JP2007253110A - Catalyst for exhaust gas purification, integral construction type catalyst for exhaust gas purification, and method for exhaust gas purification - Google Patents

Catalyst for exhaust gas purification, integral construction type catalyst for exhaust gas purification, and method for exhaust gas purification Download PDF

Info

Publication number
JP2007253110A
JP2007253110A JP2006083177A JP2006083177A JP2007253110A JP 2007253110 A JP2007253110 A JP 2007253110A JP 2006083177 A JP2006083177 A JP 2006083177A JP 2006083177 A JP2006083177 A JP 2006083177A JP 2007253110 A JP2007253110 A JP 2007253110A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
base material
gas purification
inorganic base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006083177A
Other languages
Japanese (ja)
Other versions
JP4817918B2 (en
Inventor
Masatoshi Maruki
雅俊 丸木
Katsuaki Kato
克昭 加藤
Yoshiaki Hirasawa
佳朗 平澤
Takahiro Kurokawa
貴弘 黒川
Koji Ishikawa
幸治 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Kigenso Kagaku Kogyo Co Ltd
NE Chemcat Corp
Original Assignee
Daiichi Kigenso Kagaku Kogyo Co Ltd
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Kigenso Kagaku Kogyo Co Ltd, NE Chemcat Corp filed Critical Daiichi Kigenso Kagaku Kogyo Co Ltd
Priority to JP2006083177A priority Critical patent/JP4817918B2/en
Publication of JP2007253110A publication Critical patent/JP2007253110A/en
Application granted granted Critical
Publication of JP4817918B2 publication Critical patent/JP4817918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxidation catalyst for exhaust gas purification that can efficiently remove hydrocarbons (HC) and carbon monoxide (CO) in exhaust gases and has resistance against sulfur poisoning, a catalyst structure for exhaust gas purification containing the above catalyst, and a method for exhaust gas purification using the above catalyst structure. <P>SOLUTION: The catalyst for exhaust gas purification is a catalyst for exhaust gas purification containing a fibrous inorganic basic material/metal catalyst composite where a metal catalyst component (A) is supported by a whisker-like inorganic basic material (B). The metal catalyst component (A) contains at least a noble metal element and the whisker-like inorganic basic material (B) contains Al<SB>2</SB>O<SB>3</SB>as the main component and a zirconium component in the crystal and/or on the surface of the crystal and has a diameter of substantially 50 nm or less and an aspect ratio of 2 or higher. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、排気ガス浄化用触媒、その製造方法、及び排気ガス浄化用一体構造型触媒に関し、より詳しくは、内燃機関、ボイラー等の排気ガスに含まれるHC、CO、SOF、NOx等に対して優れた浄化能力を有し、また、排気ガスが低温の環境下においても安定した浄化能力を発現しうる排気ガス浄化用触媒、その製造方法、及び排気ガス浄化用一体構造型触媒に関するものである。   The present invention relates to an exhaust gas purification catalyst, a manufacturing method thereof, and an exhaust gas purification monolithic catalyst, and more particularly to HC, CO, SOF, NOx, etc. contained in exhaust gas of an internal combustion engine, a boiler, etc. The present invention relates to an exhaust gas purification catalyst that has an excellent purification ability and that can exhibit a stable purification ability even in a low temperature environment, a manufacturing method thereof, and an integral structure type catalyst for exhaust gas purification. is there.

内燃機関、ボイラーは、その構造、種類に応じて、燃料、潤滑剤等に由来した様々な有害物質を排出する。これら有害物質としては炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)のほかに、ディーゼルエンジンなどから排出される煤(スート)に代表される粒子状物質(particulate matter:以下、PMという事がある)があり、前記HCにはベンゼン、トルエン、炭素鎖長の長い炭化水素など有機溶剤に可溶な成分である可溶性有機成分(soluble organic fraction:以下、SOFと言うことがある)が含まれる。   Internal combustion engines and boilers emit various harmful substances derived from fuels, lubricants, etc., depending on their structure and type. In addition to hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx), these harmful substances include particulate matter typified by soot discharged from diesel engines and the like: Hereinafter, the HC may be a soluble organic component (hereinafter referred to as SOF), which is a component soluble in an organic solvent such as benzene, toluene, or a hydrocarbon having a long carbon chain length. Is included).

近年、各種内燃機関からの排気ガスによる環境汚染が社会的問題となり、その浄化のために種々の手法が提案されている。これら排気ガス中の有害成分を浄化する一つの方法として、排気ガスを触媒に接触させ、浄化する接触処理法が実用化されている。
このうちガソリン機関の排気ガス浄化用触媒としては、HC、SOF、COなどの有害成分を酸化して浄化する酸化触媒、NOxなどの有害成分を一時的に吸蔵した後に加熱したり、燃料などの未燃炭化水素、尿素、アンモニアなどの還元剤を供給することにより還元除去する還元触媒、HC、CO、NOxを同時に酸化・還元処理して浄化する三元触媒が知られている(例えば、特許文献1参照)。
In recent years, environmental pollution due to exhaust gas from various internal combustion engines has become a social problem, and various methods have been proposed for purification. As one method for purifying harmful components in these exhaust gases, a contact treatment method for purifying exhaust gases by contacting them with a catalyst has been put into practical use.
Among these, exhaust gas purification catalysts for gasoline engines include oxidation catalysts that oxidize and purify harmful components such as HC, SOF, and CO, heat after temporarily storing harmful components such as NOx, and fuel A reduction catalyst that reduces and removes by supplying a reducing agent such as unburned hydrocarbon, urea, ammonia, etc., and a three-way catalyst that simultaneously purifies by oxidizing and reducing HC, CO, and NOx (for example, patents) are known. Reference 1).

また、ディーゼル機関から排出されるスートを排気ガスから濾し取り、スートが溜まった時点で燃料などの未燃HCやNOを供給し、加熱処理して、スートを酸化(燃焼)処理する方法が検討され、排気ガス中の粒子状物質を濾し取るためのフィルター(Diesel Particulate Filter、以下、DPFと言うことがある)、DPFを触媒化した触媒化フィルター(catalyzed soot filter、以下、CSFという事がある)が知られている。 In addition, there is a method of filtering soot discharged from a diesel engine from exhaust gas, supplying unburned HC or NO 2 such as fuel when the soot accumulates, heat-treating, and oxidizing (combusting) the soot. A filter (Diesel Particulate Filter, hereinafter referred to as DPF) for filtering out particulate matter in exhaust gas, and a catalyzed filter (catalyzed soot filter, hereinafter referred to as CSF) catalyzed by DPF. Is known).

排気ガス浄化に寄与する活性金属としては、白金、パラジウム、ロジウムなどの貴金属、ニッケル、鉄などの遷移金属、セリウム、ランタンなどの希土類金属やその酸化物が知られている。また、これら活性金属は、表面積を大きくし強度を高めるために、β−アルミナ、γ−アルミナなどのアルミナやゼオライトなどの担体に担持される。なお、ゼオライトには、MFI型、β型等の種類があり、内部のカチオンをCe、Feなどの金属イオンで交換されることがある。触媒組成物は、その求められる機能に応じて、活性金属、担体の種類と量が選択され、触媒製造時に、アルカリ金属、アルカリ土類金属や、セリアに代表される酸素の吸蔵・放出材等が添加されることがある。   Known active metals that contribute to exhaust gas purification include noble metals such as platinum, palladium and rhodium, transition metals such as nickel and iron, rare earth metals such as cerium and lanthanum, and oxides thereof. These active metals are supported on a support such as alumina such as β-alumina and γ-alumina and zeolite in order to increase the surface area and increase the strength. There are various types of zeolite such as MFI type and β type, and the internal cation may be exchanged with metal ions such as Ce and Fe. The catalyst composition is selected according to the required function, and the type and amount of the active metal and the carrier are selected. At the time of producing the catalyst, an alkali metal, alkaline earth metal, oxygen storage / release material represented by ceria, etc. May be added.

このような排気ガス浄化用触媒の担体としては、金属の波板やセラミックスで成形されたハニカム状のフロースルー型担体や、DPF、CSFに多く用いられるハニカムの一端が閉じて市松模様になったウォールフロー型担体の一体構造型担体が知られている。また、太い繊維状物からなるフェルト様の不燃性構造体や、数ミリから数センチの直径の球状物、柱状物などからなる成型担体が知られている(本発明では、これらを総称して構造型担体と言い、フロースルー型担体、ウォールフロー型担体などの一体構造型担体と区別する)。   As such an exhaust gas purifying catalyst carrier, a honeycomb flow-through carrier formed of metal corrugated plates or ceramics, or one end of a honeycomb often used for DPF or CSF was closed to form a checkered pattern. An integral structure type carrier of a wall flow type carrier is known. In addition, a felt-like noncombustible structure made of a thick fibrous material, a spherical carrier having a diameter of several millimeters to several centimeters, a molded carrier made of a columnar material, etc. are known (in the present invention, these are generically called This is called a structural carrier, and is distinguished from a monolithic carrier such as a flow-through carrier and a wall flow carrier).

