JP2007253180A - Rotary type powder compression molding device - Google Patents

Rotary type powder compression molding device Download PDF

Info

Publication number
JP2007253180A
JP2007253180A JP2006079443A JP2006079443A JP2007253180A JP 2007253180 A JP2007253180 A JP 2007253180A JP 2006079443 A JP2006079443 A JP 2006079443A JP 2006079443 A JP2006079443 A JP 2006079443A JP 2007253180 A JP2007253180 A JP 2007253180A
Authority
JP
Japan
Prior art keywords
pressure
low
load cell
molding
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006079443A
Other languages
Japanese (ja)
Other versions
JP4759417B2 (en
Inventor
Minoru Kamimura
稔 上村
Toshio Sano
俊夫 佐野
Koji Iwasaki
孝二 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HATA IRON WORKS
Hata Tekkosho Co Ltd
Original Assignee
HATA IRON WORKS
Hata Tekkosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HATA IRON WORKS, Hata Tekkosho Co Ltd filed Critical HATA IRON WORKS
Priority to JP2006079443A priority Critical patent/JP4759417B2/en
Publication of JP2007253180A publication Critical patent/JP2007253180A/en
Application granted granted Critical
Publication of JP4759417B2 publication Critical patent/JP4759417B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Press Drives And Press Lines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary type powder compression molding device in which compression molding can be performed under molding pressure from high pressure to low pressure without causing a failure of a load cell and an output defect and equipment burden can be reduced. <P>SOLUTION: One end of a transmission shaft 43 is connected to a spring shoe 4 supporting the load cell 41 for high-pressure detecting the molding pressure and the load cell 44 for low pressure is disposed in contact with the other end of the shaft 43. An adjusting screw is movably disposed between the load cell 44 and the shoe 42. In the state that the screw 45 is arranged in the high-pressure energization position, the cell is energized and a coil spring 45 to release the energization of the cell 41 in the state that the screw 45 is arranged in the energization release position is arranged between the screw 45 and the spring shoe 42. The adjusting screw 48 is movably disposed in the direction approaching/leaving the spring shoe 47 by which the screw 48 is supported. The cell 44 is energized in the state that the screw 48 is arranged in the low-pressure energization release position and the coil 49 to release the cell 44 in the state that the screw 48 is arranged in the low-pressure energization release position is arranged between the spring 47 and the shoe 47. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、粉末を圧縮成形して錠剤等の粉末圧縮成形品を製造する回転式粉末圧縮成形装置に関する。   The present invention relates to a rotary powder compression molding apparatus for producing a powder compression molded product such as a tablet by compressing powder.

従来、圧縮成形時に例えば下部の圧縮ロールに加わる成形圧力をロードセルで検出し、検出された圧力に基づくフィードバック制御で重量調節軌道の高さを調節することによって、成形される粉末圧縮成形品の重量を一定化する重量制御とともに、圧縮成形時に上部の圧縮ロールに加わる成形圧力が上限値を超えた場合に、上部の圧縮ロールを付勢するコイルばねを縮めて圧力緩衝をするようにした回転式粉末圧縮成型装置が知られている(例えば、特許文献1参照。)。
特許第2941226号公報(段落0085〜0099、0118〜0120、図1〜図4)
Conventionally, the weight of a powder compression molding product to be molded is detected by detecting the molding pressure applied to the lower compression roll at the time of compression molding with a load cell and adjusting the height of the weight adjustment track by feedback control based on the detected pressure. In addition to the weight control to keep the pressure constant, when the molding pressure applied to the upper compression roll exceeds the upper limit during compression molding, the coil spring that biases the upper compression roll is compressed to buffer the pressure. A powder compression molding apparatus is known (for example, see Patent Document 1).
Japanese Patent No. 2941226 (paragraphs 0085 to 0099, 0118 to 0120, FIGS. 1 to 4)

錠剤等を製造する回転式粉末圧縮成型装置で成形される圧縮成形品の成形圧力の最高値は、一般的に10000kgf(98.0kN)程度である。そして、例えば10000kgfの成形圧力に耐えるロードセルを用いて、2500kgf(24.5kN)以下の低い圧力領域で成形される圧縮成形品の成形圧力を検出しようとする場合には、ロードセルからの出力電圧が低く、かつ不安定となることが知られている。   The maximum value of the molding pressure of a compression molded product molded by a rotary powder compression molding apparatus for producing tablets or the like is generally about 10000 kgf (98.0 kN). For example, when a load cell that can withstand a molding pressure of 10,000 kgf is used to detect the molding pressure of a compression molded product molded in a low pressure region of 2500 kgf (24.5 kN) or less, the output voltage from the load cell is It is known to be low and unstable.

このため、回転式粉末圧縮成型装置に組み込まれるロードセルには、目標とする成形領域の圧力に耐えて安定した出力を出せる分解能を有したものが選定され使用されている。例えば2500kgf(24.5kN)以下の低圧領域で圧縮成形をする回転式粉末圧縮成型装置では、その低圧領域に適した分解能を有したロードセルが使用され、2500kgf(24.5kN)〜10000kgf(98.0kN)までの高圧領域で圧縮成形をする回転式粉末圧縮装置では、その高圧領域に適した分解能を有したロードセルが使用されている。   For this reason, a load cell incorporated in the rotary powder compression molding apparatus is selected and used having a resolution capable of withstanding the pressure in the target molding region and outputting a stable output. For example, in a rotary powder compression molding apparatus that performs compression molding in a low pressure region of 2500 kgf (24.5 kN) or less, a load cell having a resolution suitable for the low pressure region is used, and 2500 kgf (24.5 kN) to 10,000 kgf (98. In a rotary powder compression apparatus that performs compression molding in a high pressure region up to 0 kN), a load cell having a resolution suitable for the high pressure region is used.

又、ロードセルの耐圧強度は、目標とする成形圧力が高いロードセルほど高く、この逆に目標とする成形圧力が低いロードセルほど低いことも知られている。そのため、耐圧が低いロードセルが組込まれた回転式粉末圧縮成形装置で、高圧成形を行うとロードセルが破損してしまうことになり、この逆に耐圧が高いロードセルが組込まれた回転式粉末圧縮成形装置で、低圧成形を行うと、ロードセルからの出力電圧が不安定となる出力不良によって適正な重量制御が困難となることがある。   It is also known that the load cell has a higher compressive strength and a higher load cell having a higher target molding pressure, and a lower load cell having a lower target molding pressure. Therefore, in a rotary powder compression molding apparatus incorporating a load cell having a low pressure resistance, if the high pressure molding is performed, the load cell will be damaged. Conversely, a rotary powder compression molding apparatus incorporating a load cell having a high pressure resistance. Thus, when low-pressure molding is performed, proper weight control may be difficult due to an output failure in which the output voltage from the load cell becomes unstable.

こうした事情により、特許文献1に記載の回転式粉末圧縮成形装置など従来の回転式粉末圧縮成形装置において、高圧用及び低圧用のロードセルとこれを付勢するばねを予め用意しておいて、これらを成形圧力に応じて交換することで対応することが考えられている。又、これに代えて、目標とする成形圧力領域に適合した低圧用又は高圧用の専用機を設置する場合がある。   Under these circumstances, in conventional rotary powder compression molding apparatuses such as the rotary powder compression molding apparatus described in Patent Document 1, high-pressure and low-pressure load cells and springs for energizing them are prepared in advance. It is considered that this can be dealt with by exchanging in accordance with the molding pressure. Alternatively, a low-pressure or high-pressure dedicated machine suitable for the target molding pressure region may be installed.

しかし、前者の対策では、交換に要する手間が大変であるとともに、この交換に応じて制御装置を較正する手間も必要となるので、多大な労力を要し、即応性が極めて悪く現実的な対策とは言い難い。又、後者の対策では、低圧成形用と高圧成形用の2台の回転式粉末圧縮成形装置を要するので、設備的な負担が大きい。   However, with the former measure, it takes a lot of time to replace it, and it also takes time to calibrate the control device according to this replacement. It's hard to say. In the latter measure, two rotary powder compression molding apparatuses for low pressure molding and high pressure molding are required, so that the equipment burden is large.

本発明の目的は、ロードセルの破損や出力不良を招くことなく高圧から低圧にわたる成形圧力で圧縮成形ができ、作業上の手間も少なく、かつ、設備的な負担を軽減できる回転式粉末圧縮成形装置を提供することにある。   An object of the present invention is a rotary powder compression molding apparatus that can perform compression molding at a molding pressure ranging from high pressure to low pressure without causing breakage of the load cell or poor output, less labor in operation, and can reduce the equipment burden. Is to provide.

本発明は、回転盤に設けられた臼に上下動可能な杵の先端部を挿入し、これらの杵を上下の圧縮ロール間に通過させることで前記上下の杵の杵先間隔を狭めて、前記臼内に供給された粉末を圧縮成形する回転式粉末圧縮成形装置を前提とする。   The present invention inserts the tip portion of the scissors that can move up and down into the mortar provided on the rotating disk, and narrows the tip spacing of the top and bottom scissors by passing these scissors between the top and bottom compression rolls, It is premised on a rotary powder compression molding apparatus for compressing and molding the powder supplied into the die.

