JP2007251114A - Substrate for high-performance solar cell having optical multi-layer film, and manufacturing method therefor - Google Patents

Substrate for high-performance solar cell having optical multi-layer film, and manufacturing method therefor Download PDF

Info

Publication number
JP2007251114A
JP2007251114A JP2006112696A JP2006112696A JP2007251114A JP 2007251114 A JP2007251114 A JP 2007251114A JP 2006112696 A JP2006112696 A JP 2006112696A JP 2006112696 A JP2006112696 A JP 2006112696A JP 2007251114 A JP2007251114 A JP 2007251114A
Authority
JP
Japan
Prior art keywords
solar cell
sunlight
solar
substrate
cell substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006112696A
Other languages
Japanese (ja)
Inventor
Akitoshi O
明利 王
Hiroshi Hasegawa
寛 長谷川
Kiyoshi Masuda
清志 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEIHIN KOMAKU KOGYO KK
Original Assignee
KEIHIN KOMAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEIHIN KOMAKU KOGYO KK filed Critical KEIHIN KOMAKU KOGYO KK
Priority to JP2006112696A priority Critical patent/JP2007251114A/en
Publication of JP2007251114A publication Critical patent/JP2007251114A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a solar cell substrate of high-power generation efficiency, by preventing power generation efficiency from deteriorating due to the rise in the temperature under strong sunlight, in the substrate for solar cell. <P>SOLUTION: On a light-receiving surface on which the sunlight is made incident of the solar cell substrate, a multi-layer film which has high absorption characteristics with respect to the sunlight having the wavelength in a sensitivity region of high sunlight spectral density, and has reflection characteristics with respect to the sunlight of the wavelength, in a sensitivity region where the sunlight spectral density deteriorates, is formed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は高効率発電を可能とした光学多層膜を太陽光受光面に有した太陽光電池用基板に関するものである。  The present invention relates to a solar cell substrate having an optical multilayer film capable of high-efficiency power generation on a solar light receiving surface.

技術背景Technical background

太陽光を受光し光電変換により発電する太陽光電池用基板において、その発電効率を上げる1つの技術として、受光面の表面に窒化シリコン(SiN)膜を形成することで、反射防止膜として太陽光の反射を防ぎ、反射による太陽光入射のロスを少なくする事により、発電効率を上げている。更なる高効率化のために表面に凹凸をつけたテクスチャ形状にしたものも開発されている。  In a solar cell substrate that receives sunlight and generates electric power by photoelectric conversion, as one technique for increasing the power generation efficiency, a silicon nitride (SiN) film is formed on the surface of the light receiving surface, so that sunlight can be used as an antireflection film. Power generation efficiency is improved by preventing reflection and reducing the loss of sunlight incident due to reflection. In order to further increase the efficiency, a textured shape with an uneven surface has been developed.

しかし、これまでの結晶系太陽光電池は高温に弱く気温が上昇する夏場には、発電能力が低下すると言う欠点があった。
また、窒化シリコン(SiN)膜は波長領域が550nmから1000nmの範囲では透過率が90%以上となり高い反射防止効果が得られる。しかし、光電変換される太陽光スペクトル密度の高い感度領域の一部である400nmから500nmの範囲では透過率が低下し、太陽光の反射が多くなり、発電効率を下げる結果となる。また、1000nm以上の赤外領域では太陽光の透過率は80%以上あり、長波長領域での吸収率が高く、特に夏場の日中時には吸収された赤外領域の太陽光により太陽光電池用基板は加熱され、発電能力にとって不利な状況となる。
However, the conventional crystalline solar cells have a drawback in that the power generation capacity decreases in summer when the temperature is weak and the temperature rises.
Further, the silicon nitride (SiN) film has a transmittance of 90% or more in the wavelength region of 550 nm to 1000 nm, and a high antireflection effect is obtained. However, in the range of 400 nm to 500 nm, which is a part of the sensitivity region where the sunlight spectral density is high, which is photoelectrically converted, the transmittance is reduced, the reflection of sunlight is increased, and the power generation efficiency is lowered. Further, in the infrared region of 1000 nm or more, the transmittance of sunlight is 80% or more, and the absorption factor in the long wavelength region is high. In particular, the solar cell substrate is absorbed by the sunlight in the infrared region absorbed during the daytime in summer. Is heated, which is disadvantageous for power generation capacity.