これら排気ガス浄化用の触媒は、排気ガスが流出する際の圧力損失を小さく抑えることができ、しかも接触効率を大きく確保できるように、担体の表面に触媒組成物を被覆して、通常は排気ガスの流路に設置される。
排気ガス浄化用触媒を自動車に搭載する場合、車体の比較的温度の低い床下に設置されるものと、エンジンから排出された直後、高温の排気ガスが通過する位置に設置される直下型と言われるものとがある。このうち、直下型では排気ガスの温度が比較的高温であり、条件によっては800℃を超えるような高温になることもあるため、このような高温状態では触媒の活性も高く、排気ガスの浄化効率も高い。
These exhaust gas purifying catalysts can suppress pressure loss when the exhaust gas flows out, and can cover the carrier surface with a catalyst composition so that a large contact efficiency can be secured. It is installed in the gas flow path.
When an exhaust gas purifying catalyst is installed in an automobile, it is said that it is installed under the floor of the vehicle body where the temperature is relatively low, or a direct type installed immediately after it is exhausted from the engine, where hot exhaust gas passes. There is something to be said. Among them, in the direct type, the temperature of the exhaust gas is relatively high, and depending on conditions, the temperature may exceed 800 ° C. Therefore, in such a high temperature state, the activity of the catalyst is high, and the purification of the exhaust gas High efficiency.

しかし、直下型であってもエンジンの始動直後や低回転時には排気ガス温度も低く、300℃を下回るような事も稀ではなく、このような低温状態では触媒が有効に働かず、排気ガス中の有害成分の浄化が難しい場合がある。一方、床下に配置された触媒では、もともと床下の温度が低いので一層深刻である。
自動車に搭載される排気ガス浄化用触媒では、排気ガス温度が低いときにも活性が求められている。このような低温時の触媒活性、すなわち低温活性が求められる状況としては、たとえば、半日以上静置され全体が外気温程度まで冷却された車両を始動させる場合が挙げられる。この場合、触媒およびエンジン燃焼室が外気温程度まで冷却された状態にある。この状態でエンジンを始動すると、その直後は、エンジン燃焼室が充分暖気されていないため、燃料の燃焼熱の一部が、エンジン暖気のために奪われてしまい、燃料が完全燃焼し難く、燃料の未燃成分や、不完全燃焼成分が多く排出されてしまう。
However, even in the direct type, it is not rare that the exhaust gas temperature is low immediately after starting the engine or at a low speed, and it is less than 300 ° C. The catalyst does not work effectively in such a low temperature state, and the exhaust gas It may be difficult to purify harmful components. On the other hand, the catalyst placed under the floor is more serious because the temperature under the floor is originally low.
An exhaust gas purification catalyst mounted on an automobile is required to be active even when the exhaust gas temperature is low. As a situation where such low-temperature catalyst activity, that is, low-temperature activity is required, for example, a case where a vehicle that has been allowed to stand for half a day or more and has been cooled to the outside temperature is started. In this case, the catalyst and the engine combustion chamber are cooled to about the outside air temperature. When the engine is started in this state, immediately after that, the engine combustion chamber is not sufficiently warmed up, so a part of the combustion heat of the fuel is taken away by the engine warming up, and it is difficult to completely burn the fuel. Many unburned components and incompletely burned components are discharged.

これら排気ガスの有害物質を浄化することが、触媒に求められる低温活性である。ここで、低温活性が劣る触媒では、排気ガスの熱によって触媒が徐々に暖められ、充分機能する温度になるまでは排気ガス中の有害成分を浄化することができない事になる。
このように、特に自動車に搭載される排気ガス浄化用触媒では、十分な低温活性を有することが重要であり、それが近年厳しさを増す排気ガスに対する規制を充足するための重要な課題でもあった。
特開平5−340236公報([0002])
Purifying these exhaust gas harmful substances is a low-temperature activity required for the catalyst. Here, in the case of a catalyst having a low low temperature activity, the catalyst is gradually warmed by the heat of the exhaust gas, and the harmful components in the exhaust gas cannot be purified until the temperature reaches a sufficiently functioning temperature.
In this way, it is important for exhaust gas purification catalysts mounted on automobiles to have sufficient low-temperature activity, which is also an important issue for satisfying increasingly severe regulations on exhaust gas in recent years. It was.
JP-A-5-340236 ([0002])

本発明の目的は、上記従来の課題に鑑み、内燃機関、ボイラー等の排気ガスに含まれるHC、CO、SOF、NOx等に対して優れた浄化能力を有し、また、排気ガスが低温の環境下においても安定した浄化能力を発現しうる排気ガス浄化用触媒、その製造方法、及び排気ガス浄化用一体構造型触媒を提供することにある。   In view of the above-described conventional problems, the object of the present invention is to have an excellent purifying ability for HC, CO, SOF, NOx, etc. contained in exhaust gas of an internal combustion engine, a boiler, etc., and the exhaust gas has a low temperature. An object of the present invention is to provide an exhaust gas purification catalyst capable of exhibiting a stable purification ability even in an environment, a method for producing the same, and an integral structure type catalyst for exhaust gas purification.

本発明者らは、このような上記課題を解決するために、排気ガス浄化用触媒として、ウイスカー状無機母材上に金属触媒成分を担持された繊維状の無機母材―金属触媒複合物について鋭意研究を重ねた結果、主要構成単位がAlであるウイスカー状無機母材にジルコニウム成分を含有させた、特定の直径、アスペクト比である触媒を用いることにより、低温時であっても排ガス中のHC、CO、NOxが効率的に浄化されることを見出し、本発明を完成するに至った。 In order to solve the above-mentioned problems, the present inventors have used a fibrous inorganic base material-metal catalyst composite in which a metal catalyst component is supported on a whisker-like inorganic base material as an exhaust gas purification catalyst. As a result of intensive research, by using a catalyst having a specific diameter and aspect ratio, containing a zirconium component in a whisker-like inorganic base material whose main structural unit is Al 2 O 3 , even at low temperatures It has been found that HC, CO and NOx in the exhaust gas can be efficiently purified, and the present invention has been completed.

すなわち、本発明の第1の発明によれば、金属触媒成分(A)がウイスカー状無機母材(B)に担持された繊維状の無機母材―金属触媒複合物を含有する排気ガス浄化用触媒であって、金属触媒成分(A)は、少なくとも貴金属元素を含み、一方、ウイスカー状無機母材(B)は、Alを主要構成単位とするとともに、その結晶内及び/又はその表面上にジルコニウム成分を含有し、かつ、直径が実質的に50nm以下、アスペクト比が2以上であることを特徴とする排気ガス浄化用触媒が提供される。 That is, according to the first aspect of the present invention, the exhaust gas purifying apparatus contains the fibrous inorganic base material-metal catalyst composite in which the metal catalyst component (A) is supported on the whisker-like inorganic base material (B). The catalyst, wherein the metal catalyst component (A) contains at least a noble metal element, while the whisker-like inorganic base material (B) has Al 2 O 3 as a main constituent unit, and in the crystal and / or Provided is an exhaust gas purifying catalyst comprising a zirconium component on the surface, having a diameter of substantially 50 nm or less and an aspect ratio of 2 or more.

また、本発明の第2の発明によれば、第1の発明において、金属触媒成分(A)中の貴金属元素が、ロジウムを含むことを特徴とする排気ガス浄化用触媒が提供される。   According to the second aspect of the present invention, there is provided an exhaust gas purifying catalyst characterized in that, in the first aspect, the noble metal element in the metal catalyst component (A) contains rhodium.

また、本発明の第3の発明によれば、第1又は2の発明において、ウイスカー状無機母材(B)が、繊維状ベーマイトであることを特徴とする排気ガス浄化用触媒が提供される。   According to the third aspect of the present invention, there is provided an exhaust gas purification catalyst according to the first or second aspect, wherein the whisker-like inorganic base material (B) is fibrous boehmite. .

また、本発明の第4の発明によれば、第1〜3の発明において、ウイスカー状無機母材(B)の直径が、実質的に30nm以下であることを特徴とする排気ガス浄化用触媒が提供される。   According to a fourth aspect of the present invention, in the first to third aspects, the exhaust gas purifying catalyst is characterized in that the whisker-like inorganic base material (B) has a diameter of substantially 30 nm or less. Is provided.

さらに、本発明の第5の発明によれば、第1〜4のいずれかの発明において、ジルコニウム成分の含有量が、ウイスカー状無機母材(B)に対してZr酸化物換算で0.1〜30重量%であることを特徴とする排気ガス浄化用触媒が提供される。   Furthermore, according to the fifth invention of the present invention, in any one of the first to fourth inventions, the content of the zirconium component is 0.1 in terms of Zr oxide with respect to the whisker-like inorganic base material (B). An exhaust gas purifying catalyst characterized by being -30% by weight is provided.

一方、本発明の第6の発明によれば、第1〜5のいずれかの発明に係る排気ガス浄化用触媒を、一体構造型担体の表面に被覆してなる排気ガス浄化用一体構造型触媒が提供される。   On the other hand, according to the sixth invention of the present invention, the exhaust gas purification integrated structure type catalyst obtained by coating the exhaust gas purification catalyst according to any one of the first to fifth inventions on the surface of the integral structure type carrier. Is provided.

また、本発明の第7の発明によれば、第6の発明において、金属触媒成分(A)の量が、一体構造型担体に対して0.01〜10g/Lであることを特徴とする排気ガス浄化用一体構造型触媒が提供される。   According to the seventh aspect of the present invention, in the sixth aspect, the amount of the metal catalyst component (A) is 0.01 to 10 g / L with respect to the monolithic structure type carrier. An integral structure type catalyst for exhaust gas purification is provided.

さらに、本発明の第8の発明によれば、第6又は7の発明において、無機母材―金属触媒複合物の量が、一体構造型担体に対して10〜400g/Lであることを特徴とする排気ガス浄化用一体構造型触媒が提供される。   Furthermore, according to the eighth invention of the present invention, in the sixth or seventh invention, the amount of the inorganic base material-metal catalyst composite is 10 to 400 g / L with respect to the monolithic structure type carrier. An integral structure type catalyst for purifying exhaust gas is provided.

