening to a predetermined constant current value.
Japanese Patent Laid-Open No. 8-17783

開弁を維持するための最小電流値には、電磁弁に個体差があり、電磁弁毎に異なっている。しかしながら従来技術では、上記所定一定電流値を、余裕電流値分を上乗せした値に設定しているため、コイルへの通電を停止するときにコイルに生じる残留磁力が大きくなってしまって、その結果、閉弁応答時間が遅くなるという問題がある。   The minimum current value for maintaining the valve opening has individual differences among the solenoid valves, and is different for each solenoid valve. However, in the prior art, since the predetermined constant current value is set to a value that is added to the margin current value, the residual magnetic force generated in the coil is increased when the power supply to the coil is stopped. There is a problem that the valve closing response time becomes slow.

本発明は、このような事情を考慮してなされたものであり、電磁弁への通電停止時に生じる残留磁力を小さくすることを可能とすることを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to make it possible to reduce the residual magnetic force generated when the energization of the solenoid valve is stopped.

また、別の目的は、電磁弁への通電停止時に生じる残留磁力を小さくすることを可能にするとともに、1燃焼行程に複数回に分けて噴射する場合において、前噴射と後噴射との近接噴射による噴射の重なりを防止可能な電磁弁駆動制御装置を提供することにある。   Another object is to make it possible to reduce the residual magnetic force generated when the energization of the solenoid valve is stopped, and in the case of injection divided into a plurality of times in one combustion stroke, the proximity injection between the pre-injection and the post-injection It is an object of the present invention to provide an electromagnetic valve drive control device that can prevent injection overlap due to the above.

本発明は、上記目的を達成するために以下の技術的手段を備える。   In order to achieve the above object, the present invention comprises the following technical means.

請求項1乃至6記載の発明では、内燃機関に燃料を噴射供給する燃料噴射弁に用いられ、弁体と、コイルに発生する電磁力で弁体を吸引する吸引部材とを有し、コイルへの通電停止時に生じる残留磁力の大きさにより噴射停止の応答性に影響を与える電磁弁であって、内燃機関の運転状態に応じてこの電磁弁のコイルへの通電特性を制御する電磁弁駆動制御装置において、
1噴射中の通電特性のうちの噴射停止前の通電電荷値を、電磁弁が搭載された燃料噴射弁の噴射状態を保持できる最小の通電電荷値に設定する電磁弁個体差調整手段を備えていることを特徴としている。
The invention according to any one of claims 1 to 6 is used in a fuel injection valve for injecting and supplying fuel to an internal combustion engine, and includes a valve body and a suction member that sucks the valve body by electromagnetic force generated in the coil. Solenoid valve driving control that controls the response characteristics of injection stop by the magnitude of the residual magnetic force generated when the energization of the engine is stopped, and controls the energization characteristics of the coil of the solenoid valve according to the operating state of the internal combustion engine In the device
Among the energization characteristics during one injection, there is provided an electromagnetic valve individual difference adjusting means for setting the energized charge value before injection stop to the minimum energized charge value that can maintain the injection state of the fuel injection valve on which the solenoid valve is mounted. It is characterized by being.

これにより、噴射停止前の噴射状態を保持できる通電電荷値を、燃料噴射弁に搭載される電磁弁固有の最小の通電電荷値に設定することが可能であり、コイルへの通電停止時に生じる残留磁力の大きさを、電磁弁個体差に係わらず、小さくすることができる。   Thus, the energized charge value that can maintain the injection state before the injection stop can be set to the minimum energized charge value unique to the solenoid valve mounted on the fuel injection valve, and the residual generated when the energization of the coil is stopped. The magnitude of the magnetic force can be reduced regardless of individual differences between the solenoid valves.

また、本発明の請求項2に記載の発明では、電磁弁個体差調整手段は、
噴射停止前の通電電荷値を、電磁弁の個体差に係わらず噴射状態を保持する保持電荷値から変化させる保持電荷値変更手段と、
内燃機関の運転状態を検出し、この運転状態に基づいて内燃機関の回転変動が所定値以上あるか否かを判定する判定手段とを備え、
噴射停止前の通電電荷値を保持電荷値から徐々に変化させ、回転変動が所定値以上あると判断される場合には、その通電電荷値を最小の通電電荷値とすることを特徴としている。
In the invention according to claim 2 of the present invention, the electromagnetic valve individual difference adjusting means is
Holding charge value changing means for changing the energized charge value before stopping the injection from the holding charge value that holds the injection state regardless of individual differences of the solenoid valves;
Determining means for detecting an operating state of the internal combustion engine and determining whether or not the rotational fluctuation of the internal combustion engine is equal to or greater than a predetermined value based on the operating state;
When the energized charge value before stopping the injection is gradually changed from the held charge value and it is determined that the rotational fluctuation is a predetermined value or more, the energized charge value is set to the minimum energized charge value.

これによると、燃料噴射弁に搭載される電磁弁固有の噴射停止前の最小通電電荷値に設定する方法として、調整前の当初は、噴射停止前の通電電荷値を電磁弁の個体差に係わらず噴射状態を保持する保持電荷値に設定し、保持電荷値から徐々に変化させてゆき、回転変動が所定値以上となるときの通電電荷値を最小通電電荷値に決定している。これにより、所定値を内燃機関の性能に影響を及ぼさない程度の回転変動とすることで、電磁弁を有する燃料噴射弁が内燃機関に搭載された段階で、噴射停止の応答性に影響を与える残留磁力の大きさを小さくするように調節することができる。   According to this, as a method of setting the minimum energized charge value before injection stop unique to the solenoid valve mounted on the fuel injection valve, initially, before the adjustment, the energized charge value before injection stop is related to the individual difference of the solenoid valve. First, the held charge value for holding the injection state is set, and gradually changed from the held charge value, and the energized charge value when the rotational fluctuation becomes a predetermined value or more is determined as the minimum energized charge value. As a result, the predetermined value is set to a rotational fluctuation that does not affect the performance of the internal combustion engine, thereby affecting the responsiveness of the injection stop when the fuel injection valve having the electromagnetic valve is mounted on the internal combustion engine. The magnitude of the residual magnetic force can be adjusted to be small.

また、本発明の請求項3に記載の発明では、最小通電電荷値は、回転変動が所定値以上あると判断されたときの通電電荷値に、電磁弁固有の電荷値を加えられることを特徴としている。   In the invention according to claim 3 of the present invention, the minimum energized charge value can be obtained by adding a charge value specific to the solenoid valve to the energized charge value when it is determined that the rotational fluctuation is equal to or greater than a predetermined value. It is said.

これによると、最小通電電荷値は、回転変動が所定値以上あると判断されたときの通電電荷値に、電磁弁固有の電荷値を加えられることが好ましい。これにより、燃料噴射弁に搭載される電磁弁固有の噴射停止前の最小通電電荷値を、噴射状態が確実に保持される最小値に設定できる。   According to this, it is preferable that the minimum energized charge value is obtained by adding a charge value unique to the solenoid valve to the energized charge value when it is determined that the rotational fluctuation is equal to or greater than a predetermined value. As a result, the minimum energized charge value before the injection stop inherent to the solenoid valve mounted on the fuel injection valve can be set to the minimum value at which the injection state is reliably maintained.

また、本発明の請求項4に記載の発明では、通電特性は、一噴射中の噴射期間に対応する通電パルスが形成され、
最小通電電荷値を設定する期間は、通電パルス中の噴射停止前領域に、通電パルス長さに係わらず所定時間に設定されていることを特徴としている。
In the invention according to claim 4 of the present invention, the energization characteristic is such that an energization pulse corresponding to the injection period during one injection is formed,
The period for setting the minimum energized charge value is characterized in that it is set to a predetermined time regardless of the energization pulse length in the region before injection stop in the energization pulse.

一般に、燃料噴射弁より内燃機関に供給される燃料の噴射量は、コイルへの通電期間すなわち通電パルス幅により調節されており、その通電パルス幅は、内燃機関の運転状態に応じた最適な噴射量に対応して決められるため、噴射量要求が変化しても燃料噴射特性の安定性が求められている。   In general, the injection amount of fuel supplied from the fuel injection valve to the internal combustion engine is adjusted by the energization period of the coil, that is, the energization pulse width, and the energization pulse width is the optimum injection according to the operating state of the internal combustion engine. Since it is determined according to the amount, the stability of the fuel injection characteristics is required even if the injection amount requirement changes.

これに対して請求項4に記載の発明では、最小通電電荷値を設定する期間は、通電パルス中の噴射停止前領域に、通電パルス長さに係わらず所定時間に制限しているので、噴射量要求が変化、特に小噴射量を要求される場合であっても、燃料噴射特性の安定性を確保することが可能である。   On the other hand, in the invention according to claim 4, the period for setting the minimum energization charge value is limited to a predetermined time regardless of the energization pulse length in the region before the injection stop in the energization pulse. Even when the amount request changes, particularly when a small injection amount is required, it is possible to ensure the stability of the fuel injection characteristics.