そして、課題を解決するために本発明は、粉末の圧縮成形時に加わる成形圧力を前記上下の圧縮ロールの一方から検出する高圧用ロードセルと、このロードセルが支持された高圧用ばね受けと、このばね受けに一端部が連結され前記高圧用ロードセルに対して成形圧力が加わる方向に延びる伝達軸と、この伝達軸の他端に接して配設され前記高圧用ロードセルよりも低い成形圧力を検出する低圧用ロードセルと、この低圧用ロードセルと前記高圧用ばね受けとの間にこの高圧用ばね受けに接近離反する方向に沿って高圧付勢位置と高圧付勢解除位置とにわたって移動可能に配設された高圧用調整ねじと、この高圧用調整ねじと高圧用ばね受けとの間に配置され、前記高圧付勢位置に前記高圧用調整ねじが配置された状態で前記高圧用ロードセルを付勢し、前記高圧付勢解除位置に前記高圧用調整ねじが配置された状態で前記高圧用ロードセルの付勢を解除する高圧用ばねと、前記低圧用ロードセルが支持された低圧用ばね受けと、この低圧用ばね受けに接近離反する方向に沿って低圧付勢位置と低圧付勢解除位置とにわたって移動可能に配設された低圧用調整ねじと、この低圧用調整ねじと前記低圧用ばね受けとの間に配置され、前記低圧付勢位置に前記低圧用調整ねじが配置された状態で前記高圧用ばねの付勢力より小さい付勢力で前記低圧用ロードセルを付勢し、前記低圧付勢解除位置に前記低圧用調整ねじが配置された状態で前記低圧用ロードセルの付勢を解除する低圧用ばねと、を具備している。   In order to solve the problems, the present invention provides a high-pressure load cell that detects a molding pressure applied during powder compression molding from one of the upper and lower compression rolls, a high-pressure spring receiver that supports the load cell, and the spring. A transmission shaft having one end connected to the receiver and extending in a direction in which a molding pressure is applied to the high pressure load cell, and a low pressure that is disposed in contact with the other end of the transmission shaft and detects a molding pressure lower than the high pressure load cell. Between the high pressure biasing position and the high pressure biasing release position along the direction of approaching and separating from the high pressure spring receiver between the low pressure load cell and the high pressure spring receiver. The high pressure load screw is disposed between the high pressure adjustment screw and the high pressure adjustment screw and the high pressure spring receiver, and the high pressure adjustment screw is disposed at the high pressure biasing position. A high pressure spring that releases the bias of the high pressure load cell in a state where the high pressure adjustment screw is disposed at the high pressure bias release position, and a low pressure spring receiver on which the low pressure load cell is supported A low-pressure adjusting screw movably disposed between a low-pressure urging position and a low-pressure urging release position along a direction approaching and separating from the low-pressure spring receiver, and the low-pressure adjusting screw and the low-pressure spring. The low pressure load cell is biased with a biasing force that is smaller than the biasing force of the high pressure spring in a state where the low pressure adjustment screw is disposed at the low pressure biasing position. A low-pressure spring for releasing the bias of the low-pressure load cell in a state where the low-pressure adjusting screw is disposed at the release position.

本発明で、高圧の成形圧力領域で粉末の圧縮成形を行う場合には、高圧用調整ねじを高圧付勢位置に配置させて高圧用ばねを縮めて、このばねで高圧用ロードセルを付勢して使用する一方で、低圧用調整ねじを低圧付勢解除位置に配置させて低圧用ばねを自由状態とする。これにより、高圧成形の際の成形圧力を高圧用ロードセルに作用させて、この高圧用ロードセルで成形圧力を検出できる。高圧用ばねの付勢力を超える高圧側の過剰成形圧力が高圧用ばねの圧縮変形で緩衝される時には、伝達軸が低圧用ロードセルを押すにも拘わらず、低圧用ロードセルが自由に逃げることができるので、低圧用ロードセルに過剰な成形圧力が加わらないようにできる。   In the present invention, when powder compression molding is performed in a high pressure molding pressure region, the high pressure spring is contracted by placing the high pressure adjusting screw at the high pressure biasing position, and the high pressure load cell is biased by this spring. On the other hand, the low pressure adjusting screw is placed in the low pressure bias release position to make the low pressure spring free. Thereby, the molding pressure at the time of high pressure molding is applied to the high pressure load cell, and the molding pressure can be detected by this high pressure load cell. When the excessive molding pressure on the high pressure side exceeding the urging force of the high pressure spring is buffered by the compression deformation of the high pressure spring, the low pressure load cell can escape freely even though the transmission shaft pushes the low pressure load cell. Therefore, excessive molding pressure can be prevented from being applied to the low pressure load cell.

又、本発明で、低圧の成形圧力領域で粉末の圧縮成形を行う場合には、低圧用調整ねじを低圧付勢位置に配置させて低圧用ばねを縮めて、このばねで低圧用ロードセルを付勢して使用するとともに、高圧用調整ねじを高圧付勢解除位置に配置させて高圧用ばねを自由状態とする。これにより、高圧成形にも耐える強度を有した高圧用ロードセル、高圧用ばね受け、及び伝達軸を経て、低圧成形の際の成形圧力を低圧用ロードセルに作用させて、この低圧用ロードセルで成形圧力を検出できる。そして、低圧用ばねの付勢力を超える低圧側の過剰成形圧力が低圧用ロードセルに作用したときは、低圧用コイルばねが圧縮変形して緩衝できる。   In the present invention, when powder compression molding is performed in the low pressure molding pressure region, the low pressure spring is contracted by placing the low pressure adjusting screw at the low pressure biasing position, and the low pressure load cell is attached to the spring. The high pressure adjustment screw is placed at the high pressure bias release position to make the high pressure spring free. As a result, the molding pressure in the low-pressure molding is applied to the low-pressure load cell via the high-pressure load cell, the high-pressure spring receiver, and the transmission shaft that have strength to withstand high-pressure molding. Can be detected. When a low pressure side excessive molding pressure exceeding the biasing force of the low pressure spring acts on the low pressure load cell, the low pressure coil spring can be compressed and deformed to be buffered.

このように成形圧力に応じて高圧用ロードセルと低圧用ロードセルとを使い分けるので、高圧用ロードセル及びこれに応じた高圧用コイルばねと、低圧用ロードセル及びこれに応じた低圧用コイルばねを交換部品として用意して、これらを、成形圧力の変更の都度、交換する場合に比較して、簡単にかつ素早く前記使い分けを実現できる。しかも、高圧用と低圧用の専用機を要することなく一台の圧縮成形装置で低圧から高圧までの圧縮成形を行えるとともに、それに伴い設備的負担を抑制できる。これとともに、高圧成形の場合の成形圧力において低圧用ロードセルが破損することがない。更に、低圧成形の場合は高圧用ロードセルではなく低圧用ロードセルで成形圧力を検出するので、低圧の成形圧力を高圧用ロードセルで検出する場合のように出力不良を生じることもない。   As described above, the high-pressure load cell and the low-pressure load cell are properly used according to the molding pressure, so that the high-pressure load cell, the high-pressure coil spring corresponding thereto, the low-pressure load cell and the low-pressure coil spring corresponding thereto are used as replacement parts. These can be used easily and quickly compared to the case where they are prepared and replaced each time the molding pressure is changed. In addition, compression molding from low pressure to high pressure can be performed with a single compression molding apparatus without requiring dedicated machines for high pressure and low pressure, and the equipment burden can be reduced accordingly. At the same time, the low-pressure load cell is not damaged at the molding pressure in the case of high-pressure molding. Furthermore, in the case of low pressure molding, the molding pressure is detected not by the high pressure load cell but by the low pressure load cell, so that no output failure occurs as in the case of detecting the low pressure molding pressure by the high pressure load cell.

本発明は、高圧用ロードセルと低圧用ロードセルとを、成形圧力に応じて切換えて使用する一台の回転式粉末圧縮成形装置であるので、ロードセルの破損や出力不良を招くことなく高圧から低圧にわたる成形圧力での圧縮成形ができるとともに、作業上の手間も少なく、かつ、設備的な負担を軽減できる。   Since the present invention is a single rotary powder compression molding apparatus that switches between a high-pressure load cell and a low-pressure load cell according to the molding pressure, the pressure cell ranges from high pressure to low pressure without causing damage to the load cell or poor output. It is possible to perform compression molding at the molding pressure, reduce labor and reduce the equipment burden.

図1〜図3を参照して本発明の一実施形態を説明する。   An embodiment of the present invention will be described with reference to FIGS.

図1に示すように回転式粉末圧縮成形装置例えば回転式打錠装置は、回転式粉末圧縮成形機としての回転式打錠機10と、図示しない制御盤等を備えている。   As shown in FIG. 1, a rotary powder compression molding apparatus, for example, a rotary tableting apparatus, includes a rotary tableting machine 10 as a rotary powder compression molding machine and a control panel (not shown).

回転式打錠機10は平面視円形の回転盤11を備え、この回転盤11の臼取付け部の周部には、中央部に軸方向に貫通した臼孔を有した複数の臼12が周方向に一定間隔で並んで取付けられている。回転式打錠機10は粉末供給器13を備えている。粉末供給器13の下面開口は回転盤11の上面に接している。粉末供給器13にはその上方に配置された原料ホッパ14から圧縮成形すべき原料である粉末が供給される。回転盤11の回転に伴い、臼12が粉末供給器13の下面開口を通過する際に、この粉末供給器13内で流動化された粉末が臼12に供給されるようになっている。   The rotary tableting machine 10 includes a rotary disc 11 having a circular shape in a plan view, and a plurality of mortars 12 having a mortar hole penetrating in the axial direction in the central portion are surrounded by a peripheral portion of the mortar mounting portion of the rotary disc 11. Installed side by side at regular intervals in the direction. The rotary tableting machine 10 includes a powder feeder 13. The lower surface opening of the powder feeder 13 is in contact with the upper surface of the rotating disk 11. Powder that is a raw material to be compression-molded is supplied to the powder feeder 13 from a raw material hopper 14 disposed thereabove. The powder fluidized in the powder supplier 13 is supplied to the die 12 when the die 12 passes through the lower surface opening of the powder supplier 13 as the turntable 11 rotates.