一方、本発明の第9の発明によれば、第6〜8のいずれかの発明に係り、窒素酸化物、炭化水素、および一酸化炭素を含有する排気ガスを、前記排気ガス浄化用一体構造型触媒に流通して接触させることを特徴とする排気ガス浄化方法が提供される。   On the other hand, according to a ninth invention of the present invention, according to any one of the sixth to eighth inventions, the exhaust gas containing nitrogen oxides, hydrocarbons, and carbon monoxide is converted into the integrated structure for exhaust gas purification. There is provided an exhaust gas purification method characterized in that it is distributed and brought into contact with a type catalyst.

本発明の排気ガス浄化用触媒は、金属触媒成分(A)がAlを主要構成単位とする特定のウイスカー状無機母材(B)に担持された繊維状の無機母材―金属触媒複合物を含有する排気ガス浄化用触媒であることから、排気ガス中のHC、NOx、COなどに対して、低温時でも優れた浄化能力を発揮すると共に、これら有害成分を同時に除去することができる。したがって、特に自動車のエンジンから排出される排気ガスを浄化する三元系触媒として好適である。 The exhaust gas purifying catalyst of the present invention is a fibrous inorganic base material-metal catalyst in which the metal catalyst component (A) is supported on a specific whisker-like inorganic base material (B) whose main constituent unit is Al 2 O 3 Because it is a catalyst for exhaust gas purification containing a composite, it exhibits excellent purification ability even at low temperatures for HC, NOx, CO, etc. in the exhaust gas, and simultaneously removes these harmful components it can. Therefore, it is particularly suitable as a three-way catalyst for purifying exhaust gas discharged from an automobile engine.

以下、本発明の排気ガス浄化用触媒、排気ガス浄化用一体構造型触媒、及びこれら触媒を使用した排気ガス浄化方法について、自動車からの排気ガスを浄化するための三元触媒を中心に、図面を用いて詳細に説明する。   Hereinafter, the exhaust gas purification catalyst, the exhaust gas purification integrated structure catalyst of the present invention, and the exhaust gas purification method using these catalysts, with a focus on a three-way catalyst for purifying exhaust gas from an automobile, are shown in the drawings. Will be described in detail.

1.排気ガス浄化用触媒
本発明の排気ガス浄化用触媒は、金属触媒成分(A)がウイスカー状無機母材(B)に担持された繊維状の無機母材―金属触媒複合物を含有する排気ガス浄化用触媒であって、金属触媒成分(A)は、少なくとも貴金属元素を含み、一方、ウイスカー状無機母材(B)は、Alを主要構成単位とするとともに、その結晶内及び/又はその表面上にジルコニウム成分を含有し、かつ、直径が実質的に50nm以下、アスペクト比が2以上であることを特徴とする。
1. Exhaust gas purification catalyst The exhaust gas purification catalyst of the present invention comprises an exhaust gas containing a fibrous inorganic matrix-metal catalyst composite in which a metal catalyst component (A) is supported on a whisker-like inorganic matrix (B). The catalyst for purification, wherein the metal catalyst component (A) contains at least a noble metal element, while the whisker-like inorganic base material (B) contains Al 2 O 3 as a main constituent unit, and has a crystal structure and / or Alternatively, a zirconium component is contained on the surface, the diameter is substantially 50 nm or less, and the aspect ratio is 2 or more.

なお、本発明においてサイズを表す表現として用いる「実質的に」とは、直径、および長さの平均値を指すか、そのサイズを取りうる構成要素の多くが当該サイズを有する部位を保ちえる状態であることを意味する。   In the present invention, “substantially” used as an expression representing a size refers to an average value of a diameter and a length, or a state in which many components capable of taking the size can maintain a portion having the size. It means that.

また、ウイスカー状無機母材の「ウイスカー状」とは、いわゆるウイスカー状(ヒゲ状)の他、柱状、針状、繊維状など広い意味でアスペクト比により規定できる形状のことをいう。   The “whisker shape” of the whisker-like inorganic base material refers to a shape that can be defined by an aspect ratio in a broad sense such as a columnar shape, a needle shape, or a fiber shape in addition to a so-called whisker shape (whisker shape).

(金属触媒成分)
本発明において金属触媒成分は、貴金属元素を含有しなければならないが、その他、排気ガスの浄化に対して活性を有するものであれば、遷移金属、希土類金属などを含んでいてもよい。貴金属元素は、ロジウム、金、銀、白金、パラジウムなどが挙げられ、その1種又は2種以上を使用できる。好ましい金属触媒成分は、ロジウム、白金、パラジウムで、ロジウムが最も好ましい。
遷移金属としては、具体的には、鉄、ニッケル、コバルト、ジルコニウム、銅などが挙げられ、希土類金属としては、セリウム、ランタン、プラセオジム、ネオジウムなどから一種以上を適宜選択できる。
(Metal catalyst component)
In the present invention, the metal catalyst component must contain a noble metal element, but may also contain a transition metal, a rare earth metal, or the like as long as it has activity for purifying exhaust gas. Examples of the noble metal element include rhodium, gold, silver, platinum, and palladium, and one or more of them can be used. Preferred metal catalyst components are rhodium, platinum and palladium, with rhodium being most preferred.
Specific examples of the transition metal include iron, nickel, cobalt, zirconium, and copper. As the rare earth metal, one or more of cerium, lanthanum, praseodymium, neodymium, and the like can be appropriately selected.

金属触媒成分の量は、貴金属元素の種類、無機母材や担体の種類などによって異なるが、貴金属であれば、無機母材を含む触媒全体に対して、0.01〜25重量%、好ましくは0.1〜10重量%である。金属触媒成分の量が25重量%を超えると、触媒の生産コストが上昇してしまい、0.01重量%未満では、排気ガスの浄化性能が低下する。また、後述する一体構造型触媒の場合、一体構造型触媒の単位容積あたり、0.01〜10g/L、特に0.1〜10g/Lである事が好ましい。   The amount of the metal catalyst component varies depending on the kind of the noble metal element, the kind of the inorganic base material and the support, etc., but if it is a noble metal, 0.01 to 25% by weight with respect to the whole catalyst including the inorganic base material, preferably 0.1 to 10% by weight. When the amount of the metal catalyst component exceeds 25% by weight, the production cost of the catalyst increases, and when it is less than 0.01% by weight, the exhaust gas purification performance decreases. In the case of a monolithic catalyst described later, it is preferably 0.01 to 10 g / L, particularly 0.1 to 10 g / L per unit volume of the monolithic catalyst.

(無機母材)
本発明において、原料として用いられるウイスカー状無機母材は、少なくともAlからなり、熱的に安定な構成単位からなる無機物質であるか、または焼成後にウイスカー状になりうる前駆体である。特にAlを構成単位とし、これにジルコニウム成分を含有する無機物質である。このようなウイスカー状無機物質としては、繊維状ベーマイト(前駆体を含む)などがある。
(Inorganic base material)
In the present invention, the whisker-like inorganic base material used as a raw material is an inorganic substance consisting of at least Al 2 O 3 and a thermally stable structural unit, or a precursor that can become whisker-like after firing. . In particular, it is an inorganic substance containing Al 2 O 3 as a structural unit and containing a zirconium component. Examples of such whisker-like inorganic substances include fibrous boehmite (including a precursor).

ここで、ウイスカー状無機母材は、その直径が実質的に50nm以下であることが望ましく、より好ましくは20nm以下、最も好ましくは10nm以下である。ウイスカー状無機母材の直径の下限については、特に限定されるものでは無いが、2nm以上の無機母材を用いた場合で本発明の効果が確認されている。なお、前駆体の場合は、通常は鎖状の高分子化合物の集合体であるため、直径を規定することはできない。
無機母材の長さは、特に限定されないが、100nmよりも長いものが好ましく、例えば、100〜10000nmの範囲にあるものが好ましい。また、本発明におけるウイスカー状無機母材の望ましいアスペクト比は2以上であり、より望ましくは10以上である。以下、本発明においてはこれらの形状を包括してウイスカー状という。
Here, the whisker-like inorganic base material desirably has a diameter of substantially 50 nm or less, more preferably 20 nm or less, and most preferably 10 nm or less. The lower limit of the diameter of the whisker-like inorganic base material is not particularly limited, but the effect of the present invention has been confirmed when an inorganic base material of 2 nm or more is used. In the case of a precursor, since it is usually an assembly of chain polymer compounds, the diameter cannot be defined.
The length of the inorganic base material is not particularly limited, but is preferably longer than 100 nm, for example, in the range of 100 to 10,000 nm. Moreover, the desirable aspect ratio of the whisker-like inorganic base material in the present invention is 2 or more, and more desirably 10 or more. Hereinafter, in the present invention, these shapes are collectively referred to as a whisker shape.

本発明においてウイスカー状無機母材は、ジルコニウム成分を含むものであるが、ジルコニウム成分は、ジルコニウム金属のほか、ジルコニアアルミネート、酸化ジルコニウムなどの化合物でもよい。ジルコニウムそのものが、単体として無機物質に含まれていても良いが、前記繊維状ベーマイトの主要構成単位であるAl結晶内に取り込まれていることが望ましい。 In the present invention, the whisker-like inorganic base material contains a zirconium component, but the zirconium component may be a zirconium metal, or a compound such as zirconia aluminate or zirconium oxide. Zirconium itself may be contained as a simple substance in the inorganic substance, but it is desirable that it is incorporated into the Al 2 O 3 crystal, which is the main structural unit of the fibrous boehmite.

