JP2007254191A - Translucent magnesium oxide sintered compact and method of manufacturing the same - Google Patents

Translucent magnesium oxide sintered compact and method of manufacturing the same Download PDF

Info

Publication number
JP2007254191A
JP2007254191A JP2006078790A JP2006078790A JP2007254191A JP 2007254191 A JP2007254191 A JP 2007254191A JP 2006078790 A JP2006078790 A JP 2006078790A JP 2006078790 A JP2006078790 A JP 2006078790A JP 2007254191 A JP2007254191 A JP 2007254191A
Authority
JP
Japan
Prior art keywords
less
content
sintered body
wtppm
magnesium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006078790A
Other languages
Japanese (ja)
Other versions
JP4666640B2 (en
Inventor
Takakimi Yanagiya
高公 柳谷
Hiroo Yamazaki
裕生 山崎
Hideki Yagi
秀喜 八木
Takahiro Kamakura
高広 鎌倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP2006078790A priority Critical patent/JP4666640B2/en
Publication of JP2007254191A publication Critical patent/JP2007254191A/en
Application granted granted Critical
Publication of JP4666640B2 publication Critical patent/JP4666640B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a magnesium oxide sintered compact exhibiting good translucency over an infrared range from visible ray. <P>SOLUTION: Magnesium oxide powder having ≥99.9% purity and 3-15 m<SP>2</SP>/g specific surface area is formed into a formed body in which the density is ≥58% theoretical density, the content of Sc is ≥30 wt.ppm and ≤2,000 wt.ppm and the content of Al is ≥5 wt.ppm and ≤100 wt.ppm. The formed body is heat-treated and is subjected to primary firing at ≥1,250°C and ≤1,600°C under the atmosphere to have ≥94% theoretical density. The translucent magnesium oxide sintered compact is obtained by applying hot isostatic pressure treatment to the primarily fired body at ≥1,200°C and ≤1,600°C under 40-196 MPa. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、一般式MgOで表わされる透光性酸化マグネシウム焼結体、及びその製造方法に関する。本発明の焼結体は、例えば高温材料、赤外用窓材、透光性基板、発光管等の光学部品として好適に使用される。   The present invention relates to a translucent magnesium oxide sintered body represented by the general formula MgO and a method for producing the same. The sintered body of the present invention is suitably used as an optical component such as a high-temperature material, an infrared window material, a translucent substrate, or a light emitting tube.

MgOで表わされる酸化マグネシウム(以後マグネシアとする)は、その結晶構造が立方晶であり複屈折が無い。そのため、気孔や不純物の偏析を除去することにより、透光性に優れた焼結体を得ることが可能である。マグネシアは、融点が2800℃と非常に高く(化学便覧、日本化学会編)、耐熱性、耐アルカリ性及び高熱伝導性を有する優れた素材であることが知られている。しかしながら、マグネシアはその融点が極めて高いため、既存の単結晶合成技術では光学的に優れた大型結晶を合成することは困難である。   Magnesium oxide represented by MgO (hereinafter referred to as magnesia) has a cubic crystal structure and no birefringence. Therefore, it is possible to obtain a sintered body having excellent translucency by removing pores and segregation of impurities. Magnesia has a very high melting point of 2800 ° C. (Chemical Handbook, edited by the Chemical Society of Japan) and is known to be an excellent material having heat resistance, alkali resistance and high thermal conductivity. However, since magnesia has an extremely high melting point, it is difficult to synthesize large crystals that are optically superior with existing single crystal synthesis techniques.

一方セラミックス(多結晶体)は、融点以下の比較的低い温度での合成が可能であるため、マグネシア同様高融点の酸化イットリウム(イットリア)やその他希土類酸化物に関して、従来より赤外用高温窓材、放電ランプ用エンベロープ、耐食部材等に適用すべく検討が盛んに行われている。   On the other hand, ceramics (polycrystals) can be synthesized at a relatively low temperature below the melting point, so high temperature melting point yttrium oxide (yttria) and other rare earth oxides as well as magnesia have been used. Studies have been actively conducted to apply to envelopes for discharge lamps, corrosion-resistant members, and the like.

多結晶透光性マグネシア焼結体に関する報告例としては、
(1)LiF、NaF等のフッ化物を添加してホットプレスする方法(例えば非特許文献1:G.D.Miles et al, Trans.Brit.Ceram.Soc. 66 319(1967))、
(2)MgO粉末を有機溶媒に分散し、再仮焼して焼結性を改善する方法(例えば特許文献1:特開昭51-80313)等が挙げられる。また焼結助剤を添加する方法としては、
(3)溶液状のアルミニウム化合物を添加する方法(特許文献2:特開昭59-50068)、
(4)SiO2と微量のB2O3を添加する方法(特許文献3:特開2000-281428)、
(5)酸化スカンジウム、酸化イッテルビウム、酸化ゲルマニウムを0.01〜0.5wt%添加し、不活性雰囲気で焼成する方法(特許文献4:特開昭48-2883)等が開示されている。
Examples of reports on polycrystalline translucent magnesia sintered bodies include:
(1) A method of hot pressing by adding a fluoride such as LiF or NaF (for example, Non-Patent Document 1: GDMiles et al, Trans. Brit. Ceram. Soc. 66 319 (1967)),
(2) A method of improving the sinterability by dispersing MgO powder in an organic solvent and re-calcining (for example, Patent Document 1: Japanese Patent Laid-Open No. 51-80313). As a method of adding a sintering aid,
(3) A method of adding a solution-like aluminum compound (Patent Document 2: JP-A-59-50068),
(4) A method of adding SiO 2 and a small amount of B 2 O 3 (Patent Document 3: JP-A 2000-281428),
(5) A method of adding 0.01 to 0.5 wt% of scandium oxide, ytterbium oxide, or germanium oxide and baking in an inert atmosphere (Patent Document 4: Japanese Patent Laid-Open No. 48-2883) is disclosed.

(1)の手法では、比較的透光性の高い焼結体が得られるものの、大型又は複雑形状の焼結体を作製することが困難な上に、ホットプレス後のアニール処理が必要であり、かつ量産性に乏しい。またLiFやNaFは低融点化合物であり、焼成過程において蒸発し、試料の外周部と内部で粒成長速度に差が生じるため、肉厚試料の場合には均一な焼結体を作製することは困難である。
(2)の手法では、充分な透光性の焼結体を得ることは非常に困難であると共に、MgOの緻密化を促進する有機溶剤の役割が未解明であり、粉末の製造履歴によっては有機溶媒の添加効果が発現しない場合がある。
In the method (1), a sintered body having a relatively high translucency can be obtained, but it is difficult to produce a sintered body having a large or complicated shape, and an annealing process after hot pressing is required. And mass productivity is poor. In addition, LiF and NaF are low melting point compounds that evaporate during the firing process, resulting in a difference in the grain growth rate between the outer periphery and the inside of the sample. Have difficulty.
With the method (2), it is very difficult to obtain a sufficiently light-transmitting sintered body, and the role of the organic solvent that promotes the densification of MgO is unclear. Depending on the history of powder production, The effect of adding an organic solvent may not appear.