また、本発明の請求項5に記載の発明では、所定時間を、電磁弁の個体差に係わらず噴射状態を保持する保持時間から変化させる保持時間変更手段と、内燃機関の運転状態を検出し、この運転状態に基づいて内燃機関の回転変動が所定値以上あるか否かを判定する判定手段とを備え、所定時間を保持時間から徐々に変化させ、回転変動が所定値以上あると判断される場合には、その所定時間を電磁弁固有の最大保持時間とすることを特徴としている。   Further, in the invention according to claim 5 of the present invention, the holding time changing means for changing the predetermined time from the holding time for holding the injection state regardless of the individual difference of the electromagnetic valve, and the operating state of the internal combustion engine are detected. Determining means for determining whether or not the rotational fluctuation of the internal combustion engine is greater than or equal to a predetermined value based on the operating state, and gradually changing the predetermined time from the holding time to determine that the rotational fluctuation is greater than or equal to the predetermined value. In this case, the predetermined time is set as the maximum holding time unique to the solenoid valve.

これによると、所定時間を設定する方法として、電磁弁の個体差に係わらず噴射状態を保持する保持時間から徐々に変化させ、回転変動が所定値以上あると判断される場合に、その所定時間を電磁弁固有の最大保持時間とすることが好ましい。これにより、燃料噴射弁に搭載される電磁弁固有の噴射停止前の通電電荷状態を、噴射状態を可能な限り保持される最小通電電荷値と、その最小通電電荷値を維持する最長の保持時間とすることができる。したがって、噴射停止の応答性に影響を及ぼす残留磁力の大きさを精度よく小さくすることができる。   According to this, as a method for setting the predetermined time, when the rotation fluctuation is determined to be greater than or equal to a predetermined value by gradually changing from the holding time for holding the injection state regardless of individual differences of the electromagnetic valves, the predetermined time Is preferably the maximum holding time specific to the solenoid valve. As a result, the current-carrying charge state inherent to the solenoid valve mounted on the fuel injection valve before the injection stop is determined, and the minimum current-carrying charge value that maintains the injection state as much as possible and the longest holding time for maintaining the minimum current-carrying charge value It can be. Therefore, it is possible to accurately reduce the magnitude of the residual magnetic force that affects the responsiveness of stopping the injection.

また、本発明の請求項6に記載の発明では、請求項1から請求項5のいずれか一項に記載の電磁弁駆動制御装置は、運転状態に応じて1燃焼行程の間に複数回噴射する燃料噴射弁に用いられ、運転状態が、複数回の噴射のうち先に噴射を実施する前噴射と前噴射の後に噴射を実施する後噴射とを少なくとも近接噴射させる運転領域において、
前噴射に対応する通電特性のうちの噴射停止前の通電電荷値を、最小通電電荷値に設定することを特徴としている。
Moreover, in invention of Claim 6 of this invention, the solenoid valve drive control apparatus as described in any one of Claims 1-5 is inject | poured several times during one combustion stroke according to the driving | running state. In the operation region in which at least the proximity injection is performed between the pre-injection in which the injection is performed first and the post-injection in which the injection is performed after the pre-injection among the plurality of injections.
Of the energization characteristics corresponding to the pre-injection, the energized charge value before the injection stop is set to the minimum energized charge value.

これによると、複数回の噴射のうち先に噴射を実施する前噴射と前噴射の後に噴射を実施する後噴射とを少なくとも近接噴射させる場合において、前噴射に対応する通電特性のうちの噴射停止前の通電電荷値を、最小通電電荷値に設定することが好ましい。   According to this, in the case of performing at least close injection of the pre-injection that performs the injection first and the post-injection that performs the injection after the pre-injection among the plurality of injections, the injection stop of the energization characteristics corresponding to the pre-injection It is preferable to set the previous energized charge value to the minimum energized charge value.

前噴射に噴射停止時に生じる残留磁力が残ったまま、あるいは残留磁力の影響により燃料噴射弁の噴射状態が維持されている段階で、後噴射のための通電が開始されると、後噴射の噴射開始が早まってしまい、その結果前噴射と後噴射が重なる現象が発生する場合がある。   If energization for the post-injection is started while the residual magnetic force generated when the injection is stopped remains in the pre-injection or the injection state of the fuel injection valve is maintained due to the influence of the residual magnetic force, the post-injection injection The start may be accelerated, and as a result, a phenomenon may occur in which the pre-injection and the post-injection overlap.

これに対して請求項6に記載の発明では、前噴射に対応する通電特性のうちの噴射停止前の通電電荷値を、最小通電電荷値に設定しているので、後噴射のための通電が開始される直前まで、前噴射の残留磁力が残ってしまう、あるいは残留磁力の影響により燃料噴射弁の噴射状態が継続されるのを防止することが可能である。したがって、前噴射と後噴射との近接噴射による噴射の重なり防止が図れる。   On the other hand, in the invention according to claim 6, the energization charge value before the stop of the injection among the energization characteristics corresponding to the pre-injection is set to the minimum energization charge value. It is possible to prevent the residual state of the pre-injection from remaining until it is started, or the fuel injection valve from continuing the injection state due to the influence of the residual force. Therefore, it is possible to prevent the overlapping of the injection by the proximity injection of the pre-injection and the post-injection.

以下、本発明の電磁弁駆動制御装置を、蓄圧式燃料噴射制御装置に適用して具体化した実施形態を図面に従って説明する。   Hereinafter, embodiments in which the electromagnetic valve drive control device of the present invention is applied to an accumulator fuel injection control device will be described with reference to the drawings.

(第1の実施形態)
図1は、本実施形態の電磁弁駆動制御装置を適用する燃料噴射制御装置の全体構成を示す構成図である。図2は、図1中の電磁弁を搭載する燃料噴射弁の模式的断面図である。図3は、図1中のECUにおいて電磁弁のコイルへ通電する通電特性を制御する制御方法を示すフローチャートである。図4は、噴射信号と、電磁弁への通電特性と、燃料噴射弁の噴射特性との関係を示すタイムチャートである。なお、図5および図6は、本実施形態の作用効果を説明するグラフであって、図5は残留磁力と通電電荷値との関係、図6は閉弁開始時間と残留磁力との関係を示すグラフである。
(First embodiment)
FIG. 1 is a configuration diagram showing the overall configuration of a fuel injection control device to which the electromagnetic valve drive control device of the present embodiment is applied. FIG. 2 is a schematic cross-sectional view of a fuel injection valve equipped with the electromagnetic valve in FIG. FIG. 3 is a flowchart showing a control method for controlling energization characteristics for energizing the coil of the solenoid valve in the ECU shown in FIG. FIG. 4 is a time chart showing the relationship among the injection signal, the energization characteristic of the electromagnetic valve, and the injection characteristic of the fuel injection valve. 5 and 6 are graphs for explaining the operational effects of the present embodiment. FIG. 5 shows the relationship between the residual magnetic force and the energized charge value, and FIG. 6 shows the relationship between the valve closing start time and the residual magnetic force. It is a graph to show.

蓄圧式燃料噴射装置(以下、コモンレール式燃料噴射装置)は、例えばディーゼルエンジン(以下、エンジンと呼ぶ)1に燃料を噴射供給する燃料噴射システムである。このコモンレール式燃料噴射装置は、図1に示すように、高圧燃料を蓄える蓄圧器としてのコモンレール2と、電磁弁32の駆動により燃料の噴射および噴射停止を行なう燃料噴射弁3と、燃料を高圧圧送する燃料供給ポンプとしてのサプライポンプ4と、これらを制御する制御手段としての制御装置(以下、ECUと呼ぶ)5を含んで構成されている。   An accumulator fuel injection device (hereinafter referred to as a common rail fuel injection device) is a fuel injection system that injects and supplies fuel to, for example, a diesel engine (hereinafter referred to as an engine) 1. As shown in FIG. 1, the common rail type fuel injection device includes a common rail 2 as a pressure accumulator for storing high-pressure fuel, a fuel injection valve 3 for injecting and stopping injection by driving an electromagnetic valve 32, and a high-pressure fuel. A supply pump 4 as a fuel supply pump for pumping and a control device (hereinafter referred to as ECU) 5 as a control means for controlling them are configured.

エンジン1は、燃焼サイクルとしての吸入、圧縮、膨張、排気の各行程を連続して行なう気筒を複数備えたものであり、図1では一例として4気筒エンジンを例に示すが、他の気筒数を有するエンジンであってもよい。   The engine 1 includes a plurality of cylinders that continuously perform intake, compression, expansion, and exhaust strokes as a combustion cycle. FIG. 1 shows a four-cylinder engine as an example. It may be an engine having

コモンレール2は、燃料噴射弁3に供給する高圧燃料を蓄圧する蓄圧器であり、燃料噴射圧に相当するコモンレール圧が蓄圧されるように、高圧燃料流路としての燃料配管6を介して高圧燃料を圧送するサプライポンプ4の吐出口に接続されている。なお、燃料噴射弁3に供給される高圧燃料は、一部余剰燃料等をリーク燃料として燃料噴射弁3より排出されており、燃料噴射弁3からのリーク燃料は、燃料還流路としてのリリーフ配管7を経て燃料タンク8に戻されている。   The common rail 2 is a pressure accumulator that accumulates high-pressure fuel supplied to the fuel injection valve 3, and the high-pressure fuel is supplied via a fuel pipe 6 serving as a high-pressure fuel flow path so that a common rail pressure corresponding to the fuel injection pressure is accumulated. Is connected to the discharge port of the supply pump 4 for pressure feeding. The high-pressure fuel supplied to the fuel injection valve 3 is discharged from the fuel injection valve 3 using a part of surplus fuel or the like as leak fuel, and the leak fuel from the fuel injection valve 3 is a relief pipe as a fuel return path. 7 is returned to the fuel tank 8.