ここで、繊維状ベーマイトに対するジルコニウム成分の存在状態は、ベーマイト結晶中に含まれる状態、酸化アルミニウムとの複合酸化物を形成した状態、ベーマイト中にジルコニウム成分が島状に存在する状態、またウイスカー状無機母材の表面を被覆する状態(全体的に被覆する状態と斑状に被覆する状態がある)などがあり、また、これらの状態の幾つかが組み合わさった状態を取ることもできる。   Here, the presence state of the zirconium component relative to the fibrous boehmite is a state included in the boehmite crystal, a state in which a complex oxide with aluminum oxide is formed, a state in which the zirconium component is present in the boehmite in an island shape, and a whisker shape There is a state in which the surface of the inorganic base material is coated (there is a state in which the surface is entirely coated and a state in which the surface is coated in spots), and a state in which some of these states are combined can also be taken.

なお、繊維状ベーマイトへのジルコニウム成分の添加方法は、繊維状ベーマイトに対してジルコニウム成分をいかなる状態で存在させるかによって異なる。ジルコニウム成分が、ベーマイト結晶中に含まれる状態で存在させるのであれば、例えば、繊維状ベーマイトを含むスラリー中に硝酸ジルコニウム等のジルコニウム塩の溶液を混合攪拌し、アンモニアなどのアルカリ剤で中和後、必要に応じて乾燥した後、焼成することによって得ることができる。ここで乾燥条件は50〜200℃で5〜20時間行う事が好ましく、焼成条件は400〜700℃で1〜6時間行う事が好ましい。また、アルカリ剤での中和条件のうち、アルカリ剤使用量を酸化物に対して0.1〜6重量倍量とし、10分〜360分で投入する中和速度で中和するとよい。アルカリ剤は、30〜90分で投入する方が好ましい。10分未満の投入速度で投入すると、ジルコニウム成分の凝集が進み、繊維状ベーマイトとジルコニウムの分散性を損なう可能性がある。また、360分を超えると生産性が上がらないので好ましくない。   In addition, the addition method of the zirconium component to fibrous boehmite changes with what kind of state a zirconium component exists with respect to fibrous boehmite. If the zirconium component is present in the state of being included in the boehmite crystal, for example, a solution of zirconium salt such as zirconium nitrate is mixed and stirred in a slurry containing fibrous boehmite, and neutralized with an alkali agent such as ammonia. It can be obtained by drying, if necessary, and then firing. Here, drying is preferably performed at 50 to 200 ° C. for 5 to 20 hours, and baking conditions are preferably performed at 400 to 700 ° C. for 1 to 6 hours. Moreover, among the neutralization conditions with an alkaline agent, the amount of the alkaline agent used may be 0.1 to 6 times the amount of the oxide, and neutralization may be performed at a neutralization rate charged in 10 minutes to 360 minutes. The alkali agent is preferably added in 30 to 90 minutes. When the charging speed is less than 10 minutes, the zirconium component is agglomerated and the dispersibility of the fibrous boehmite and zirconium may be impaired. On the other hand, if it exceeds 360 minutes, productivity does not increase, which is not preferable.

酸化アルミニウムとの複合酸化物を形成した状態で、ジルコニウム成分を存在させるのであれば、酸化アルミニウムにジルコニウム成分をジルコニアとして混合し、均一に分散させた後、高温で焼成する。   If a zirconium component is present in a state where a composite oxide with aluminum oxide is formed, the zirconium component is mixed as zirconia in aluminum oxide and uniformly dispersed, followed by firing at a high temperature.

繊維状ベーマイトに添加されるジルコニウム成分の量は、無機母材に対してジルコニウム酸化物換算で0.1〜30重量%とし、0.5〜20重量%がより好ましく、1〜10重量%が最も好ましい。ジルコニウム成分が0.1重量%未満では充分な三元活性が得られず、30重量%を超えると、繊維状ベーマイトとジルコニウムの相互作用を阻害する変化が生じ、結晶学的変化が起こり、触媒としての特性が変化してしまう恐れがある。
本発明においては、ウイスカー状無機母材がジルコニウム成分を含んでいなければならず、ジルコニウム成分の代わりにバリウムなどのアルカリ土類金属やランタンなどの希土類金属を含むものでは触媒活性を得ることができない。
The amount of the zirconium component added to the fibrous boehmite is 0.1 to 30% by weight in terms of zirconium oxide with respect to the inorganic base material, more preferably 0.5 to 20% by weight, and 1 to 10% by weight. Most preferred. If the zirconium component is less than 0.1% by weight, sufficient ternary activity cannot be obtained. If the zirconium component exceeds 30% by weight, a change that inhibits the interaction between the fibrous boehmite and zirconium occurs, and a crystallographic change occurs. As a result, there is a risk of changing the characteristics.
In the present invention, the whisker-like inorganic base material must contain a zirconium component, and catalytic activity can be obtained with an alkaline earth metal such as barium or a rare earth metal such as lanthanum instead of the zirconium component. Can not.

本発明において、無機母材として好ましい繊維状ベーマイトは、主として分子式がAl・1.05〜3.0HOで表される。アルミナの結晶水が1.05より少ないベーマイトは、形状が板状になることがあり、結晶水が3.0を越えるベーマイトは極めて小さな繊維の凝集体であるため好ましくない。無機母材として好ましい繊維状ベーマイトは、主として分子式がAl・1.3〜3.0HOで表されるものである。 In the present invention, the preferred fibrous boehmite as the inorganic base material has a molecular formula mainly represented by Al 2 O 3 .1.05-3.0H 2 O. Boehmite with a crystal water of less than 1.05 in alumina may have a plate shape, and boehmite with a crystal water exceeding 3.0 is not preferable because it is an aggregate of very small fibers. The preferred fibrous boehmite as the inorganic base material is one whose molecular formula is mainly represented by Al 2 O 3 · 1.3 to 3.0H 2 O.

また、繊維状ベーマイトは、直径が実質的に50nm以下、特に3〜50nmの範囲にあるものが好ましい。繊維の長さは特に限定されないが、100nmよりも長いものが好ましく、例えば、100〜10000nmの範囲にあるものが好ましい。繊維状ベーマイトの直径と長さは、得られる焼成物の細孔構造とも密接に関係している。すなわち、短い繊維のベーマイトから得られる焼成物の細孔容積は小さく、長い繊維の場合は細孔容積が大きい。また、細い繊維のベーマイトから得られる焼成物の比表面積は大きく、太い繊維の場合は比表面積が小さい。また、本発明における繊維状ベーマイトの望ましいアスペクト比は2以上であり、より望ましくは10以上である。   The fibrous boehmite preferably has a diameter of substantially 50 nm or less, particularly 3 to 50 nm. Although the length of a fiber is not specifically limited, A thing longer than 100 nm is preferable, For example, the thing in the range of 100-10000 nm is preferable. The diameter and length of the fibrous boehmite are closely related to the pore structure of the obtained fired product. That is, the pore volume of the fired product obtained from boehmite of short fibers is small, and the pore volume is large in the case of long fibers. Moreover, the specific surface area of the baked product obtained from boehmite having fine fibers is large, and the specific surface area is small in the case of thick fibers. The desirable aspect ratio of the fibrous boehmite in the present invention is 2 or more, more desirably 10 or more.

このような繊維状ベーマイトからなるアルミナ水和物は、たとえば、国際公開特許(WO97/32817号公報、WO01/056951号公報)に記載された方法によって調製することができる。具体的には、アルミナ原料の水懸濁液に、酸を加えたのち90〜150℃の温度で水熱処理を行い、繊維状ベーマイトが分散したアルミナゾルを調製する。
上記アルミナ原料としては、少なくとも部分的に再水和性を有するρおよび/またはχ結晶構造を示すアルミナが用いられる。中でもギブサイト、バイヤライト等のアルミナ三水和物を急速高温加熱により脱水して得られたもので、比表面積が50〜500m/gの範囲にあり、かつ部分的に再水和性を有するアルミナが好ましい。
Alumina hydrate composed of such fibrous boehmite can be prepared, for example, by a method described in International Patents (WO97 / 32817, WO01 / 056951). Specifically, after adding an acid to an aqueous suspension of an alumina raw material, hydrothermal treatment is performed at a temperature of 90 to 150 ° C. to prepare an alumina sol in which fibrous boehmite is dispersed.
As the alumina raw material, alumina having a ρ and / or χ crystal structure having at least a partial rehydration property is used. Above all, it is obtained by dehydrating alumina trihydrate such as gibbsite and bayerite by rapid high-temperature heating, has a specific surface area in the range of 50 to 500 m 2 / g, and has partial rehydration properties. Alumina is preferred.

図1の写真は、本発明に係るウイスカー状無機母材の走査型透過電子顕微鏡による写真(倍率:×100k)である。図1を見ると、原料として用いたジルコニウム成分を含む繊維状ベーマイトが、ウイスカー状無機母材となって分散しているが、部分的に複数本を合体して太くなっていている様子がわかる。ウイスカー状無機母材の形状、サイズを電子顕微鏡下において目視で測定すると、いずれも平均値で直径が5nm、長さが130nmであった。   The photograph in FIG. 1 is a photograph (magnification: × 100 k) of the whisker-like inorganic base material according to the present invention, taken with a scanning transmission electron microscope. When FIG. 1 is seen, although the fibrous boehmite containing the zirconium component used as a raw material is dispersed as a whisker-like inorganic base material, it can be seen that a plurality of pieces are combined and thickened. . When the shape and size of the whisker-like inorganic base material were visually measured under an electron microscope, the average value was 5 nm in diameter and 130 nm in length.

また、ウイスカー状無機母材の繊維の方向は、一方向であってもランダム方向であっても構わないが、通常は焼成によって略一方向に揃った状態で得られることが多い。繊維の長さや太い部分の幅は、特に限定されないが、繊維が長く幅が広いほど金属触媒を効果的に担持できるので好ましい。   Further, the direction of the fibers of the whisker-like inorganic base material may be one direction or random direction, but is usually obtained in a state of being aligned in one direction by firing. The length of the fiber and the width of the thick part are not particularly limited, but the longer the fiber and the wider the width, the more preferable the metal catalyst can be carried effectively.