(3)の手法においては、透過率に関する記述が無いために詳細は不明であるが、Al2O3単独で透光性の高い焼結体を作製するためには、非常に焼結性に優れた原料粉末を使用する必要がある。
(4)の手法では、B2O3が微量であってもマグネシアの高温での機械的強度を低下させる上、低融点物である硼素化合物によって焼成炉が激しく汚染されるという欠点がある。
(5)の手法においては、1700℃以上という比較的高温で焼成しているにもかかわらず、透光性も全透過率で80%程度であり、理論透過率(≒88%)には遠く及ばないという欠点がある。またこれら焼結助剤を添加する方法では、比表面積は記載されていないため詳細は不明であるが、非常に微細なマグネシア粉末を用いている。粉体の粒子径が小さくなるほど焼結活性は高くなるが、粒子間の摩擦力が大きくなり、均一な組織の成形体を作製することは難しくなる。また収縮が大きくなり、亀裂が発生しやすくなる等の欠点がある。
G.D.Miles et al, Trans.Brit.Ceram.Soc. 66 319(1967) 特開昭51-80313 特開昭59-50068 特開2000-281428 特開昭48-2883
In the method of (3), details are unknown because there is no description about the transmittance, but in order to produce a sintered body with high translucency with Al 2 O 3 alone, it is very sinterable. It is necessary to use excellent raw material powder.
In the method (4), even if the amount of B 2 O 3 is very small, the mechanical strength of magnesia at a high temperature is lowered and the firing furnace is severely contaminated by a boron compound which is a low melting point material.
In the method of (5), despite the firing at a relatively high temperature of 1700 ° C or higher, the translucency is about 80% in total transmittance, which is far from the theoretical transmittance (≈88%). There is a disadvantage that it does not reach. In addition, in the method of adding these sintering aids, the specific surface area is not described and the details are unknown, but very fine magnesia powder is used. As the particle size of the powder decreases, the sintering activity increases, but the frictional force between the particles increases and it becomes difficult to produce a compact with a uniform structure. Further, there are drawbacks such as large shrinkage and easy cracking.
GDMiles et al, Trans.Brit.Ceram.Soc. 66 319 (1967) JP 51-80313 JP 59-50068 JP2000-281428 JP 48-2883

この発明の課題は、工業的に実用化が可能な手法により可視部から赤外領域に渡って透明な酸化マグネシウム焼結体とその製造方法を提供することにある。   An object of the present invention is to provide a magnesium oxide sintered body that is transparent from the visible region to the infrared region and a method for producing the same by a technique that can be industrially put into practical use.

本発明の透光性酸化マグネシウム焼結体は、Sc含有量が30wtppm以上2000wtppm以下、Al含有量が5wtppm以上100wtppm以下、Sc2O3とAl2O3とを除く純度が99.9%以上で、焼結体の平均粒子径は1μm以上20μm以下で、波長500nmから6.5μmの領域に渡っての直線透過率が1mm厚みで85%以上である、ことを特徴とする。 In translucent magnesium oxide sintered body of the present invention, Sc content than 30wtppm 2000wtppm or less, Al content is more than 5 wtppm 100 wtppm or less, Sc 2 O 3 and Al 2 O 3 and purity excluding 99.9% or more, The average particle diameter of the sintered body is 1 μm or more and 20 μm or less, and the linear transmittance over a wavelength region of 500 nm to 6.5 μm is 85% or more at 1 mm thickness.

本発明の透光性酸化マグネシウム焼結体の製造方法は、Sc2O3とAl2O3とを除く純度が99.9%以上で、比表面積3〜15m2/gの酸化マグネシウム粉末とバインダーを用いて、成形密度が理論密度比58%以上、Sc含有量が30wtppm以上2000wtppm以下、Al含有量が5wtppm以上100wtppm以下の成形体を作製し、これを熱処理してバインダーを除去した後に、還元雰囲気中、真空中もしくは大気中で、1250℃以上1600℃以下で、理論密度比94%以上となるように一次焼成し、更にこの後、1200℃以上1600℃以下の温度及び49MPaから196MPaの圧力で、熱間静水加圧(HIP)処理を施すことにより、Sc含有量が30wtppm以上2000wtppm以下、Al含有量が5wtppm以上100wtppm以下、焼結体の平均粒子径は1μm以上20μm以下で、波長500nmから6.5μmの領域に渡っての直線透過率が1mm厚みで85%以上の焼結体とすることを特徴とする。 The method for producing a light-transmitting magnesium oxide sintered body according to the present invention comprises a magnesium oxide powder and a binder having a purity of 99.9% or more excluding Sc 2 O 3 and Al 2 O 3 and having a specific surface area of 3 to 15 m 2 / g. Using a molded body with a molding density of 58% or more of theoretical density ratio, Sc content of 30wtppm or more and 2000wtppm or less, Al content of 5wtppm or more and 100wtppm or less, and heat-treating this to remove the binder, reducing atmosphere In the middle, in vacuum or in the atmosphere, the primary firing is carried out at 1250 ° C or higher and 1600 ° C or lower and the theoretical density ratio is 94% or higher, and then at a temperature of 1200 ° C or higher and 1600 ° C or lower and a pressure of 49MPa to 196MPa. By applying hot isostatic pressing (HIP), the Sc content is 30 wtppm or more and 2000 wtppm or less, the Al content is 5 wtppm or more and 100 wtppm or less, the average particle size of the sintered body is 1 μm or more and 20 μm or less, and the wavelength is 500 nm To make a sintered body with a linear transmittance over the 6.5μm area of 1mm thickness and 85% or more. And butterflies.

本発明者らは、前記課題を解決するため種々検討を行った結果、波長500nmから6.5μmの領域に渡っての直線透過率が1mm厚みで85%以上の酸化マグネシウム焼結体を作製できることを見出した。そのためにはSc2O3とAl2O3とを除く純度が99.9%以上で比表面積3〜15m2/gの、酸化マグネシウム粉末又は高純度酸化マグネシウム粉末を用いる。そしてこの粉体とバインダーとで、Sc含有量を30wtppm以上2000wtppm以下に、Al含有量を5wtppm以上100wtppm以下に管理した、理論密度比が58%以上の高密度成形体を作製する。次に還元雰囲気中、真空中もしくは大気中で、焼結体の理論密度が94%以上となるように1250℃以上1600℃以下で一次焼成を行った後、1200℃以上1600℃以下の温度で49MPaから196MPaの圧力でHIP処理を施すことによって、サブミクロン以下の気孔を排出でき、可視から赤外領域に渡って良好な透過率を有する焼結体が得られる。
なお製造工程を管理すると、Sc含有量やAl含有量は成形体の段階から焼結体まで変わらないようにでき、他の不純物の含有量も成形体から焼結体までの過程で増さないようにできる。
As a result of various studies to solve the above problems, the present inventors have found that a magnesium oxide sintered body having a linear transmittance of 1 mm thickness and a thickness of 85% or more over a wavelength range of 500 nm to 6.5 μm can be produced. I found it. For this purpose, magnesium oxide powder or high-purity magnesium oxide powder having a purity of 99.9% or more and a specific surface area of 3 to 15 m 2 / g excluding Sc 2 O 3 and Al 2 O 3 is used. Using this powder and binder, a high-density molded body having a theoretical density ratio of 58% or more, in which the Sc content is controlled to 30 wtppm to 2000 wtppm and the Al content is controlled to 5 wtppm to 100 wtppm. Next, primary firing is performed at 1250 ° C or higher and 1600 ° C or lower in a reducing atmosphere, vacuum or air so that the theoretical density of the sintered body becomes 94% or higher, and then at a temperature of 1200 ° C or higher and 1600 ° C or lower. By performing HIP treatment at a pressure of 49 MPa to 196 MPa, pores of sub-micron or less can be discharged, and a sintered body having good transmittance from the visible to the infrared region can be obtained.
If the manufacturing process is managed, the Sc content and Al content can be kept unchanged from the stage of the compact to the sintered body, and the content of other impurities does not increase in the process from the compact to the sintered body. You can