回転式打錠機10は各臼12の夫々に対応する上杵15及び下杵16を備えている。上杵15及び下杵16は回転盤11の図示しない杵取付け部に設けた杵案内孔を上下方向に摺動自在に貫通している。下杵16の上端部(杵先部)は対応する臼12の臼孔内に摺動可能に挿入されて、臼孔の底をなしている。上杵15の下端部(杵先部)は対応する臼12の臼孔に上方から挿脱されるようになっている。回転式打錠機10は、各上杵15を上下動させる上杵案内軌道を有した上カム(図示しない)を備えているとともに、各下杵16を上下動させる各種の下杵案内軌道を備えている。なお、下杵16の下端が摺動する下杵案内軌道の内、粉末供給位置に配置された重量調節軌道17と、圧縮成形された錠剤等の圧縮成形品を臼12上に押し出す突上げ軌道18のみを図1に示す。上杵案内軌道及び下杵案内軌道によって上杵15及び下杵16は、圧縮成形を行うのに必要な軸線方向の動きを与えられる。   The rotary tableting machine 10 includes an upper punch 15 and a lower punch 16 corresponding to each die 12. The upper rod 15 and the lower rod 16 penetrate through a rod guide hole provided in a rod mounting portion (not shown) of the turntable 11 so as to be slidable in the vertical direction. The upper end portion (tip portion) of the lower punch 16 is slidably inserted into the mortar hole of the corresponding mortar 12 to form the bottom of the mortar hole. The lower end portion (tip portion) of the upper punch 15 is inserted into and removed from the corresponding mortar hole of the mortar 12 from above. The rotary tableting machine 10 includes an upper cam (not shown) having an upper guideway for moving each upper punch 15 up and down, and various lower guide guide tracks for moving each lower punch 16 up and down. I have. Of the lower guide guide track on which the lower end of the lower punch 16 slides, the weight adjusting track 17 disposed at the powder supply position, and the push-up track that pushes a compression molded product such as a compressed tablet onto the die 12. Only 18 is shown in FIG. The upper rod guide track and the lower rod guide track allow the upper rod 15 and the lower rod 16 to move in the axial direction necessary for compression molding.

重量調節軌道17は軌道昇降機構19により支持されている。軌道昇降機構19は、昇降駆動モータ20、昇降軸21、歯車22、及び駆動歯車23を有している。昇降駆動モータ20は例えばサーボモータ等からなり、その出力軸に駆動歯車23が固定されている。図示しないガイドに沿って昇降される昇降軸21の上端部に重量調節軌道17が固定されている。この昇降軸21の下部に形成されたねじ部に歯車22が螺合されている。この歯車22は駆動歯車23に噛み合わされている。このため、昇降駆動モータ20が正転又は逆転されるに伴って、昇降軸21及び重量調節軌道17が昇降されるようになっている。   The weight adjusting track 17 is supported by a track lifting mechanism 19. The track elevating mechanism 19 includes an elevating drive motor 20, an elevating shaft 21, a gear 22, and a drive gear 23. The elevating drive motor 20 is composed of a servo motor, for example, and a drive gear 23 is fixed to the output shaft thereof. A weight adjusting track 17 is fixed to an upper end portion of a lifting shaft 21 that is lifted and lowered along a guide (not shown). A gear 22 is screwed into a screw portion formed at the lower part of the lifting shaft 21. The gear 22 is meshed with the drive gear 23. For this reason, as the elevating drive motor 20 is rotated forward or reverse, the elevating shaft 21 and the weight adjusting track 17 are moved up and down.

前記下杵案内軌道の中には、重量調節軌道17の直前に配置される低下軌道(図示しない)が含まれている。この低下軌道に沿って下杵16が下降される時に、粉末供給器13内の粉末が臼孔に吸込まれて充填され、この充填の直後に下杵16が重量調節軌道17の昇り斜面17aを摺動して上がることによって、余剰粉末が臼孔から粉末供給器13内に吐出され、この吐出し終了から重量調節軌道17の水平な秤量面17bを下杵16が摺動する間に、臼孔の上端が粉末供給器13の後壁13aで摺りきられることにより、臼12への供給粉末量が秤量される。したがって、軌道昇降機構19により重量調節軌道17の高さ位置を変えることで、臼12内への供給粉末量が変わり、それに応じて製造しようとする錠剤等の圧縮成形品の重量が変更される。   The lower rod guide track includes a lowering track (not shown) arranged immediately before the weight adjusting track 17. When the lower iron 16 is lowered along the lowering trajectory, the powder in the powder feeder 13 is sucked into the mortar hole and filled, and immediately after the filling, the lower iron 16 moves up the inclined surface 17a of the weight adjusting orbit 17. By sliding up, surplus powder is discharged into the powder feeder 13 from the mortar hole, and while the lower punch 16 slides on the horizontal weighing surface 17b of the weight adjusting track 17 after the discharge, the mortar 16 slides. When the upper end of the hole is rubbed by the rear wall 13a of the powder feeder 13, the amount of powder supplied to the die 12 is weighed. Therefore, by changing the height position of the weight adjusting track 17 by the track lifting mechanism 19, the amount of powder supplied into the die 12 is changed, and the weight of a compression molded product such as a tablet to be manufactured is changed accordingly. .

回転式打錠機10は上部の圧縮ロール24と下部の圧縮ロール25とを備えている。上部の圧縮ロール24は圧縮成形位置で回転盤11の上方に配置され、これに対応して下部の圧縮ロール25は圧縮成形位置で回転盤11の下方に配置されている。上部の圧縮ロール24と下部の圧縮ロール25は、それらの間を通過する上杵15及び下杵16を互いに杵先部が近づくように軸線方向に移動させる。それにより、上杵15と下杵16との杵先間隔が狭められて、臼12内の粉末が圧縮成形されるものである。   The rotary tableting machine 10 includes an upper compression roll 24 and a lower compression roll 25. The upper compression roll 24 is disposed above the turntable 11 at the compression molding position, and the lower compression roll 25 is disposed below the turntable 11 at the compression molding position. The upper compression roll 24 and the lower compression roll 25 move the upper collar 15 and the lower collar 16 that pass between them in the axial direction so that the tip portions approach each other. Thereby, the tip space | interval of the upper punch 15 and the lower punch 16 is narrowed, and the powder in the die 12 is compression-molded.

圧縮成形された成形品Pは、前記突上げ軌道18を下杵16が摺動するに伴い、臼12の上面に押し出される。回転式打錠機10はスクレーパ26を備えている。スクレーパ26は、圧縮成形された成形品Pが押し出される成形品取出し位置に配置されている。臼12の上面に押し出された成形品Pは、スクレーパ26によって回転盤11外に取出されるとともに、シュートで所定位置に導かれる。   The compression-molded molded product P is pushed onto the upper surface of the die 12 as the lower punch 16 slides on the push-up track 18. The rotary tableting machine 10 includes a scraper 26. The scraper 26 is arranged at a molded product take-out position from which the compression molded product P is extruded. The molded product P pushed out onto the upper surface of the die 12 is taken out of the rotating disk 11 by the scraper 26 and guided to a predetermined position by a chute.

図2及び図3に示すように回転式打錠機10が備える装置フレームの上部フレーム1には、ロール固定ブラケット2が固定されている。ロール固定ブラケット2には水平方向(図2、図3を描いた紙面に直交する方向)に延びるロール軸3(図1参照)が、その軸方向に移動不能でかつ軸回りに回転調整可能に支持されている。ロール軸3は、その軸方向に並ぶように配置された非偏心軸部(図示しない)、偏心軸部(図示しない、)及び非円形のレバー取付軸部3aを有している。   As shown in FIGS. 2 and 3, a roll fixing bracket 2 is fixed to the upper frame 1 of the apparatus frame included in the rotary tableting machine 10. The roll fixing bracket 2 has a roll shaft 3 (see FIG. 1) extending in a horizontal direction (a direction perpendicular to the paper on which FIG. 2 and FIG. 3 are drawn) and is not movable in the axial direction and can be rotated around the axis. It is supported. The roll shaft 3 has a non-eccentric shaft portion (not shown), an eccentric shaft portion (not shown), and a non-circular lever mounting shaft portion 3a arranged so as to be aligned in the axial direction.

偏心軸部の軸中心Aはロール軸3の軸中心Bに対して偏心しており、この偏心量を図2中符号Eで示す。偏心軸部の外周に上部の圧縮ロール24が図示しない軸受を介して回転自在に支持されている。非偏心軸部及びレバー取付軸部3aの軸中心は前記軸中心Bと同じである。非偏心軸部の外周には緩衝レバー4の一端部が回転可能に嵌合して取付けられている。レバー取付軸部3aにはL字状をなす調整レバー5が嵌合して取付けられ、この調整レバー5の両端部は夫々ロール固定ブラケット2にボルト6を用いて固定されている。これらのボルト6を緩めて、調整レバー5を介してロール軸3をその軸中心Bを中心として回転させることにより、ロール軸3の偏心軸部と上部の圧縮ロール24との相対位置を変化させて、上部の圧縮ロール24の高さ位置を変更する調整が可能となっている。なお、図2及び図3中符号2aはボルト6を逃げる円弧状の逃げ孔を示し、又、符号2bは偏心量目盛りを示している。   The shaft center A of the eccentric shaft portion is eccentric with respect to the shaft center B of the roll shaft 3, and this amount of eccentricity is indicated by a symbol E in FIG. An upper compression roll 24 is rotatably supported on the outer periphery of the eccentric shaft portion via a bearing (not shown). The shaft centers of the non-eccentric shaft portion and the lever mounting shaft portion 3a are the same as the shaft center B. One end portion of the buffer lever 4 is rotatably fitted and attached to the outer periphery of the non-eccentric shaft portion. An L-shaped adjustment lever 5 is fitted and attached to the lever attachment shaft portion 3a, and both ends of the adjustment lever 5 are fixed to the roll fixing bracket 2 using bolts 6, respectively. These bolts 6 are loosened and the roll shaft 3 is rotated about the axis center B via the adjustment lever 5 to change the relative position between the eccentric shaft portion of the roll shaft 3 and the upper compression roll 24. Thus, adjustment to change the height position of the upper compression roll 24 is possible. 2 and 3, reference numeral 2a indicates an arc-shaped escape hole for escaping the bolt 6, and reference numeral 2b indicates an eccentricity scale.