この改善策として、波長が400nmあたりから1100nm程度までの領域においては95%以上の透過率を得、1100nm程度以上の長波長領域では透過率を低下させ、反射率を上げる特性を持った多層膜を太陽光電池用基板の太陽光受光面に形成することにより、光電変換の有利な感度帯域では太陽光の吸収効率を上げ、かつ長波長である赤外領域での波長帯域の太陽光を反射させることにより該太陽光電池用基板の温度上昇を阻止し発電能力の低下を抑制することにより、発電効率の高い太陽光電池用基板を得ることが出来る。
特開2005−244073 工業材料 2006年1月号(Vol.54 No.1)
As a measure for improvement, a multilayer film having a characteristic that a transmittance of 95% or more is obtained in a wavelength region from about 400 nm to about 1100 nm, and the transmittance is lowered and the reflectance is increased in a long wavelength region of about 1100 nm or more. Is formed on the solar light receiving surface of the substrate for solar cells, so that the absorption efficiency of sunlight is increased in the advantageous sensitivity band of photoelectric conversion, and the sunlight in the wavelength band in the infrared region, which is a long wavelength, is reflected. Thus, a solar cell substrate with high power generation efficiency can be obtained by preventing a temperature rise of the solar cell substrate and suppressing a decrease in power generation capacity.
JP-A-2005-244073 Industrial Materials January 2006 (Vol.54 No.1)

解決しようとする問題点は、従来技術の欠点であった強烈な太陽光下での温度上昇による発電効率が低下してしまう点と、太陽光スペクトル密度の高い感度領域に対しては出来るだけ広い範囲で太陽光の透過率を上げる点である。  The problems to be solved are as wide as possible for the sensitivity region where the solar spectrum density is high, and the point that the power generation efficiency decreases due to the temperature rise under intense sunlight, which was a drawback of the prior art. It is the point which raises the transmittance of sunlight in the range.

太陽光電池用基板が高効率で光電変換する太陽光スペクトル密度の高い感度領域(例えば450nm程度〜11000nm程度)での太陽光の吸収を上げ、かつ長波長赤外領域(例えば1100nm程度以上)では太陽光を反射する事を最も主要な特徴とする。  The solar cell substrate increases the absorption of sunlight in a high sensitivity region (for example, about 450 nm to about 11000 nm) where the solar spectrum density is photoelectrically converted with high efficiency, and in the long wavelength infrared region (for example, about 1100 nm or more) Reflecting light is the main feature.

本発明の太陽光電池用基板は、光スペクトル密度の高い感度領域での太陽光の吸収を高め、該太陽光電池用基板の温度が上昇する長波長赤外領域での太陽光を反射することにより、該太陽光電池用基板の温度上昇を抑制し、発電効率をあげられると言う利点がある。  The solar cell substrate of the present invention enhances the absorption of sunlight in the sensitive region with high optical spectral density, and reflects the sunlight in the long wavelength infrared region where the temperature of the solar cell substrate rises, There is an advantage that the temperature rise of the solar cell substrate can be suppressed and the power generation efficiency can be increased.