本発明によるマグネシアの焼結においては、30wtppm以上2000wtppm以下のSc、及び5wtppm以上100wtppm以下のAlが、焼結助剤として大きな効果を発揮している。焼結における緻密化機構の詳細に関しては不明であるが、1250℃以上1600℃以下の範囲で一次焼成した場合のみ緻密化促進剤としての効果を発揮し、それ以上の温度では異常粒成長を促進すると共に異相を生成する。   In the sintering of magnesia according to the present invention, Sc of 30 wtppm or more and 2000 wtppm or less and Al of 5 wtppm or more and 100 wtppm or less exhibit a great effect as a sintering aid. The details of the densification mechanism in sintering are unclear, but it only works as a densification promoter when primary firing is performed in the range of 1250 ° C to 1600 ° C, and at higher temperatures it promotes abnormal grain growth. And produces a heterogeneous phase.

使用原料の焼結性等にもよるが、一次焼成温度が1250℃未満の場合、Sc及びAlの有無及び含有量に関係なく、粒成長による緻密化が充分進行しないため、焼結体の理論密度は94%未満となる。このような状態では、HIP処理を施しても消滅させることが出来ない大きな空隙が存在するため、不透明若しくは半透明の焼結体しか得られない。   Although depending on the sinterability etc. of the raw materials used, if the primary firing temperature is less than 1250 ° C, the density of grain growth does not proceed sufficiently regardless of the presence and content of Sc and Al. The density is less than 94%. In such a state, there are large voids that cannot be eliminated even when the HIP treatment is performed, so that only an opaque or translucent sintered body can be obtained.

Sc含有量が30wtppm未満の試料を1250℃以上1600℃以下の範囲で一次焼成した場合、その焼結密度は94%以上となるが、HIP処理を施しても充分な緻密化が行えず、その結果得られる焼結体は半透明体若しくは不透明体である。一方、Sc含有量が2000wtppmを超える場合、それ以下の場合と比較して粒成長が著しく早く、一次焼成でもHIP処理でも充分気孔が排出される前に結晶粒子が大きくなるため、気孔を結晶内に含んだ平均粒子径の大きな焼結体となる。その結果、得られる焼結体はSc含有量が30wtppm未満の場合と同様、半透明体若しくは不透明体である。   When a sample with an Sc content of less than 30 wtppm is primarily fired in the range of 1250 ° C to 1600 ° C, the sintered density is 94% or more, but even with HIP treatment, sufficient densification cannot be achieved. The resulting sintered body is a translucent body or an opaque body. On the other hand, when the Sc content exceeds 2000 wtppm, the grain growth is remarkably faster than when the Sc content is less than that, and the crystal grains become large before the pores are exhausted sufficiently even in the primary firing or HIP treatment. It becomes a sintered body with a large average particle size contained in the. As a result, the obtained sintered body is a translucent body or an opaque body as in the case where the Sc content is less than 30 wtppm.

本発明では、Scと極微量のAlを共に添加する。すなわちSc含有量が30wtppm以上2000wtppm以下の範囲であっても、Al含有量が5wtppm以下の場合、HIP処理を施しても充分な緻密化促進効果が得られず、透光性の優れた焼結体を得ることは容易では無い。またAl含有量が100wtppmを超える場合、主として粒成長促進剤として作用し、気孔を焼結体内部に含んだまま急激な粒成長が起こり、透光性は著しく低下する。   In the present invention, both Sc and a very small amount of Al are added. That is, even if the Sc content is in the range of 30 wtppm or more and 2000 wtppm or less, if the Al content is 5 wtppm or less, a sufficient densification promoting effect can not be obtained even if HIP treatment is performed, and sintering with excellent translucency Getting a body is not easy. On the other hand, when the Al content exceeds 100 wtppm, it acts mainly as a grain growth accelerator, and rapid grain growth occurs with pores contained in the sintered body, and the translucency is significantly reduced.

また1600℃を越える温度で一次焼成を行った場合、気孔の排出が充分行われないまま焼結し、充分な透光性を有する焼結体を作製することは困難である。この場合、焼結体の平均粒子径は20μm以上である。また焼成条件によっては、助剤として添加したScが粒界に偏析し異相が生じる。従って一次焼成温度は1250℃以上1600℃以下にする必要がある。   Further, when primary firing is performed at a temperature exceeding 1600 ° C., it is difficult to produce a sintered body having sufficient translucency by sintering without sufficiently discharging pores. In this case, the average particle diameter of the sintered body is 20 μm or more. Further, depending on the firing conditions, Sc added as an auxiliary agent segregates at the grain boundary and a heterogeneous phase is generated. Therefore, the primary firing temperature must be 1250 ° C or higher and 1600 ° C or lower.

成形体の一次焼成雰囲気については還元雰囲気中、真空中もしくは大気中のいずれでも良いが、好ましくは水素雰囲気中もしくは真空中である。焼成時間は最高温度での保持時間で表し、例えば10分以上10時間以下とし、好ましくは30分以上2時間以下とする。   The primary firing atmosphere of the molded body may be any of a reducing atmosphere, a vacuum, or air, but is preferably a hydrogen atmosphere or a vacuum. The firing time is represented by the holding time at the maximum temperature, for example, 10 minutes or more and 10 hours or less, preferably 30 minutes or more and 2 hours or less.

更にこの一次焼成の後にHIP処理を施すことにより、優れた透光性を有する焼結体とすることが出来る。圧力媒体は特に限定されるものではないが、工業的に入手可能な不活性ガスを用いれば良く、処理温度は1200℃以上1600℃以下が好ましい。1200℃よりも低いと気孔を完全に除去することが出来ず、1600℃よりも高いと粒成長が進行し、残留ポアを生じる。また処理圧力は49MPa以上196MPa以下が好ましい。49MPa以下では充分な効果が得られず、196MPa以上ではいたずらに装置を大掛かりにするのみで、透光性の向上はない。処理時間は0.5時間以上であれば充分であり、例えば0.5時間以上2時間以下とし、処理品の厚み等により種々時間を変更して行えばよい。HIPの処理時間も最高温度への保持時間で定める。   Furthermore, a sintered body having excellent translucency can be obtained by performing a HIP treatment after the primary firing. The pressure medium is not particularly limited, but an industrially available inert gas may be used, and the treatment temperature is preferably 1200 ° C. or higher and 1600 ° C. or lower. When the temperature is lower than 1200 ° C., the pores cannot be completely removed. When the temperature is higher than 1600 ° C., grain growth proceeds and residual pores are generated. The treatment pressure is preferably 49 MPa or more and 196 MPa or less. At 49MPa or less, sufficient effects cannot be obtained, and at 196MPa or more, only the apparatus is unnecessarily large, and the translucency is not improved. The treatment time is sufficient if it is 0.5 hours or longer, for example, 0.5 hours or more and 2 hours or less, and various times may be changed depending on the thickness of the processed product. The processing time for HIP is also determined by the holding time to the maximum temperature.