図2及び図3中符号7は緩衝レバー4の真下に位置して上部フレーム1に固定されたばね受板を示している。ばね受板7にはこれを上向きに貫通してストッパピン8が取付けられている。このストッパピン8と緩衝レバー4の自由端部との間にはコイルばね9が挟設されている。コイルばね9は、上部の圧縮ロール24に上杵15が接触していない時、緩衝レバー4がその自重等で非偏心軸部を中心に下向きに回転しないように緩衝レバー4を上向きに付勢している。緩衝レバー4の自由端部上面には、緩衝レバー4より硬質な加圧部材4aが固定されている。   In FIG. 2 and FIG. 3, reference numeral 7 denotes a spring receiving plate that is positioned directly below the buffer lever 4 and is fixed to the upper frame 1. A stopper pin 8 is attached to the spring receiving plate 7 so as to penetrate the spring receiving plate 7 upward. A coil spring 9 is sandwiched between the stopper pin 8 and the free end of the buffer lever 4. When the upper flange 15 is not in contact with the upper compression roll 24, the coil spring 9 biases the buffer lever 4 upward so that the buffer lever 4 does not rotate downward about the non-eccentric shaft portion by its own weight or the like. is doing. A pressure member 4 a that is harder than the buffer lever 4 is fixed to the upper surface of the free end of the buffer lever 4.

上部の圧縮ロール24と下部の圧縮ロール25との内の一方例えば上部の圧縮ロール24側には、成形圧力を検出するとともに過剰な成形圧力を緩衝する圧力緩衝装置31が設けられている。図2及び図3に示すように圧力緩衝装置31は、高圧側圧力緩衝機構31aと低圧側圧力緩衝機構31bとを機構ホルダー32の軸方向に直列的に並ぶように組込んで形成されている。高圧側圧力緩衝機構31aは、機構ホルダー32の一部と、高圧用ロードセル41と、高圧用ばね受け42と、伝達軸43と、高圧用調整ねじ45と、高圧用ばね例えば高圧用コイルばね46とを備えている。低圧側圧力緩衝機構31bは、機構ホルダー32の他の一部と、低圧用ロードセル44と、低圧用ばね受け47と、低圧用調整ねじ48と、低圧用ばね例えば低圧用コイルばね49とを備えている。   One of the upper compression roll 24 and the lower compression roll 25, for example, on the upper compression roll 24 side, is provided with a pressure buffering device 31 that detects molding pressure and buffers excessive molding pressure. As shown in FIGS. 2 and 3, the pressure buffer 31 is formed by incorporating a high pressure side pressure buffer mechanism 31 a and a low pressure side pressure buffer mechanism 31 b so as to be aligned in series in the axial direction of the mechanism holder 32. . The high-pressure side pressure buffer mechanism 31a includes a part of the mechanism holder 32, a high-pressure load cell 41, a high-pressure spring receiver 42, a transmission shaft 43, a high-pressure adjusting screw 45, a high-pressure spring, for example, a high-pressure coil spring 46. And. The low pressure side pressure buffer mechanism 31 b includes another part of the mechanism holder 32, a low pressure load cell 44, a low pressure spring receiver 47, a low pressure adjustment screw 48, and a low pressure spring, for example, a low pressure coil spring 49. ing.

機構ホルダー32は、第1ホルダー部材33〜第4ホルダー部材36及びストッパ部材37を互いに連結して形成されている。   The mechanism holder 32 is formed by connecting the first holder member 33 to the fourth holder member 36 and the stopper member 37 to each other.

第1ホルダー部材33は、両端が開口された円筒状をなしていて、上部フレーム1にこれを上下方向に貫通して固定されている。この第1ホルダー部材33の内周面上部にはねじ溝33aが形成されている。   The first holder member 33 has a cylindrical shape with both ends opened, and is fixed to the upper frame 1 through the upper frame 1 in the vertical direction. A thread groove 33 a is formed in the upper part of the inner peripheral surface of the first holder member 33.

第2ホルダー部材34は、両端が開口された短い円筒状をなしている。この第2ホルダー部材34は、機構ホルダー32の下端部をなして第1ホルダー部材33の下端に連結されている。この第2ホルダー部材34は緩衝レバー4の自由端部の真上に配置されている。第2ホルダー部材34の内径は第1ホルダー部材33の内径より小さい。それにより、第2ホルダー部材34の第1ホルダー部材33側端部は、第1ホルダー部材33の内周面に対して段差状に突出する抜け止めストッパ34aとして機能するようになっている。   The second holder member 34 has a short cylindrical shape with both ends opened. The second holder member 34 forms a lower end portion of the mechanism holder 32 and is connected to the lower end of the first holder member 33. The second holder member 34 is disposed directly above the free end of the buffer lever 4. The inner diameter of the second holder member 34 is smaller than the inner diameter of the first holder member 33. Thus, the end of the second holder member 34 on the first holder member 33 side functions as a stopper stopper 34 a that protrudes in a stepped manner with respect to the inner peripheral surface of the first holder member 33.

第3ホルダー部材35は第1ホルダー部材33の上端に連結されて上部フレーム1の上方に突出されている。第3ホルダー部材35も両端が開口された円筒状をなし、その周壁に調整口35aと逃げ孔35bとが設けられている。第3ホルダー部材35の下部の内径は、第1ホルダー部材33のねじ溝33aが設けられた部分と同径かそれより大きく形成されており、それにより第3ホルダー部材35の内周には段差からなるストッパ部35cが設けられている。   The third holder member 35 is connected to the upper end of the first holder member 33 and protrudes above the upper frame 1. The third holder member 35 has a cylindrical shape with both ends opened, and an adjustment port 35a and a relief hole 35b are provided on the peripheral wall thereof. The inner diameter of the lower portion of the third holder member 35 is the same as or larger than the portion of the first holder member 33 where the thread groove 33a is provided. The stopper part 35c which consists of is provided.

第4ホルダー部材36も両端が開口された円筒状をなし、この第4ホルダー部材36は第3ホルダー部材35の上端に連結されている。第4ホルダー部材36の内径は、第3ホルダー部材35の上端開口の径よりも大きく、第4ホルダー部材36の内周面上部にはねじ溝36aが形成されている。   The fourth holder member 36 also has a cylindrical shape with both ends opened, and the fourth holder member 36 is connected to the upper end of the third holder member 35. The inner diameter of the fourth holder member 36 is larger than the diameter of the upper end opening of the third holder member 35, and a thread groove 36 a is formed in the upper part of the inner peripheral surface of the fourth holder member 36.

ストッパ部材37はL字形状をなすブラケットからなる。ストッパ部材37は、第4ホルダー部材36の上端部に連結されていて、このストッパ部材37のストッパ部位37aと第4ホルダー部材36の上端部との互いに離間した部分は調整用空間として用いられるようになっている。   The stopper member 37 is composed of an L-shaped bracket. The stopper member 37 is connected to the upper end portion of the fourth holder member 36, and the spaced apart portions of the stopper portion 37a of the stopper member 37 and the upper end portion of the fourth holder member 36 are used as an adjustment space. It has become.

高圧用ロードセル41は、本発明の回転式打錠装置を高圧領域で使用して圧縮成形を行う場合に、高圧の成形圧力を検出するものである。この場合に設定される高圧の圧力領域は、例えば2500〜10000kgf(24.5kN〜98kN)の範囲である。   The high-pressure load cell 41 detects a high molding pressure when compression molding is performed using the rotary tableting device of the present invention in a high-pressure region. The high pressure region set in this case is, for example, in the range of 2500 to 10000 kgf (24.5 kN to 98 kN).

高圧用ロードセル41は高圧用ロードセル取付け台50に固定され、この取付け台50は高圧用ばね受け42に固定されている。したがって、高圧用ロードセル41は高圧用ばね受け42に支持されている。高圧用ばね受け42と高圧用ロードセル取付け台50とは一体に作ることもできる。高圧用ばね受け42は、第2ホルダー部材34の中央部を軸方向に貫通して配設されているとともに、滑りキー51により第2ホルダー部材34に対して回り止めされている。この高圧用ばね受け42は第1ホルダー部材33の内周面及び第2ホルダー部材34の下部内周面を摺動案内面として機構ホルダー32の軸方向に移動可能である。高圧用ばね受け42は、その上部周面の段差が抜け止めストッパ34aに当接した位置から更に下方、つまり、緩衝レバー4方向に移動して機構ホルダー32から抜けないように規制されている。高圧用ロードセル41が有した受圧突部41aと加圧部材4aとは常に当接保持されている。   The high pressure load cell 41 is fixed to a high pressure load cell mounting base 50, and the mounting base 50 is fixed to a high pressure spring receiver 42. Therefore, the high pressure load cell 41 is supported by the high pressure spring receiver 42. The high-pressure spring receiver 42 and the high-pressure load cell mounting base 50 can be made integrally. The high-pressure spring receiver 42 is disposed so as to penetrate the central portion of the second holder member 34 in the axial direction, and is prevented from rotating with respect to the second holder member 34 by a sliding key 51. The high-pressure spring receiver 42 is movable in the axial direction of the mechanism holder 32 with the inner peripheral surface of the first holder member 33 and the lower inner peripheral surface of the second holder member 34 as sliding guide surfaces. The high-pressure spring receiver 42 is restricted so that the step on the upper peripheral surface thereof moves further downward, that is, in the direction of the buffer lever 4 so as not to come out of the mechanism holder 32 from the position where it comes into contact with the stopper 34a. The pressure receiving protrusion 41a and the pressure member 4a included in the high pressure load cell 41 are always held in contact with each other.

伝達軸43は、高圧用ロードセル41が受けた成形圧力を伝達する金属など硬質の部材からなり、高圧用ロードセル41に対して成形圧力が加わる方向に延びて配設される。伝達軸43は、軸本体43aと、調整部材43bとから形成されている。   The transmission shaft 43 is made of a hard member such as a metal that transmits the molding pressure received by the high-pressure load cell 41 and extends in a direction in which the molding pressure is applied to the high-pressure load cell 41. The transmission shaft 43 is formed of a shaft main body 43a and an adjustment member 43b.

軸本体43aの下端部(一端部)は高圧用ばね受け42に連結され、この軸本体43aの上端部(他端部)は調整口35aと対向するように第3ホルダー部材35内に配置されている。軸本体43aの他端部外周面に目盛り43cが刻まれている。   The lower end portion (one end portion) of the shaft main body 43a is connected to the high pressure spring receiver 42, and the upper end portion (other end portion) of the shaft main body 43a is disposed in the third holder member 35 so as to face the adjustment port 35a. ing. A scale 43c is engraved on the outer peripheral surface of the other end of the shaft main body 43a.