プラズマCVD蒸着法による成膜の実施例を示す。高屈折率材料としてTiO2を、低屈折率材料としてSiO2を用いる。TiO2の蒸着条件としてはソースガスとしてH4TiO4加熱を用い、基板上の温度を250℃〜400℃とする。SiO2蒸着ソースガスとしてSiH4+酸素を用いる。膜構成としてはSi(Sub)/TiO2/SiO2/TiO2/SiO2/TiO2/SiO2/TiO2/SiO2の8層である。膜厚は71.8nm/133.2nm/6nm/74.6nm/144.3nm/224.79nm/139.6nm/11.59nmである。
図1にプラズマCVD蒸着法による太陽光電池用基板上に成膜した分光透過特性を示す。
図2にプラズマCVD蒸着法による太陽光電池用基板上に成膜した分光反射特性を示す。
An example of film formation by plasma CVD is shown. TiO2 is used as the high refractive index material, and SiO2 is used as the low refractive index material. As deposition conditions for TiO2, H4TiO4 heating is used as a source gas, and the temperature on the substrate is set to 250C to 400C. SiH4 + oxygen is used as the SiO2 vapor deposition source gas. The film structure is eight layers of Si (Sub) / TiO2 / SiO2 / TiO2 / SiO2 / SiO2 / TiO2 / SiO2 / TiO2 / SiO2. The film thicknesses are 71.8 nm / 133.2 nm / 6 nm / 74.6 nm / 144.3 nm / 224.79 nm / 139.6 nm / 11.59 nm.
FIG. 1 shows spectral transmission characteristics formed on a solar cell substrate by plasma CVD deposition.
FIG. 2 shows spectral reflection characteristics formed on a solar cell substrate by plasma CVD deposition.

スパッター蒸着法による成膜の実施例を示す。高屈折率材料としてはNb2O5を、低屈折率材料としてはSiO2を用いる。基板温度は100℃。膜構成としてはSi(Sub)/Nb2O5/SiO2/Nb2O5/SiO2の14層である。膜厚は63.72nm/56.71nm/17.2nm/68.2nm/31.4nm/15.4nm/84.0nm/27.48nm/17.69nm/153.73nm/12.4nm/31.22nm/109.09nm/95.0nmである。
図3にスパッター蒸着法による太陽光電池用基板上に成膜した分光透過特性を示す。
図4にスパッター蒸着法による太陽光電池用基板上に成膜した分光反射特性を示す。
An example of film formation by a sputtering method will be shown. Nb2O5 is used as the high refractive index material, and SiO2 is used as the low refractive index material. The substrate temperature is 100 ° C. The film configuration is 14 layers of Si (Sub) / Nb2O5 / SiO2 / Nb2O5 / SiO2. The film thickness is 63.72 nm / 56.71 nm / 17.2 nm / 68.2 nm / 31.4 nm / 15.4 nm / 84.0 nm / 27.48 nm / 17.69 nm / 153.73 nm / 12.4 nm / 31.22 nm /109.09 nm / 95.0 nm.
FIG. 3 shows the spectral transmission characteristics formed on a solar cell substrate by sputtering deposition.
FIG. 4 shows spectral reflection characteristics formed on a solar cell substrate by sputtering deposition.

電子ビーム真空蒸着法による成膜の実施例を示す。膜構成において第1層膜としてITO膜を形成する。このITO膜を導入することにより、太陽光電池の短絡電流の向上を図ることが出来る。本実施例では基板温度としては200℃としている。膜構成としてはSi(Sub)/ITO/SiO2/TiO2/SiO2/TiO2/SiO2/TiO2/SiO2の8層である。膜厚は70.4nm/136.9nm/11.3nm/31nm/124.5nm/215.86nm/138.07nm/109.36nmである。
図5に真空蒸着法による太陽光電池用基板上に成膜した分光透過特性を示す。
図6に真空蒸着法による太陽光電池用基板上に成膜した分光反射特性を示す。
An example of film formation by electron beam vacuum deposition will be described. An ITO film is formed as the first layer film in the film configuration. By introducing this ITO film, the short-circuit current of the solar battery can be improved. In this embodiment, the substrate temperature is 200 ° C. The film structure is eight layers of Si (Sub) / ITO / SiO2 / TiO2 / SiO2 / TiO2 / TiO2 / TiO2 / SiO2. The film thicknesses are 70.4 nm / 136.9 nm / 11.3 nm / 31 nm / 124.5 nm / 215.86 nm / 138.07 nm / 109.36 nm.
FIG. 5 shows spectral transmission characteristics formed on a solar cell substrate by vacuum evaporation.
FIG. 6 shows spectral reflection characteristics formed on a solar cell substrate by vacuum evaporation.