上記のようにして得られる繊維状ベーマイトは、通常、水に分散したゾル状であるが、このゾルに前記触媒金属成分を混合し、このスラリーを乾燥・焼成すると、繊維状ベーマイトの表面に触媒金属成分が担持され、安定したウイスカー状構造を形成する。繊維状ベーマイトの表面での触媒金属成分の存在状態は、一概にいえないが、針状に担持されていると極めて良好な活性を発揮できる。   The fibrous boehmite obtained as described above is usually in the form of a sol dispersed in water. When the catalyst metal component is mixed in the sol, and the slurry is dried and fired, the catalyst is formed on the surface of the fibrous boehmite. A metal component is supported to form a stable whisker-like structure. The existence state of the catalytic metal component on the surface of the fibrous boehmite cannot be generally stated, but if it is supported in a needle shape, extremely good activity can be exhibited.

本発明が低温時でも優れた排気ガス浄化性能を発揮する理由は定かでは無いが、触媒中の貴金属が、例えば、ロジウムの場合であれば、以下のような理由によるものと推測される。
その一つが、前記した無機母材のウイスカー形状に由来してロジウムが効果的に担持されること、もう一つが本発明のウイスカー状無機母材によって、触媒中のロジウムの活性低下そのものが防止されることである。ロジウムそのものの活性低下が防止されると考えられる理由は以下のとおりである。
The reason why the present invention exhibits excellent exhaust gas purification performance even at low temperatures is not clear, but if the noble metal in the catalyst is, for example, rhodium, it is assumed that the reason is as follows.
One is that rhodium is effectively supported due to the whisker shape of the inorganic base material described above, and the other is that the whisker-like inorganic base material of the present invention prevents the decrease in the activity of rhodium in the catalyst itself. Is Rukoto. The reason why the decrease in the activity of rhodium itself is considered to be prevented is as follows.

すなわち、酸化ジルコニウムの表面は、負電荷を帯びた状態となっている事が知られており、本発明では、ウイスカー状無機母材上に担持されたロジウム粒子に、ウイスカー状無機母材中の酸化ジルコニウムから電子供与が行われ、ロジウム粒子が負電荷を帯びた状態になり、同じく負電荷である排気ガス中の酸素アニオンとロジウム粒子の親和性が低くなり、ロジウム粒子の酸化が抑制され、活性の高い金属状態を保つことができるためと考えられる。   That is, it is known that the surface of zirconium oxide is in a negatively charged state, and in the present invention, rhodium particles supported on the whisker-like inorganic base material are mixed with the whisker-like inorganic base material. Electron donation is performed from zirconium oxide, the rhodium particles are in a negatively charged state, the affinity between the oxygen anions in the exhaust gas, which is also negatively charged, and the rhodium particles are reduced, and the oxidation of the rhodium particles is suppressed. It is considered that a highly active metal state can be maintained.

本発明の排気ガス浄化用触媒には、前記原料である金属触媒成分、ウイスカー状無機母材の他、触媒性能を改善するために、アルカリ金属、アルカリ土類金属などを適宜添加することができる。また、ゼオライト等の吸着剤、セリアやセリア−ジルコニア複合酸化物などの酸素吸蔵・放出材、白金、パラジウムなどの貴金属触媒、また、他のα型、γ型等のアルミナなどを適宜組み合わせて、より高度な機能を有する排気ガス浄化用触媒とする事が可能である。   In addition to the metal catalyst component and whisker-like inorganic base material that are the raw materials, alkali metal, alkaline earth metal, and the like can be appropriately added to the exhaust gas purification catalyst of the present invention in order to improve the catalyst performance. . Moreover, adsorbents such as zeolite, oxygen storage / release materials such as ceria and ceria-zirconia composite oxides, noble metal catalysts such as platinum and palladium, and other α-type, γ-type alumina, etc. An exhaust gas purifying catalyst having a higher level of function can be obtained.

酸素吸蔵・放出材を使用する場合、その量は、その種類、担体の種類などによって異なるが、セリア−ジルコニア複合酸化物であれば、担体の容積当り、0.01〜10g/L、特に0.1〜10g/Lである事が好ましい。このように、本発明を酸化触媒として用いる場合は、酸素吸蔵・放出材と併用することで、酸素吸蔵・放出材から放出される酸素によりHC、SOF等の酸化作用が促進され、白金、パラジウムなどの貴金属触媒との併用によりスチームリフォーミング反応が促進され、NOxの浄化性能が促進される。   When an oxygen storage / release material is used, the amount thereof varies depending on the type, type of carrier, etc., but in the case of a ceria-zirconia composite oxide, 0.01 to 10 g / L, especially 0, per volume of the carrier. It is preferable that it is 1-10 g / L. As described above, when the present invention is used as an oxidation catalyst, the combined use with the oxygen storage / release material promotes the oxidizing action of HC, SOF, etc. by the oxygen released from the oxygen storage / release material. The steam reforming reaction is promoted by the combined use with a noble metal catalyst such as NOx, and the NOx purification performance is promoted.

γ−アルミナを使用する場合、その量は、担体の容積当り、5〜150g/L、特に10〜80g/Lである事が好ましい。γ−アルミナを使用することで、繊維状の無機母材―金属触媒複合物との分散性が向上し、担体への密着性も改良される。   When γ-alumina is used, the amount thereof is preferably 5 to 150 g / L, particularly 10 to 80 g / L per volume of the carrier. By using γ-alumina, dispersibility with the fibrous inorganic base material-metal catalyst composite is improved, and adhesion to the carrier is also improved.

本発明の排気ガス浄化用触媒は、担体表面に上記複合物が被覆された構造型触媒として用いることが望ましい。ここで担体の形状は特に限定されるものではなく、円柱状、円筒状、球状、ハニカム状、シート状などから選択可能である。構造型担体のサイズは特に制限されないが、円柱状、円筒状、球状のいずれかであれば、例えば数ミリから数センチの直径のものが使用できる。   The exhaust gas purifying catalyst of the present invention is desirably used as a structural catalyst in which the above composite is coated on the surface of the carrier. Here, the shape of the carrier is not particularly limited, and can be selected from a columnar shape, a cylindrical shape, a spherical shape, a honeycomb shape, a sheet shape, and the like. The size of the structure-type carrier is not particularly limited, and a structural carrier having a diameter of, for example, several millimeters to several centimeters can be used as long as it is in a columnar shape, a cylindrical shape, or a spherical shape.

2.排気ガス浄化用触媒の製造方法
本発明の排気ガス浄化用触媒は、前記金属触媒成分と無機母材とを水系媒体中で混合してスラリーを調製した後、該スラリーを焼成することにより製造される。金属触媒成分の原料は、通常、硝酸塩、硫酸塩、炭酸塩、酢酸塩等の形態で使用される。
2. Manufacturing method of exhaust gas purifying catalyst The exhaust gas purifying catalyst of the present invention is manufactured by mixing the metal catalyst component and the inorganic base material in an aqueous medium to prepare a slurry, and then firing the slurry. The The raw material for the metal catalyst component is usually used in the form of nitrate, sulfate, carbonate, acetate or the like.

ここで、スラリーは、無機母材、金属触媒成分、水系媒体を所定の比率で混合して調製されるが、本発明においては、無機母材100重量部に対して、ロジウムなどの貴金属を含む金属触媒成分0.01〜25重量部とを混合することが好ましい。水系媒体はスラリー中で無機母材と金属触媒成分が均一に分散できる量を用いれば良い。   Here, the slurry is prepared by mixing an inorganic base material, a metal catalyst component, and an aqueous medium in a predetermined ratio. In the present invention, the slurry contains a noble metal such as rhodium with respect to 100 parts by weight of the inorganic base material. It is preferable to mix 0.01 to 25 parts by weight of the metal catalyst component. What is necessary is just to use the quantity which can disperse | distribute an inorganic base material and a metal catalyst component uniformly in a slurry for an aqueous medium.

この際、必要に応じてpH調整のための酸、アルカリを、粘性の調整やスラリー分散性を向上するための界面活性剤、分散用樹脂等を配合する事ができる。また、スラリーの混合方法としては、ボールミルなどによる粉砕混合が適用可能であるが、他の粉砕、もしくは混合方法を適用しても良い。
なお、焼成条件は特に限定されないが、焼成温度は300〜1200℃が好ましく、400〜800℃がより好ましい。加熱手段については、電気炉やガス炉等の公知の加熱手段によって行う事ができる。
At this time, an acid or an alkali for adjusting the pH, a surfactant for improving the viscosity or improving the slurry dispersibility, a dispersing resin, or the like can be blended as necessary. Further, as a mixing method of the slurry, pulverization and mixing by a ball mill or the like can be applied, but other pulverization or mixing methods may be applied.
In addition, although baking conditions are not specifically limited, 300-1200 degreeC is preferable and 400-800 degreeC is more preferable. About a heating means, it can carry out by well-known heating means, such as an electric furnace and a gas furnace.

なお、本発明の構造型触媒は、上記のようにスラリーを構造型担体に塗工し加熱することによって得られるが、予めスラリーそのものを焼成することによって焼成触媒組成物を得た後、別途粉砕してから構造型担体に担持させて触媒を得ることもできる。   The structural catalyst of the present invention can be obtained by applying the slurry to the structural carrier and heating as described above, but after obtaining the calcined catalyst composition by calcining the slurry in advance, it is separately pulverized. Then, the catalyst can be obtained by supporting it on a structural support.

