JP2007254943A - Porous protein fiber and method for producing the same - Google Patents

Porous protein fiber and method for producing the same Download PDF

Info

Publication number
JP2007254943A
JP2007254943A JP2007039537A JP2007039537A JP2007254943A JP 2007254943 A JP2007254943 A JP 2007254943A JP 2007039537 A JP2007039537 A JP 2007039537A JP 2007039537 A JP2007039537 A JP 2007039537A JP 2007254943 A JP2007254943 A JP 2007254943A
Authority
JP
Japan
Prior art keywords
protein fiber
porous
acid
fiber
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007039537A
Other languages
Japanese (ja)
Other versions
JP2007254943A5 (en
JP4590587B2 (en
Inventor
Yoji Tani
庸治 谷
Tetsuya Itagaki
哲也 板垣
Keiichiro Oba
圭一朗 大庭
Takusane Akazawa
卓実 赤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IST Corp Japan
Original Assignee
IST Corp Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IST Corp Japan filed Critical IST Corp Japan
Priority to JP2007039537A priority Critical patent/JP4590587B2/en
Publication of JP2007254943A publication Critical patent/JP2007254943A/en
Publication of JP2007254943A5 publication Critical patent/JP2007254943A5/ja
Application granted granted Critical
Publication of JP4590587B2 publication Critical patent/JP4590587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve the improvement of color developing property, heat insulating property, warmth-keeping property, moisture absorption and releasing characteristics, heat-generating property on moisture absorption, quick drying property, dry feeling, swelling feeling, etc., of a natural protein fiber and reduced weight of the fiber by forming a multiple number of fine pores on the natural protein fiber such as wool. <P>SOLUTION: This porous protein fiber is produced through an acid-treating process, a compressing process and a pressure-releasing process. In the acid-treating process, the natural protein fiber is brought into contact with the acid to produce an acid-treated protein fiber. In the compressing process, the acid-treated protein fiber is put into a prescribed pressure-resistant container and then inert gas is injected into the pressure resistant container to pressurize the inside of the container up to a prescribed pressure. In the pressure-releasing process, pressurization is released. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば、羊毛などの天然タンパク質繊維の一部または全部を多孔質化した多孔性タンパク質繊維およびその製造方法に関する。   The present invention relates to a porous protein fiber obtained by making part or all of a natural protein fiber such as wool porous, and a method for producing the same.

繊維業界では、古くから、発色性、断熱性、保温性、吸湿放湿特性、吸湿発熱性、速乾性、ドライ感、ふくらみ感などの向上や軽量化などを目的として、中空構造を有する繊維や内部に複数の微細な空孔を有する繊維などが開発されてきた(例えば、特許文献1参照)。
特開2003−105627号公報
In the textile industry, fibers with hollow structures have been used for the purpose of improving color development, heat insulation, heat retention, moisture absorption and desorption characteristics, moisture absorption exothermicity, quick drying, dry feeling, bulging feeling, and weight reduction. A fiber having a plurality of fine pores inside has been developed (for example, see Patent Document 1).
JP 2003-105627 A

しかし、現時点で上記のような構造を有する繊維は合成繊維に限られており、羊毛などの天然タンパク質繊維に上記のような構造を付与することは事実上不可能であった。   However, at the present time, fibers having the above-described structure are limited to synthetic fibers, and it has been virtually impossible to impart the above-described structure to natural protein fibers such as wool.

本発明の課題は、羊毛などの天然タンパク質繊維に複数の微細な空孔を形成し、天然タンパク質繊維の発色性、断熱性、保温性、吸湿放湿特性、吸湿発熱性、速乾性、ドライ感、ふくらみ感などの向上や軽量化を達成することにある。   An object of the present invention is to form a plurality of fine pores in a natural protein fiber such as wool, and develop the color development property, heat insulation property, heat retention property, moisture absorption and desorption property, moisture absorption exothermic property, quick drying property and dry feeling of the natural protein fiber. The goal is to improve the feeling of swelling and reduce weight.

本願発明者らは鋭意研究を重ねた結果、天然タンパク質繊維から一部または全部に多孔質部を有する多孔性タンパク質繊維を得ることができる多孔性タンパク質繊維の製造方法を見出した。なお、ここにいう「天然タンパク質繊維」とは、動物性の天然タンパク質繊維であって、例えば、羊や、モヘア、アルパカ、カシミヤ、ラマ、ビキューナ、キャメル、およびアンゴラ等の獣毛を構成する単繊維(モノフィラメント)や絹糸などである。   As a result of intensive studies, the inventors of the present application have found a method for producing a porous protein fiber capable of obtaining a porous protein fiber having a porous portion in part or in whole from a natural protein fiber. The term “natural protein fiber” as used herein refers to animal natural protein fibers, such as sheep, mohair, alpaca, cashmere, llama, vicuña, camel, and angora. Fiber (monofilament) or silk thread.

この多孔性タンパク質繊維の製造方法は酸処理工程、加圧工程、および圧力解除工程を備えており、酸処理工程では、天然タンパク質繊維が酸に接触させられて酸処理タンパク質繊維が製造される。なお、この工程では、酸として、特に限定されないが、例えば、塩酸・硫酸・硝酸などの無機酸、ギ酸・酢酸などの有機酸など、あらゆる酸が使用可能である。加圧工程では、酸処理タンパク質繊維が所定の耐圧容器に投入された後に耐圧容器に不活性ガスが注入されて耐圧容器内が所定の圧力まで加圧される。なお、ここにいう「不活性ガス」とは、例えば、二酸化炭素や、窒素、アルゴン等の希ガスである。また、ここにいう所定の圧力は5MPa以上の圧力が好ましい。また、この所定の圧力は不活性ガスが超臨界状態になる圧力であってもよい。圧力解除工程では、加圧が解除される。なお、最終的に得られる多孔性タンパク質繊維は、一部または全部に多孔質部を有している。そして、その多孔質部は、多孔性タンパク質繊維の長手方向に直交する断面で切った場合、その断面に略全体に渡って微細な空孔が形成されている。また、加圧工程における最大圧力と圧力解除工程後の圧力との差や、圧力解除工程における圧力解除速度などを調節することによって多孔性タンパク質繊維の空孔率(多孔性タンパク質繊維を長手方向に直交する面で切ったときの断面の総面積(空孔を含む)に占める空孔の総面積の割合)を調節することができる。また、加圧工程と圧力解除工程とを交互に繰り返すことによっても多孔性タンパク質繊維の空孔率を調節することができる。なお、本発明では、この空孔率は1%以上80%以下であるのが好ましい。空孔率が1%未満であれば本発明の効果が十分に発揮されず、空孔率が80%よりも大きければ繊維強度が低下するおそれがあるからである。また、本発明では、空孔率が5%以上50%以下であるのがより好ましい。   This method for producing a porous protein fiber includes an acid treatment step, a pressurization step, and a pressure release step. In the acid treatment step, the natural protein fiber is brought into contact with an acid to produce an acid-treated protein fiber. In this step, the acid is not particularly limited. For example, any acid such as inorganic acid such as hydrochloric acid, sulfuric acid and nitric acid, and organic acid such as formic acid and acetic acid can be used. In the pressurizing step, after the acid-treated protein fiber is put into a predetermined pressure resistant container, an inert gas is injected into the pressure resistant container and the pressure resistant container is pressurized to a predetermined pressure. The “inert gas” referred to here is, for example, a rare gas such as carbon dioxide, nitrogen, or argon. The predetermined pressure here is preferably a pressure of 5 MPa or more. The predetermined pressure may be a pressure at which the inert gas becomes a supercritical state. In the pressure release process, the pressurization is released. In addition, the porous protein fiber finally obtained has a porous part in part or all. And when the porous part cut | disconnects in the cross section orthogonal to the longitudinal direction of a porous protein fiber, the micro void | hole is formed in the cross section substantially over the whole. In addition, by adjusting the difference between the maximum pressure in the pressurization step and the pressure after the pressure release step, the pressure release rate in the pressure release step, etc., the porosity of the porous protein fiber (the porous protein fiber in the longitudinal direction) It is possible to adjust the ratio of the total area of the holes to the total area (including the holes) of the cross section when cut by the orthogonal plane. In addition, the porosity of the porous protein fiber can be adjusted by alternately repeating the pressurizing step and the pressure releasing step. In the present invention, the porosity is preferably 1% or more and 80% or less. This is because if the porosity is less than 1%, the effect of the present invention is not sufficiently exhibited, and if the porosity is greater than 80%, the fiber strength may be lowered. In the present invention, the porosity is more preferably 5% or more and 50% or less.

このような方法で天然タンパク質繊維が多孔化する理屈は、断定はできないが、おそらく、酸処理工程において天然タンパク質繊維の一部のコルテックス(皮質部)あるいはフィブリルが溶解等のダメージを受け、加圧工程において不活性ガスが酸処理タンパク質繊維に容易に浸透し、圧力解除工程において酸処理タンパク質繊維に浸透した不活性ガスが急激に膨張するためであると考えられる。   The reason why the natural protein fiber becomes porous by such a method cannot be determined, but it is likely that some cortex (cortex) or fibrils of the natural protein fiber are damaged by dissolution or the like during the acid treatment process. This is probably because the inert gas easily penetrates into the acid-treated protein fiber in the pressure step, and the inert gas penetrated into the acid-treated protein fiber in the pressure release step rapidly expands.

また、この製造方法において、加圧工程の前に疎水性処理工程が行われるのが好ましい。これは、おそらく天然タンパク質繊維の表面が疎水化されることにより不活性ガスの溶解が促進されるためであると考えられる。なお、疎水性処理では、フッ素化合物およびシリコーン化合物より成る群から選択される少なくとも1つの化合物が含まれる疎水化処理剤により酸処理タンパク質繊維が疎水性処理される。具体的には、酸処理タンパク質繊維に、フッ素化合物およびシリコーン化合物より成る群から選択される少なくとも1つの化合物が含まれる疎水化処理剤が付与される。なお、ここにいう「フッ素化合物」とは、例えば、パーフルオロアルキルカルボン酸塩・パーフルオロアルキルトリメチルアンモニウム塩・パーフルオロアルキルスルホン酸塩などのフッ素系界面活性剤、パーフルオロアルキル含有オリゴマー・パーフルオロアルキルエチレンオキシド付加物などの油溶性フッ素界面活性剤、フッ素含有ビニルモノマーやフッ素含有アクリル等を重合した撥水加工剤または塗料、四フッ化エチレン樹脂・四フッ化エチレン−エチレン共重合体・四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合体・ポリフッ化ビニリデン・フッ素ゴム・フッ素含有熱可塑性エラストマー等のフッ化高分子化合物、フッ素含有芳香族化合物などである。また、ここにいう「シリコーン化合物」とは、その化学構造中にポリシロキサン結合を有する化合物であって、例えば、ポリジメチルシロキサン、メチルハイドロジェンポリシロキサン、アミノ変性・エポキシ変性・カルボキシル変性・四級アンモニウム塩変性・アルキル変性・フッ素変性などされた変性シリコーン、シリコーン系界面活性剤、シリコーンゴム、シリコーン系エラストマー等である。   Moreover, in this manufacturing method, it is preferable that a hydrophobic treatment process is performed before a pressurization process. This is probably due to the fact that the surface of the natural protein fiber is hydrophobized to promote the dissolution of the inert gas. In the hydrophobic treatment, the acid-treated protein fiber is subjected to a hydrophobic treatment with a hydrophobic treatment agent containing at least one compound selected from the group consisting of a fluorine compound and a silicone compound. Specifically, a hydrophobic treatment agent containing at least one compound selected from the group consisting of a fluorine compound and a silicone compound is applied to the acid-treated protein fiber. The “fluorine compound” used herein refers to, for example, a fluorosurfactant such as perfluoroalkylcarboxylate, perfluoroalkyltrimethylammonium salt, perfluoroalkylsulfonate, perfluoroalkyl-containing oligomer, perfluoro. Oil-soluble fluorine surfactants such as alkylethylene oxide adducts, water repellent finishing agents or paints polymerized with fluorine-containing vinyl monomers or fluorine-containing acrylics, tetrafluoroethylene resin, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene Fluorinated polymer compounds such as fluorinated ethylene-perfluoroalkyl vinyl ether copolymer, polyvinylidene fluoride, fluorine rubber, fluorine-containing thermoplastic elastomer, fluorine-containing aromatic compounds, and the like. The “silicone compound” herein is a compound having a polysiloxane bond in its chemical structure, for example, polydimethylsiloxane, methylhydrogenpolysiloxane, amino-modified / epoxy-modified / carboxyl-modified / quaternary. Modified silicones modified with ammonium salts, alkyls and fluorines, silicone surfactants, silicone rubbers, silicone elastomers and the like.