調整部材43bは、軸本体43aの他端部に軸方向に移動可能に取付けられていて、その移動により伝達軸43の長さを微調整する。調整部材43bには例えば軸本体43aの他端部に進退可能に螺合されたボルトを好適に使用できる。この調整部材43bは調整口35aから任意に回転操作されるようになっている。   The adjustment member 43b is attached to the other end portion of the shaft main body 43a so as to be movable in the axial direction, and finely adjusts the length of the transmission shaft 43 by the movement. As the adjustment member 43b, for example, a bolt screwed to the other end of the shaft main body 43a so as to be able to advance and retreat can be suitably used. The adjustment member 43b is arbitrarily rotated from the adjustment port 35a.

低圧用ロードセル44は、本発明の回転式打錠装置を低圧領域で使用して圧縮成形を行う場合に、低圧の成形圧力を検出するものである。この場合に設定される低圧の圧力領域は、例えば2500kgf(24.5kN)以下の範囲である。   The low-pressure load cell 44 detects a low-pressure molding pressure when compression molding is performed using the rotary tableting device of the present invention in a low-pressure region. The low pressure region set in this case is, for example, a range of 2500 kgf (24.5 kN) or less.

低圧用ロードセル44は低圧用ロードセル取付け台52に固定され、この取付け台52は低圧用ばね受け47に固定されている。したがって、低圧用ロードセル44は低圧用ばね受け47に支持されている。低圧用ばね受け47と低圧用ロードセル取付け台52と一体に作ることもできる。低圧用ばね受け47は、第4ホルダー部材36内の下部を軸方向に貫通して配設されているとともに、滑りキー53により第4ホルダー部材36に対して回り止めされている。この低圧用ばね受け47は第3ホルダー部材35の上面開口及び第4ホルダー部材36の下部内周面を摺動案内面として機構ホルダー32の軸方向に移動可能である。低圧用ばね受け47は、その下端部周面の段差が第3ホルダー部材35の上面開口縁35aに当接した位置から更に下方、つまり、緩衝レバー4方向に移動されないように規制されている。   The low pressure load cell 44 is fixed to a low pressure load cell mounting base 52, and the mounting base 52 is fixed to a low pressure spring receiver 47. Therefore, the low pressure load cell 44 is supported by the low pressure spring receiver 47. The low-pressure spring receiver 47 and the low-pressure load cell mounting base 52 can be integrally formed. The low-pressure spring receiver 47 is disposed so as to penetrate the lower portion in the fourth holder member 36 in the axial direction, and is prevented from rotating with respect to the fourth holder member 36 by a slide key 53. The low-pressure spring receiver 47 is movable in the axial direction of the mechanism holder 32 with the upper opening of the third holder member 35 and the lower inner peripheral surface of the fourth holder member 36 as sliding guide surfaces. The low-pressure spring receiver 47 is restricted so that the step on the peripheral surface of the lower end portion is not moved further downward, that is, in the direction of the buffer lever 4 from the position where it contacts the upper opening edge 35a of the third holder member 35.

低圧用ロードセル44は第3ホルダー部材35の上部に配置されており、その出力取出し部44bは逃げ孔35bに通されている。低圧用ロードセル44が有した受圧突部44aには、伝達軸43の他端、つまり、調整部材43bが常に当接保持されている。この当接保持は、調整部材43bの高さ位置を調節することでなされている。   The low-pressure load cell 44 is disposed on the upper part of the third holder member 35, and the output extraction portion 44b is passed through the escape hole 35b. The other end of the transmission shaft 43, that is, the adjustment member 43b is always held in contact with the pressure receiving protrusion 44a of the low pressure load cell 44. This abutting and holding is performed by adjusting the height position of the adjusting member 43b.

高圧用調整ねじ45は低圧用ロードセル44と高圧用ばね受け42との間に配設されている。詳しくは、高圧用調整ねじ45の外周面に形成された雄ねじ部を第1ホルダー部材33のねじ溝33aに螺合することによって、第1ホルダー部材33と第2ホルダー部材34とにわたって高圧用調整ねじ45が機構ホルダー32に内蔵されている。高圧用調整ねじ45の中央部に伝達軸43が貫通している。なお、図2及び図3中符号54は高圧用調整ねじ45に保持されて伝達軸43を摺動可能な滑り軸受を示している。   The high pressure adjusting screw 45 is disposed between the low pressure load cell 44 and the high pressure spring receiver 42. Specifically, by adjusting the male thread portion formed on the outer peripheral surface of the high-pressure adjusting screw 45 to the screw groove 33a of the first holder member 33, the high-pressure adjustment is performed across the first holder member 33 and the second holder member 34. A screw 45 is built in the mechanism holder 32. A transmission shaft 43 passes through the center of the high-pressure adjusting screw 45. 2 and 3, reference numeral 54 denotes a sliding bearing that is held by the high-pressure adjusting screw 45 and that can slide the transmission shaft 43.

高圧用調整ねじ45は、その上部に複数の操作穴(二つのみ図示)45aを有している。操作穴45aには調整口35aを通して工具(図示しない)が挿脱され、挿入された工具を介して高圧用調整ねじ45が回転操作される。それによって、高圧用調整ねじ45は、高圧用ばね受け42に接近離反する方向に沿って高圧付勢位置と高圧付勢解除位置とにわたって移動調整されるようになっている。   The high-pressure adjusting screw 45 has a plurality of operation holes (only two shown) 45a in the upper part thereof. A tool (not shown) is inserted into and removed from the operation hole 45a through the adjustment port 35a, and the high-pressure adjustment screw 45 is rotated through the inserted tool. Accordingly, the high-pressure adjusting screw 45 is moved and adjusted across the high-pressure urging position and the high-pressure urging release position along a direction approaching and separating from the high-pressure spring receiver 42.

図2に高圧用調整ねじ45が高圧付勢位置に配置された状態を示す。この高圧付勢位置は、前記目盛り43cの範囲内で、この目盛り43cに高圧調整ねじ45の上端面を合わせることにより任意に設定できる。図3に高圧用調整ねじ45が高圧付勢解除位置に配置された状態を示す。この高圧付勢解除位置への高圧調整ねじ45の配置は、この調整ねじ45の上端面を前記ストッパ部35cに当接させることで規定される。   FIG. 2 shows a state in which the high-pressure adjusting screw 45 is disposed at the high-pressure biasing position. The high pressure biasing position can be arbitrarily set by aligning the upper end surface of the high pressure adjusting screw 45 with the scale 43c within the range of the scale 43c. FIG. 3 shows a state in which the high-pressure adjusting screw 45 is disposed at the high-pressure bias release position. The arrangement of the high-pressure adjustment screw 45 at the high-pressure bias release position is defined by bringing the upper end surface of the adjustment screw 45 into contact with the stopper portion 35c.

高圧用コイルばね46は高圧用調整ねじ45と高圧用ばね受け42との間に配置されている。図2に示したように高圧用調整ねじ45が高圧付勢位置に配置された状態では、高圧用コイルばね46は高圧用調整ねじ45と高圧用ばね受け42とで圧縮状態に挟まれている。これにより、高圧用コイルばね46のばね力で高圧用ロードセル41が緩衝レバー4に向けて付勢されている。この高圧用ロードセル41の受圧突部41aには加圧部材4aが当接保持されている。この状態で、高圧用コイルばね46のばね力(付勢力)を超える高圧の成形圧力が高圧用ロードセル41に作用した場合は、高圧用コイルばね46が縮んで過剰な成形圧力を緩衝できるようになっている。   The high-pressure coil spring 46 is disposed between the high-pressure adjusting screw 45 and the high-pressure spring receiver 42. As shown in FIG. 2, in a state where the high pressure adjustment screw 45 is disposed at the high pressure biasing position, the high pressure coil spring 46 is sandwiched between the high pressure adjustment screw 45 and the high pressure spring receiver 42. . As a result, the high-pressure load cell 41 is biased toward the buffer lever 4 by the spring force of the high-pressure coil spring 46. A pressure member 4 a is held in contact with the pressure receiving protrusion 41 a of the high pressure load cell 41. In this state, when a high-pressure forming pressure exceeding the spring force (biasing force) of the high-pressure coil spring 46 is applied to the high-pressure load cell 41, the high-pressure coil spring 46 is contracted so that the excessive forming pressure can be buffered. It has become.

図3に示すように高圧用調整ねじ45が高圧付勢解除位置に配置された状態では、この高圧用調整ねじ45は高圧用コイルばね46から離れた状態に配置され、高圧用コイルばね46は自由状態となる。したがって、この状態では、高圧用調整ねじ45による高圧用ロードセル41の付勢が解除される。   As shown in FIG. 3, when the high-pressure adjusting screw 45 is disposed at the high-pressure bias release position, the high-pressure adjusting screw 45 is disposed away from the high-pressure coil spring 46, and the high-pressure coil spring 46 is Become free. Therefore, in this state, the bias of the high-pressure load cell 41 by the high-pressure adjusting screw 45 is released.

低圧用調整ねじ48は、ストッパ部材37のストッパ部位37aと低圧用ばね受け47との間に配設されている。詳しくは、低圧用調整ねじ48の外周面に形成された雄ねじ部を第4ホルダー部材36のねじ溝36aに螺合することによって、第4ホルダー部材36とストッパ部材37とにわたって機構ホルダー32に低圧用調整ねじ48が内蔵されている。低圧用調整ねじ48の中央部には中空軸55が貫通している。中空軸55はその内側を貫通したねじ軸56によって低圧用ばね受け47に固定されている。中空軸55の自由端部はストッパ部位37aを貫通してこのストッパ部位37aに支持されている。中空軸55の上部外周には目盛り55aが刻まれている。なお、図2及び図3中符号57は低圧用調整ねじ48に保持されて中空軸55を摺動可能な滑り軸受を示している。   The low pressure adjusting screw 48 is disposed between the stopper portion 37 a of the stopper member 37 and the low pressure spring receiver 47. Specifically, the male screw portion formed on the outer peripheral surface of the low pressure adjusting screw 48 is screwed into the screw groove 36 a of the fourth holder member 36, so that the mechanism holder 32 is low pressure across the fourth holder member 36 and the stopper member 37. Adjustment screw 48 is incorporated. A hollow shaft 55 passes through the center of the low-pressure adjusting screw 48. The hollow shaft 55 is fixed to the low-pressure spring receiver 47 by a screw shaft 56 that penetrates the hollow shaft 55. The free end portion of the hollow shaft 55 passes through the stopper portion 37a and is supported by the stopper portion 37a. A scale 55 a is engraved on the outer periphery of the upper portion of the hollow shaft 55. 2 and 3, reference numeral 57 indicates a sliding bearing that is held by the low-pressure adjusting screw 48 and that can slide the hollow shaft 55.