3.排気ガス浄化用一体構造型触媒
本発明の排気ガス浄化用一体構造型触媒は、排気ガスが流通可能な一体構造型担体表面に上記の触媒組成物が被覆された触媒である。
3. Exhaust gas purifying monolithic structure type catalyst The exhaust gas purifying monolithic structure type catalyst of the present invention is a catalyst in which the above-described catalyst composition is coated on the surface of an integral structure type carrier through which exhaust gas can flow.

ここで、一体構造型担体は、特に限定されるものではなく、公知の一体構造型担体の中から選択可能である。このような一体構造型担体としては、フロースルー型担体や、DPFに用いられるウォールフロー型担体があり、これら担体の材質としては金属、セラミックスがある。この他にも、細い繊維状物を編んだシート状構造体、比較的太い繊維状物からなるフェルト様の不燃性構造体が使用できる。これら一体構造型担体は、金属触媒成分の担持量が大きく、また排ガスとの接触面積が大きいので他の構造型担体よりも処理能力が高い。なお、本発明の排気ガス浄化触媒を自動車排気ガス浄化用の三元触媒とする場合は、フロースルー型担体を用いることが望ましい。
一体構造型担体の全体形状は任意であり、円柱型、四角柱型、六角柱型など適用する排気系の構造に応じて適宜選択できる。さらに開口部の孔数についても処理すべき排気ガスの種類、ガス流量、圧力損失あるいは除去効率などを考慮して適正な孔数が決められるが、通常、自動車の排気ガス浄化用途としては、1平方インチ当たり10〜1500個程度である。
Here, the monolithic structure type carrier is not particularly limited, and can be selected from known monolithic structure type carriers. As such an integral structure type carrier, there are a flow-through type carrier and a wall flow type carrier used for a DPF, and materials of these carriers include metals and ceramics. In addition, a sheet-like structure knitted from a fine fibrous material, or a felt-like non-combustible structure made of a relatively thick fibrous material can be used. Since these monolithic structural carriers have a large amount of supported metal catalyst components and a large contact area with the exhaust gas, they have a higher processing capacity than other structural carriers. When the exhaust gas purification catalyst of the present invention is used as a three-way catalyst for automobile exhaust gas purification, it is desirable to use a flow-through type carrier.
The overall shape of the monolithic structure type carrier is arbitrary, and can be appropriately selected according to the structure of the exhaust system to be applied, such as a columnar, quadrangular, or hexagonal column. Further, regarding the number of holes in the opening, an appropriate number of holes can be determined in consideration of the type of exhaust gas to be processed, gas flow rate, pressure loss or removal efficiency, etc. About 10 to 1500 per square inch.

このようなフロースルー型担体、ウォールフロー型担体のようなハニカム形状の担体では、その構造的特徴がセル密度であらわされるが、本発明においてはセル密度10〜1500cel/inch、より好ましくは350〜900cel/inchの担体を用いる事ができる。セル密度が10cel/inch以上であれば、内燃機関の排気ガスの圧力損失を生じることなく内燃機関の性能を損う事がない。また、セル密度が1500cel/inch以下であれば、排気ガスと触媒の接触面積を確保する事ができ、充分な排気ガスの浄化機能が得られる。
なお、本発明ではこのようなフロースルー型担体、ウォールフロー型担体などの一体構造型担体上に触媒組成物が被覆されたものを、以下、一体構造型触媒と言うことがある。
In such a honeycomb-shaped carrier such as a flow-through type carrier and a wall-flow type carrier, the structural feature is expressed by the cell density. In the present invention, the cell density is 10 to 1500 cel / inch 2 , more preferably 350. A carrier of ˜900 cel / inch 2 can be used. When the cell density is 10 cel / inch 2 or more, the pressure loss of the exhaust gas of the internal combustion engine does not occur and the performance of the internal combustion engine is not impaired. Further, when the cell density is 1500 cel / inch 2 or less, the contact area between the exhaust gas and the catalyst can be secured, and a sufficient exhaust gas purification function can be obtained.
In the present invention, a catalyst in which a catalyst composition is coated on an integral structure type carrier such as a flow-through type carrier or a wall flow type carrier is hereinafter sometimes referred to as an integral structure type catalyst.

また、本発明の排気ガス浄化用一体構造型触媒は、一体構造型担体がセル密度10〜1500cel/inchであれば、無機母材―金属触媒複合物の被覆量は10〜400g/L、特に30〜300g/Lである事が好ましい。被覆量が400g/Lを超えると、自動車の排気ガス流路に配置すると排気ガスの圧損を生じてしまい、10g/L未満では、排気ガスの浄化性能が不十分となる。
また、金属触媒成分が貴金属としてロジウムを含む場合、金属触媒成分の担持量は、前記一体構造型担体に対して0.01〜8g/L、特に0.1〜5g/Lである事が好ましい。触媒の担持量が8g/Lを超えると、生産コストが上昇してしまい、0.01g/L未満では、排気ガスの浄化性能が不十分なものとなる。
Further, in the monolithic structure type catalyst for exhaust gas purification of the present invention, when the monolithic structure type carrier has a cell density of 10 to 1500 cel / inch 2 , the coating amount of the inorganic base material-metal catalyst composite is 10 to 400 g / L, In particular, it is preferably 30 to 300 g / L. If the coating amount exceeds 400 g / L, the pressure loss of the exhaust gas occurs when it is disposed in the exhaust gas flow path of the automobile, and if it is less than 10 g / L, the exhaust gas purification performance becomes insufficient.
When the metal catalyst component contains rhodium as a noble metal, the supported amount of the metal catalyst component is preferably 0.01 to 8 g / L, particularly preferably 0.1 to 5 g / L with respect to the monolithic structure type carrier. . When the amount of the catalyst supported exceeds 8 g / L, the production cost increases, and when it is less than 0.01 g / L, the exhaust gas purification performance becomes insufficient.

4.排気ガス浄化用一体構造型触媒の製造
本発明の排気ガス浄化用一体構造型触媒は、前記の方法で金属触媒成分またはその前駆体と、前記無機母材またはその前駆体と、必要によりその他の無機物質を用い、これらを水系媒体と共に混合してスラリー状混合物にしてから、一体構造型担体へスラリー状混合物を塗工して、乾燥、焼成する事により製造される。
4). Manufacture of monolithic catalyst for exhaust gas purification The monolithic catalyst for exhaust gas purification of the present invention is a metal catalyst component or a precursor thereof, the inorganic matrix or a precursor thereof, and other An inorganic substance is used, and these are mixed with an aqueous medium to form a slurry mixture, and then the slurry mixture is applied to a monolithic structure type carrier, dried and fired.

すなわち、まず、金属触媒成分、水系媒体を所定の比率で混合してスラリー状混合物を得る。本発明においては、無機母材100重量部に対して、金属触媒成分を0.01〜25重量部混合することが好ましい。無機物質として、γ−アルミナなどを無機母材100重量部に対して、1〜50重量部配合してもよい。水系媒体は、スラリー中で無機母材と金属触媒成分が均一に分散できる量を用いれば良い。
この際、必要に応じてpH調整のための酸、アルカリを、粘性の調整やスラリー分散性向上のための界面活性剤、分散用樹脂等を配合する事ができる。スラリーの混合方法としては、ボールミルなどによる粉砕混合が適用可能であるが、他の粉砕、もしくは混合方法を適用しても良い。
That is, first, a metal catalyst component and an aqueous medium are mixed at a predetermined ratio to obtain a slurry mixture. In the present invention, it is preferable to mix 0.01 to 25 parts by weight of the metal catalyst component with respect to 100 parts by weight of the inorganic base material. As the inorganic substance, 1 to 50 parts by weight of γ-alumina or the like may be blended with respect to 100 parts by weight of the inorganic base material. What is necessary is just to use the quantity which can disperse | distribute an inorganic base material and a metal catalyst component uniformly in a slurry for an aqueous medium.
At this time, an acid or alkali for adjusting the pH, a surfactant for adjusting the viscosity or improving the slurry dispersibility, a dispersing resin or the like can be blended as necessary. As a mixing method of the slurry, pulverization and mixing by a ball mill or the like can be applied, but other pulverization or mixing methods may be applied.

次に、一体構造型担体へスラリー状混合物を塗工する。塗工方法は、特に限定されないが、ウオッシュコート法が好ましい。塗工した後、乾燥、焼成を行う事により触媒組成物が担持された一体構造型触媒が得られる。なお、乾燥温度は、100〜300℃が好ましく、100〜200℃がより好ましい。また、焼成温度は、300〜1200℃が好ましく、400〜800℃、特に400〜600℃が好ましい。加熱手段については、電気炉やガス炉等の公知の加熱手段によって行う事ができる。   Next, the slurry-like mixture is applied to the monolithic structure type carrier. A coating method is not particularly limited, but a wash coat method is preferable. After coating, drying and firing are performed to obtain a monolithic structure type catalyst carrying the catalyst composition. In addition, 100-300 degreeC is preferable and, as for drying temperature, 100-200 degreeC is more preferable. Moreover, 300-1200 degreeC is preferable and baking temperature is 400-800 degreeC, Especially 400-600 degreeC is preferable. About a heating means, it can carry out by well-known heating means, such as an electric furnace and a gas furnace.

なお、上記製造工程に加えて、本発明の触媒組成物の被覆前に、定着性の向上などを目的として、一体構造型担体にアンダーコート層を設けても良い。このようなアンダーコート層としては、その組成、材料について特に限定されることはなく、γ型などの各種アルミナ等があげられ、その被覆量も特に限定されないが、概ね1〜100g/L程度が被覆される。
なお、上記アンダーコート層には、前記した各種触媒材料を適宜配合してもよいことは言うまでもない。
In addition to the above production steps, an undercoat layer may be provided on the monolithic structure type carrier for the purpose of improving the fixing property before coating with the catalyst composition of the present invention. Such an undercoat layer is not particularly limited in terms of its composition and material, and includes various types of alumina such as γ-type, and the coating amount is not particularly limited, but is generally about 1 to 100 g / L. Covered.
In addition, it cannot be overemphasized that the above-mentioned various catalyst materials may be suitably mix | blended with the said undercoat layer.