そして、この多孔性タンパク質繊維は多孔性タンパク質繊維以外の繊維と混紡されてもよいし複合化されてもよい。なお、この混紡繊維や複合化繊維では、多孔性タンパク質繊維が主成分となっているのが好ましい。   And this porous protein fiber may be blended with fibers other than porous protein fiber, and may be compounded. In this blended fiber or composite fiber, porous protein fibers are preferably the main component.

また、上記多孔性タンパク質繊維、上記混紡繊維、および上記複合化繊維より成る群から選択される少なくとも1つの繊維から布帛が形成されてもよい。なお、ここにいう「布帛」とは、例えば、織物や、編物、不織布などである。   Further, a fabric may be formed from at least one fiber selected from the group consisting of the porous protein fiber, the blended fiber, and the composite fiber. The “fabric” here is, for example, a woven fabric, a knitted fabric, a non-woven fabric, or the like.

さらに、この多孔性タンパク質繊維から綿(わた)を製造してもよい。なお、この綿(わた)では、多孔性タンパク質繊維が主成分となっているのが好ましい。   Further, cotton (cotton) may be produced from this porous protein fiber. In this cotton, it is preferable that porous protein fibers are the main component.

本発明に係る多孔性タンパク質繊維の製造方法により、従来には存在し得なかった多孔性タンパク質繊維を製造することができ、天然タンパク質繊維の発色性、断熱性、保温性、吸湿放湿特性、吸湿発熱性、速乾性、ドライ感、ふくらみ感などの向上や軽量化を達成することが可能となった。また、この多孔性タンパク質繊維は、上記特性以外にも消臭性や生分解性に優れる。   By the method for producing a porous protein fiber according to the present invention, a porous protein fiber that could not exist in the past can be produced, and the color development property, heat insulation property, heat retention property, moisture absorption and desorption property of natural protein fiber, It has become possible to achieve improvements in moisture absorption exotherm, quick drying, dry feeling, swell, and weight reduction. Moreover, this porous protein fiber is excellent in deodorizing property and biodegradability other than the said characteristic.

以下、本発明の実施の形態に係る多孔性タンパク質繊維の製造方法について説明する。   Hereinafter, the manufacturing method of the porous protein fiber which concerns on embodiment of this invention is demonstrated.

〔原料〕
本発明に係る多孔性タンパク質繊維の製造方法では、例えば、羊や、モヘア、アルパカ、カシミヤ、ラマ、ビキューナ、キャメル、およびアンゴラ等の獣毛を構成する単繊維(モノフィラメント)や、絹糸、その他の動物性天然タンパク質繊維が原料となり得る。また、この原料の形態は特に限定されず、繊維のままであってもよいし、織物にされていてもよいし、撚糸にされていてもよい。
〔material〕
In the method for producing a porous protein fiber according to the present invention, for example, sheep, mohair, alpaca, cashmere, llama, vicuña, camel, angora and other animal fibers (monofilament), silk thread, Animal natural protein fiber can be used as a raw material. Moreover, the form of this raw material is not specifically limited, The fiber may be used as it is, it may be made into the woven fabric, and may be made into the twisted yarn.

〔多孔性タンパク質繊維の製造方法〕
本発明の実施の形態に係る多孔性タンパク質繊維の製造方法は、主に、酸処理工程、加圧工程、疎水性処理工程、および圧力解除工程から構成される。以下、これらの工程について詳述する。なお、これらの工程のうち疎水性処理工程は必須ではなく適宜省略してもかまわない。
[Method for producing porous protein fiber]
The method for producing a porous protein fiber according to the embodiment of the present invention mainly includes an acid treatment step, a pressurization step, a hydrophobic treatment step, and a pressure release step. Hereinafter, these steps will be described in detail. Of these steps, the hydrophobic treatment step is not essential and may be omitted as appropriate.

(1)酸処理工程
酸処理工程では、原料である動物性天然タンパク質繊維が、所定濃度、所定温度に調節された酸性水溶液に所定時間、浸績される。なお、この工程では、酸として、特に限定されないが、例えば、塩酸・硫酸・硝酸などの無機酸、ギ酸・酢酸などの有機酸など、あらゆる酸が使用可能である。
(1) Acid treatment step In the acid treatment step, the animal natural protein fiber as a raw material is immersed in an acidic aqueous solution adjusted to a predetermined concentration and a predetermined temperature for a predetermined time. In this step, the acid is not particularly limited. For example, any acid such as inorganic acid such as hydrochloric acid, sulfuric acid and nitric acid, and organic acid such as formic acid and acetic acid can be used.

なお、以下、この酸処理工程において酸処理された動物性天然タンパク質繊維を「酸処理タンパク質繊維」という。   Hereinafter, the animal natural protein fiber acid-treated in this acid treatment step is referred to as “acid-treated protein fiber”.

(2)疎水性処理工程
疎水性処理では、フッ素化合物、シリコーン化合物、あるいはこれらの混合物を含む疎水性処理剤により酸処理タンパク質繊維が疎水性処理される。具体的には、酸処理タンパク質繊維に、疎水性処理剤が付与される。
(2) Hydrophobic treatment step In the hydrophobic treatment, the acid-treated protein fiber is subjected to a hydrophobic treatment with a hydrophobic treatment agent containing a fluorine compound, a silicone compound, or a mixture thereof. Specifically, a hydrophobic treatment agent is imparted to the acid-treated protein fiber.

なお、以下、この疎水性処理工程に疎水化された酸処理タンパク質繊維を「疎水化タンパク質繊維」という。   Hereinafter, the acid-treated protein fiber hydrophobized in the hydrophobic treatment step is referred to as “hydrophobized protein fiber”.

(3)加圧工程
加圧工程では、酸処理タンパク質繊維または疎水化タンパク質繊維が耐圧容器に投入された後に、不活性ガスを耐圧容器内部に注入して耐圧容器の内部圧力を所定の圧力まで上昇させる。なお、本実施の形態において「不活性ガス」とは、例えば、二酸化炭素や、窒素、アルゴン等の希ガスである。また、ここにいう所定の圧力は5MPa以上の圧力が好ましい。また、この所定の圧力は不活性ガスが超臨界状態になる圧力であってもよい。また、温度は30〜80℃であるのが好ましい。
(3) Pressurization step In the pressurization step, after the acid-treated protein fiber or the hydrophobized protein fiber is put into the pressure vessel, an inert gas is injected into the pressure vessel and the internal pressure of the pressure vessel is reduced to a predetermined pressure. Raise. In the present embodiment, the “inert gas” is, for example, a rare gas such as carbon dioxide, nitrogen, or argon. The predetermined pressure here is preferably a pressure of 5 MPa or more. The predetermined pressure may be a pressure at which the inert gas becomes a supercritical state. Moreover, it is preferable that temperature is 30-80 degreeC.

(4)圧力解除工程
圧力解除工程では、耐圧容器のリーク弁を開放して耐圧容器内部の圧力を大気圧まで戻す。なお、この工程において、圧力は、瞬時に大気圧まで戻るようにしてもよいし、所定の速度で大気圧まで戻るようにしてもよい。
(4) Pressure release process In a pressure release process, the leak valve of a pressure vessel is opened and the pressure inside a pressure vessel is returned to atmospheric pressure. In this step, the pressure may be instantaneously returned to atmospheric pressure, or may be returned to atmospheric pressure at a predetermined speed.

〔多孔性タンパク質繊維の空孔率の調節方法〕
多孔性タンパク質繊維の空孔率は、加圧工程における最大圧力と圧力解除工程後の圧力との差や、圧力解除工程における圧力解除速度などを調節したり、加圧工程と圧力解除工程とを交互に繰り返すことによって調節することができる。なお、緻密で安定した品質の多孔性タンパク質繊維を得るためには、高圧で処理するよりも、5MPa以上であって可及的低い圧力で加圧し、圧力解除と加圧とを繰り返す工程の方が好ましい。多孔性タンパク質繊維の品質の安定と共に不活性ガスの使用量の低減や加圧準備時間の短縮化より製造コストを抑制することができるからである。
[Method of adjusting porosity of porous protein fiber]
The porosity of the porous protein fiber can be adjusted by adjusting the difference between the maximum pressure in the pressurization process and the pressure after the pressure release process, the pressure release speed in the pressure release process, etc. It can be adjusted by repeating it alternately. In order to obtain dense and stable porous protein fibers, rather than processing at high pressure, pressurizing at a pressure as low as 5 MPa or more and repeating pressure release and pressurization. Is preferred. This is because the production cost can be suppressed by stabilizing the quality of the porous protein fiber and reducing the amount of inert gas used and shortening the preparation time for pressurization.

〔多孔性タンパク質繊維の空孔率の測定方法〕
走査型電子顕微鏡により多孔性タンパク質繊維の長手方向と直交する断面を所定倍率で撮像した。そして、その写真ナノシステム(株)社製の画像解析装置 Nano Hunter NS2K-Proにセットした後に多孔性タンパク質繊維の断面部分を選択しコントラストの具合から空孔率を求めた。なお、本実施の形態において、空孔率は、多孔性タンパク質繊維断面の総面積(空孔を含む)に占める空孔の総面積の割合で定義される。
[Measurement method of porosity of porous protein fiber]
A cross section perpendicular to the longitudinal direction of the porous protein fiber was imaged at a predetermined magnification by a scanning electron microscope. And after setting to the image analysis apparatus Nano Hunter NS2K-Pro made from the photograph nano system Co., Ltd., the cross-sectional part of the porous protein fiber was selected, and the porosity was calculated | required from the condition of contrast. In the present embodiment, the porosity is defined as the ratio of the total area of the pores to the total area (including the pores) of the cross section of the porous protein fiber.