透光性に優れた焼結体を作製するためには、内部に大きな気泡や空隙を含まない均質で高密度な成形体を作製し、焼結する必要がある。成形密度が理論密度比58%未満の成形体内部には、パッキングが不充分なため大きな空孔が多数存在している。そのため緻密化促進剤であるSc及びAlを適量添加した成形体であっても、1600℃以下の焼成で充分緻密化させることは容易ではない。一方、成形密度が58%以上の成形体は比較的その内部の空孔が少なく、低温でも充分緻密化させることが可能である。   In order to produce a sintered body excellent in translucency, it is necessary to produce and sinter a homogeneous and high-density molded body that does not contain large bubbles or voids inside. Inside the molded body having a molding density of less than 58% of the theoretical density ratio, there are many large pores due to insufficient packing. Therefore, even a molded body to which a proper amount of Sc and Al, which are densification accelerators, is added, is not easy to be sufficiently densified by firing at 1600 ° C. or less. On the other hand, a molded body having a molding density of 58% or more has relatively few internal pores and can be sufficiently densified even at a low temperature.

使用する原料粉末の一次粒子径については特に限定されるものではなく、本特許請求範囲内の比表面積3〜15m2/gで、成形、焼成プロセスに適合したものを選択すれば良い。すなわち、超微粉は焼結活性が高く焼結性に優れている反面、ハンドリングが容易でないばかりか、凝集粒子が多く成形密度を高くすることが容易ではない。また粗粒の場合、パッキングは容易なものの焼結活性が低く、低温で緻密化させることは容易ではない。従って、焼結性、パッキング性及びハンドリング性の観点から、使用原料の比表面積は3〜15m2/gが好ましく、5〜12m2/gのものがより好ましい。更には、凝集が少なく粒度分布の均一なものを使用するのが最も好ましい。 The primary particle size of the raw material powder to be used is not particularly limited, and a material having a specific surface area of 3 to 15 m 2 / g within the scope of the claims and suitable for the molding and firing process may be selected. That is, the ultrafine powder has high sintering activity and excellent sinterability, but it is not easy to handle, but it is not easy to increase the molding density because there are many aggregated particles. In the case of coarse particles, packing is easy, but the sintering activity is low, and it is not easy to densify at low temperature. Therefore, sinterability, in view of the packing property and handling property, the specific surface area of the raw materials used is preferably 3~15m 2 / g, it is more preferred 5~12m 2 / g. Furthermore, it is most preferable to use a material with little aggregation and a uniform particle size distribution.

以下に本発明を実施するための最適実施例を示すが、本発明はこれに限定されるものではない。   Although the optimal example for implementing this invention is shown below, this invention is not limited to this.

以下、製造方法を具体的に説明する。焼結体の作製には、純度99.9%以上で比表面積が3〜15m2/gの、易焼結性高純度酸化マグネシウム原料粉末を使用する。なお純度はSc2O3とAl2O3と成分を不純物から除いて考える。高純度原料粉末に含まれる不純物としては、Ca、Si等が挙げられる。これらの不純物量が多いと、Sc及びAlによる緻密化促進効果を阻害するのみならず、場合によっては粒界に偏析し液相を生成する可能性があり好ましくない。またFe、Cr等の遷移元素は焼結体の着色源となるため好ましくない。従って使用原料は充分精製された高純度なものを選択する必要がある。ただし、カラーフィルターなどの様に意図的に添加する場合はこの限りではない。 Hereinafter, a manufacturing method is demonstrated concretely. For the production of the sintered body, an easily sinterable high purity magnesium oxide raw material powder having a purity of 99.9% or more and a specific surface area of 3 to 15 m 2 / g is used. The purity is considered by removing Sc 2 O 3 , Al 2 O 3 and components from impurities. Examples of impurities contained in the high-purity raw material powder include Ca and Si. When the amount of these impurities is large, not only the densification promoting effect by Sc and Al is inhibited, but also in some cases, it may segregate at the grain boundary to generate a liquid phase, which is not preferable. Further, transition elements such as Fe and Cr are not preferable because they become a coloring source of the sintered body. Therefore, it is necessary to select a highly purified high-purity raw material to be used. However, this is not the case when it is intentionally added like a color filter.

一般に酸化マグネシウム粉末は、水酸化マグネシウム、塩基性炭酸マグネシウム、酢酸マグネシウム、蓚酸マグネシウム、塩化マグネシウム、硝酸マグネシウム、硫酸マグネシウム等のマグネシウム塩を熱分解して得られるが、これら母塩の種類によって焼結性が大きく左右される。本発明で使用する出発母塩としては、焼結性の良い塩基性炭酸マグネシウムが最も好ましいが、特に限定されるものではない。   In general, magnesium oxide powder is obtained by thermally decomposing magnesium salts such as magnesium hydroxide, basic magnesium carbonate, magnesium acetate, magnesium oxalate, magnesium chloride, magnesium nitrate, and magnesium sulfate. Sex is greatly affected. The starting mother salt used in the present invention is most preferably basic magnesium carbonate having good sinterability, but is not particularly limited.

次に所望の形状の成形体を作製する。セラミックスの成形方法としては、押し出し成形、射出成形、プレス成形や鋳込み成形等が挙げられる。成形は何れかの手法に限定されるものではなく、成形密度が58%以上となり不純物等の混入が少ない手法により行えば良い。またこの際、必要に応じて焼結助剤のSc及びAlを各種成形法に応じ均一に分散するように添加する。添加方法は特に限定されるものではなく、例えばプレス成形の場合であれば、顆粒作製用スラリー中に適量のSc及びAl化合物を添加し、ボールミル等により充分混合した後にスプレードライヤ等により乾燥し、成形用顆粒とすれば良い。   Next, a molded body having a desired shape is produced. Examples of the ceramic molding method include extrusion molding, injection molding, press molding, and casting. Molding is not limited to any method, and may be performed by a method in which the molding density is 58% or more and impurities are not mixed. At this time, if necessary, the sintering aids Sc and Al are added so as to be uniformly dispersed according to various molding methods. The addition method is not particularly limited. For example, in the case of press molding, an appropriate amount of Sc and Al compound is added to the slurry for granule preparation, and after sufficient mixing by a ball mill or the like, it is dried by a spray dryer or the like, A granule for molding may be used.