本発明では、上記の方法で得た無機母材−金属触媒複合物を含む触媒組成物を、他の触媒成分、または他の無機材料を含む被覆層と積層して用いることもできる。その場合、本発明の触媒組成物の層は、排気ガス流に直接接する表面層であっても良く、本発明の触媒組成物層の上に他の触媒成分、または他の無機材料を含む被覆層を形成してもよい。
このような他の触媒成分、または他の無機材料を含む被覆層には、前記のように白金、パラジウム、ロジウム等の触媒金属、ゼオライト等の吸着剤、セリアやセリア−ジルコニア複合酸化物などの酸素吸蔵・放出材、アルカリ金属、アルカリ土類金属等が配合されていても良い。
In the present invention, the catalyst composition containing the inorganic base material-metal catalyst composite obtained by the above method can be used by being laminated with a coating layer containing another catalyst component or another inorganic material. In that case, the layer of the catalyst composition of the present invention may be a surface layer that is in direct contact with the exhaust gas stream, and a coating containing another catalyst component or other inorganic material on the catalyst composition layer of the present invention. A layer may be formed.
In the coating layer containing such other catalyst components or other inorganic materials, as described above, catalyst metals such as platinum, palladium and rhodium, adsorbents such as zeolite, ceria and ceria-zirconia composite oxide, etc. An oxygen storage / release material, an alkali metal, an alkaline earth metal, or the like may be blended.

以下、本発明の実施例、比較例を示すが、本発明は、この実施例に限定して解釈されるものではない。   Examples of the present invention and comparative examples are shown below, but the present invention is not construed as being limited to these examples.

(実施例1)
<一体構造型触媒の製造>
まず、直径:5nm、長さ:130nm、アスペクト比:26の繊維状ベーマイトを含むスラリー158.3g(Alとして95g含有)とZrO換算で15重量%となる硝酸ジルコニウム溶液33.3g(ZrOとして5g含有)を水に添加し、Zr/Al複合酸化物として5重量%のスラリーを作製した。
このスラリーに25重量%のアンモニア水300gを60分で投入し、中和を行った。
次に、得られたスラリーをろ過し、十分に水洗した後、500℃で5時間焼成を行った後、粉砕した。これにより、ウイスカー状無機母材が凝集した二次粒子以上の凝集粒子径の平均粒子径(D50)が55μmの粉末を得た。
このようにして、酸化物換算で5重量%のジルコニウム成分がベーマイト結晶中に含まれる状態で存在するウイスカー状無機母材を得た。その写真を図1に示す。
次に、このウイスカー状無機母材を用い、金属触媒成分としてロジウム硝酸塩水溶液、γ−アルミナ(比表面積:150m/g)に水系媒体を加えてからボールミルを用いて混合しスラリーを得た。なお、水系媒体はスラリー中で無機母材と金属触媒成分が均一に分散できる量とした。
このスラリーをウオッシュコート法により下記一体構造型担体に被覆し、乾燥後500℃で1時間焼成し、一体構造型触媒を製造した。この一体構造型触媒の単位体積中の各成分量「g/L」を下記表1に記す。
[一体構造型担体]
・一体構造型担体の種類:フロースルー型担体
・一体構造型担体の材質:コージェライト
・一体構造型担体のセル密度:900cell/inch
Example 1
<Manufacture of monolithic catalyst>
First, 158.3 g of a slurry containing fibrous boehmite having a diameter of 5 nm, a length of 130 nm, and an aspect ratio of 26 (containing 95 g as Al 2 O 3 ), and 33.3 g of a zirconium nitrate solution that is 15% by weight in terms of ZrO 2 (5 g contained as ZrO 2 ) was added to water to prepare a 5 wt% slurry as a Zr / Al 2 O 3 composite oxide.
The slurry was neutralized by adding 300 g of 25 wt% aqueous ammonia in 60 minutes.
Next, the obtained slurry was filtered, sufficiently washed with water, calcined at 500 ° C. for 5 hours, and then pulverized. As a result, a powder having an average particle size (D50) of 55 μm or more of secondary particles or more formed by aggregation of whisker-like inorganic base materials was obtained.
In this way, a whisker-like inorganic base material in which 5% by weight of a zirconium component in terms of oxide was contained in the boehmite crystal was obtained. The photograph is shown in FIG.
Next, using this whisker-like inorganic base material, an aqueous medium was added to a rhodium nitrate aqueous solution and γ-alumina (specific surface area: 150 m 2 / g) as a metal catalyst component, and then mixed using a ball mill to obtain a slurry. In addition, the aqueous medium was made into the quantity which can disperse | distribute an inorganic base material and a metal catalyst component uniformly in a slurry.
This slurry was coated on the following monolithic structure type carrier by a wash coat method, dried and then calcined at 500 ° C. for 1 hour to produce an monolithic structure type catalyst. The amount of each component “g / L” in a unit volume of this monolithic catalyst is shown in Table 1 below.
[Integrated structure type carrier]
・ Type of monolithic carrier: Flow-through carrier ・ Material of monolithic carrier: cordierite ・ Cell density of monolithic carrier: 900 cell / inch 2

(比較例1、2)
<一体構造型触媒の製造>
実施例1記載のウイスカー状無機母材に添加されるZr成分をBa成分に換えた以外は実施例1と同様にして比較例1の一体構造型触媒を得た。また、実施例1記載のウイスカー状無機母材に添加されるZr成分をLa成分に換えた以外は実施例1と同様にして比較例2の一体構造型触媒を得た。実施例1と同様に、硝酸バリウム又は硝酸ランタンの溶液と繊維状ベーマイトを含むスラリーを混合して、ウイスカー状無機母材にBa又はLaを添加した。
比較例1のウイスカー状無機母材の写真を図2に、比較例2のウイスカー状無機母材の写真を図3に示す。なお、比較例1、比較例2に用いたウイスカー状無機母材のサイズ、形状は実施例のものとほぼ同様であった。
この一体構造型触媒の単位体積中の各成分量「g/L」を下記表1に記す。
(Comparative Examples 1 and 2)
<Manufacture of monolithic catalyst>
A monolithic catalyst of Comparative Example 1 was obtained in the same manner as in Example 1 except that the Zr component added to the whisker-like inorganic base material described in Example 1 was replaced with the Ba component. Moreover, the monolithic structure type catalyst of the comparative example 2 was obtained like Example 1 except having changed the Zr component added to the whisker-like inorganic base material of Example 1 into the La component. As in Example 1, a solution containing barium nitrate or lanthanum nitrate and a slurry containing fibrous boehmite were mixed, and Ba or La was added to the whisker-like inorganic base material.
A photograph of the whisker-like inorganic base material of Comparative Example 1 is shown in FIG. 2, and a photograph of the whisker-like inorganic base material of Comparative Example 2 is shown in FIG. In addition, the size and shape of the whisker-like inorganic base material used in Comparative Example 1 and Comparative Example 2 were almost the same as those in the examples.
The amount of each component “g / L” in a unit volume of this monolithic catalyst is shown in Table 1 below.

Figure 2007253110
Figure 2007253110

<触媒性能評価>
実施例1、比較例1、比較例2で得られた各一体構造型触媒について、以下の条件でガソリンエンジンからの排気ガスを模したモデルガスを流通させ、排気ガス中のHC、CO、NOxの浄化率を測定した。200〜300℃における触媒性能を図4〜6に表す。
・測定モード:モデルガス
・モデルガス組成:
CO :1体積%
:0.1体積%
:0.025体積%
NO :0.05体積%
:0.3体積%
CO :10体積%
O :10体積%
:残余
・排気ガスの測定機器:堀場製作所製 MEXA−7100
・空間速度:60,000/h
上記条件における排気ガス中のHCの浄化率を図4に、COの浄化率を図5に、NOxの浄化率を図6に、グラフとして表す。
グラフから、実施例1の触媒は、比較例1、比較例2の触媒に対して、低温時から浄化能力に優れていることが分かる。なお、HCの浄化率についてはBa添加品とLa添加品とも同様に悪く浄化率のグラフがほぼ重なって表されている。
<Catalyst performance evaluation>
For each of the monolithic catalysts obtained in Example 1, Comparative Example 1, and Comparative Example 2, model gas imitating exhaust gas from a gasoline engine was circulated under the following conditions, and HC, CO, NOx in the exhaust gas was passed. The purification rate was measured. The catalyst performance at 200 to 300 ° C. is shown in FIGS.
・ Measurement mode: Model gas ・ Model gas composition:
CO: 1% by volume
C 3 H 6 : 0.1% by volume
C 3 H 8: 0.025 vol%
NO: 0.05% by volume
H 2 : 0.3% by volume
CO 2 : 10% by volume
H 2 O: 10% by volume
N 2 : Measuring instrument for residual / exhaust gas: MEXA-7100 manufactured by Horiba, Ltd.
・ Space velocity: 60,000 / h
FIG. 4 shows the purification rate of HC in the exhaust gas under the above conditions, FIG. 5 shows the purification rate of CO, and FIG. 6 shows the purification rate of NOx.
From the graph, it can be seen that the catalyst of Example 1 is superior to the catalysts of Comparative Example 1 and Comparative Example 2 in purification capacity from low temperatures. In addition, the purification rate of HC is similarly bad for the Ba-added product and the La-added product, and the graphs of the purification rate are almost overlapped.