また、コモンレール2から燃料タンク8へのリリーフ配管9には、プレシャリミッタ11が取つ付けられている。このプレシャリミッタ11は圧力安全弁であり、コモンレール2内の燃料圧が限界設定圧を超える場合に開弁するように構成され、コモンレール2内の燃料圧を限界設定圧以下に抑える。   A pressure limiter 11 is attached to a relief pipe 9 from the common rail 2 to the fuel tank 8. The pressure limiter 11 is a pressure safety valve, and is configured to open when the fuel pressure in the common rail 2 exceeds the limit set pressure, and suppresses the fuel pressure in the common rail 2 to be equal to or lower than the limit set pressure.

燃料噴射弁3は、エンジン1の各気筒ごとに搭載され、気筒内に燃料を噴射供給するものであり、コモンレール2により分岐する複数の高圧燃料配管10の下流端に接続され、コモンレール2に蓄圧された高圧燃料を各気筒に噴射供給する。燃料噴射弁3は電磁弁32を駆動制御することにより燃料の噴射および噴射停止を行なう電磁弁式燃料噴射弁である。具体的には、図2に示すように、燃料噴射弁3は、燃料を噴射するための噴孔38と、噴孔38よりの燃料の噴射を遮断および許容する弁部材としてのニードル33と、ニードル33を燃料圧力によりリフトさせるための制御圧力室31と、制御圧力室31の燃料圧力を増減する電磁弁32とを含んで構成されている。なお、ニードル33は、電磁弁32により制御される制御圧力室31内の燃料圧力の増減により、ニードル33が閉弁および開弁する。このようにニードルが間接的に電磁弁32で駆動されるものに限らず、ニードル33を直接的に電磁弁32で駆動されるものであってもよい。   The fuel injection valve 3 is mounted for each cylinder of the engine 1 and supplies fuel into the cylinder. The fuel injection valve 3 is connected to the downstream ends of a plurality of high-pressure fuel pipes 10 branched by the common rail 2 and accumulates pressure in the common rail 2. The supplied high-pressure fuel is injected into each cylinder. The fuel injection valve 3 is an electromagnetic valve type fuel injection valve that performs fuel injection and stops injection by controlling the operation of the electromagnetic valve 32. Specifically, as shown in FIG. 2, the fuel injection valve 3 includes an injection hole 38 for injecting fuel, a needle 33 as a valve member that blocks and allows fuel injection from the injection hole 38, A control pressure chamber 31 for lifting the needle 33 by the fuel pressure and an electromagnetic valve 32 for increasing / decreasing the fuel pressure in the control pressure chamber 31 are configured. The needle 33 closes and opens as the fuel pressure in the control pressure chamber 31 controlled by the electromagnetic valve 32 increases or decreases. Thus, the needle is not limited to being indirectly driven by the electromagnetic valve 32, and the needle 33 may be directly driven by the electromagnetic valve 32.

電磁弁32はコイルに発生する電磁力により駆動されるものであり、弁体32aと、コイルに発生する電磁力で弁体32aを吸引する吸引部材としての固定コア32bとを備えている。この電磁弁32は、コイルへの通電が停止されてコイルが励磁されていないときには固定コア32bに磁気吸引力が発生しないため、弁体32aは図示しない弁座に着座している。この場合、制御室31と燃料タンク8側の燃料循環路7との連通が遮断され、制御室31内の燃料圧力は、ノズル室37へ導かれるコモンレール圧と同じになる。ニードル31はコモンレール圧と同じ燃料圧力でノズルシート38に押し付けられ、閉弁する。   The electromagnetic valve 32 is driven by electromagnetic force generated in the coil, and includes a valve body 32a and a fixed core 32b as a suction member that sucks the valve body 32a with electromagnetic force generated in the coil. In the electromagnetic valve 32, when energization to the coil is stopped and the coil is not excited, no magnetic attractive force is generated in the fixed core 32b, so the valve body 32a is seated on a valve seat (not shown). In this case, the communication between the control chamber 31 and the fuel circulation path 7 on the fuel tank 8 side is cut off, and the fuel pressure in the control chamber 31 becomes the same as the common rail pressure guided to the nozzle chamber 37. The needle 31 is pressed against the nozzle seat 38 with the same fuel pressure as the common rail pressure and closes.

なお、コイルへの通電停止時には、通電時の通電電荷値(以下、通電電流と呼ぶ)の大きさに応じて残留磁力が生じる(図5参照)。この残留磁力は、固定コア32bと弁体32aとの間に作用し、電磁弁32の閉弁開始時期を遅らせて(図6参照)、閉弁応答性に影響を及ぼす。そして、ニードル31の閉弁開始時間を遅らせて噴射停止の応答性に影響を及ぼす。   When energization of the coil is stopped, residual magnetic force is generated according to the magnitude of the energized charge value (hereinafter referred to as energization current) during energization (see FIG. 5). This residual magnetic force acts between the fixed core 32b and the valve body 32a, delays the valve closing start timing of the electromagnetic valve 32 (see FIG. 6), and affects the valve closing response. And the valve closing start time of the needle 31 is delayed, and the response of injection stop is affected.

一方、コイルに通電されてコイルが励磁されているときには固定コア32bに磁気吸引力が発生し、その吸引力が弁体32aに作用するため、弁体が引き付けられて弁座から離座している。この場合、制御室31と燃料循環路7がオリフィス34を介して連通され、制御室31内の燃料圧力は減圧される。この減圧によりニードル31をノズルシール38側へ押付け力が低下するため、ノズルシート38から離座して開弁する。なお、その減圧速度はオリフィス34の大きさに応じて設定される。   On the other hand, when the coil is energized and the coil is excited, a magnetic attraction force is generated in the fixed core 32b, and the attraction force acts on the valve body 32a, so that the valve body is attracted and separated from the valve seat. Yes. In this case, the control chamber 31 and the fuel circulation path 7 communicate with each other via the orifice 34, and the fuel pressure in the control chamber 31 is reduced. This pressure reduction reduces the pressing force of the needle 31 toward the nozzle seal 38, so that the needle 31 is separated from the nozzle seat 38 and opened. The pressure reduction speed is set according to the size of the orifice 34.

サプライポンプ4は、コモンレール2へ高圧燃料を圧送するポンプである。なお具体的にはサプライポンプ4は、燃料タンク8内の燃料をサプライポンプ4へ吸引するフィードポンプと、このフィードポンプによって吸い上げられた燃料を高圧に圧縮してコモンレール2へ圧送する高圧ポンプとを搭載しており、フィードポンプと高圧ポンプは共通のカムシャフト12によって駆動されている。このカムシャフト12は、エンジン1のクランク軸13等によって回転駆動されるものである。   The supply pump 4 is a pump that pumps high-pressure fuel to the common rail 2. Specifically, the supply pump 4 includes a feed pump that sucks the fuel in the fuel tank 8 into the supply pump 4 and a high-pressure pump that compresses the fuel sucked up by the feed pump to a high pressure and pumps it to the common rail 2. The feed pump and the high-pressure pump are driven by a common camshaft 12. The camshaft 12 is rotationally driven by the crankshaft 13 of the engine 1 or the like.

また、サプライポンプ4には、高圧ポンプに吸引される燃料の量つまりコモンレール2へ高圧圧送する吐出量を調節する調量制御弁(図示せず)が搭載されており、この調量制御弁がECU5によって駆動制御されることにより、コモンレール圧が調整されるようになっている。   The supply pump 4 is equipped with a metering control valve (not shown) that adjusts the amount of fuel sucked into the high-pressure pump, that is, the discharge amount that is high-pressure pumped to the common rail 2. The common rail pressure is adjusted by being controlled by the ECU 5.

ECU5は、制御処理、演算処理を行なうCPU、各種プログラムおよびデータを保存する記憶装置(ROM、スタンバイRAMまたはEEPROM、RAM等のメモリ)、入力回路、出力回路、電源回路、燃料噴射弁3の電磁弁32の駆動回路(以下、電磁弁駆動回路と呼ぶ)およびサプライポンプ4の調量制御弁の駆動回路(以下、ポンプ駆動回路と呼ぶ)等の機能を含んで構成されている周知構造のマイクロコンピュータが設けられている。そして、ECU5に読み込まれたセンサ類の信号に基づいて各種の演算処理を行なうようになっている。図1中のECU5において、51はCPU、記憶装置、入力回路、出力回路等からなる制御部、52は電磁弁駆動回路、53はポンプ駆動回路を示している。   The ECU 5 is a CPU for performing control processing and arithmetic processing, a storage device (ROM, standby RAM or EEPROM, memory such as RAM) for storing various programs and data, an input circuit, an output circuit, a power supply circuit, and an electromagnetic of the fuel injection valve 3. A micro of a well-known structure configured to include functions such as a drive circuit for the valve 32 (hereinafter referred to as an electromagnetic valve drive circuit) and a drive circuit for a metering control valve of the supply pump 4 (hereinafter referred to as a pump drive circuit). A computer is provided. Various arithmetic processes are performed based on sensors signals read into the ECU 5. In the ECU 5 in FIG. 1, reference numeral 51 denotes a control unit including a CPU, a storage device, an input circuit, an output circuit, etc., 52 denotes an electromagnetic valve drive circuit, and 53 denotes a pump drive circuit.