低圧用調整ねじ48は、その上部に複数の操作穴(二つのみ図示)48aを有している。操作穴48aにはストッパ部位37aと第4ホルダー部材36の上端部との間の前記調整用空間を通して工具(図示しない)が挿脱され、挿入された工具を介して低圧用調整ねじ48が回転操作される。それによって、低圧用調整ねじ48は、低圧用ばね受け47に接近離反する方向に沿って低圧付勢位置と低圧付勢解除位置とにわたって移動調整されるようになっている。   The low-pressure adjusting screw 48 has a plurality of operation holes (only two shown) 48a in the upper part thereof. A tool (not shown) is inserted into and removed from the operation hole 48a through the adjustment space between the stopper portion 37a and the upper end portion of the fourth holder member 36, and the low-pressure adjustment screw 48 is rotated through the inserted tool. Operated. Accordingly, the low-pressure adjusting screw 48 is moved and adjusted across the low-pressure urging position and the low-pressure urging release position along the direction approaching and separating from the low-pressure spring receiver 47.

図3に低圧用調整ねじ48が低圧付勢位置に配置された状態を示す。この低圧付勢位置は、前記目盛り55aの範囲内で、この目盛り55aに低圧調整ねじ48の上端面を合わせることにより任意に設定できる。図2に低圧用調整ねじ48が低圧付勢解除位置に配置された状態を示す。この低圧付勢解除位置への低圧調整ねじ48の配置は、この調整ねじ48の上端面を前記ストッパ部位37aに当接させることで規定される。   FIG. 3 shows a state in which the low pressure adjusting screw 48 is disposed at the low pressure biasing position. This low pressure biasing position can be arbitrarily set within the range of the scale 55a by aligning the upper end surface of the low pressure adjusting screw 48 with the scale 55a. FIG. 2 shows a state in which the low pressure adjusting screw 48 is disposed at the low pressure bias release position. The arrangement of the low-pressure adjustment screw 48 at the low-pressure bias release position is defined by bringing the upper end surface of the adjustment screw 48 into contact with the stopper portion 37a.

低圧用コイルばね49は低圧用調整ねじ48と低圧用ばね受け47との間に配置されている。この低圧用コイルばね49のばね力は高圧用コイルばね46のばね力より小さい。図3に示したように低圧用調整ねじ48が低圧付勢位置に配置された状態では、低圧用コイルばね49は低圧用調整ねじ48と低圧用ばね受け47とで圧縮状態に挟まれている。これにより、低圧用コイルばね49のばね力で低圧用ロードセル44が緩衝レバー4に向けて付勢されている。この低圧用ロードセル44の受圧突部44aには伝達軸43の調整部材43bが当接保持されている。この状態で、低圧用コイルばね49のばね力(付勢力)を超える低圧の成形圧力が低圧用ロードセル44に作用した場合は、低圧用コイルばね49が縮んで過剰な成形圧力を緩衝できるようになっている。   The low-pressure coil spring 49 is disposed between the low-pressure adjusting screw 48 and the low-pressure spring receiver 47. The spring force of the low-pressure coil spring 49 is smaller than the spring force of the high-pressure coil spring 46. As shown in FIG. 3, in a state where the low pressure adjusting screw 48 is disposed at the low pressure biasing position, the low pressure coil spring 49 is sandwiched between the low pressure adjusting screw 48 and the low pressure spring receiver 47. . Accordingly, the low pressure load cell 44 is biased toward the buffer lever 4 by the spring force of the low pressure coil spring 49. An adjustment member 43b of the transmission shaft 43 is held in contact with the pressure receiving protrusion 44a of the low pressure load cell 44. In this state, when a low-pressure forming pressure exceeding the spring force (biasing force) of the low-pressure coil spring 49 is applied to the low-pressure load cell 44, the low-pressure coil spring 49 is contracted so that the excessive forming pressure can be buffered. It has become.

図2に示すように低圧用調整ねじ48が低圧付勢解除位置に配置された状態では、この低圧用調整ねじ48は低圧用コイルばね49から離れた状態に配置され、低圧用コイルばね48は自由状態となる。したがって、この状態では、低圧用調整ねじ48による低圧用ロードセル44の付勢が解除される。   As shown in FIG. 2, in a state where the low pressure adjustment screw 48 is disposed at the low pressure bias release position, the low pressure adjustment screw 48 is disposed away from the low pressure coil spring 49, and the low pressure coil spring 48 is Become free. Therefore, in this state, the bias of the low pressure load cell 44 by the low pressure adjusting screw 48 is released.

前記高圧用ロードセル41で検出された高圧領域での成形圧力は、前記図示しない制御盤内の高圧用重量制御部58(図1参照)に供給され、前記低圧用ロードセル44で検出された低圧圧領域での成形圧力は、前記図示しない制御盤内の低圧用重量制御部59(図1参照)に供給される。これらの高圧用重量制御部58及び低圧用重量制御部59の夫々には、基準値、つまり、目標成形圧力の上限値と下限値とが設定されている。高圧用重量制御部58及び低圧用重量制御部59は、それに供給された成形圧力の値が前記基準値内にあるかどうかを判定し、供給された成形圧力の値が上限値又は下限値を外れる場合には、その外れの程度に応じた重量制御信号を、軌道昇降機構19の昇降駆動モータ20に図示しないモータ駆動回路を通して与えて、フィードバック制御を行わせるようになっている。   The molding pressure in the high pressure region detected by the high pressure load cell 41 is supplied to the high pressure weight control unit 58 (see FIG. 1) in the control panel (not shown), and the low pressure detected by the low pressure load cell 44. The molding pressure in the region is supplied to the low pressure weight control unit 59 (see FIG. 1) in the control panel (not shown). In each of the high pressure weight control unit 58 and the low pressure weight control unit 59, a reference value, that is, an upper limit value and a lower limit value of a target molding pressure are set. The high pressure weight control unit 58 and the low pressure weight control unit 59 determine whether the value of the molding pressure supplied thereto is within the reference value, and the value of the molding pressure supplied to the upper limit value or the lower limit value. In the case of detachment, a weight control signal corresponding to the degree of detachment is given to the elevating drive motor 20 of the track elevating mechanism 19 through a motor drive circuit (not shown) to perform feedback control.

以上の構成を備えた回転式打錠装置は、低圧側圧力緩衝機構31bの影響を受けることなく高圧領域での粉末圧縮成形と、高圧側圧力緩衝機構31aの影響を受けることなく低圧領域での粉末圧縮成形とを、切換えることができるので、一台で回転式打錠装置でありながら、低圧から高圧にわたる粉末の圧縮成形をおこなうことができる。   The rotary tableting device having the above-described configuration is a powder compression molding in the high pressure region without being affected by the low pressure side pressure buffer mechanism 31b, and a low pressure region without being affected by the high pressure side pressure buffer mechanism 31a. Since powder compression molding can be switched, it is possible to perform powder compression molding from low pressure to high pressure while using a single rotary tableting device.

すなわち、高圧領域で粉末圧縮成形を行う場合には、まず、高圧側緩衝機構31aを有効に機能するようにセットすると共に、低圧側緩衝機構31bが機能しないようにこの機構31bを自由状態とする。   That is, when powder compression molding is performed in the high pressure region, first, the high pressure side buffer mechanism 31a is set so as to function effectively, and the mechanism 31b is set in a free state so that the low pressure side buffer mechanism 31b does not function. .

この場合、高圧用調整ねじ45をその締め付け操作により下方(上部の圧縮ロール24方向)に移動させて高圧付勢位置に配置するとともに、この高圧用調整ねじ45の上端面を伝達軸43の目盛り43cの所望の値に合わせる。それにより、高圧用コイルばね46を圧縮状態として、2500〜10000kgf(24.5〜98.0kN)の範囲に緩衝圧力(設定圧力)を設定する。この一方で、低圧用調整ねじ48を緩めて、このねじ48の上端がストッパ部材37のストッパ部位37aに当たるまで上方に移動させて、低圧用調整ねじ48を低圧解除位置に配置する。それにより、低圧用コイルばね49を自由状態とする。以上のセット状態を図2に示す。   In this case, the high-pressure adjusting screw 45 is moved downward (in the direction of the upper compression roll 24) by the tightening operation and disposed at the high-pressure biasing position, and the upper end surface of the high-pressure adjusting screw 45 is graduated from the transmission shaft 43. Adjust to the desired value of 43c. As a result, the high-pressure coil spring 46 is compressed, and the buffer pressure (set pressure) is set in the range of 2500 to 10,000 kgf (24.5 to 98.0 kN). On the other hand, the low pressure adjusting screw 48 is loosened and moved upward until the upper end of the screw 48 hits the stopper portion 37a of the stopper member 37, and the low pressure adjusting screw 48 is arranged at the low pressure release position. Thereby, the low-pressure coil spring 49 is brought into a free state. The above set state is shown in FIG.

この状態から回転式打錠装置を運転することで高圧領域での粉末圧縮成形が行われる。この圧縮成形において、上杵15が上部の圧縮ロール24を通過するに伴い、上杵15を経て上部の圧縮ロール24に作用する高圧領域の成形圧力が、緩衝レバー4を介して高圧用ロードセル41に加えられる。この高圧領域の成形圧力が高圧用コイルばね46の付勢力により定められた高圧側緩衝圧力(高圧側設定圧力)より低いときには、その圧力に応じた値の電圧が高圧用ロードセル41から高圧用重量制御部58に供給されて、高圧成形下でのフィードバック制御による重量制御が行われる。   By operating the rotary tableting device from this state, powder compression molding is performed in a high pressure region. In this compression molding, as the upper collar 15 passes through the upper compression roll 24, the molding pressure in the high pressure region acting on the upper compression roll 24 via the upper collar 15 is transferred via the buffer lever 4 to the high pressure load cell 41. Added to. When the molding pressure in the high pressure region is lower than the high pressure side buffer pressure (high pressure side set pressure) determined by the biasing force of the high pressure coil spring 46, a voltage corresponding to the pressure is supplied from the high pressure load cell 41 to the high pressure weight. It is supplied to the control unit 58, and weight control is performed by feedback control under high pressure molding.

高圧領域の成形圧力が高圧用コイルばね46の付勢力により定められた高圧側緩衝圧力(高圧側設定圧力)より高くなった場合には、高圧用コイルばね46の付勢力に抗して高圧用ロードセル41が緩衝レバー4に押されて移動するので、高圧用ロードセル41が過剰な成形圧力によって破損に至ることを防止できる。   When the molding pressure in the high pressure region becomes higher than the high pressure side buffer pressure (high pressure side set pressure) determined by the urging force of the high pressure coil spring 46, the high pressure region resists the urging force of the high pressure coil spring 46. Since the load cell 41 is moved by being pushed by the buffer lever 4, it is possible to prevent the high-pressure load cell 41 from being damaged by an excessive molding pressure.

この場合、高圧側緩衝機構31aを介して低圧用ロードセル44が押されるようになる。つまり、高圧用ロードセル41とともに、高圧用ロードセル取付け台50、高圧用ばね受け42、および伝達軸43が移動するので、低圧用ロードセル44が押されるようになる。しかし、低圧用コイルばね49は自由状態にあるので、低圧用ロードセル44、低圧用ロードセル取付け台52、低圧用ばね受け47、中空軸55、及びねじ軸55は、高圧用ロードセル41の動きに追従して移動する。したがって、高圧用ロードセル41より強度が低い低圧用ロードセル44に、高圧領域を超える過剰な成形圧力が加わることがないので、低圧用ロードセル44等が破損することはない。   In this case, the low pressure load cell 44 is pushed through the high pressure side buffer mechanism 31a. That is, the high-pressure load cell 41, the high-pressure spring receiver 42, and the transmission shaft 43 move together with the high-pressure load cell 41, so that the low-pressure load cell 44 is pushed. However, since the low-pressure coil spring 49 is in a free state, the low-pressure load cell 44, the low-pressure load cell mounting base 52, the low-pressure spring receiver 47, the hollow shaft 55, and the screw shaft 55 follow the movement of the high-pressure load cell 41. Then move. Therefore, since the excessive molding pressure exceeding the high pressure region is not applied to the low pressure load cell 44 having a lower strength than the high pressure load cell 41, the low pressure load cell 44 and the like are not damaged.

又、低圧領域で粉末圧縮成形を行う場合には、まず、低圧側緩衝機構31bを有効に機能するようにセットすると共に、高圧側緩衝機構31aが機能しないようにこの機構31aを自由状態とする。   When performing powder compression molding in the low pressure region, first, the low pressure side buffer mechanism 31b is set to function effectively, and the mechanism 31a is set in a free state so that the high pressure side buffer mechanism 31a does not function. .

この場合、低圧用調整ねじ48をその締め付け操作により下方(上部の圧縮ロール24方向)に移動させて低圧付勢位置に配置するとともに、この低圧用調整ねじ48の上端面を中空軸55の目盛り55aの所望の値に合わせる。それにより、低圧用コイルばね49を圧縮状態として、2500kgf(24.5kN)以下の範囲で緩衝圧力(設定圧力)を設定する。この一方で、高圧用調整ねじ45を緩めて、このねじ45の上端が第3ホルダー部材35のストッパ部35cに当たるまで上方(低圧ロードセル44方向)に移動させて、高圧用調整ねじ45を高圧解除位置に配置する。それにより、高圧用コイルばね49を自由状態とする。以上のセット状態を図3に示す。   In this case, the low-pressure adjusting screw 48 is moved downward (in the direction of the upper compression roll 24) by the tightening operation and disposed at the low-pressure biasing position, and the upper end surface of the low-pressure adjusting screw 48 is graduated from the hollow shaft 55. Adjust to the desired value of 55a. As a result, the low-pressure coil spring 49 is compressed, and the buffer pressure (set pressure) is set within a range of 2500 kgf (24.5 kN) or less. On the other hand, the high pressure adjusting screw 45 is loosened and moved upward (in the direction of the low pressure load cell 44) until the upper end of the screw 45 comes into contact with the stopper portion 35c of the third holder member 35, thereby releasing the high pressure adjusting screw 45 from the high pressure. Place in position. Thereby, the high-pressure coil spring 49 is brought into a free state. The above set state is shown in FIG.

この状態から回転式打錠装置を運転することで低圧領域での粉末圧縮成形が行われる。この圧縮成形において、上杵15が上部の圧縮ロール24を通過するに伴い、上杵15を経て上部の圧縮ロール24に作用する低圧領域の成形圧力が、緩衝レバー4を介して高圧用ロードセル41に加えられる。この場合、高圧用コイルばね46が自由状態にあるので、高圧用ロードセル41とともに、高圧用ロードセル取付け台50、高圧用ばね受け42、および伝達軸43を介して、伝達軸43の調整部材43bにより低圧用ロードセル44が押されるようになる。この際、低圧用ロードセル44より強度が高い高圧用ロードセル41は剛体として扱うことができる。そして、この高圧用ロードセル41に作用する低圧側成形圧力は、高圧側成形圧力よりも低いので、低圧側成形圧力によって高圧用ロードセル41が破損することはない。   By operating the rotary tableting device from this state, powder compression molding is performed in the low pressure region. In this compression molding, as the upper flange 15 passes through the upper compression roll 24, the molding pressure in the low pressure region acting on the upper compression roll 24 via the upper flange 15 is transferred via the buffer lever 4 to the high pressure load cell 41. Added to. In this case, since the high-pressure coil spring 46 is in a free state, the high-pressure load cell 41 and the high-pressure load cell mounting base 50, the high-pressure spring receiver 42, and the transmission shaft 43 are adjusted by the adjusting member 43 b of the transmission shaft 43. The low pressure load cell 44 is pushed. At this time, the high pressure load cell 41 having higher strength than the low pressure load cell 44 can be treated as a rigid body. The low-pressure side molding pressure acting on the high-pressure load cell 41 is lower than the high-pressure side molding pressure, so that the high-pressure load cell 41 is not damaged by the low-pressure side molding pressure.

そのため、低圧領域での成形圧力が低圧用コイルばね49の付勢力により定められた低圧側緩衝圧力(低圧側設定圧力)より低いときには、その圧力に応じた値の電圧が低圧用ロードセル44から低圧用重量制御部59に供給されて、低圧成形下でのフィードバック制御による重量制御が行われる。   Therefore, when the molding pressure in the low pressure region is lower than the low pressure side buffer pressure (low pressure side set pressure) determined by the biasing force of the low pressure coil spring 49, the voltage corresponding to the pressure is reduced from the low pressure load cell 44. The weight control unit 59 is supplied to the weight control unit 59 to perform weight control by feedback control under low pressure molding.

低圧領域の成形圧力が低圧用コイルばね49の付勢力により定められた低圧側緩衝圧力(低圧側設定圧力)より高くなった場合には、低圧用コイルばね49の付勢力に抗して低圧用ロードセル44が伝達軸43に押されて移動するので、低圧用ロードセル44が過剰な成形圧力によって破損することを防止できる。   When the molding pressure in the low pressure region becomes higher than the low pressure side buffer pressure (low pressure side set pressure) determined by the biasing force of the low pressure coil spring 49, the low pressure region resists the biasing force of the low pressure coil spring 49. Since the load cell 44 is pushed and moved by the transmission shaft 43, the low pressure load cell 44 can be prevented from being damaged by an excessive molding pressure.

以上のように回転式打錠機10は、成形圧力に応じて高圧用ロードセル41と低圧用ロードセル44とを、それらの内の一方を有効にし他方を無効にするように使い分けるので、高圧用ロードセル41及びこれに応じた高圧用コイルばねと、低圧用ロードセル44及びこれに応じた低圧用コイルばねを交換部品として用意して、これらを、成形圧力の変更の都度、交換する場合に比較して、簡単にかつ素早く前記使い分けを実現できる。しかも、高圧用と低圧用の専用機を要することなく一台の圧縮成形装置で低圧から高圧までの圧縮成形を行えるとともに、それに伴い設備的負担を抑制できる。   As described above, the rotary tableting machine 10 uses the high-pressure load cell 41 and the low-pressure load cell 44 in accordance with the molding pressure so that one of them is enabled and the other is disabled. 41 and a high-pressure coil spring corresponding thereto, a low-pressure load cell 44 and a low-pressure coil spring corresponding thereto are prepared as replacement parts, and these are compared with the case where they are replaced each time the molding pressure is changed. This can be used easily and quickly. In addition, compression molding from low pressure to high pressure can be performed with a single compression molding apparatus without requiring dedicated machines for high pressure and low pressure, and the equipment burden can be reduced accordingly.

なお、本発明は前記一実施形態には制約されない。例えば、圧力緩衝装置31は、上下方向ではなく、斜め方向又は水平方向に沿って配置してもよい。更に、圧力緩衝装置31は、下部の圧縮ロール25側に配置してもよい。しかし、例えば下部の圧縮ロール25の下方に延びるように圧力緩衝装置31を配置した場合に比較して、前記一実施形態のように上部の圧縮ロール24側に配置した場合は、圧力緩衝装置31の配設高さ分に相当して装置フレームを高くする必要がない点で、好ましい。   The present invention is not limited to the one embodiment. For example, the pressure buffer device 31 may be arranged along an oblique direction or a horizontal direction instead of the vertical direction. Further, the pressure buffer device 31 may be disposed on the lower compression roll 25 side. However, when the pressure buffer device 31 is disposed so as to extend below the lower compression roll 25, for example, when the pressure buffer device 31 is disposed on the upper compression roll 24 side as in the embodiment, the pressure buffer device 31 is disposed. It is preferable in that the apparatus frame does not need to be raised correspondingly to the arrangement height.

本発明の一実施形態に係る回転式打錠機の構成を展開して概略的に示す図。The figure which expand | deploys and shows schematically the structure of the rotary tableting machine which concerns on one Embodiment of this invention. 図1の回転式打錠機が備える圧力緩衝装置を高圧成形に適するようにセットした状態で示す断面図。Sectional drawing shown in the state which set the pressure buffer apparatus with which the rotary tableting machine of FIG. 1 was equipped so that it might be suitable for high pressure molding. 図1の回転式打錠機が備える圧力緩衝装置を低圧成形に適するようにセットした状態で示す断面図。Sectional drawing shown in the state which set the pressure buffer apparatus with which the rotary tableting machine of FIG. 1 was equipped so that it might be suitable for low pressure molding.

符号の説明Explanation of symbols

3…ロール軸、4…緩衝レバー、10…回転式打錠機(回転式粉末圧縮成形機)、11…回転盤、12…臼、15…上杵、16…下杵、19…軌道昇降機構、24…上部圧縮ロール、26…下部圧縮ロール、31…圧力緩衝装置、41…高圧用ロードセル、42…高圧用ばね受け、43…伝達軸、43a…軸本体、43b…調整部材、44…低圧用ロードセル、45…高圧用調整ねじ、46…高圧用コイルばね(高圧用ばね)、47…低圧用ばね受け、48…低圧用調整ねじ、49…低圧用コイルばね(低圧用ばね)   DESCRIPTION OF SYMBOLS 3 ... Roll axis | shaft, 4 ... Buffer lever, 10 ... Rotary type tableting machine (rotary powder compression molding machine), 11 ... Rotary disk, 12 ... Mortar, 15 ... Upper punch, 16 ... Lower punch, 19 ... Orbit raising / lowering mechanism 24 ... Upper compression roll, 26 ... Lower compression roll, 31 ... Pressure buffer, 41 ... High pressure load cell, 42 ... High pressure spring receiver, 43 ... Transmission shaft, 43a ... Shaft body, 43b ... Adjustment member, 44 ... Low pressure Load cell, 45 ... high pressure adjustment screw, 46 ... high pressure coil spring (high pressure spring), 47 ... low pressure spring receiver, 48 ... low pressure adjustment screw, 49 ... low pressure coil spring (low pressure spring)

Claims (1)

回転盤に設けられた臼に上下動可能な杵の先端部を挿入し、これらの杵を上下の圧縮ロール間に通過させることで前記上下の杵の杵先間隔を狭めて、前記臼内に供給された粉末を圧縮成形する回転式粉末圧縮成形装置において、
粉末の圧縮成形時に加わる成形圧力を前記上下の圧縮ロールの一方から検出する高圧用ロードセルと、
このロードセルが支持された高圧用ばね受けと、
このばね受けに一端部が連結され前記高圧用ロードセルに対して成形圧力が加わる方向に延びる伝達軸と、
この伝達軸の他端に接して配設され前記高圧用ロードセルよりも低い成形圧力を検出する低圧用ロードセルと、
この低圧用ロードセルと前記高圧用ばね受けとの間にこの高圧用ばね受けに接近離反する方向に沿って高圧付勢位置と高圧付勢解除位置とにわたって移動可能に配設された高圧用調整ねじと、
この高圧用調整ねじと高圧用ばね受けとの間に配置され、前記高圧付勢位置に前記高圧用調整ねじが配置された状態で前記高圧用ロードセルを付勢し、前記高圧付勢解除位置に前記高圧用調整ねじが配置された状態で前記高圧用ロードセルの付勢を解除する高圧用ばねと、
前記低圧用ロードセルが支持された低圧用ばね受けと、
この低圧用ばね受けに接近離反する方向に沿って低圧付勢位置と低圧付勢解除位置とにわたって移動可能に配設された低圧用調整ねじと、
この低圧用調整ねじと前記低圧用ばね受けとの間に配置され、前記低圧付勢位置に前記低圧用調整ねじが配置された状態で前記高圧用ばねの付勢力より小さい付勢力で前記低圧用ロードセルを付勢し、前記低圧付勢解除位置に前記低圧用調整ねじが配置された状態で前記低圧用ロードセルの付勢を解除する低圧用ばねと、
を具備した回転式粉末圧縮成型装置。
Insert the tip part of the scissors that can move up and down into the mortar provided on the rotating disk, and pass these scissors between the upper and lower compression rolls to narrow the tip spacing of the upper and lower scissors, In the rotary powder compression molding apparatus that compresses and molds the supplied powder,
A high-pressure load cell that detects a molding pressure applied during compression molding of the powder from one of the upper and lower compression rolls;
A high-pressure spring receiver on which the load cell is supported;
A transmission shaft having one end connected to the spring receiver and extending in a direction in which a molding pressure is applied to the high-pressure load cell;
A low pressure load cell that is disposed in contact with the other end of the transmission shaft and detects a molding pressure lower than the high pressure load cell;
A high-pressure adjusting screw disposed between the low-pressure load cell and the high-pressure spring receiver so as to be movable between a high-pressure biasing position and a high-pressure biasing release position in a direction approaching and separating from the high-pressure spring receiver. When,
The high pressure load cell is disposed between the high pressure adjustment screw and the high pressure spring receiver, and the high pressure load cell is biased in the state where the high pressure adjustment screw is disposed at the high pressure biasing position. A high-pressure spring for releasing the bias of the high-pressure load cell in a state where the high-pressure adjusting screw is disposed;
A low-pressure spring receiver on which the low-pressure load cell is supported;
A low-pressure adjusting screw that is movably disposed between a low-pressure biasing position and a low-pressure biasing release position along a direction approaching and separating from the low-pressure spring receiver;
The low pressure adjusting screw is arranged between the low pressure adjusting spring and the low pressure spring receiver, and the low pressure adjusting screw is biased by a biasing force smaller than that of the high pressure spring in the state where the low pressure adjusting screw is disposed at the low pressure biasing position. A low pressure spring that biases the load cell and releases the bias of the low pressure load cell in a state where the low pressure adjustment screw is disposed at the low pressure bias release position;
A rotary powder compression molding apparatus.
JP2006079443A 2006-03-22 2006-03-22 Rotary powder compression molding equipment Active JP4759417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006079443A JP4759417B2 (en) 2006-03-22 2006-03-22 Rotary powder compression molding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006079443A JP4759417B2 (en) 2006-03-22 2006-03-22 Rotary powder compression molding equipment

Publications (2)

Publication Number Publication Date
JP2007253180A true JP2007253180A (en) 2007-10-04
JP4759417B2 JP4759417B2 (en) 2011-08-31

Family

ID=38627933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006079443A Active JP4759417B2 (en) 2006-03-22 2006-03-22 Rotary powder compression molding equipment

Country Status (1)

Country Link
JP (1) JP4759417B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2236274A2 (en) 2009-04-04 2010-10-06 Fette GmbH Pressing station in a rotary press
JP2011056572A (en) * 2009-09-14 2011-03-24 Fuji Yakuhin Kikai:Kk Rotation type tablet molding machine
JP2016129901A (en) * 2015-01-14 2016-07-21 株式会社畑鉄工所 Pressure buffer device for rotary powder compression molding apparatus, and rotary type compression molding apparatus with the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103072303B (en) * 2013-01-22 2015-07-22 合肥合锻机床股份有限公司 Leak-proof up-mounted buffering device of hydraulic machine and hydraulic machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257927U (en) * 1988-10-19 1990-04-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257927U (en) * 1988-10-19 1990-04-26

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2236274A2 (en) 2009-04-04 2010-10-06 Fette GmbH Pressing station in a rotary press
JP2011056572A (en) * 2009-09-14 2011-03-24 Fuji Yakuhin Kikai:Kk Rotation type tablet molding machine
JP2016129901A (en) * 2015-01-14 2016-07-21 株式会社畑鉄工所 Pressure buffer device for rotary powder compression molding apparatus, and rotary type compression molding apparatus with the same

Also Published As

Publication number Publication date
JP4759417B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4759417B2 (en) Rotary powder compression molding equipment
EP2308598B1 (en) Silicon crushing apparatus having a plurality of crushers
CN100478165C (en) Press machine with die cushion device
JP6154977B1 (en) Drilling device
US8668483B2 (en) Facility for producing a solid product using one or more powder materials
EP2123435A1 (en) Compression molding method of throw-away tip
JPH01104436A (en) Closed-die forging equipment
CN200986511Y (en) Full-automatic metallurgy ball compression testing machine
US20080020082A1 (en) Press for producing pressed parts from powdered material
JP2007283352A (en) Bearing structure and press-forming apparatus having the same
KR100781914B1 (en) Press forming machine
US7797076B2 (en) Control unit for powder material compression molding machine
JP5490810B2 (en) Machine for opening can lid and method for emptying can
JP2004042126A (en) Powder molding method and equipment
KR100684202B1 (en) Badness a tablet sorting is possible rotary tablet compression device and method
EP4046771A2 (en) Injection molding machine
CN102114716A (en) Forming system and forming device for compression formed product
US7494330B2 (en) Device to receive tools for the calibration of workpieces and press with such a device
JP2011235349A (en) Powder compacting press
JPH08247865A (en) Automatic measurement method for press molded body and its automatic measurement device thereof
JP2021511212A (en) Adjustable preload rail for rotary press with integrated preload measurement function
JPS598876Y2 (en) Product sorting device for rotary powder compression molding machine
JPS6227915B2 (en)
JPH06285698A (en) Press
JPS63194899A (en) Method for automatically adjusting weight and thickness of forming product in rotary type powder compression forming machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

R150 Certificate of patent or registration of utility model

Ref document number: 4759417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250