本発明において、触媒の原料とされるZrを含む無機母材の外観を示す写真である。In this invention, it is a photograph which shows the external appearance of the inorganic base material containing Zr used as the raw material of a catalyst. 比較用の触媒において原料とされるBaを含む無機母材の外観を示す写真である。It is a photograph which shows the external appearance of the inorganic base material containing Ba used as a raw material in the catalyst for comparison. 比較用の触媒において原料とされるLaを含む無機母材の外観を示す写真である。It is a photograph which shows the external appearance of the inorganic base material containing La used as a raw material in the catalyst for comparison. 実施例、比較例の触媒により排気ガスを処理したときのHCの転化率を表すグラフである。It is a graph showing the conversion rate of HC when exhaust gas is processed with the catalyst of an Example and a comparative example. 実施例、比較例の触媒により排気ガスを処理したときのCOの転化率を表すグラフである。It is a graph showing the conversion rate of CO when exhaust gas is processed with the catalyst of an Example and a comparative example. 実施例、比較例の触媒により排気ガスを処理したときのNOxの転化率を表すグラフである。It is a graph showing the conversion rate of NOx when exhaust gas is processed with the catalyst of an Example and a comparative example.

Claims (9)

金属触媒成分(A)がウイスカー状無機母材(B)に担持された繊維状の無機母材―金属触媒複合物を含有する排気ガス浄化用触媒であって、
金属触媒成分(A)は、少なくとも貴金属元素を含み、一方、ウイスカー状無機母材(B)は、Alを主要構成単位とするとともに、その結晶内及び/又はその表面上にジルコニウム成分を含有し、かつ、直径が実質的に50nm以下、アスペクト比が2以上であることを特徴とする排気ガス浄化用触媒。
An exhaust gas purifying catalyst containing a fibrous inorganic base material-metal catalyst composite in which a metal catalyst component (A) is supported on a whisker-like inorganic base material (B),
The metal catalyst component (A) contains at least a noble metal element, while the whisker-like inorganic base material (B) contains Al 2 O 3 as a main constituent unit and a zirconium component in the crystal and / or on the surface thereof. And an exhaust gas purifying catalyst characterized by having a diameter of substantially 50 nm or less and an aspect ratio of 2 or more.
金属触媒成分(A)中の貴金属元素が、ロジウムを含むことを特徴とする請求項1に記載の排気ガス浄化用触媒。   The exhaust gas purifying catalyst according to claim 1, wherein the noble metal element in the metal catalyst component (A) contains rhodium. ウイスカー状無機母材(B)が、繊維状ベーマイトであることを特徴とする請求項1又は2に記載の排気ガス浄化用触媒。   The exhaust gas purifying catalyst according to claim 1 or 2, wherein the whisker-like inorganic base material (B) is fibrous boehmite. ウイスカー状無機母材(B)の直径が、実質的に30nm以下であることを特徴とする請求項1〜3のいずれかに記載の排気ガス浄化用触媒。   The exhaust gas purifying catalyst according to any one of claims 1 to 3, wherein the diameter of the whisker-like inorganic base material (B) is substantially 30 nm or less. ジルコニウム成分の含有量が、ウイスカー状無機母材(B)に対してZr酸化物換算で0.1〜30重量%であることを特徴とする請求項1〜4のいずれかに記載の排気ガス浄化用触媒。   The exhaust gas according to any one of claims 1 to 4, wherein the content of the zirconium component is 0.1 to 30 wt% in terms of Zr oxide with respect to the whisker-like inorganic base material (B). Purification catalyst. 請求項1〜5のいずれかに記載の排気ガス浄化用触媒を、一体構造型担体の表面に被覆してなる排気ガス浄化用一体構造型触媒。   An integral structure type catalyst for exhaust gas purification, which is obtained by coating the surface of an integral structure type carrier with the exhaust gas purification catalyst according to any one of claims 1 to 5. 金属触媒成分(A)の量が、一体構造型担体に対して0.01〜10g/Lであることを特徴とする請求項6に記載の排気ガス浄化用一体構造型触媒。   The monolithic catalyst for exhaust gas purification according to claim 6, wherein the amount of the metal catalyst component (A) is 0.01 to 10 g / L with respect to the monolithic support. 無機母材―金属触媒複合物の量が、一体構造型担体に対して10〜400g/Lであることを特徴とする請求項6又は7に記載の排気ガス浄化用一体構造型触媒。   The monolithic structure type catalyst for exhaust gas purification according to claim 6 or 7, wherein the amount of the inorganic base material-metal catalyst composite is 10 to 400 g / L with respect to the monolithic structure type carrier. 窒素酸化物、炭化水素、および一酸化炭素を含有する排気ガスを、請求項6〜8のいずれかに記載の排気ガス浄化用一体構造型触媒に流通して接触させることを特徴とする排気ガス浄化方法。   Exhaust gas containing nitrogen oxides, hydrocarbons, and carbon monoxide is circulated and brought into contact with the exhaust gas purifying monolithic catalyst according to any one of claims 6 to 8. Purification method.
JP2006083177A 2006-03-24 2006-03-24 Exhaust gas purification catalyst, exhaust gas purification integrated structure type catalyst, and exhaust gas purification method Active JP4817918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006083177A JP4817918B2 (en) 2006-03-24 2006-03-24 Exhaust gas purification catalyst, exhaust gas purification integrated structure type catalyst, and exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006083177A JP4817918B2 (en) 2006-03-24 2006-03-24 Exhaust gas purification catalyst, exhaust gas purification integrated structure type catalyst, and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JP2007253110A true JP2007253110A (en) 2007-10-04
JP4817918B2 JP4817918B2 (en) 2011-11-16

Family

ID=38627873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006083177A Active JP4817918B2 (en) 2006-03-24 2006-03-24 Exhaust gas purification catalyst, exhaust gas purification integrated structure type catalyst, and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP4817918B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019018126A (en) * 2017-07-12 2019-02-07 株式会社豊田中央研究所 Catalytic support for exhaust purification, catalyst for exhaust purification using the same, and method for producing catalytic support for exhaust purification

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314764A (en) * 2000-02-29 2001-11-13 Ibiden Co Ltd Catalyst and its manufacturing method
JP2002119860A (en) * 2000-10-16 2002-04-23 Ibiden Co Ltd Catalyst and method of manufacturing for the same
JP2004074116A (en) * 2002-08-22 2004-03-11 Denso Corp Catalyst body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314764A (en) * 2000-02-29 2001-11-13 Ibiden Co Ltd Catalyst and its manufacturing method
JP2002119860A (en) * 2000-10-16 2002-04-23 Ibiden Co Ltd Catalyst and method of manufacturing for the same
JP2004074116A (en) * 2002-08-22 2004-03-11 Denso Corp Catalyst body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019018126A (en) * 2017-07-12 2019-02-07 株式会社豊田中央研究所 Catalytic support for exhaust purification, catalyst for exhaust purification using the same, and method for producing catalytic support for exhaust purification

Also Published As

Publication number Publication date
JP4817918B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
KR101834022B1 (en) Gasoline engine emissions treatment systems having gasoline particulate filters
KR20150119140A (en) Positive ignition engine and exhaust system comprising three-way catalysed filter
WO2018159214A1 (en) Filter for exhaust gas cleaning and method for manufacturing same
JP6087362B2 (en) Platinum-based oxidation catalyst and exhaust gas purification method using the same
CN111132759A (en) TWC catalysts for gasoline exhaust gas applications with improved thermal stability
JP6378169B2 (en) Diesel engine exhaust gas purification catalyst for light oil oxidation and diesel engine exhaust gas purification apparatus using the same
JP2017502839A (en) Selective catalytic reduction method using doped ceria
JP2007275878A (en) Exhaust gas cleaning catalyst, its manufacturing method and cleaning method for exhaust gas using the catalyst
CN113905816A (en) Catalytic article and method of making a catalytic article
JP7187654B2 (en) Exhaust gas purification catalyst composition and automobile exhaust gas purification catalyst
JP2019516541A (en) Exhaust gas purification filter
JP2021507804A (en) Exhaust gas purification catalyst
KR20220002926A (en) Catalyst based on metal oxide nanoparticles and method for preparing and using the same
JP5023968B2 (en) Exhaust gas component purification catalyst material and particulate filter with the catalyst material
CN113318736B (en) LNT layered catalyst for gasoline lean-burn engine and exhaust gas purification device using same
JP2002361047A (en) Method for cleaning exhaust and apparatus therefor
JP2021514837A (en) Gasoline engine exhaust gas aftertreatment catalyst
JP2019150781A (en) Exhaust gas treatment member
JP5488215B2 (en) Exhaust gas purification catalyst
JP4817918B2 (en) Exhaust gas purification catalyst, exhaust gas purification integrated structure type catalyst, and exhaust gas purification method
JP5806157B2 (en) Exhaust gas purification catalyst composition
JP4654101B2 (en) EXHAUST GAS PURIFICATION CATALYST, ITS MANUFACTURING METHOD, AND EXHAUST GAS PURIFICATION INTEGRATED STRUCTURE TYPE CATALYST
JP4613074B2 (en) EXHAUST GAS PURIFICATION CATALYST, ITS MANUFACTURING METHOD, AND EXHAUST GAS PURIFICATION INTEGRATED STRUCTURE TYPE CATALYST
JP5029273B2 (en) Particulate filter
JP4538333B2 (en) EXHAUST GAS PURIFICATION CATALYST, ITS MANUFACTURING METHOD, AND EXHAUST GAS PURIFICATION INTEGRATED STRUCTURE TYPE CATALYST

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4817918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250