ECU5に接続されるセンサ類は、図1に示すように、アクセル開度Accpを検出するアクセルセンサ21、エンジン回転数Neを検出する回転数センサ22、エンジン1の冷却水温度Twを検出する水温センサ23、コモンレール圧Pcを検出する燃料圧力センサ(以下、コモンレール圧センサと呼ぶ)24、およびその他のセンサ類25がある。   As shown in FIG. 1, the sensors connected to the ECU 5 include an accelerator sensor 21 that detects the accelerator opening degree Accp, a rotation speed sensor 22 that detects the engine rotation speed Ne, and a water temperature that detects the cooling water temperature Tw of the engine 1. There are a sensor 23, a fuel pressure sensor (hereinafter referred to as a common rail pressure sensor) 24 for detecting a common rail pressure Pc, and other sensors 25.

図1に示すように、ECU5中の電磁弁駆動回路52は、車載電源としての車載バッテリ(図示せず)からのバッテリ電圧を高めて蓄えるチャージ回路52aと、放電制御用スイッチング素子52bと、放電制御用スイッチング素子52bを断続制御する放電制御回路52cとを備える。これらの構成は、電磁弁52に高電圧・大電流を瞬時に与える過渡電流発生回路(以下、最大電流発生回路と呼ぶ)を構成する。   As shown in FIG. 1, the solenoid valve drive circuit 52 in the ECU 5 includes a charge circuit 52 a that stores and increases a battery voltage from an in-vehicle battery (not shown) as an in-vehicle power source, a discharge control switching element 52 b, and a discharge A discharge control circuit 52c for intermittently controlling the control switching element 52b. These configurations constitute a transient current generating circuit (hereinafter referred to as a maximum current generating circuit) that instantaneously applies a high voltage and a large current to the solenoid valve 52.

この初期最大電流発生回路は、図3に示すように、1噴射中の駆動信号Tinjのうちの通電開始部分に対応する駆動パルス区間(以下、過渡電流駆動パルス区間と呼ぶ)Tpにおいて、電磁弁32への通電特性を、ピーク電流値がIpの過渡電流波形に形成する。なお具体的には、放電制御回路52cは、制御部51から出力される駆動信号を受けると、放電制御用スイッチング素子52bをONして電磁弁32への通電を開始し、その後、図示しない電流検出部によって検出される通電電流値が所定の閾値(例えば、放電停止閾値のIp)に達したら、放電制御用スイッチング素子52bをOFFさせることにより上記過渡電流波形の過渡電流を電磁弁32へ供給する。   As shown in FIG. 3, the initial maximum current generating circuit is configured such that a solenoid valve is operated in a drive pulse section (hereinafter referred to as a transient current drive pulse section) Tp corresponding to an energization start portion of the drive signal Tinj during one injection. The energization characteristic to 32 is formed in a transient current waveform having a peak current value of Ip. More specifically, when the discharge control circuit 52c receives the drive signal output from the control unit 51, the discharge control circuit 52c turns on the discharge control switching element 52b to start energization of the electromagnetic valve 32, and thereafter, a current (not shown) When the energization current value detected by the detection unit reaches a predetermined threshold value (for example, discharge stop threshold value Ip), the transient current waveform transient current is supplied to the solenoid valve 32 by turning off the discharge control switching element 52b. To do.

また、電磁弁駆動回路52は定電流制御回路(図示せず)を備えており、この定電流制御回路は、電磁弁32へ過渡電流を通電した後、図3に示すように、駆動信号Tinjのうちの後半部分に対応する駆動パルス区間(以下、保持電流駆動パルス区間と呼ぶ)Tpにおいて、通電電流特性を、定電流状態に保持される電流値を複数段階(本実施例では2段階)に切換えるものである。一定の定電値(本実例では、図3に示すIhとIhcの2段階の電流値)の電流波形の保持電流が電磁弁32へ供給される。なお、ここで、電流値Ihの電流波形を第1保持電流と呼び、電流値Ihcの電流波形を第2保持電流と呼ぶ。   Further, the solenoid valve drive circuit 52 includes a constant current control circuit (not shown). The constant current control circuit supplies a transient current to the solenoid valve 32, and then, as shown in FIG. In the drive pulse section (hereinafter referred to as a holding current drive pulse section) Tp corresponding to the latter half portion of the power supply current characteristic, the energizing current characteristic is divided into a plurality of levels of current values held in a constant current state (two stages in this embodiment). To switch to. A holding current having a constant constant current value (in this example, two-stage current values of Ih and Ihc shown in FIG. 3) is supplied to the solenoid valve 32. Here, the current waveform of the current value Ih is referred to as a first holding current, and the current waveform of the current value Ihc is referred to as a second holding current.

なお、ここで、ECU5は、燃料噴射弁3の噴射動作を制御する噴射手段とを備えており、噴射手段は、目標噴射量決定手段と、噴射時期決定手段と、噴射期間決定手段と、燃料噴射弁駆動手段とから構成されている。目標噴射量決定手段は、各種センサ類により検出したエンジン1の運転状態に応じて最適な目標噴射量Qfinを決定する。噴射時期決定手段は、目標噴射量Qfinとエンジン回転数Neとに基づいて指令噴射時期(通電パルス時期)Tfinを決定する。噴射期間決定手段は、コモンレール圧Pcと目標噴射量Qfinとに基づいて指令噴射期間(通電パルス時間)Tinjを決定する。   Here, the ECU 5 includes an injection unit that controls the injection operation of the fuel injection valve 3, and the injection unit includes a target injection amount determination unit, an injection timing determination unit, an injection period determination unit, and a fuel. And injection valve driving means. The target injection amount determining means determines an optimal target injection amount Qfin according to the operating state of the engine 1 detected by various sensors. The injection timing determining means determines a command injection timing (energization pulse timing) Tfin based on the target injection amount Qfin and the engine speed Ne. The injection period determining means determines a command injection period (energization pulse time) Tinj based on the common rail pressure Pc and the target injection amount Qfin.

燃料噴射弁駆動手段は、各気筒の燃料噴射弁3の電磁弁32に、指令噴射時期(Tfin)から噴射指令パルス時間(Tinj)が経過するまでの間、略パルス状の通電電流を印加する。なお具体的には、燃料噴射弁駆動手段は、電磁弁32への通電特性を過渡電流値Ipに過渡電流制御するピーク電流波形発生手段と、電磁弁32への通電特性を2段階の保持電流Ih、Ipに定電流制御する保持電流波形発生手段とを備えている。   The fuel injection valve driving means applies a substantially pulsed energization current to the electromagnetic valve 32 of the fuel injection valve 3 of each cylinder until the injection command pulse time (Tinj) elapses from the command injection timing (Tfin). . More specifically, the fuel injection valve driving means includes a peak current waveform generating means for controlling the current supply characteristic to the electromagnetic valve 32 to a transient current value Ip, and a two-stage holding current for the current supply characteristic to the electromagnetic valve 32. Holding current waveform generating means for performing constant current control to Ih and Ip.

保持電流波形発生手段は電磁弁個体差調整手段を備えており、この電磁弁個体差調整手段は、保持電流値変更手段と、判定手段とを有する。保持電流値変更手段は、第2保持電流の決定のため、第1保持電流値Ihより変化させた補正保持電流値Ihi(図3参照)で第2保持電流値Ihcを仮設定する。判定手段は、その第1保持電流値Ihから変化させた補正保持電流Ihiで電磁弁32を通電制御したときのエンジン1の運転状態への影響を判定する。なお、第2保持電流値Ihcは請求範囲に記載の噴射停止前の通電電荷値に相当する。   The holding current waveform generating means includes electromagnetic valve individual difference adjusting means, and the electromagnetic valve individual difference adjusting means has holding current value changing means and determination means. The holding current value changing means temporarily sets the second holding current value Ihc with the corrected holding current value Ihi (see FIG. 3) changed from the first holding current value Ih in order to determine the second holding current. The determination means determines the influence on the operating state of the engine 1 when the solenoid valve 32 is energized and controlled with the corrected holding current Ihi changed from the first holding current value Ih. The second holding current value Ihc corresponds to the energized charge value before stopping the injection described in the claims.

次に、上述した構成を有する蓄圧式燃料噴射装置の制御方法、特に燃料噴射弁3の噴射動作を制御するために電磁弁32のコイルへの通電特性を制御する制御方法について、図4に従って説明する。図4に示すように、S301(Sはステップ)では、第1保持電流値Ihを読み出し、第2保持電流値Ihcを決定するための補正保持電流値Ihiを第1保持電流値Ihで初期化する。また、第2保持電流値Ihで通電する通電期間(以下、第2保持電流通電期間と呼ぶ)Thcを所定通電時間に初期化する。   Next, a control method for the accumulator fuel injection apparatus having the above-described configuration, particularly a control method for controlling the energization characteristics of the coil of the electromagnetic valve 32 in order to control the injection operation of the fuel injection valve 3, will be described with reference to FIG. To do. As shown in FIG. 4, in S301 (S is a step), the first holding current value Ih is read, and the corrected holding current value Ihi for determining the second holding current value Ihc is initialized with the first holding current value Ih. To do. In addition, an energization period (hereinafter referred to as a second holding current energization period) Thc energized at the second holding current value Ih is initialized to a predetermined energization time.

S302では、補正保持電流値Ihiを徐々に変化させるため、補正保持電流値Ihiを所定電流値分ΔI小さし、その補正保持電流Ihiで電磁弁32を通電制御する。S303では、このときのエンジン回転数Neの変動ΔNeを測定する。   In S302, in order to gradually change the corrected holding current value Ihi, the corrected holding current value Ihi is reduced by a predetermined current value ΔI, and the solenoid valve 32 is energized and controlled with the corrected holding current Ihi. In S303, the fluctuation ΔNe of the engine speed Ne at this time is measured.

S304では、その回転変動ΔNeが所定値ΔNaに達しているか否かを判断する。回転変動ΔNeが所定値ΔNaに達していない場合には、徐々に小さく変化させている補正保持電流値Ihiの大きさが、エンジン1に搭載されている電磁弁32固有の最小の保持電流値(Ihco)に達していないと判断し、S302へ戻る。逆に、回転変動ΔNeが所定値ΔNaに達している場合には、S305へ移行する。なお、所定値ΔNaは、電磁弁32を有する燃料噴射弁3より噴射される燃料の噴射状態によってエンジン1へ影響を与えるとの判定をするための回転変動量に設定されている。所定値ΔNaに達すると、電磁弁32への通電制御により燃料噴射弁3より噴射量がばらつき始める。   In S304, it is determined whether or not the rotational fluctuation ΔNe has reached a predetermined value ΔNa. When the rotational fluctuation ΔNe does not reach the predetermined value ΔNa, the magnitude of the corrected holding current value Ihi that is gradually changed is the minimum holding current value (specific to the solenoid valve 32 mounted on the engine 1) ( Ihco) is not reached, and the process returns to S302. On the other hand, when the rotational fluctuation ΔNe has reached the predetermined value ΔNa, the process proceeds to S305. The predetermined value ΔNa is set to a rotational fluctuation amount for determining that the engine 1 is affected by the injection state of the fuel injected from the fuel injection valve 3 having the electromagnetic valve 32. When the predetermined value ΔNa is reached, the injection amount starts to vary from the fuel injection valve 3 by energization control to the electromagnetic valve 32.

S305では、そのときの補正保持電流値Ihiを、噴射停止時前の燃料噴射弁3の噴射状態を保持できる最小の通電電流値(保持限界電流値と呼ぶ)Ihcoと判定し、保持限界電流値Ihcoを、その補正保持電流値Ihiに決定する(Ihco=Ihi)。   In S305, the corrected holding current value Ihi at that time is determined as the minimum energization current value (referred to as holding limit current value) Ihco that can hold the injection state of the fuel injection valve 3 before the stop of injection, and the holding limit current value Ihco is determined as the corrected holding current value Ihi (Ihco = Ihi).

S306では、S305で決定した保持限界電流値Ihcoに、電磁弁32固有の電流値(以下、余裕電流値と呼ぶ)diを加えた値を必要保持電流値とし、第2保持電流値Ihcとして設定する。   In S306, a value obtained by adding a current value unique to the solenoid valve 32 (hereinafter referred to as a margin current value) di to the holding limit current value Ihco determined in S305 is set as a required holding current value, and set as the second holding current value Ihc. To do.

S307では、決定した第2保持電流値Ihcを前提に、第2保持電流通電期間Thcを決定するための補正保持電流通電期間Tchiを徐々に変化させるため、補正保持電流通電期間Tchiを所定通電期間分ΔT大きくし、その補正保持電流通電期間Tchiで電磁弁32を通電制御する。S308では、このときのエンジン回転数Neの変動ΔNeを測定する。   In S307, on the premise of the determined second holding current value Ihc, the corrected holding current energizing period Tchi is gradually changed to change the corrected holding current energizing period Tchi for determining the second holding current energizing period Thc. The electromagnetic valve 32 is energized and controlled during the corrected holding current energization period Tchi. In S308, the fluctuation ΔNe of the engine speed Ne at this time is measured.

S304では、その回転変動ΔNeが所定値ΔNaに達しているか否かを判断する。回転変動ΔNeが所定値ΔNaに達していない場合には、徐々に大きく変化させている補正保持電流通電期間Tchiの大きさが、エンジン1に搭載されている電磁弁32固有の最大の保持電流通電期間(Thco)に達していないと判断し、S307へ戻る。逆に、回転変動ΔNeが所定値ΔNaに達している場合には、S309へ移行する。   In S304, it is determined whether or not the rotational fluctuation ΔNe has reached a predetermined value ΔNa. When the rotational fluctuation ΔNe does not reach the predetermined value ΔNa, the magnitude of the correction holding current energization period Tchi that is gradually changing is the maximum holding current energization unique to the solenoid valve 32 mounted on the engine 1. It is determined that the period (Thco) has not been reached, and the process returns to S307. On the other hand, when the rotational fluctuation ΔNe has reached the predetermined value ΔNa, the process proceeds to S309.

S309では、そのときの補正保持電流通電期間Tchiを、噴射停止時前の燃料噴射弁3の噴射状態を保持できる最大の通電期間(保持限界通電期間と呼ぶ)Thcoと判定し、保持限界通電期間Thcoを、その補正保持電流通電期間Tchiに決定する(Thco=Thci)。   In S309, the corrected holding current energizing period Tchi at that time is determined as the maximum energizing period (referred to as a holding limit energizing period) Thco that can maintain the injection state of the fuel injection valve 3 before the injection stop, and the holding limit energizing period. Thco is determined as the corrected holding current conduction period Tchi (Thco = Thci).

S310では、S309で決定した保持限界通電期間Thcoに、電磁弁32固有の通電期間(以下、余裕通電期間と呼ぶ)diを減じた値を、第2保持電流値Ihcに切換えられる保持電流補正期間とし、第2保持電流通電期間Thcとして設定する。   In S310, a holding current correction period in which a value obtained by subtracting an energization period (hereinafter referred to as a margin energization period) di unique to the solenoid valve 32 to the holding limit energization period Thco determined in S309 is switched to the second holding current value Ihc. And set as the second holding current energization period Thc.

なお、ここで、S302の制御処理は上記保持電流値変更手段を構成する。S304の制御処理は上記判定手段を構成する。S301からS306の制御処理は、請求範囲に記載の電磁弁個体差調整手段を構成する。また、S307からS310の制御処理を、電磁弁個体差調整手段に含んでもよい。   Here, the control process of S302 constitutes the holding current value changing means. The control process in S304 constitutes the determination means. The control processing from S301 to S306 constitutes the individual solenoid valve difference adjusting means described in the claims. Further, the control processing from S307 to S310 may be included in the electromagnetic valve individual difference adjusting means.

以上の制御方法により、電磁弁32への通電特性として、過渡電流、第1保持電流値Ihとからなる電流波形のうちの噴射停止前の通電電流値を、電磁弁32の搭載されたエンジン1の運転状態に基づいて判定される噴射状態を保持できる最小の通電電流値(保持限界電流値Ihco)に決定し、保持限界電流値Ihcoに対応した第2保持電流値Ihcで電磁弁32が通電制御される。したがって、電磁弁32への通電停止時に生じる残留磁力の大きさを、電磁弁32個体差に係わらず、小さくすることができる。   By the above control method, as the current-carrying characteristics to the solenoid valve 32, the current-carrying current value before the injection stop in the current waveform composed of the transient current and the first holding current value Ih is used as the engine 1 in which the solenoid valve 32 is mounted. Is determined to be the minimum energization current value (holding limit current value Ihco) that can hold the injection state determined based on the operating state, and the solenoid valve 32 is energized with the second holding current value Ihc corresponding to the holding limit current value Ihco. Be controlled. Therefore, the magnitude of the residual magnetic force generated when the energization of the electromagnetic valve 32 is stopped can be reduced regardless of the individual difference of the electromagnetic valves 32.

従来技術の噴射停止前の通電電流値は、電磁弁32の個体差に係わらず噴射状態を保持できる保持電流値Ih(本実施例の第1保持電流値に対応)設定された。これに対し、本実施形態では、電磁弁32を搭載する装置する実際の電磁弁32に基づいて噴射状態を保持できる保持限界電流値Ihcoに決定し、これに対応した第2保持電流値Ihcで電磁弁32を通電制御するので、図5に示すように残留磁力の大きさを小さくし(図5参照)、図4に示す電磁弁32の閉弁開始時間Tdcを短縮でき(図6参照)、よって電磁弁32の閉弁応答性向上が図れる。その結果、図4中の噴射率qの特性に示されるように、破線で示す従来特性に比べて燃料噴射停止の応答性の向上が図れる。   The current-carrying current value before stopping the injection in the prior art is set to a holding current value Ih (corresponding to the first holding current value in this embodiment) that can hold the injection state regardless of individual differences of the solenoid valves 32. On the other hand, in the present embodiment, the holding limit current value Ihco that can hold the injection state is determined based on the actual solenoid valve 32 mounted on the electromagnetic valve 32, and the second holding current value Ihc corresponding to this is determined. Since energization control of the solenoid valve 32 is performed, the magnitude of the residual magnetic force can be reduced as shown in FIG. 5 (see FIG. 5), and the valve closing start time Tdc of the solenoid valve 32 shown in FIG. 4 can be shortened (see FIG. 6). Therefore, the valve closing response of the electromagnetic valve 32 can be improved. As a result, as shown by the characteristic of the injection rate q in FIG. 4, the response of stopping fuel injection can be improved as compared with the conventional characteristic indicated by the broken line.

なお、第2保持電流値Ihcは、保持限界電流値Ihcoに電磁弁32固有の余裕電流値diを加えたものとするので、噴射状態を確実に保持できる最小の通電電流値とすることができる。   Since the second holding current value Ihc is obtained by adding the marginal current value di inherent to the solenoid valve 32 to the holding limit current value Ihco, the second holding current value Ihc can be set to the minimum energization current value that can reliably hold the injection state. .

さらになお、上記決定した第2保持電流値Ihcを前提に、第2保持電流値Ihcで設定される通電期間を、噴射状態を保持できる最大の通電期間(保持限界通電期間Thco)に略設定し、保持限界通電期間Thcoに対応した第2保持電流通電期間Thcで電磁弁32が通電制御される。   Furthermore, on the premise of the determined second holding current value Ihc, the energization period set by the second holding current value Ihc is substantially set to the maximum energization period (holding limit energization period Thco) that can maintain the injection state. The energization of the solenoid valve 32 is controlled in the second holding current energizing period Thc corresponding to the holding limit energizing period Thco.

次に、本実施形態の作用効果を説明すると、(1)本実施形態では、電磁弁32への通電特性の制御方法として、過渡電流、第1保持電流値Ihとからなる通電電流波形のうちの噴射停止前の通電電流値を、電磁弁32を実際に搭載するエンジン1での噴射状態を保持できる最小の通電電流値(保持限界電流値Ihco)に決定し、保持限界電流値Ihcoに対応した第2保持電流値Ihcで電磁弁32への通電特性を制御している。   Next, the operation and effect of the present embodiment will be described. (1) In the present embodiment, as a method of controlling the energization characteristic to the solenoid valve 32, among the energized current waveform composed of the transient current and the first holding current value Ih. Is determined to be the minimum energizing current value (holding limit current value Ihco) that can maintain the injection state in the engine 1 in which the solenoid valve 32 is actually mounted, and corresponds to the holding limit current value Ihco. The energization characteristic to the solenoid valve 32 is controlled by the second holding current value Ihc.

従来技術の噴射停止前の通電電流値は、電磁弁32の個体差に係わらず噴射状態を保持できる保持電流値Ih(本実施例の第1保持電流値に対応)設定された。   The current-carrying current value before stopping the injection in the prior art is set to a holding current value Ih (corresponding to the first holding current value in this embodiment) that can hold the injection state regardless of individual differences of the solenoid valves 32.

これに対し本実施形態では、電磁弁32を搭載する装置する実際の電磁弁32に基づいて噴射状態を保持できる保持限界電流値Ihcoに決定し、これに対応した第2保持電流値Ihcで電磁弁32を通電制御するので、残留磁力の大きさを、電磁弁32個体差に係わらず、小さくすることができる。その結果、電磁弁32の閉弁開始時間Tdcを短縮できので、電磁弁32の閉弁応答性向上が図れる。そして、例えば噴射率qにおいて、従来特性に比べて燃料噴射停止の応答性の向上が図れる。   On the other hand, in the present embodiment, the holding limit current value Ihco that can hold the injection state is determined based on the actual solenoid valve 32 that is mounted on the solenoid valve 32, and the second holding current value Ihc corresponding to this is determined. Since the valve 32 is energized and controlled, the magnitude of the residual magnetic force can be reduced regardless of the individual differences of the electromagnetic valves 32. As a result, the valve closing start time Tdc of the electromagnetic valve 32 can be shortened, so that the valve closing response of the electromagnetic valve 32 can be improved. For example, at the injection rate q, the response of stopping fuel injection can be improved compared to the conventional characteristics.

(2)なお、本実施形態では、第1保持電流値Ihより徐々に小さく変化させる保持電流値変更手段と、エンジン1の運転状態を検出し、この運転状態に基づいてエンジン回転変動ΔNeが所定値(ΔNa)以上あるか否かを判定する判定手段とを備えている。これにより、第1保持電流値Ihより徐々に小さく変化させた補正保持電流Ihiで電磁弁32を通電制御し、回転変動ΔNeが所定値(ΔNa)に達したと判断される場合には、その補正保持電流Ihiを保持限界電流値Ihcoに決定できる。   (2) In the present embodiment, the holding current value changing means for gradually changing the holding current value Ih to be smaller than the first holding current value Ih and the operating state of the engine 1 are detected, and the engine rotation fluctuation ΔNe is determined based on this operating state. Determination means for determining whether or not the value (ΔNa) or more exists. As a result, when the solenoid valve 32 is energized and controlled with the corrected holding current Ihi that is gradually changed smaller than the first holding current value Ih, and it is determined that the rotational fluctuation ΔNe has reached a predetermined value (ΔNa), The corrected holding current Ihi can be determined as the holding limit current value Ihco.

したがって、所定値ΔNeをエンジン1の性能に影響を及ぼさない程度の回転変動とすることで、電磁弁32を有する燃料噴射弁3がエンジン1に搭載された段階で、噴射停止の応答性に影響を与える残留磁力の大きさを小さくするように調節することができる。   Therefore, by setting the predetermined value ΔNe to a rotational fluctuation that does not affect the performance of the engine 1, the fuel injection valve 3 having the electromagnetic valve 32 is influenced by the injection stop response when the engine 1 is mounted. It is possible to adjust so as to reduce the magnitude of the residual magnetic force.

(3)さらになお、本実施形態では、第2保持電流値Ihcは、上記保持限界電流値Ihcoに、電磁弁32固有の余裕電流値分ΔIを加えた値とすることが好ましい。これにより、噴射停止前の通電電流値を、噴射状態を確実に保持できる最小の通電電流値とすることができる。   (3) Furthermore, in the present embodiment, the second holding current value Ihc is preferably a value obtained by adding the margin current value ΔI inherent to the solenoid valve 32 to the holding limit current value Ihco. Thereby, the energization current value before stopping the injection can be set to the minimum energization current value that can reliably maintain the injection state.

(4)また、本実施形態では、第2保持電流値Ihcを設定する第2保持電流通電期間Thcは、駆動信号(通電パルス)中の噴射停止前領域に、通電パルス期間Tinjの長さに係わらず、所定期間(所定時間)に設定されている。   (4) In the present embodiment, the second holding current energization period Thc for setting the second holding current value Ihc is set to the length of the energization pulse period Tinj in the region before injection stop in the drive signal (energization pulse). Regardless, it is set to a predetermined period (predetermined time).

一般に、燃料噴射弁3より供給される燃料の噴射量は、通電パルス幅Tinjにより調節されており、その通電パルス幅は、エンジン1の運転状態に応じた最適な噴射量に対応して決められるため、噴射量要求が変化しても燃料噴射特性の安定性が求められている。   In general, the injection amount of fuel supplied from the fuel injection valve 3 is adjusted by the energization pulse width Tinj, and the energization pulse width is determined corresponding to the optimal injection amount according to the operating state of the engine 1. Therefore, the stability of fuel injection characteristics is required even when the injection amount requirement changes.

これに対して本実施形態では、第2保持電流通電期間Thcは、通電パルスTinj長さに係わらず所定時間に制限しているので、噴射量要求が変化、特に小噴射量を要求される場合であっても、燃料噴射特性の安定性を確保することが可能である。   On the other hand, in the present embodiment, the second holding current energization period Thc is limited to a predetermined time regardless of the length of the energization pulse Tinj, so that the injection amount request changes, particularly when a small injection amount is required. Even so, it is possible to ensure the stability of the fuel injection characteristics.

(5)さらになお、上記所定時間を設定する方法として、電磁弁32の個体差に係わらず噴射状態を保持する所定の保持時間から徐々に変化させた補正保持電流通電期間Tchiで電磁弁32を通電制御し、回転変動Neが所定値に達したと判断される場合に、その補正保持電流通電期間Tchiを電磁弁32固有の最大保持時間とすることが好ましい。これにより、燃料噴射弁3に搭載される電磁弁32固有の噴射停止前の通電電流状態を、噴射状態を可能な限り保持される保持限界電流値Ihcoにより規定される第2保持電流値Ihcと、その第2保持電流値Ihcを維持する最長の保持時間Thcとすることができる。したがって、噴射停止の応答性に影響を及ぼす残留磁力の大きさを精度よく小さくすることができる。   (5) Further, as a method of setting the predetermined time, the electromagnetic valve 32 is set to the corrected holding current energization period Tchi gradually changed from the predetermined holding time for holding the injection state regardless of individual differences of the electromagnetic valves 32. When energization control is performed and it is determined that the rotation fluctuation Ne has reached a predetermined value, the corrected holding current energization period Tchi is preferably set to the maximum holding time unique to the solenoid valve 32. As a result, the energization current state before the injection stop inherent to the solenoid valve 32 mounted on the fuel injection valve 3 is changed to the second holding current value Ihc defined by the holding limit current value Ihco that holds the injection state as much as possible. The longest holding time Thc for maintaining the second holding current value Ihc can be set. Therefore, it is possible to accurately reduce the magnitude of the residual magnetic force that affects the responsiveness of stopping the injection.