Sc及びAlの添加時期に関しては、例えば原料合成段階や仮焼段階で添加しても問題ない。少量の含有量でその効果を充分発揮させるには、原料中に混合させておくのが最も好ましい。また添加形態については、例えば成形段階で添加するものであれば、酸化物の微粉末を適量添加して混合すれば良い。添加剤を均一に分散させるため、その大きさは原料粉末の一次粒子径と同程度、若しくはそれ以下のものを使用するのが好ましい。また原料合成段階に添加する場合には、塩化物、水酸化物、硝酸塩等で適宜添加すれば良い。添加剤の純度に関しては、原料粉末同様、高純度のものを使用するのが好ましい。   Regarding the addition timing of Sc and Al, for example, there is no problem even if they are added in the raw material synthesis stage or the calcining stage. In order to exhibit the effect sufficiently with a small amount of content, it is most preferable to mix it in the raw material. As for the form of addition, for example, if it is added at the molding stage, an appropriate amount of fine oxide powder may be added and mixed. In order to uniformly disperse the additive, it is preferable to use a material having the same size or less than the primary particle diameter of the raw material powder. In addition, when added to the raw material synthesis stage, it may be appropriately added as a chloride, hydroxide, nitrate or the like. Regarding the purity of the additive, it is preferable to use a high-purity one as in the case of the raw material powder.

得られた成形体は、熱分解による脱バインダー処理を行う。この際の処理温度、時間、雰囲気は添加した成形助剤の種類等により異なるが、試料表面が閉空孔化しない温度以下で充分時間をかけて行う。この温度は、使用原料粉末の仮焼温度や焼結性、及び成形体のパッキングにもよるが、通常800℃から1200℃程度で行うのが好ましい。また雰囲気は酸素雰囲気が最も一般的であるが、必要に応じAr、若しくは減圧下で行っても問題ない。   The obtained molded body is subjected to binder removal treatment by thermal decomposition. The treatment temperature, time, and atmosphere at this time vary depending on the type of the molding aid added, etc., but it takes a sufficient amount of time below the temperature at which the sample surface does not become closed pores. This temperature is preferably about 800 ° C. to 1200 ° C., although it depends on the calcining temperature and sintering property of the raw material powder used and the packing of the molded body. The atmosphere is most commonly an oxygen atmosphere, but there is no problem even if it is performed under Ar or reduced pressure if necessary.

脱バインダー処理終了後、試料を還元雰囲気または真空中、または大気中で1250℃以上1600℃以下の温度で0.5時間以上一次焼成する。焼成時間は全体を均一に焼結させるために0.5時間以上必要であり、それ以上であれば特に限定されるものではない。焼成雰囲気や試料の厚みにもよるが、通常1〜5mm程度の試料厚みであれば、1時間から10時間程度の焼成で充分である。   After completion of the binder removal treatment, the sample is primarily fired at a temperature of 1250 ° C. or higher and 1600 ° C. or lower for 0.5 hour or longer in a reducing atmosphere, vacuum, or air. The firing time is 0.5 hours or more in order to uniformly sinter the whole, and is not particularly limited as long as it is longer. Although it depends on the firing atmosphere and the thickness of the sample, firing for about 1 to 10 hours is usually sufficient for a sample thickness of about 1 to 5 mm.

更にこの雰囲気焼成の後、1200℃以上1600℃以下の温度及び49MPaから196MPaの圧力でHIP処理を行う。この時間も、試料厚みによるが、1〜5mm程度の試料厚みであれば、一般的には0.1時間から10時間程度で良いが、好ましくは0.5時間から2時間程度である。なおHIP時間は最高温度への保持時間で表す。   Further, after this atmosphere firing, HIP treatment is performed at a temperature of 1200 ° C. to 1600 ° C. and a pressure of 49 MPa to 196 MPa. Although this time also depends on the sample thickness, it is generally about 0.1 to 10 hours if the sample thickness is about 1 to 5 mm, but preferably about 0.5 to 2 hours. The HIP time is expressed as the holding time to the maximum temperature.

以下に実施例を説明するが、本発明はこれらに限定されるものではない。
実施例1
濃度0.4M(mol・dm-3)の高純度塩化マグネシウム溶液5Lを濃度0.4M(mol・dm-3)の炭酸ナトリウム溶液5Lに100ml/minの速さで滴下し、35℃で1日間養生を行った。養生後、濾過及び超純水を用いた水洗を数回繰り返した後、150℃の乾燥機に入れて1日間乾燥した。得られた塩基性炭酸マグネシウムをアルミナ製坩堝に入れ、1200℃で15時間仮焼することにより、比表面積10m2/gの高純度酸化マグネシウム原料粉末を作製した。
Examples will be described below, but the present invention is not limited thereto.
Example 1
Drop 5L of 0.4M (mol · dm -3 ) high purity magnesium chloride solution into 5L of sodium carbonate solution 0.4M (mol · dm -3 ) at a rate of 100ml / min and cure at 35 ° C for 1 day Went. After curing, filtration and washing with ultrapure water were repeated several times, and then placed in a dryer at 150 ° C. and dried for 1 day. The obtained basic magnesium carbonate was put in an alumina crucible and calcined at 1200 ° C. for 15 hours to prepare a high-purity magnesium oxide raw material powder having a specific surface area of 10 m 2 / g.

この原料粉末50gと、原料に対してSc換算で1000wtppm相当のSc2O3微粉末(信越化学製、99.99%)及び、Al換算で50wtppmのAl2O3微粉末(大明化学製 TM-DAR)を添加し、解こう剤として共栄社化学製フローレンG-700を1g添加し、さらにバインダーとして積水化学製PVB-BL1を0.25g添加してエタノール20gを加え、ナイロンポット及びナイロンボールを用いて24時間混合し、アルコールスラリーとした。このスラリーを石膏型に流し込み、直径20mm、厚さ2mmのディスク状成形体を作製した。この成形体を酸素気流中5℃/hrで昇温し、1000℃で5時間脱脂処理を行った。成形体中に含まれるSc及びAl量をICP発光分析法により求めた結果、MgOに対してScが970wtppm、Alは52wtppmであった。また成形密度は60.6%であった。次にこの成形体を真空炉にて100℃/hrで1500℃まで上昇し、1時間保持した後に500℃/hrで冷却した。焼成時の真空度は10-2Pa以下とした。一次焼結体の理論密度をアルキメデス法により求めた結果、97.9%であった。この一次焼結体をArガス中800℃/hrで1300℃まで昇温し、98MPaの圧力下で1時間保持してHIP処理を行った。得られた焼結体は、ダイヤモンドスラリーを用いて鏡面研磨を行い、分光光度計にて直線透過率(t=1.0mm)を測定した。その結果、波長500nm及び6.5μmにおける直線透過率は、それぞれ85.4%、86.7%であった。実施例1の焼結体の直線透過率を図1に示す。この図から、波長500nmから6.5μmの範囲においては、500nmで透過率が最も低くなるため、以降の実施例及び比較例においては500nmにおける直線透過率を測定した。 50 g of this raw material powder, Sc 2 O 3 fine powder equivalent to 1000 wtppm in terms of Sc (Shin-Etsu Chemical, 99.99%), and 50 wtppm Al 2 O 3 fine powder (Daimei Chemical Co., Ltd. TM-DAR) ), 1 g of Kyoeisha Chemical's Floren G-700 as a peptizer, and 0.25 g of Sekisui Chemical's PVB-BL1 as a binder, 20 g of ethanol, and a nylon pot and nylon balls. The mixture was mixed for a time to obtain an alcohol slurry. This slurry was poured into a plaster mold to produce a disk-shaped molded body having a diameter of 20 mm and a thickness of 2 mm. This molded body was heated at 5 ° C./hr in an oxygen stream and degreased at 1000 ° C. for 5 hours. As a result of obtaining the amounts of Sc and Al contained in the molded article by ICP emission spectrometry, Sc was 970 wtppm and Al was 52 wtppm with respect to MgO. The molding density was 60.6%. Next, this compact was raised to 1500 ° C. at 100 ° C./hr in a vacuum furnace, held for 1 hour, and then cooled at 500 ° C./hr. The degree of vacuum during firing was set to 10 −2 Pa or less. As a result of obtaining the theoretical density of the primary sintered body by the Archimedes method, it was 97.9%. This primary sintered body was heated to 1300 ° C. at 800 ° C./hr in Ar gas, and held for 1 hour under a pressure of 98 MPa to perform HIP treatment. The obtained sintered body was mirror-polished using a diamond slurry, and the linear transmittance (t = 1.0 mm) was measured with a spectrophotometer. As a result, the linear transmittances at wavelengths of 500 nm and 6.5 μm were 85.4% and 86.7%, respectively. The linear transmittance of the sintered body of Example 1 is shown in FIG. From this figure, since the transmittance is lowest at 500 nm in the wavelength range of 500 nm to 6.5 μm, the linear transmittance at 500 nm was measured in the following examples and comparative examples.