プラズマCVD蒸着法による太陽光電池用基板上に成膜した多層膜の透過特性を説明する図である。It is a figure explaining the permeation | transmission characteristic of the multilayer film formed into a film on the board | substrate for solar cells by a plasma CVD vapor deposition method. プラズマCVD蒸着法による太陽光電池用基板上に成膜した多層膜の反射特性を説明する図である。It is a figure explaining the reflective characteristic of the multilayer film formed into a film on the board | substrate for solar cells by a plasma CVD vapor deposition method. スパッター蒸着法による太陽光電池用基板上に成膜した多層膜の透過特性を説明する図である。It is a figure explaining the permeation | transmission characteristic of the multilayer film formed into a film on the board | substrate for solar cells by a sputtering method. スパッター蒸着法による太陽光電池用基板上に成膜した多層膜の反射特性を説明する図である。It is a figure explaining the reflective characteristic of the multilayer film formed into a film on the board | substrate for solar cells by a sputtering method. 電子ビーム真空蒸着法による太陽光電池用基板上に成膜した多層膜の透過特性を説明する図である。It is a figure explaining the permeation | transmission characteristic of the multilayer film formed into a film on the board | substrate for solar cells by an electron beam vacuum evaporation method. 電子ビーム真空蒸着法による太陽光電池用基板上に成膜した多層膜の反射特性を説明する図である。It is a figure explaining the reflective characteristic of the multilayer film formed into a film on the board | substrate for solar cells by an electron beam vacuum evaporation method.

Claims (4)

太陽光電池用基板において太陽光を受光する表面に、太陽電池が光電変換を行う太陽光スペクトル密度の高い感度帯域においては、太陽光を吸収し反射を防止し、且つ太陽光スペクトル密度が低くなる感度帯域である赤外領域においては太陽光を反射する特性を持った多層膜を形成することを特徴とする太陽光電池用基板。  In the sensitivity band with high solar spectral density where the solar cell performs photoelectric conversion on the surface that receives solar light on the substrate for solar battery, the sensitivity that absorbs sunlight and prevents reflection and lowers the solar spectral density. A solar cell substrate, wherein a multilayer film having a characteristic of reflecting sunlight is formed in an infrared region which is a band. 請求項1に記載の太陽光電池用基板において、太陽光受光面上に形成する多層膜として、高い屈折率を有する材料と、低い屈折率を有する材料からなる2種類の屈折率を有する材料から成る多層膜であることを特徴とする太陽光電池用基板。  2. The solar cell substrate according to claim 1, wherein the multilayer film formed on the solar light receiving surface is made of a material having a high refractive index and a material having two types of refractive index, a material having a low refractive index. A substrate for a solar battery, which is a multilayer film. 請求項1に記載の太陽光電池用基板において、太陽光受光面上に形成する多層膜として、2種類以上の屈折率を有する材料から成る多層膜であることを特徴とする太陽光電池用基板。  2. The solar cell substrate according to claim 1, wherein the multi-layer film formed on the solar light receiving surface is a multi-layer film made of a material having two or more kinds of refractive indexes. 請求項1に記載の太陽光電池基板において、太陽光受光面上に形成する、請求項2あるいは請求項3に記載した多層膜の構成材料の1つに透明導電性材料を有したことを特徴とする太陽光電池基板。  The solar cell substrate according to claim 1, wherein one of the constituent materials of the multilayer film according to claim 2 or 3 formed on the sunlight receiving surface has a transparent conductive material. Solar cell board to be used.
JP2006112696A 2006-03-17 2006-03-17 Substrate for high-performance solar cell having optical multi-layer film, and manufacturing method therefor Pending JP2007251114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006112696A JP2007251114A (en) 2006-03-17 2006-03-17 Substrate for high-performance solar cell having optical multi-layer film, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006112696A JP2007251114A (en) 2006-03-17 2006-03-17 Substrate for high-performance solar cell having optical multi-layer film, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2007251114A true JP2007251114A (en) 2007-09-27

Family

ID=38595037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006112696A Pending JP2007251114A (en) 2006-03-17 2006-03-17 Substrate for high-performance solar cell having optical multi-layer film, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2007251114A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245533A (en) * 2009-04-02 2010-10-28 Samsung Corning Precision Glass Co Ltd Multi-layer thin film structure for photovoltaic cell
JP2011009419A (en) * 2009-06-25 2011-01-13 Konica Minolta Holdings Inc Solar cell unit and method for manufacturing the same
JPWO2016148119A1 (en) * 2015-03-18 2017-12-28 住友化学株式会社 Photoelectric conversion element having a reflector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245533A (en) * 2009-04-02 2010-10-28 Samsung Corning Precision Glass Co Ltd Multi-layer thin film structure for photovoltaic cell
JP2011009419A (en) * 2009-06-25 2011-01-13 Konica Minolta Holdings Inc Solar cell unit and method for manufacturing the same
JPWO2016148119A1 (en) * 2015-03-18 2017-12-28 住友化学株式会社 Photoelectric conversion element having a reflector

Similar Documents

Publication Publication Date Title
JP4811945B2 (en) Thin film photoelectric converter
US20100180941A1 (en) Antireflection film of solar cell, solar cell, and method of manufacturing solar cell
US20100126579A1 (en) Solar cell having reflective structure
JP2009231505A (en) Solar battery
CN112086522B (en) Radiation refrigeration solar cell module
CN103069308A (en) Silicon multilayer anti-reflective film with gradually varying refractive index and manufacturing method therefor, and solar cell having same and manufacturing method therefor
JP7345793B2 (en) High efficiency and angle resistant colored filter assembly for photovoltaic devices
JP2008270562A (en) Multi-junction type solar cell
JPH04372177A (en) Photovoltaic device
KR101194258B1 (en) Transparent substrate for solar cell having a broadband anti-reflective multilayered coating thereon and method for preparing the same
JP2007251114A (en) Substrate for high-performance solar cell having optical multi-layer film, and manufacturing method therefor
JP4789131B2 (en) Solar cell and method for manufacturing solar cell
JP5290597B2 (en) Reflector for concentrating solar cell module
RU2455730C2 (en) Solar cell
JP4889623B2 (en) Transparent conductive film and solar cell using transparent conductive film
WO2010087785A1 (en) Thin film solar cell structure
JP2005277181A (en) Method for manufacturing semiconductor device
JP5469298B2 (en) Transparent conductive film for photoelectric conversion device and method for producing the same
CN109324362B (en) Condensing reflector and preparation method thereof
WO2012171146A1 (en) Thin film solar cell with new type anti-reflection layer and fabrication method thereof
Wu et al. Boosting Total Conversion Efficiency of Hybrid Photovoltaic–Thermal via a Spectral Splitter/Absorber Based on Lossy Periodic Structured Media
Faisst et al. Organic Solar Cell with an Active Area> 1 cm2 Achieving 15.8% Certified Efficiency using Optimized VIS‐NIR Antireflection Coating
JP5542038B2 (en) Thin film solar cell and method for manufacturing the same, thin film solar cell module
JP2008260654A (en) Glass with high sunlight-transmitting performance
JPS59125669A (en) Solar battery