(第2の実施形態)
以下、本発明を適用した他の実施形態を説明する。なお、以下の実施形態においては、第1の実施形態と同じもしくは均等の構成には同一の符号を付し、説明を繰返さない。
(Second Embodiment)
Hereinafter, other embodiments to which the present invention is applied will be described. In the following embodiments, the same or equivalent components as those in the first embodiment are denoted by the same reference numerals, and description thereof will not be repeated.

第2の実施形態では、ECU5は、図7に示すように、エンジン1の運転状態に応じて1燃焼行程中に複数回(本実施例では2回)噴射する噴射手段を有するものとする。図7は、実施形態に係わる電磁弁への通電特性と燃料噴射弁の噴射特性との関係を示すタイムチャートである。なお、図7において、複数回の噴射のうち先に噴射を実施する前噴射と前噴射の後に噴射を実施する後噴射とを近接噴射させる場合を示しており、実線の特性が本実施例の一例を示し、破線の特性は従来技術の例を示している。   In the second embodiment, as shown in FIG. 7, the ECU 5 has injection means for injecting a plurality of times (in this embodiment, twice) during one combustion stroke according to the operating state of the engine 1. FIG. 7 is a time chart showing the relationship between the energization characteristic to the solenoid valve and the injection characteristic of the fuel injection valve according to the embodiment. FIG. 7 shows a case in which the pre-injection in which the injection is performed first and the post-injection in which the injection is performed after the pre-injection among the plurality of injections are made close to each other. An example is shown and the characteristic of the broken line shows an example of the prior art.

一般に、前噴射に噴射停止時に生じる残留磁力が残ったまま、あるいは残留磁力の影響により燃料噴射弁3の噴射状態が維持されている段階(図中の破線特性を参照)で、後噴射のための通電が開始されると、後噴射の噴射開始が、図中の斜線枠の破線特性に示されるように早まってしまうおそれがある。その結果前噴射と後噴射が重なる現象が発生する場合がある。なお、このような現象が発生する状態では、後噴射の噴射開始時期は図中の斜線枠内で変動し、後噴射の噴射量変動を招くおそれがある。   In general, for the post-injection, the residual magnetic force generated when the injection is stopped remains in the pre-injection or the injection state of the fuel injection valve 3 is maintained by the influence of the residual magnetic force (see the broken line characteristics in the figure). When the energization is started, there is a possibility that the start of post-injection may be accelerated as shown by the broken line characteristics of the hatched frame in the drawing. As a result, a phenomenon may occur in which the pre-injection and the post-injection overlap. In a state where such a phenomenon occurs, the injection start timing of the post-injection fluctuates within the hatched frame in the drawing, and there is a possibility that the injection amount of the post-injection varies.

これに対して本実施形態では、前噴射と後噴射とを少なくとも近接噴射させる場合において、前噴射に対応する通電特性のうちの噴射停止前の通電電流値を、噴射状態を保持できる保持限界電流値Ihcoにより規定される第2保持電流値Ihcに設定するようにしている。これにより、後噴射のための通電が開始される直前まで、前噴射の残留磁力が残ってしまう、あるいは残留磁力の影響により燃料噴射弁3の噴射状態が継続されるのを防止することが可能である。   On the other hand, in the present embodiment, in the case where the pre-injection and the post-injection are at least closely injected, the energization current value before the stop of the injection among the energization characteristics corresponding to the pre-injection can be maintained. The second holding current value Ihc defined by the value Ihco is set. Thereby, it is possible to prevent the residual magnetic force of the pre-injection from remaining immediately before the energization for the post-injection is started or the injection state of the fuel injection valve 3 from being continued due to the influence of the residual magnetic force. It is.

つまり、噴射終了時期において、固定コア32bが弁体32aを吸引保持する磁気力は、同一電流通電により大なる磁気力を生じさせる固体(プラス側のばらつき固体)にあっては、必要吸引力以上の磁気力を生じさせていた。これに対して、本技術である上記した噴射終了時期の通電電流設定により、吸引磁気力が必要量だけ確保されるようにマイナス調整されて、残留磁力も軽減することができる。この結果、前噴射と後噴射との近接噴射による噴射の重なり防止が図れる。   In other words, the magnetic force with which the fixed core 32b attracts and holds the valve element 32a at the end of injection is greater than the necessary attraction force for a solid (plus-side variation solid) that generates a large magnetic force by the same current flow. The magnetic force was generated. On the other hand, the residual magnetic force can be reduced by adjusting the minus so that the required amount of the attractive magnetic force is secured by the above-described energization current setting at the injection end timing as the present technology. As a result, it is possible to prevent the overlapping of the injection by the proximity injection of the pre-injection and the post-injection.

また、上記したプラス側のばらつき固体における噴射終了時期の吸引磁気力と、本技術採用における噴射終了時期の吸引磁気力との比較では、本技術採用の方が噴射終了指令から実際に噴射が終了するまでの時間である噴射終了遅れが短く設定できる。これによって、前噴射終了から後噴射の開始までの噴射間インターバル時間につき、従来と本技術の双方を同じ狙い時間に設定する比較において、本技術採用の方が前噴射重心と後噴射重心との間の時間を短く設定できる。このことは、近年の出力とエミッションの総合性能を向上させるのに寄与できる効果がある。   In addition, in the comparison of the attractive magnetic force at the injection end timing in the plus-side variation solids described above and the attractive magnetic force at the injection end timing in the adoption of the present technology, the adoption of the present technology actually ends the injection from the injection end command. It is possible to set a short injection end delay, which is the time until the start. As a result, regarding the interval time between injections from the end of the pre-injection to the start of the post-injection, in the comparison in which both the conventional and the present technology are set to the same target time, the adoption of the present technology is more The time between can be set short. This has the effect of contributing to improving the overall performance of output and emissions in recent years.

(他の実施形態)
以上説明した本実施形態では、電磁弁32を搭載する燃料噴射弁3を、電磁弁32により制御される制御圧力室31内の燃料圧力の増減により間接的にニードル33が制御され、燃料の噴射および噴射停止するものとして説明したが、ニードル33を間接的に電磁弁32で駆動するものに限らず、ニードル33を直接的に電磁弁32で駆動するものであってもよい。
(Other embodiments)
In the present embodiment described above, the fuel injection valve 3 equipped with the electromagnetic valve 32 is indirectly controlled by the needle 33 by the increase / decrease of the fuel pressure in the control pressure chamber 31 controlled by the electromagnetic valve 32, thereby injecting fuel. However, the needle 33 may be directly driven by the electromagnetic valve 32 as well as the needle 33 that is indirectly driven by the electromagnetic valve 32.

本発明の第1の実施形態の電磁弁駆動制御装置を適用する燃料噴射制御装置の全体構成を示す構成図である。It is a block diagram which shows the whole structure of the fuel-injection control apparatus to which the solenoid valve drive control apparatus of the 1st Embodiment of this invention is applied. 図1中の電磁弁を搭載する燃料噴射弁の模式的断面図である。It is typical sectional drawing of the fuel injection valve which mounts the solenoid valve in FIG. 図1中のECUにおいて電磁弁のコイルへ通電する通電特性を制御する制御方法を示すフローチャートである。2 is a flowchart illustrating a control method for controlling energization characteristics of energizing a coil of an electromagnetic valve in the ECU in FIG. 1. 噴射信号と、電磁弁への通電特性と、燃料噴射弁の噴射特性との関係を示すタイムチャートである。It is a time chart which shows the relationship between the injection signal, the electricity supply characteristic to a solenoid valve, and the injection characteristic of a fuel injection valve. 第1の実施形態の作用効果を説明するグラフである。It is a graph explaining the effect of 1st Embodiment. 第1の実施形態の作用効果を説明するグラフである。It is a graph explaining the effect of 1st Embodiment. 第2の実施形態に係わる電磁弁への通電特性と燃料噴射弁の噴射特性との関係を示すタイムチャートである。It is a time chart which shows the relationship between the electricity supply characteristic to the solenoid valve concerning 2nd Embodiment, and the injection characteristic of a fuel injection valve.