この試料を大気中1300℃にて2時間サーマルエッチングを行い、微構造を観察した結果、平均粒子径は12.9μmであった。ここで平均粒子径は、SEM等の高分解能画像上で任意に引いた線の長さをCとし、この線上の粒子数をN、倍率をMとして、平均粒子径=1.56C/(MN)として求めた。また焼結密度を求めた結果、99.96%であった。なおこの焼結体を、オートクレーブを用いて酸に溶解した後、ICP発光分析法によりSc含有量及びAl含有量を求めた結果、MgOに対してScが970wtppm、Alは52wtppmであった。   This sample was thermally etched in the atmosphere at 1300 ° C. for 2 hours, and the microstructure was observed. As a result, the average particle size was 12.9 μm. Here, the average particle size is C, where the length of the line drawn arbitrarily on a high-resolution image such as SEM is C, the number of particles on this line is N, and the magnification is M. Average particle size = 1.56C / (MN) As sought. The sintered density was determined to be 99.96%. The sintered body was dissolved in acid using an autoclave, and then the Sc content and Al content were determined by ICP emission analysis. As a result, Sc was 970 wtppm with respect to MgO, and Al was 52 wtppm.

実施例2〜7及び比較例1〜6
Sc及びAl添加量の異なるマグネシア成形体(成形密度は59%以上)を種々作製し、実施例1と同様に焼成して得た焼結体の添加剤含有量、平均粒子径、500nmでの直線透過率を求めた結果を表1に示す。この結果より、Sc含有量が30wtppm以下、若しくは2000wtppm以上では透過率85%以上の焼結体は得られないことが判る。またSc含有量が上記範囲内であったとしても、Al含有量が5wtppm未満、若しくは100wtppmを超えると同様であることが判る。
Examples 2-7 and Comparative Examples 1-6
Various magnesia compacts (molding density of 59% or more) with different addition amounts of Sc and Al were prepared and sintered in the same manner as in Example 1. The additive content, average particle diameter, and 500 nm Table 1 shows the results obtained for the linear transmittance. From this result, it can be seen that when the Sc content is 30 wtppm or less, or 2000 wtppm or more, a sintered body having a transmittance of 85% or more cannot be obtained. Further, even if the Sc content is within the above range, it is understood that the same is true if the Al content is less than 5 wtppm or exceeds 100 wtppm.

表1
Sc含有量 Al含有量 平均粒子径 直線透過率
/wtppm /wtppm /μm /%
実施例2 32 8 7.0 85.0
実施例3 98 21 7.6 85.1
実施例4 490 52 10.2 85.4
実施例5 970 12 10.8 85.6
実施例6 970 98 13.1 86.2
実施例7 1950 21 16.0 85.3
比較例1 0 3 5.3 48.3
比較例2 16 94 8.1 65.4
比較例3 490 3 8.4 82.7
比較例4 970 110 13.5 78.7
比較例5 2080 52 16.8 77.9
比較例6 2080 110 18.3 64.5
table 1
Sc content Al content Average particle size Linear transmittance
/ wtppm / wtppm / μm /%
Example 2 32 8 7.0 85.0
Example 3 98 21 7.6 85.1
Example 4 490 52 10.2 85.4
Example 5 970 12 10.8 85.6
Example 6 970 98 13.1 86.2
Example 7 1950 21 16.0 85.3
Comparative Example 1 0 3 5.3 48.3
Comparative Example 2 16 94 8.1 65.4
Comparative Example 3 490 3 8.4 82.7
Comparative Example 4 970 110 13.5 78.7
Comparative Example 5 2080 52 16.8 77.9
Comparative Example 6 2080 110 18.3 64.5

実施例8〜12及び比較例7〜9
純度99.9%以上のマグネシア原料粉末5gをアルミナ製乳鉢に入れ、原料に対してSc換算で1500wtppm相当のSc2O3微粉末及び、Al換算で40wtppm相当のAl2O3微粉末を添加し、混合、粉砕を行った。この粉末をφ15mmの金型に入れ、10MPaの圧力で一次成形を行った後、CIP成形により成形密度58.8%の成形体を作製した。この成形体を種々異なる焼成温度により、水素雰囲気中で5時間焼成を行った後、実施例1と同じ条件でHIP処理を行った。一次焼成温度及び一次焼結密度、HIP処理後の焼結体の平均粒子径と直線透過率を表2に示す。この結果より、一次焼成温度が1250℃以上で焼結密度が94%以上となり、HIP処理後に平均粒子径1μm以上20μm以下で、透過率85%以上の焼結体が得られる。しかし一次焼成温度が1250℃未満の場合、焼結密度は94%以下となり、HIP処理による気孔の除去が困難となって、透光性の焼結体は得られない。一方、一次焼成温度が1600℃を超える場合、焼結密度は94%以上となるが、結晶内部に気孔を含んだまま粒成長し、透過率が低下することが判る。
Examples 8-12 and Comparative Examples 7-9
Put 5g of magnesia raw material powder with a purity of 99.9% or more in an alumina mortar, add Sc 2 O 3 fine powder equivalent to 1500 wtppm in terms of Sc and Al 2 O 3 fine powder equivalent to 40 wtppm in terms of Al, Mixing and grinding were performed. This powder was put into a φ15 mm mold, subjected to primary molding at a pressure of 10 MPa, and a molded body having a molding density of 58.8% was produced by CIP molding. This molded body was fired at various firing temperatures in a hydrogen atmosphere for 5 hours, and then subjected to HIP treatment under the same conditions as in Example 1. Table 2 shows the primary firing temperature, primary sintered density, average particle diameter and linear transmittance of the sintered body after the HIP treatment. As a result, a sintered body having a primary firing temperature of 1250 ° C. or higher and a sintered density of 94% or higher, an average particle diameter of 1 μm to 20 μm and a transmittance of 85% or higher after HIP treatment is obtained. However, when the primary firing temperature is less than 1250 ° C., the sintered density is 94% or less, and it becomes difficult to remove pores by HIP treatment, and a translucent sintered body cannot be obtained. On the other hand, when the primary firing temperature exceeds 1600 ° C., the sintered density is 94% or more, but it can be seen that grains grow with pores inside the crystal and the transmittance decreases.