〔多孔性タンパク質繊維の応用例〕
この多孔性タンパク質繊維は、綿(わた)状で使用されてもよいし、他の繊維と混紡あるいは複合化されて使用されてもよい。また、この多孔性タンパク質繊維や多孔性タンパク質繊維を主成分とする混紡繊維から織物や、編物、不織布などを製造することも可能である。
[Application example of porous protein fiber]
This porous protein fiber may be used in the form of cotton (cotton), or may be used by being blended or compounded with other fibers. Moreover, it is also possible to manufacture a woven fabric, a knitted fabric, a nonwoven fabric, etc. from this porous protein fiber and the blended fiber which has a porous protein fiber as a main component.

〔実施例〕
以下に、本発明の実施例を示す。
〔Example〕
Examples of the present invention are shown below.

本実施例では、48番手双糸の羊毛を原料とした。なお、この羊毛の引張強度は、400gf(平均値)であった。また、この羊毛繊維の長手方向に直交する断面写真を図1に示す。   In this example, 48-count double yarn wool was used as a raw material. In addition, the tensile strength of this wool was 400 gf (average value). Moreover, the cross-sectional photograph orthogonal to the longitudinal direction of this wool fiber is shown in FIG.

先ず、羊毛を、55℃に調整した76wt%のギ酸水溶液中に9時間、浸漬した後、その羊毛をギ酸水溶液中から取り出した(以下、この処理をギ酸処理といい、ギ酸処理後の羊毛をギ酸処理羊毛という)。次いで、ギ酸処理羊毛を25℃に調整した0.2wt%の(株)ジェコム社製のエフトップKFBS(フッ素系界面活性剤、主成分:ペルフルオロブタンスルホン酸カリウム(C49SO3 -+))に12時間、浸漬した後、そのギ酸処理羊毛をエフトップKFBS中から取り出した(以下、この処理を疎水性処理といい、疎水性処理後のギ酸処理羊毛を疎水化羊毛という)。そして、疎水化羊毛をを日本分光(株)社製の超臨界二酸化炭素反応システムに投入した後、系内に二酸化炭素を注入することにより系内の圧力を20MPaまで上昇させた(以下、この処理を加圧処理という)。なお、このとき、温度は40℃に設定されている。なお、このとき、系内の二酸化炭素は超臨界状態となっている。そして、1時間経過後、超臨界二酸化炭素反応システムの系内を急激にリークして常圧に戻し(以下、この処理を圧力解除処理という)、多孔性羊毛繊維を得た。 First, the wool was dipped in a 76 wt% formic acid aqueous solution adjusted to 55 ° C. for 9 hours, and then the wool was taken out from the formic acid aqueous solution (hereinafter, this treatment is referred to as formic acid treatment, Called formic acid-treated wool). Then, the 0.2 wt% was adjusted with formic acid treatment wool 25 ° C. (Ltd.) Jekomu manufactured by Eftop KFBS (fluorine surfactant, ingredient: potassium perfluorobutane sulfonate (C 4 F 9 SO 3 - K + )) After soaking for 12 hours, the formic acid-treated wool was taken out from F-top KFBS (hereinafter, this treatment is referred to as hydrophobic treatment, and the formic acid-treated wool after hydrophobic treatment is referred to as hydrophobicized wool). Then, the hydrophobized wool was put into a supercritical carbon dioxide reaction system manufactured by JASCO Corporation, and then the pressure in the system was increased to 20 MPa by injecting carbon dioxide into the system (hereinafter referred to as this The process is called pressure treatment). At this time, the temperature is set to 40 ° C. At this time, carbon dioxide in the system is in a supercritical state. After 1 hour, the inside of the supercritical carbon dioxide reaction system leaked rapidly and returned to normal pressure (hereinafter, this treatment is referred to as pressure release treatment) to obtain porous wool fibers.

得られた多孔性羊毛繊維の長手方向に直交する断面写真を(株)日立製作所製の走査型電子顕微鏡S−3000Nにより撮影した。その写真を図2に示す。なお、このときの多孔性羊毛繊維の空孔率は16%であって、多孔性羊毛の引張強度は380gfであった。   A cross-sectional photograph orthogonal to the longitudinal direction of the obtained porous wool fiber was taken with a scanning electron microscope S-3000N manufactured by Hitachi, Ltd. The photograph is shown in FIG. At this time, the porosity of the porous wool fiber was 16%, and the tensile strength of the porous wool was 380 gf.

疎水性処理を行わなかった以外は実施例1と同様にして羊毛を処理した。   Wool was treated in the same manner as in Example 1 except that the hydrophobic treatment was not performed.

得られた多孔性羊毛繊維の長手方向に直交する断面写真を(株)日立製作所製の走査型電子顕微鏡S−3000Nにより撮影し空孔率を求めた結果、空孔率は14%であった。また、多孔性羊毛の引張強度は380gfであった。   As a result of taking a cross-sectional photograph orthogonal to the longitudinal direction of the obtained porous wool fiber with a scanning electron microscope S-3000N manufactured by Hitachi, Ltd. and determining the porosity, the porosity was 14%. . The tensile strength of the porous wool was 380 gf.

加圧処理において系内の圧力を5MPaとした以外は実施例1と同様にして羊毛を処理した。なお、このとき、系内の二酸化炭素は超臨界状態には至っていない。   Wool was treated in the same manner as in Example 1 except that the pressure in the system was changed to 5 MPa in the pressure treatment. At this time, the carbon dioxide in the system has not reached the supercritical state.

得られた多孔性羊毛繊維の長手方向に直交する断面写真を(株)日立製作所製の走査型電子顕微鏡S−3000Nにより撮影した。その写真を図3に示す。なお、このときの多孔性羊毛繊維の空孔率は20%であって、多孔性羊毛の引張強度は380gfであった。   A cross-sectional photograph orthogonal to the longitudinal direction of the obtained porous wool fiber was taken with a scanning electron microscope S-3000N manufactured by Hitachi, Ltd. The photograph is shown in FIG. At this time, the porosity of the porous wool fiber was 20%, and the tensile strength of the porous wool was 380 gf.

加圧処理と圧力解除処理とを順に2回繰り返した以外は実施例1と同様にして羊毛を処理した。   Wool was treated in the same manner as in Example 1 except that the pressure treatment and the pressure release treatment were repeated twice.

得られた多孔性羊毛繊維の長手方向に直交する断面写真を(株)日立製作所製の走査型電子顕微鏡S−3000Nにより撮影した。その写真を図4に示す。なお、このときの多孔性羊毛繊維の空孔率は27%であって、多孔性羊毛の引張強度は380gfであった。   A cross-sectional photograph orthogonal to the longitudinal direction of the obtained porous wool fiber was taken with a scanning electron microscope S-3000N manufactured by Hitachi, Ltd. The photograph is shown in FIG. At this time, the porosity of the porous wool fiber was 27%, and the tensile strength of the porous wool was 380 gf.

加圧処理と圧力解除処理とを順に3回繰り返した以外は実施例1と同様にして羊毛を処理した。   Wool was treated in the same manner as in Example 1 except that the pressure treatment and the pressure release treatment were repeated three times in order.

得られた多孔性羊毛繊維の長手方向に直交する断面写真を(株)日立製作所製の走査型電子顕微鏡S−3000Nにより撮影した。その写真を図5に示す。なお、このときの多孔性羊毛繊維の空孔率は31%であって、多孔性羊毛の引張強度は380gfであった。   A cross-sectional photograph orthogonal to the longitudinal direction of the obtained porous wool fiber was taken with a scanning electron microscope S-3000N manufactured by Hitachi, Ltd. The photograph is shown in FIG. At this time, the porosity of the porous wool fiber was 31%, and the tensile strength of the porous wool was 380 gf.

ギ酸水溶液を36%の塩酸水溶液とした以外は実施例1と同様にして羊毛を処理した。   Wool was treated in the same manner as in Example 1 except that the formic acid aqueous solution was changed to a 36% hydrochloric acid aqueous solution.

得られた多孔性羊毛繊維の長手方向に直交する断面写真を(株)日立製作所製の走査型電子顕微鏡S−3000Nにより撮影し空孔率を求めた結果、空孔率は13%であった。また、多孔性羊毛の引張強度は360gfであった。
(比較例)
ギ酸処理を行わなかったこと以外は実施例1と同様にして羊毛を処理した。
As a result of taking a cross-sectional photograph orthogonal to the longitudinal direction of the obtained porous wool fiber with a scanning electron microscope S-3000N manufactured by Hitachi, Ltd. and determining the porosity, the porosity was 13%. . The tensile strength of the porous wool was 360 gf.
(Comparative example)
Wool was treated in the same manner as in Example 1 except that formic acid treatment was not performed.

得られた羊毛繊維の長手方向に直交する断面写真を(株)日立製作所製の走査型電子顕微鏡S−3000Nにより撮影した。その写真を図6に示す。図6から明らかなように、ギ酸処理が行われないと、多孔性タンパク質繊維は得られない。   A cross-sectional photograph perpendicular to the longitudinal direction of the obtained wool fiber was taken with a scanning electron microscope S-3000N manufactured by Hitachi, Ltd. The photograph is shown in FIG. As is clear from FIG. 6, porous protein fibers cannot be obtained unless formic acid treatment is performed.

本発明に係る多孔性タンパク質繊維は、従来の天然タンパク質繊維と比較して、非常に軽く、発色性、断熱性、保温性、吸湿放湿特性、吸湿発熱性、速乾性、ドライ感、ふくらみ感、消臭性、生分解性などに優れるため、衣服などの製造に有用である。   The porous protein fiber according to the present invention is very light compared to the conventional natural protein fiber, color development, heat insulation, heat retention, moisture absorption and desorption characteristics, moisture absorption exothermic property, quick drying, dry feeling, swelling feeling In addition, it is excellent in deodorizing properties, biodegradability, etc., and thus is useful for manufacturing clothing and the like.

出発原料である羊毛の長手方向に直交する断面の写真図である。It is a photograph of the cross section orthogonal to the longitudinal direction of the wool which is a starting material. 実施例1に係る多孔性羊毛繊維の長手方向に直交する断面の写真図である。1 is a photograph of a cross section perpendicular to the longitudinal direction of a porous wool fiber according to Example 1. FIG. 実施例3に係る多孔性羊毛繊維の長手方向に直交する断面の写真図である。4 is a photograph of a cross section perpendicular to the longitudinal direction of a porous wool fiber according to Example 3. FIG. 実施例4に係る多孔性羊毛繊維の長手方向に直交する断面の写真図である。It is a photograph of the cross section orthogonal to the longitudinal direction of the porous wool fiber which concerns on Example 4. FIG. 実施例5に係る多孔性羊毛繊維の長手方向に直交する断面の写真図である。It is a photograph of the cross section orthogonal to the longitudinal direction of the porous wool fiber which concerns on Example 5. FIG. 比較例に係る羊毛繊維の長手方向に直交する断面の写真図である。It is a photograph figure of the cross section orthogonal to the longitudinal direction of the wool fiber which concerns on a comparative example.

Claims (13)

多孔質部を有する多孔性タンパク質繊維。   A porous protein fiber having a porous part. 前記多孔質部には、長手方向に直交する断面において略全体に渡って微細な空孔が形成されている、
請求項1に記載の多孔性タンパク質繊維。
In the porous portion, fine pores are formed over substantially the whole in a cross section perpendicular to the longitudinal direction,
The porous protein fiber according to claim 1.
前記多孔質部は、1%以上80%以下の空孔率を有する、
請求項1または2に記載の多孔性タンパク質繊維。
The porous part has a porosity of 1% or more and 80% or less,
The porous protein fiber according to claim 1 or 2.
請求項1から3のいずれかに記載の多孔性タンパク質繊維から構成される、綿(わた)。   Cotton comprising the porous protein fiber according to any one of claims 1 to 3. 請求項1から3のいずれかに記載の多孔性タンパク質繊維を主成分とする、綿(わた)。   Cotton comprising the porous protein fiber according to any one of claims 1 to 3 as a main component. 請求項1から3のいずれかに記載の多孔性タンパク質繊維を主成分とする混紡繊維。   A blended fiber comprising the porous protein fiber according to any one of claims 1 to 3 as a main component. 請求項1から3のいずれかに記載の多孔性タンパク質繊維と、
前記多孔性タンパク質繊維以外の繊維と、
を含有する、混紡繊維。
The porous protein fiber according to any one of claims 1 to 3,
Fibers other than the porous protein fiber,
Containing blended fiber.
請求項1から3のいずれかに記載の多孔性タンパク質繊維を主成分とする複合化繊維。   The composite fiber which has the porous protein fiber in any one of Claim 1 to 3 as a main component. 請求項1から3のいずれかに記載の多孔性タンパク質繊維、請求項6または7に記載の混紡繊維、および請求項8に記載の複合化繊維より成る群から選択される少なくとも1つの繊維から形成される、布帛。   Formed from at least one fiber selected from the group consisting of the porous protein fiber according to any one of claims 1 to 3, the blended fiber according to claim 6 or 7, and the composite fiber according to claim 8. The fabric. 天然タンパク質繊維を酸に接触させ酸処理タンパク質繊維を製造する酸処理工程と、
前記酸処理タンパク質繊維を所定の耐圧容器に投入した後に前記耐圧容器に不活性ガスを注入して前記耐圧容器内を所定の圧力まで加圧する加圧工程と、
前記加圧を解除する圧力解除工程と、
を備える、多孔性タンパク質繊維の製造方法。
An acid treatment process for producing an acid-treated protein fiber by contacting a natural protein fiber with an acid;
A pressurizing step of injecting an inert gas into the pressure-resistant container and then pressurizing the inside of the pressure-resistant container to a predetermined pressure after the acid-treated protein fiber is put into the predetermined pressure-resistant container;
A pressure release step for releasing the pressurization;
A method for producing porous protein fibers.
前記酸処理タンパク質繊維を疎水性処理する疎水性処理工程をさらに備え、
前記疎水性処理工程は、前記加圧工程の前に行われる、
請求項12に記載の多孔性タンパク質繊維の製造方法。
Further comprising a hydrophobic treatment step of subjecting the acid-treated protein fiber to a hydrophobic treatment,
The hydrophobic treatment step is performed before the pressing step.
The manufacturing method of the porous protein fiber of Claim 12.
前記疎水性処理工程では、前記酸処理タンパク質繊維に、フッ素化合物およびシリコーン化合物より成る群から選択される少なくとも1つの化合物が含まれる疎水化処理剤が付与される、
請求項13に記載の多孔性タンパク質繊維の製造方法。
In the hydrophobic treatment step, a hydrophobic treatment agent containing at least one compound selected from the group consisting of a fluorine compound and a silicone compound is applied to the acid-treated protein fiber.
The method for producing a porous protein fiber according to claim 13.
天然タンパク質繊維を酸に接触させ酸処理タンパク質繊維を製造する酸処理工程と、前記酸処理タンパク質繊維を不活性ガスにより所定の圧力まで加圧する加圧工程と、前記加圧を解除する圧力解除工程とを備える製造方法により製造される、多孔性タンパク質繊維。   An acid treatment step for producing an acid-treated protein fiber by bringing a natural protein fiber into contact with an acid, a pressure step for pressurizing the acid-treated protein fiber to a predetermined pressure with an inert gas, and a pressure release step for releasing the pressure A porous protein fiber produced by a production method comprising:
JP2007039537A 2006-02-21 2007-02-20 Porous wool fiber and method for producing the same, and cotton, blended fiber, composite fiber, and fabric Active JP4590587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007039537A JP4590587B2 (en) 2006-02-21 2007-02-20 Porous wool fiber and method for producing the same, and cotton, blended fiber, composite fiber, and fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006043814 2006-02-21
JP2007039537A JP4590587B2 (en) 2006-02-21 2007-02-20 Porous wool fiber and method for producing the same, and cotton, blended fiber, composite fiber, and fabric

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009210305A Division JP2010013791A (en) 2006-02-21 2009-09-11 Porous animal fiber, process for making the same and cotton, mixed fiber, composite fiber, and fabric

Publications (3)

Publication Number Publication Date
JP2007254943A true JP2007254943A (en) 2007-10-04
JP2007254943A5 JP2007254943A5 (en) 2009-05-14
JP4590587B2 JP4590587B2 (en) 2010-12-01

Family

ID=38629460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007039537A Active JP4590587B2 (en) 2006-02-21 2007-02-20 Porous wool fiber and method for producing the same, and cotton, blended fiber, composite fiber, and fabric

Country Status (1)

Country Link
JP (1) JP4590587B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174111A (en) * 2007-12-28 2009-08-06 Ist Corp Branched protein fiber, method for producing the same, floccular matter, branched protein fiber spun yarn, branched protein fiber-containing spun yarn, fabric, and nonwoven fabric

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136592A (en) * 1981-02-18 1982-08-23 Kikkoman Corp Treatment of wool, etc.
JPS5854072A (en) * 1981-09-21 1983-03-30 後藤 四男 Modification of silk by freezing
JPS58180671A (en) * 1982-04-09 1983-10-22 後藤 四男 Modification of silk by freezing tearing
JPH05156169A (en) * 1991-05-01 1993-06-22 Dow Corning Corp Silicone composition and method of treating fiber therewith
JP2000154463A (en) * 1998-11-18 2000-06-06 Toray Ind Inc Foamed fibrous structure and its production
JP2001316988A (en) * 2000-02-16 2001-11-16 Stork Brabant Bv Method for dyeing textile material in supercritical fluid
JP2002004169A (en) * 2000-06-20 2002-01-09 Kenji Mishima Washing, dyeing or functional processing for fiber product and sewed product by high-pressure carbon dioxide utilizing coexisting effect of added auxiliary solvent
JP2003105627A (en) * 2001-09-28 2003-04-09 Kuraray Co Ltd Polyester based porous hollow fiber and method of producing the same
JP2003129380A (en) * 2001-10-19 2003-05-08 Daikin Ind Ltd Treating agent for protein fiber and treating method
JP2004011034A (en) * 2002-06-04 2004-01-15 Kokichi Use Wool having excellent physical property, and method for producing the same
JP2004308059A (en) * 2003-04-08 2004-11-04 Solotex Corp Composite yarn
JP2005171400A (en) * 2003-12-09 2005-06-30 Kanebo Ltd Animal hair blended woven fabric and method for manufacturing the same
JP2006176949A (en) * 2006-01-17 2006-07-06 Kokichi Use Wool having excellent physical properties

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136592A (en) * 1981-02-18 1982-08-23 Kikkoman Corp Treatment of wool, etc.
JPS5854072A (en) * 1981-09-21 1983-03-30 後藤 四男 Modification of silk by freezing
JPS58180671A (en) * 1982-04-09 1983-10-22 後藤 四男 Modification of silk by freezing tearing
JPH05156169A (en) * 1991-05-01 1993-06-22 Dow Corning Corp Silicone composition and method of treating fiber therewith
JP2000154463A (en) * 1998-11-18 2000-06-06 Toray Ind Inc Foamed fibrous structure and its production
JP2001316988A (en) * 2000-02-16 2001-11-16 Stork Brabant Bv Method for dyeing textile material in supercritical fluid
JP2002004169A (en) * 2000-06-20 2002-01-09 Kenji Mishima Washing, dyeing or functional processing for fiber product and sewed product by high-pressure carbon dioxide utilizing coexisting effect of added auxiliary solvent
JP2003105627A (en) * 2001-09-28 2003-04-09 Kuraray Co Ltd Polyester based porous hollow fiber and method of producing the same
JP2003129380A (en) * 2001-10-19 2003-05-08 Daikin Ind Ltd Treating agent for protein fiber and treating method
JP2004011034A (en) * 2002-06-04 2004-01-15 Kokichi Use Wool having excellent physical property, and method for producing the same
JP2004308059A (en) * 2003-04-08 2004-11-04 Solotex Corp Composite yarn
JP2005171400A (en) * 2003-12-09 2005-06-30 Kanebo Ltd Animal hair blended woven fabric and method for manufacturing the same
JP2006176949A (en) * 2006-01-17 2006-07-06 Kokichi Use Wool having excellent physical properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174111A (en) * 2007-12-28 2009-08-06 Ist Corp Branched protein fiber, method for producing the same, floccular matter, branched protein fiber spun yarn, branched protein fiber-containing spun yarn, fabric, and nonwoven fabric

Also Published As

Publication number Publication date
JP4590587B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
ES2269995T3 (en) DISPERSIONS CONTAINING BICOMPONENT FLUOROPOLIMERO PARTICLES AND USE OF THE SAME.
KR101384911B1 (en) Meta-type fully aromatic polyamide fiber having excellent high-temperature processability and method for production thereof
US5455114A (en) Water soluble polyvinyl alcohol-based fiber
KR101154703B1 (en) bulletproof fabric and method of fabricating bulletproof fabric, and bulletproof vest using the same
JP4590587B2 (en) Porous wool fiber and method for producing the same, and cotton, blended fiber, composite fiber, and fabric
KR101955125B1 (en) Manufacturing methods for refrigerant fabric inclunding titanium dioxide and refrigerant fabric manufactured by this same
WO2004003080A1 (en) Highly durable polybenzazole composition, fiber and film
JP2010013791A (en) Porous animal fiber, process for making the same and cotton, mixed fiber, composite fiber, and fabric
AU2010293671B2 (en) Production method for modified animal hair fibers
CN108882763B (en) Acrylic fiber for artificial hair, method for producing same, and head ornament product comprising same
JP3722708B2 (en) Animal hair fiber having excellent shrinkage resistance and method for producing the same
JP3683879B2 (en) Partially oxidized animal hair fibers and fiber products obtained therefrom
JPS6360156B2 (en)
JP2000220074A (en) Production of fiber-treating agent and fibrous structural material
CN114163561A (en) Preparation method and application of fluorine-containing acrylate copolymer emulsion
KR20050014337A (en) Preparation of polyurethane coating glove and polyurethane coating glove thereof
JPH08188969A (en) Method for treating cloth of animal hair-based fiber
JP3760647B2 (en) Method for producing foamed fiber structure
KR102573827B1 (en) Manufacturing method of super water-repellent and oil-repellent fiber
JPH07279059A (en) Processed cloth provided with moisture permeability and water repellency
EP3901091B1 (en) Aerogel blanket
JP2006077364A (en) Method for producing composite textile product composed of cotton and regenerated cellulose fiber
JPH1072775A (en) Fluororesin fiber and woven fabric
WO2021039891A1 (en) Method for producing carbon fiber bundle
JP3961841B2 (en) Pile fabric and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090409

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090409

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090413

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090424

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4590587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250