符号の説明Explanation of symbols

1 エンジン(内燃機関)
2 コモンレール(燃料噴射弁に供給される高圧燃料を蓄える蓄圧器)
3 燃料噴射弁
4 サプライポンプ(燃料供給ポンプ)
5 ECU(制御装置)
24 コモンレール圧センサ(燃料圧力センサ)
31 制御圧力室
32 電磁弁
32a 弁体
32b 固定コア(コイルに発生する電磁力で弁体を吸引するコア、吸引部材)
33 ニードル(弁部材)
36 ノズルシート(弁座)
38 噴孔
1 engine (internal combustion engine)
2 Common rail (accumulator that stores high-pressure fuel supplied to the fuel injection valve)
3 Fuel injection valve 4 Supply pump (fuel supply pump)
5 ECU (control device)
24 Common rail pressure sensor (fuel pressure sensor)
31 Control pressure chamber 32 Solenoid valve 32a Valve body 32b Fixed core (core, suction member for sucking valve body by electromagnetic force generated in coil)
33 Needle (Valve member)
36 Nozzle seat (valve seat)
38 nozzle hole

Claims (6)

内燃機関に燃料を噴射供給する燃料噴射弁に用いられ、弁体と、コイルに発生する電磁力で前記弁体を吸引する吸引部材とを有し、前記コイルへの通電停止時に生じる残留磁力の大きさにより噴射停止の応答性に影響を与える電磁弁であって、前記内燃機関の運転状態に応じてこの電磁弁の前記コイルへの通電特性を制御する電磁弁駆動制御装置において、
1噴射中の前記通電特性のうちの前記噴射停止前の通電電荷値を、前記電磁弁が搭載された前記燃料噴射弁の噴射状態を保持できる最小の通電電荷値に設定する電磁弁個体差調整手段を備えていることを特徴とする電磁弁駆動制御装置。
Used in a fuel injection valve that injects fuel into an internal combustion engine, and has a valve body and a suction member that sucks the valve body with electromagnetic force generated in the coil, and has a residual magnetic force generated when energization of the coil is stopped. An electromagnetic valve that influences the response of injection stop depending on the size, and in the electromagnetic valve drive control device that controls the energization characteristic to the coil of the electromagnetic valve according to the operating state of the internal combustion engine.
Solenoid valve individual difference adjustment that sets the energized charge value before the injection stop of the energization characteristics during one injection to the minimum energized charge value that can maintain the injection state of the fuel injection valve on which the solenoid valve is mounted. An electromagnetic valve drive control device characterized by comprising means.
前記電磁弁個体差調整手段は、
前記噴射停止前の通電電荷値を、前記電磁弁の個体差に係わらず噴射状態を保持する保持電荷値から変化させる保持電荷値変更手段と、
前記内燃機関の運転状態を検出し、この運転状態に基づいて前記内燃機関の回転変動が所定値以上あるか否かを判定する判定手段とを備え、
前記噴射停止前の通電電荷値を前記保持電荷値から徐々に変化させ、前記回転変動が所定値以上あると判断される場合には、その通電電荷値を前記最小の通電電荷値とすることを特徴とする請求項1に記載の電磁弁駆動制御装置。
The electromagnetic valve individual difference adjusting means is
Holding charge value changing means for changing the energized charge value before stopping the injection from the holding charge value holding the injection state regardless of individual differences of the solenoid valves;
Determining means for detecting an operating state of the internal combustion engine, and determining whether or not the rotational fluctuation of the internal combustion engine is greater than or equal to a predetermined value based on the operating state;
When the energized charge value before stopping the injection is gradually changed from the held charge value, and it is determined that the rotational fluctuation is equal to or greater than a predetermined value, the energized charge value is set to the minimum energized charge value. The electromagnetic valve drive control device according to claim 1, wherein
前記最小通電電荷値は、前記回転変動が所定値以上あると判断されたときの通電電荷値に、前記電磁弁固有の電荷値を加えられることを特徴とする請求項2に記載の電磁弁駆動制御装置。   The solenoid valve drive according to claim 2, wherein the minimum energized charge value is obtained by adding a charge value unique to the solenoid valve to an energized charge value when it is determined that the rotational fluctuation is equal to or greater than a predetermined value. Control device. 前記通電特性は、前記一噴射中の噴射期間に対応する通電パルスが形成され、
前記最小通電電荷値を設定する期間は、前記通電パルス中の噴射停止前領域に、前記通電パルス長さに係わらず所定時間に設定されていることを特徴とする請求項1から請求項3のいずれか一項に記載の電磁弁駆動制御装置。
In the energization characteristic, an energization pulse corresponding to an injection period during the one injection is formed,
The period for setting the minimum energization charge value is set to a predetermined time in the region before injection stop in the energization pulse regardless of the energization pulse length. The electromagnetic valve drive control device according to any one of the above.
前記所定時間を、前記電磁弁の個体差に係わらず噴射状態を保持する保持時間から変化させる保持時間変更手段と、
前記内燃機関の運転状態を検出し、この運転状態に基づいて前記内燃機関の回転変動が所定値以上あるか否かを判定する判定手段とを備え、
前記所定時間を前記保持時間から徐々に変化させ、前記回転変動が所定値以上あると判断される場合には、その所定時間を前記電磁弁固有の最大保持時間とすることを特徴とする請求項4に記載の電磁弁駆動制御装置。
Holding time changing means for changing the predetermined time from a holding time for holding the injection state regardless of individual differences of the solenoid valves;
Determining means for detecting an operating state of the internal combustion engine, and determining whether or not the rotational fluctuation of the internal combustion engine is greater than or equal to a predetermined value based on the operating state;
The predetermined time is gradually changed from the holding time, and when it is determined that the rotation fluctuation is greater than or equal to a predetermined value, the predetermined time is set as a maximum holding time unique to the solenoid valve. 5. The electromagnetic valve drive control device according to 4.
請求項1から請求項5のいずれか一項に記載の電磁弁駆動制御装置は、前記運転状態に応じて1燃焼行程の間に複数回噴射する前記燃料噴射弁に用いられ、
前記運転状態が、前記複数回の噴射のうち先に噴射を実施する前噴射と前記前噴射の後に噴射を実施する後噴射とを少なくとも近接噴射させる運転領域において、
前記前噴射に対応する通電特性のうちの噴射停止前の通電電荷値を、前記最小通電電荷値に設定することを特徴とする電磁弁駆動制御装置。
The electromagnetic valve drive control device according to any one of claims 1 to 5 is used for the fuel injection valve that injects a plurality of times during one combustion stroke according to the operation state,
In the operation region in which the operation state causes at least a close injection of a pre-injection that performs the injection first in the plurality of injections and a post-injection that performs the injection after the pre-injection
The solenoid valve drive control device, wherein an energization charge value before injection stop in the energization characteristic corresponding to the pre-injection is set to the minimum energization charge value.
JP2005110347A 2005-04-06 2005-04-06 Solenoid valve drive control device Pending JP2006291756A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005110347A JP2006291756A (en) 2005-04-06 2005-04-06 Solenoid valve drive control device
DE200610000157 DE102006000157A1 (en) 2005-04-06 2006-04-05 Drive control device e.g. for electromagnetic valve, has electromagnetic valve provided in fuel injecting valve with which engine is supplied with fuel and valve is tightened by means of electromagnetic force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005110347A JP2006291756A (en) 2005-04-06 2005-04-06 Solenoid valve drive control device

Publications (1)

Publication Number Publication Date
JP2006291756A true JP2006291756A (en) 2006-10-26

Family

ID=37026456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005110347A Pending JP2006291756A (en) 2005-04-06 2005-04-06 Solenoid valve drive control device

Country Status (2)

Country Link
JP (1) JP2006291756A (en)
DE (1) DE102006000157A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072870A (en) * 2010-09-29 2012-04-12 Denso Corp Solenoid valve driving device
WO2019151032A1 (en) * 2018-01-31 2019-08-08 いすゞ自動車株式会社 Fuel pump driving structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007045779A1 (en) * 2007-09-25 2009-04-09 Continental Automotive Gmbh Method for controlling a solenoid valve and associated device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072870A (en) * 2010-09-29 2012-04-12 Denso Corp Solenoid valve driving device
WO2019151032A1 (en) * 2018-01-31 2019-08-08 いすゞ自動車株式会社 Fuel pump driving structure

Also Published As

Publication number Publication date
DE102006000157A1 (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP4327183B2 (en) High pressure fuel pump control device for internal combustion engine
JP5053868B2 (en) Fuel injection control device
JP2005171936A (en) Control device of engine high-pressure fuel pump
JP2007046543A (en) High pressure fuel supply controller of energy saving type for internal combustion engine
JP2009115009A (en) After-stop fuel pressure control device of direct injection engine
US6918376B2 (en) Fuel supply device for an internal combustion engine
JP2009074373A (en) Fuel injection controller of internal combustion engine
US20170284389A1 (en) Control device for high pressure pump
JP2009079514A (en) Fuel pressure control device for cylinder injection type internal combustion engine
JP6079487B2 (en) High pressure pump control device
JP2006291843A (en) Fuel injection device
JP4144375B2 (en) Accumulated fuel injection system
US6332455B1 (en) Device for controlling fuel injection
WO2014119289A1 (en) Control device for high-pressure pump
JP2010116835A (en) High-pressure pump control device for cylinder injection type internal combustion engine
JP2011127523A (en) Control device and control method of pressure accumulating type fuel injection device, and pressure accumulating type fuel injection device
JP2006291756A (en) Solenoid valve drive control device
JP2009281390A (en) High-pressure fuel pump control device for engine
JPH10259753A (en) Method and device for controlling fuel injection
JP4322444B2 (en) Accumulated fuel injection system
JP5835117B2 (en) Fuel supply control device for internal combustion engine
EP1201898B1 (en) Device for controlling fuel injection
JP2003269287A (en) High pressure fuel supply system
US11519372B2 (en) Control device for high-pressure pump and method for controlling the same
JP5382870B2 (en) Control device and control method for accumulator fuel injector and accumulator fuel injector