表2
一次焼成温度 一次焼結密度 平均粒子径 直線透過率
/℃ /% /μm /%
実施例8 1250 94.6 1.9 85.1
実施例9 1350 96.9 5.6 85.6
実施例10 1450 98.5 10.2 86.2
実施例11 1550 99.3 15.9 85.7
実施例12 1600 99.5 18.8 85.4
比較例7 1225 93.2 1.5 ―
比較例8 1625 99.6 21.0 82.1
比較例9 1700 99.7 28.2 52.3
Table 2
Primary firing temperature Primary sintered density Average particle size Linear transmittance
/ ℃ /% / μm /%
Example 8 1250 94.6 1.9 85.1
Example 9 1350 96.9 5.6 85.6
Example 10 1450 98.5 10.2 86.2
Example 11 1550 99.3 15.9 85.7
Example 12 1600 99.5 18.8 85.4
Comparative Example 7 1225 93.2 1.5 ―
Comparative Example 8 1625 99.6 21.0 82.1
Comparative Example 9 1700 99.7 28.2 52.3

実施例13〜16及び比較例10〜12
実施例1と同様にして高純度酸化マグネシウム原料粉末を作製した。この原料粉末に、原料に対してSc換算で500wtppm相当のSc2O3微粉末及び、Al換算で70wtppm相当のAl2O3微粉末を添加し、混合、粉砕を行った後に異なる圧力でCIP成形を行うことにより、成形密度の異なる成形体を作製した(比較例10〜12、実施例13)。また実施例1と同様の手順により、混合時間の異なるアルコールスラリーを調整し、成形密度の異なる成形体を作製した(実施例14〜16)。この成形体を大気中1350℃で3時間焼成した後、Arガス中1400℃、196MPaの圧力下で2時間保持してHIP処理を行った。成形密度と、焼結体の直線透過率を表3に示す。比較例10では、緻密に焼結している部分と焼結がほとんど進んでおらず気泡が残留している部分とが任意に連なった構造となっており、平均的な組織及び透過率の測定は不可能であった。成形密度の向上に伴い組織は次第に均一になり、これに伴い透過率も向上している。表3の結果より、透過率85%以上の透光性に優れた焼結体を得るためには、その成形密度が58%以上必要であることが判る。
Examples 13-16 and Comparative Examples 10-12
A high-purity magnesium oxide raw material powder was produced in the same manner as in Example 1. To this raw material powder, Sc 2 O 3 fine powder equivalent to 500 wtppm in terms of Sc and Al 2 O 3 fine powder equivalent to 70 wtppm in terms of Al are added to the raw material, mixed, pulverized, and then subjected to CIP at different pressures. By performing molding, molded bodies having different molding densities were produced (Comparative Examples 10 to 12, Example 13). Moreover, according to the same procedure as in Example 1, alcohol slurries with different mixing times were prepared to produce molded bodies with different molding densities (Examples 14 to 16). This molded body was fired at 1350 ° C. in the atmosphere for 3 hours, and then held in Ar gas at 1400 ° C. under a pressure of 196 MPa for 2 hours for HIP treatment. Table 3 shows the molding density and the linear transmittance of the sintered body. Comparative Example 10 has a structure in which a densely sintered portion and a portion where the sintering hardly progresses and where bubbles remain are arbitrarily connected, and the average structure and transmittance are measured. Was impossible. As the molding density increases, the structure gradually becomes uniform, and the transmittance also increases accordingly. From the results in Table 3, it can be seen that a molding density of 58% or more is necessary in order to obtain a sintered body having a transmittance of 85% or more and excellent translucency.

表3
成形密度/% 平均粒子径/μm 直線透過率/%
実施例13 58.5 9.3 85.4
実施例14 59.9 10.6 85.7
実施例15 61.3 11.2 86.2
実施例16 62.6 11.5 86.4
比較例10 49.0 ― ―
比較例11 52.6 5.6 40.8
比較例12 57.4 7.9 75.7
Table 3
Molding density /% Average particle size / μm Linear transmittance /%
Example 13 58.5 9.3 85.4
Example 14 59.9 10.6 85.7
Example 15 61.3 11.2 86.2
Example 16 62.6 11.5 86.4
Comparative Example 10 49.0 ― ―
Comparative Example 11 52.6 5.6 40.8
Comparative Example 12 57.4 7.9 75.7

実施例17〜25及び比較例13〜17
実施例8と同様にして成形、一次焼成した焼結体を、種々の温度、圧力、時間でHIP処理を施した。それぞれの平均粒子径と直線透過率を表4に示す。これらの結果より、処理温度1200℃以上1600℃以下及び、処理圧力49MPa以上196MPa以下の範囲外でHIP処理を行っても、その効果が発揮されないことが判る。更にHIP温度が高すぎる場合には、雰囲気焼成の場合と同様、Scの析出や異常粒成長を生じるため、逆に透過率は低下してしまうことが判る。
Examples 17 to 25 and Comparative Examples 13 to 17
A sintered body molded and primary-fired in the same manner as in Example 8 was subjected to HIP treatment at various temperatures, pressures, and times. Table 4 shows the average particle diameter and linear transmittance for each. From these results, it can be seen that even if the HIP treatment is performed at a treatment temperature of 1200 ° C. or more and 1600 ° C. or less and a treatment pressure of 49 MPa or more and 196 MPa or less, the effect is not exhibited. Furthermore, when the HIP temperature is too high, it is understood that, as in the case of atmospheric firing, precipitation of Sc and abnormal grain growth occur, and conversely, the transmittance decreases.

表4
温度/℃×時間 圧力 平均粒子径 直線透過率
/hr /MPa /μm /%
実施例17 1200×1 196 1.7 85.0
実施例18 1250×1 196 2.1 85.1
実施例19 1250×2 49 2.5 85.3
実施例20 1300×0.5 196 4.1 85.5
実施例21 1450×0.5 196 10.8 85.6
実施例22 1450×2 98 11.9 86.0
実施例23 1600×0.5 196 18.6 86.4
実施例24 1600×0.5 98 18.1 86.2
実施例25 1600×2 49 19.2 86.4
比較例13 1150×1 196 1.4 69.2
比較例14 1300×1 40 3.7 81.8
比較例15 1600×1 40 18.7 82.5
比較例16 1650×1 196 23.8 75.1
比較例17 1700×0.5 196 30.5 64.6
Table 4
Temperature / ° C x Time Pressure Average particle size Linear transmittance
/ hr / MPa / μm /%
Example 17 1200 × 1 196 1.7 85.0
Example 18 1250 × 1 196 2.1 85.1
Example 19 1250 × 2 49 2.5 85.3
Example 20 1300 × 0.5 196 4.1 85.5
Example 21 1450 × 0.5 196 10.8 85.6
Example 22 1450 × 2 98 11.9 86.0
Example 23 1600 × 0.5 196 18.6 86.4
Example 24 1600 × 0.5 98 18.1 86.2
Example 25 1600 × 2 49 19.2 86.4
Comparative Example 13 1150 × 1 196 1.4 69.2
Comparative Example 14 1300 × 1 40 3.7 81.8
Comparative Example 15 1600 × 1 40 18.7 82.5
Comparative Example 16 1650 × 1 196 23.8 75.1
Comparative Example 17 1700 × 0.5 196 30.5 64.6

実施例1の焼結体の直線透過率を示す特性図The characteristic figure which shows the linear transmittance | permeability of the sintered compact of Example 1.

Claims (2)

Sc含有量が30wtppm以上2000wtppm以下、Al含有量が5wtppm以上100wtppm以下、Sc2O3とAl2O3とを除く純度が99.9%以上で、焼結体の平均粒子径は1μm以上20μm以下で、波長500nmから6.5μmの領域に渡っての直線透過率が1mm厚みで85%以上である、ことを特徴とする透光性酸化マグネシウム焼結体。 Sc content is less 2000wtppm or 30Wtppm, Al content is more than 5 wtppm 100 wtppm or less, a purity excluding and Sc 2 O 3 and Al 2 O 3 99.9% or more, an average particle size of the sintered body is 1μm or 20μm or less A translucent magnesium oxide sintered body characterized by having a linear transmittance of 85% or more at a thickness of 1 mm over a wavelength region of 500 nm to 6.5 μm. Sc2O3とAl2O3とを除く純度が99.9%以上で、比表面積3〜15m2/gの酸化マグネシウム粉末とバインダーを用いて、成形密度が理論密度比58%以上、Sc含有量が30wtppm以上2000wtppm以下、Al含有量が5wtppm以上100wtppm以下の成形体を作製し、これを熱処理してバインダーを除去した後に、
還元雰囲気中、真空中もしくは大気中で、1250℃以上1600℃以下で、理論密度比94%以上となるように一次焼成し、
更にこの後、1200℃以上1600℃以下の温度及び49MPaから196MPaの圧力で、熱間静水加圧処理を施すことにより、
Sc含有量が30wtppm以上2000wtppm以下、Al含有量が5wtppm以上100wtppm以下、焼結体の平均粒子径は1μm以上20μm以下で、波長500nmから6.5μmの領域に渡っての直線透過率が1mm厚みで85%以上の焼結体とすることを特徴とする、透光性酸化マグネシウム焼結体の製造方法。
In Sc 2 O 3 and Al 2 O 3 having a purity of 99.9% or higher with the exception of using the magnesium oxide powder and a binder with a specific surface area 3~15m 2 / g, the molding has a density ratio of 58% or more, Sc content Produced a molded body of 30 wtppm or more and 2000wtppm or less, Al content of 5wtppm or more and 100wtppm or less, and after removing the binder by heat treatment,
In a reducing atmosphere, in a vacuum or in the air, primary firing is performed so that the theoretical density ratio is 94% or more at 1250 ° C or more and 1600 ° C or less,
Furthermore, by applying a hot hydrostatic pressure treatment at a temperature of 1200 ° C. to 1600 ° C. and a pressure of 49 MPa to 196 MPa,
Sc content is 30wtppm or more and 2000wtppm or less, Al content is 5wtppm or more and 100wtppm or less, average particle diameter of sintered body is 1μm or more and 20μm or less, and linear transmittance is 1mm thickness over the wavelength region from 500nm to 6.5μm. A method for producing a translucent magnesium oxide sintered body, characterized by comprising a sintered body of 85% or more.
JP2006078790A 2006-03-22 2006-03-22 Translucent magnesium oxide sintered body and method for producing the same Expired - Fee Related JP4666640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006078790A JP4666640B2 (en) 2006-03-22 2006-03-22 Translucent magnesium oxide sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006078790A JP4666640B2 (en) 2006-03-22 2006-03-22 Translucent magnesium oxide sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007254191A true JP2007254191A (en) 2007-10-04
JP4666640B2 JP4666640B2 (en) 2011-04-06

Family

ID=38628815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006078790A Expired - Fee Related JP4666640B2 (en) 2006-03-22 2006-03-22 Translucent magnesium oxide sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4666640B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292688A (en) * 2008-06-06 2009-12-17 Sumitomo Electric Ind Ltd Translucent ceramic and its manufacturing method, optical device using the same, and color liquid crystal projector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950068A (en) * 1982-09-13 1984-03-22 科学技術庁無機材質研究所長 Manufacture of high minuteness magnesia sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950068A (en) * 1982-09-13 1984-03-22 科学技術庁無機材質研究所長 Manufacture of high minuteness magnesia sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292688A (en) * 2008-06-06 2009-12-17 Sumitomo Electric Ind Ltd Translucent ceramic and its manufacturing method, optical device using the same, and color liquid crystal projector

Also Published As

Publication number Publication date
JP4666640B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
KR100885199B1 (en) Translucent rare earth oxide sintered article and method for production thereof
JP5819992B2 (en) Method for producing polycrystalline aluminum oxynitride with improved transparency
JP4995920B2 (en) Method for producing transparent polycrystalline aluminum oxynitride
JP4878343B2 (en) Translucent rare earth gallium garnet sintered body, manufacturing method thereof and magneto-optical device
JP5000934B2 (en) Translucent rare earth gallium garnet sintered body, manufacturing method thereof and optical device
KR102134054B1 (en) Light transmitting metal oxide sintered body manufacturing method and light transmitting metal oxide sintered body
JP4033451B2 (en) Translucent rare earth oxide sintered body and method for producing the same
JP2939535B2 (en) Manufacturing method of transparent yttrium oxide sintered body
JP2013209245A (en) Production method for ceramic composite
JPH06211573A (en) Production of transparent y2o3 sintered compact
JP4251649B2 (en) Translucent lutetium oxide sintered body and method for producing the same
WO1995006622A1 (en) Light-permeable ceramic material and method of manufacturing the same
JP5458552B2 (en) Highly tough and translucent colored alumina sintered body, method for producing the same, and use
JP3883106B2 (en) Translucent scandium oxide sintered body and method for producing the same
JP4666640B2 (en) Translucent magnesium oxide sintered body and method for producing the same
JP2006290688A (en) Translucent ceramic
JP2009184898A (en) Translucent ceramics
JP4458409B2 (en) Method for producing translucent ceramics and translucent ceramics
JP2023517746A (en) Lithography-based method for manufacturing a transparent ceramic body having at least two regions of different composition and the transparent ceramic body thus obtained
JP2566737B2 (en) Method for producing translucent aluminum magnesium oxynitride sintered body
JP6524012B2 (en) Method of producing a degreased molded body of ceramics
JP6524013B2 (en) Method of producing a degreased molded body of ceramics
JP3245234B2 (en) Method for producing translucent yttrium-aluminum-garnet sintered body
CN117486611A (en) Preparation method of fine-grain transparent yttrium aluminum garnet-based ceramic material
JP2009256152A (en) Translucent ceramic and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees