JP2007250972A - Low-heat invasion current lead device - Google Patents

Low-heat invasion current lead device Download PDF

Info

Publication number
JP2007250972A
JP2007250972A JP2006074453A JP2006074453A JP2007250972A JP 2007250972 A JP2007250972 A JP 2007250972A JP 2006074453 A JP2006074453 A JP 2006074453A JP 2006074453 A JP2006074453 A JP 2006074453A JP 2007250972 A JP2007250972 A JP 2007250972A
Authority
JP
Japan
Prior art keywords
current lead
current
conductor
lead conductor
lead device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006074453A
Other languages
Japanese (ja)
Other versions
JP4813221B2 (en
Inventor
Hirotaka Kamijiyou
弘貴 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2006074453A priority Critical patent/JP4813221B2/en
Publication of JP2007250972A publication Critical patent/JP2007250972A/en
Application granted granted Critical
Publication of JP4813221B2 publication Critical patent/JP4813221B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-heat invasion current lead device which reduces electric resistance when an electrification current is large, or suppresses small heat invasion when there is no electrification, or when the electrification current is small. <P>SOLUTION: A low-heat invasion current lead device comprises: a turn-shaped current lead conductor 1 with a positive coefficient of linear expansion; and a material 2 with a negative coefficient of linear expansion, disposed not to be brought into contact with as a whole but to be connected with just partially the current lead conductor 1 in an axial direction via a heat conduction connection 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高温超電導ケーブルを鉄道のき電線に応用する場合や超電導応用機器などに用いられる低熱侵入電流リード装置に関するものである。   The present invention relates to a low thermal intrusion current lead device used in a case where a high temperature superconducting cable is applied to a railway feeder, a superconducting application device, or the like.

従来、高温超電導ケーブルを鉄道のき電線に応用する場合などでは、液体窒素で冷却された超電導ケーブルとトロリー線を接続するために、電流リードにより低温領域と室温領域を接続しなければならない。また、従来の電力用超電導ケーブルでは、き電線からの電力の取り出し口は少なくて済むが、き電線に超電導ケーブルを応用した場合には、数百mおきにき電線とトロリー線を接続する必要があるため、極低温に冷やされた超電導ケーブルと室温のトロリー線とを頻繁に結ぶことになる。   Conventionally, when a high-temperature superconducting cable is applied to a railway feeder, in order to connect the superconducting cable cooled with liquid nitrogen and a trolley wire, the low temperature region and the room temperature region must be connected by a current lead. In addition, in the conventional superconducting cable for electric power, there are few power outlets from the feeder, but when the superconducting cable is applied to the feeder, it is necessary to connect the feeder and the trolley wire every several hundred meters. Therefore, the superconducting cable cooled to a very low temperature and the trolley wire at room temperature are frequently connected.

こうした超電導ケーブルをき電線に応用する場合の電流リードに要求される性能は、大電流を通電可能で、熱侵入が小さいことである。   The performance required for a current lead when such a superconducting cable is applied to feeders is that a large current can be passed and heat penetration is small.

また、き電線に超電導ケーブルを応用した場合、それぞれの電流リードに電流が流れる時間は、そのセクションに電車が在線する時のみで、電力用ケーブルの場合と比べると断続的であり、流れる電流量の変動が大きいと言った特徴がある。したがって、電流が流れているときは抵抗が小さく大電流を流すことができ、電流が小さいときや電流が流れていない時には熱侵入を小さく抑えることができるような電流リードが望まれる。
なし
In addition, when superconducting cables are applied to feeders, the time that current flows through each current lead is only when the train is in that section, and is intermittent compared to power cables. There is a feature that the fluctuation of is said to be large. Therefore, a current lead is desired that has a small resistance when a current is flowing, can flow a large current, and can suppress heat penetration when the current is small or when no current is flowing.
None

しかしながら、電流リードに大きな電流を流そうとする場合には導体の断面積を大きくし、導体の長さも短くして電気抵抗をできるだけ抑えねばならないが、一方で、熱侵入を小さくするためには、導体の断面積を小さくし導体を長くしなければならない。つまり、相反する要求を満たさなければならないといった問題があった。   However, in order to pass a large current through the current lead, the conductor cross-sectional area must be increased and the conductor length must be shortened to reduce the electrical resistance as much as possible. The conductor cross-sectional area must be reduced and the conductor lengthened. In other words, there was a problem that conflicting requirements had to be satisfied.

本発明は、上記状況に鑑みて、通電電流が大きい時には電気抵抗を低くし、無通電もしくは通電電流が小さい時には熱侵入を小さく抑えることができる低熱侵入電流リード装置を提供することを目的とする。   In view of the above situation, an object of the present invention is to provide a low heat penetration current lead device that can reduce electrical resistance when an energization current is large and can suppress heat penetration to be small when no energization or an energization current is small. .

本発明は、上記目的を達成するために、
〔1〕低熱侵入電流リード装置において、正の線膨張係数を持つターン形状の電流リード導体と、熱伝導接続部を介して前記電流リード導体と軸方向に全体が接触せず一部のみ接続させるように配置される、負の線膨張係数を持つ材料とを具備することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the low heat penetration current lead device, a turn-shaped current lead conductor having a positive coefficient of linear expansion is connected to the current lead conductor through the heat conduction connecting portion in the axial direction and only partially connected. And a material having a negative coefficient of linear expansion.

〔2〕上記〔1〕記載の低熱侵入電流リード装置において、前記電流リード導体がスパイラル状の電流リード導体であることを特徴とする。   [2] The low heat penetration current lead device according to [1], wherein the current lead conductor is a spiral current lead conductor.

〔3〕上記〔2〕記載の低熱侵入電流リード装置において、前記材料を前記スパイラル状の電流リード導体の外周に配置することを特徴とする。   [3] The low heat penetration current lead device according to [2], wherein the material is arranged on an outer periphery of the spiral current lead conductor.

〔4〕上記〔2〕記載の低熱侵入電流リード装置において、前記材料を前記スパイラル状の電流リード導体の内周に配置することを特徴とする。   [4] The low heat penetration current lead device according to [2], wherein the material is arranged on an inner periphery of the spiral current lead conductor.

〔5〕上記〔2〕記載の低熱侵入電流リード装置において、前記材料を前記スパイラル状の電流リード導体の外周及び内周に配置することを特徴とする。   [5] The low heat penetration current lead device according to [2], wherein the material is disposed on an outer periphery and an inner periphery of the spiral current lead conductor.

〔6〕上記〔2〕記載の低熱侵入電流リード装置において、前記材料を前記スパイラル状の電流リード導体の外周の一部に配置することを特徴とする。   [6] The low heat penetration current lead device according to [2], wherein the material is disposed on a part of an outer periphery of the spiral current lead conductor.

〔7〕上記〔2〕記載の低熱侵入電流リード装置において、前記材料を前記スパイラル状の電流リード導体の内周の一部に配置することを特徴とする。   [7] The low heat penetration current lead device according to [2], wherein the material is disposed on a part of an inner circumference of the spiral current lead conductor.

〔8〕上記〔2〕記載の低熱侵入電流リード装置において、前記材料を前記スパイラル状の電流リード導体の外周及び内周の一部に配置することを特徴とする。   [8] The low heat penetration current lead device according to [2], wherein the material is disposed on a part of an outer periphery and an inner periphery of the spiral current lead conductor.

〔9〕上記〔1〕記載の低熱侵入電流リード装置において、前記電流リード導体がミアンダ状の電流リード導体であることを特徴とする。   [9] The low heat penetration current lead device according to [1], wherein the current lead conductor is a meander-shaped current lead conductor.

〔10〕上記〔9〕記載の低熱侵入電流リード装置において、前記材料を前記ミアンダ状の電流リード導体の片面に配置することを特徴とする。   [10] The low heat penetration current lead device according to [9], wherein the material is disposed on one surface of the meander-shaped current lead conductor.

〔11〕上記〔9〕記載の低熱侵入電流リード装置において、前記材料を前記ミアンダ状の電流リード導体の両面に配置することを特徴とする。   [11] The low heat penetration current lead device according to [9], wherein the material is disposed on both surfaces of the meander-shaped current lead conductor.

〔12〕上記〔9〕〜〔11〕の何れか一項記載の低熱侵入電流リード装置において、前記材料を前記ミアンダ状の電流リード導体の外周に配置することを特徴とする。   [12] The low heat penetration current lead device according to any one of [9] to [11], wherein the material is disposed on an outer periphery of the meander-shaped current lead conductor.

〔13〕上記〔12〕記載の低熱侵入電流リード装置において、前記材料を前記ミアンダ状の電流リード導体の外周の一部に配置することを特徴とする。   [13] The low heat penetration current lead device according to [12], wherein the material is disposed on a part of an outer periphery of the meander-shaped current lead conductor.

〔14〕上記〔1〕記載の低熱侵入電流リード装置において、前記熱伝導接続部が、前記材料との接触面積が小さくなるような断面形状を有することを特徴とする。   [14] The low thermal intrusion current lead device according to [1], wherein the heat conduction connecting portion has a cross-sectional shape so that a contact area with the material is reduced.

〔15〕上記〔1〕記載の低熱侵入電流リード装置において、前記熱伝導接続部は、前記材料と電流リード導体の中央部のみで固定されることより構成され、該中央部以外はフリーにすることを特徴とする。   [15] In the low heat penetration current lead device according to [1], the heat conduction connecting portion is configured by being fixed only at a central portion of the material and the current lead conductor, and other portions than the central portion are free. It is characterized by that.

本発明によれば、無通電時もしくは通電電流が小さい時には、正の線膨張係数を持つターン(スパイラル又はミアンダ)形状の電流リード導体の発熱がないかもしくは小さいため、温度は低いので電流リード導体は縮み、負の線膨張係数を持つ材料は膨張して、電流リード導体のターン間には隙間ができて一本の長い導体として作用し、電流リード導体の断面積も小さいので、伝熱距離が長く細い導体として、熱侵入を抑えることができる。   According to the present invention, when there is no energization or when the energization current is small, the turn (spiral or meander) shaped current lead conductor having a positive coefficient of linear expansion does not generate heat or is small, so the temperature is low, so the current lead conductor The material with a negative linear expansion coefficient expands, creating a gap between the turns of the current lead conductor and acting as one long conductor, and the cross-sectional area of the current lead conductor is also small, so the heat transfer distance As a long and thin conductor, heat penetration can be suppressed.

一方、通電電流が大きい時には、電流リード導体に電流が流れ、その電流値が大きくなると、電流リード導体の断面が小さく抵抗値が大きいため、電流リード導体は発熱し温度が上昇する。その温度上昇に伴い、正の線膨張係数を持つ電流リード導体は膨張し、負の線膨張係数を持つ材料は収縮するため電流リード導体ターン間の隙間がなくなりお互いに接触するため、電流リード導体は円筒形状または矩形の断面積が大きく長さが短い電流リード導体として、電気的抵抗が小さくなり、電気抵抗による発熱が抑えられる。つまり、熱侵入量は増加するが大電流を通電可能となる。   On the other hand, when the energization current is large, current flows through the current lead conductor, and when the current value increases, the current lead conductor generates heat and the temperature rises because the cross section of the current lead conductor is small and the resistance value is large. As the temperature rises, the current lead conductor with a positive coefficient of linear expansion expands, and the material with a negative coefficient of linear expansion contracts. As a current lead conductor having a large cylindrical or rectangular cross-sectional area and a short length, electrical resistance is reduced, and heat generation due to electrical resistance is suppressed. That is, although a heat penetration amount increases, a large current can be passed.

本発明の低熱侵入電流リード装置は、正の線膨張係数を持つ電流リード導体と、熱伝導接続部を介して前記電流リード導体と軸方向に全体が軸方向に全体が接触せず一部のみ接続させるように配置される、負の線膨張係数を持つ材料とを具備する。   The low heat penetration current lead device of the present invention has a current lead conductor having a positive coefficient of linear expansion, and the current lead conductor is not entirely in contact with the current lead conductor in the axial direction via the heat conduction connecting portion, but only partially. And a material having a negative coefficient of linear expansion arranged to be connected.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明の第1実施例を示す低熱侵入電流リード装置とその通電電流による作用を示す図であり、図1(a)は電流が小さいときや電流が流れていないときの低熱侵入電流リード装置の状態を示す縦断断面図、図1(b)は電流が流れているときの低熱侵入電流リード装置の状態を示す縦断断面図である。図2は本発明の第1実施例を示す低熱侵入電流リード装置とその通電電流による作用を示す図であり、図2(a)は電流が小さいときや電流が流れていないときの低熱侵入電流リード装置の状態を示す横断断面図、図2(b)は電流が流れているときの低熱侵入電流リード装置の状態を示す横断断面図である。   FIG. 1 is a diagram showing a low thermal invasion current lead device according to the first embodiment of the present invention and its operation by an energized current. FIG. 1 (a) shows a low thermal invasion current when the current is small or when no current flows. FIG. 1B is a vertical cross-sectional view showing the state of the lead device, and FIG. 1B is a vertical cross-sectional view showing the state of the low heat penetration current lead device when current is flowing. FIG. 2 is a diagram showing a low thermal invasion current lead device according to the first embodiment of the present invention and the action of the energization current. FIG. 2 (a) shows a low thermal invasion current when the current is small or when no current flows. FIG. 2B is a cross-sectional view showing the state of the low heat penetration current lead device when current is flowing.

これらの図において、1はスパイラル状に形成されている銅などの正の線膨張係数を持つ電流リード導体(例えば、ターン形状の銅導体)、2は電流リード導体1のスパイラルの外周に、熱伝導接続部3を介して電流リード導体1に全体が接触固定しないように、電流通過方向に配置される負の線膨張係数を持つ材料(例えばザイロン)、3は電流リード導体1に設けられ電流リード導体1と負の線膨張係数を持つ材料2を接続する熱伝導接続部である。なお、この熱伝導接続部3は、前記材料2との接触面積が小さくなるような断面形状(熱伝導接続部3の先端が小さい形状、ただし、熱伝達は良い方がよい)を有することが望ましい。例えば、その接続形状を突起状形状などにして、負の線膨張係数を持つ材料2との接続面積が小さくなるような形状であることが望ましい。つまり、電流リード導体1の伸び縮みと負の線膨張係数を持つ材料2の伸び縮みがお互いにできるだけ拘束されないようにすることが重要である。なお、電流リード導体1と熱伝導接続部3は一体としてもよい。   In these figures, 1 is a current lead conductor having a positive coefficient of linear expansion such as copper formed in a spiral shape (for example, a turn-shaped copper conductor), and 2 is a heat conductor on the outer periphery of the spiral of the current lead conductor 1. A material having a negative linear expansion coefficient (for example, xylon) disposed in the current passing direction so that the entire current lead conductor 1 is not fixed to the current lead conductor 1 via the conductive connection portion 3. This is a heat conduction connecting portion for connecting the lead conductor 1 and the material 2 having a negative linear expansion coefficient. In addition, this heat conduction connection part 3 has a cross-sectional shape (a shape with a small tip of the heat conduction connection part 3, but better heat transfer is preferred) such that the contact area with the material 2 becomes smaller. desirable. For example, it is desirable that the connection shape be a protrusion shape or the like so that the connection area with the material 2 having a negative linear expansion coefficient is small. That is, it is important that the expansion / contraction of the current lead conductor 1 and the expansion / contraction of the material 2 having a negative linear expansion coefficient are not restricted as much as possible. Note that the current lead conductor 1 and the heat conduction connecting portion 3 may be integrated.

また、電流リード導体1は、電流が流れて各ターン間がくっついた際に、大電流を通電可能なように、各ターン間の接触面積を大きくすることが望ましい。   In addition, it is desirable that the current lead conductor 1 has a large contact area between the turns so that a large current can be applied when the currents flow and the turns adhere to each other.

このように構成したので、図1(a)や図2(a)に示すように、電流が小さいときや電流が流れていないときには、電流リード導体1は発熱しておらず、材料2は延びた状態にあるため、スパイラル状の電流リード導体1の各ターン間には隙間が生じて、実質的に電流リード導体1の断面積は小さく、長さは長くなった状態にある。つまり、電流が小さいときや電流が流れていないときには熱侵入を小さく抑えることができる。   With this configuration, as shown in FIGS. 1A and 2A, when the current is small or no current flows, the current lead conductor 1 does not generate heat and the material 2 extends. Therefore, a gap is generated between the turns of the spiral current lead conductor 1, so that the current lead conductor 1 is substantially small in cross-sectional area and long in length. That is, when the current is small or no current flows, the heat intrusion can be suppressed to a small value.

一方、電流が流れているときには、図1(b)や図2(b)に示すように、発熱により電流リード導体1は膨張し、材料2は縮むのでスパイラル状の電流リード導体1の各ターン間の隙間は互いに密着することになり、結果としてスパイラル状の電流リード導体1は、円筒形状になり、電流リード導体1の断面積が大きくなるとともにその長さは短くなる。   On the other hand, when the current is flowing, as shown in FIGS. 1B and 2B, the current lead conductor 1 expands and the material 2 contracts due to heat generation, so that each turn of the spiral current lead conductor 1 occurs. As a result, the spiral current lead conductor 1 has a cylindrical shape, and as a result, the cross-sectional area of the current lead conductor 1 increases and its length decreases.

すなわち、大きな電流を流そうとする場合には導体の断面積を大きくし、導体の長さも短くして電気抵抗をできるだけ抑えることができ、電流が小さいときや電流が流れていないときには導体の断面積を小さくし導体を長くすることにより、熱侵入を小さく抑えることができる。   In other words, when a large current is to be applied, the conductor cross-sectional area can be increased and the conductor length can be shortened to suppress the electrical resistance as much as possible. When the current is small or no current is flowing, the conductor is disconnected. By reducing the area and lengthening the conductor, heat intrusion can be reduced.

図3は本発明の第2実施例を示す低熱侵入電流リード装置とその通電電流による作用を示す図であり、図3(a)は電流が小さいときや電流が流れていないときの低熱侵入電流リード装置の状態を示す縦断断面図、図3(b)は電流が流れているときの低熱侵入電流リード装置の状態を示す縦断断面図である。図4は本発明の第2実施例を示す低熱侵入電流リード装置とその通電電流による作用を示す図であり、図4(a)は電流が小さいときや電流が流れていないときの低熱侵入電流リード装置の状態を示す横断断面図、図4(b)は電流が流れているときの低熱侵入電流リード装置の状態を示す横断断面図である。   FIG. 3 is a diagram showing a low thermal invasion current lead device according to a second embodiment of the present invention and the action of the energization current. FIG. 3A shows a low thermal invasion current when the current is small or when no current is flowing. FIG. 3B is a vertical cross-sectional view showing the state of the lead device, and FIG. 3B is a vertical cross-sectional view showing the state of the low heat penetration current lead device when current is flowing. FIG. 4 is a diagram showing a low thermal invasion current lead device according to a second embodiment of the present invention and the action of the energization current. FIG. 4A shows a low thermal invasion current when the current is small or when no current is flowing. FIG. 4B is a transverse cross-sectional view showing the state of the low heat penetration current lead device when current is flowing.

これらの図において、1はスパイラル状に形成されている銅などの正の線膨張係数を持つ電流リード導体(例えば、ターン形状の銅導体)、4は電流リード導体1のスパイラルの内周に、熱伝導接続部5を介して電流リード導体1に全体が接触固定しないように、電流通過方向に配置される負の線膨張係数を持つ材料(例えばザイロン)、5は電流リード導体1に設けられ電流リード導体1と負の線膨張係数を持つ材料4を接続する熱伝導接続部である。なお、この熱伝導接続部5は、前記材料4との接触面積が小さくなるような断面形状(熱伝導接続部5の材料4側の先端が小さい形状)を有することが望ましい。例えば、その接続形状を突起状形状などにして、負の線膨張係数を持つ材料4との接続面積が小さくなるような形状であることが望ましい。   In these drawings, 1 is a current lead conductor (for example, a turn-shaped copper conductor) having a positive linear expansion coefficient such as copper formed in a spiral shape, and 4 is an inner periphery of the spiral of the current lead conductor 1. A material (for example, xylon) 5 having a negative linear expansion coefficient disposed in the current passing direction is provided on the current lead conductor 1 so that the entire current lead conductor 1 is not contact-fixed to the current lead conductor 1 via the heat conducting connection portion 5. It is a heat conduction connecting part for connecting the current lead conductor 1 and the material 4 having a negative linear expansion coefficient. In addition, it is desirable that the heat conduction connecting portion 5 has a cross-sectional shape (a shape where the tip on the material 4 side of the heat conducting connecting portion 5 is small) so that the contact area with the material 4 is small. For example, it is desirable that the connection shape be a protrusion shape or the like so that the connection area with the material 4 having a negative linear expansion coefficient is small.

また、電流リード導体1は、電流が流れて各ターン間がくっついた際に、大電流を通電可能なように、各ターン間の接触面積を大きくすることが望ましい。   In addition, it is desirable that the current lead conductor 1 has a large contact area between the turns so that a large current can be applied when the currents flow and the turns adhere to each other.

このように構成したので、図3(a)や図4(a)に示すように、電流が小さいときや電流が流れていないときには、電流リード導体1は発熱しておらず、材料4は延びた状態にあるため、スパイラル状の電流リード導体1の各ターン間には隙間が生じて、実質的に電流リード導体1の断面積は小さく、長さは長くなった状態にある。つまり、電流が小さいときや電流が流れていないときには熱侵入を小さく抑えることができる。   With this configuration, as shown in FIGS. 3A and 4A, when the current is small or no current flows, the current lead conductor 1 does not generate heat and the material 4 extends. Therefore, a gap is generated between the turns of the spiral current lead conductor 1, so that the current lead conductor 1 is substantially small in cross-sectional area and long in length. That is, when the current is small or no current flows, the heat intrusion can be suppressed to a small value.

一方、電流が流れているときには、図3(b)や図4(b)に示すように、加熱により電流リード導体1は膨張し、材料4は縮むのでスパイラル状の電流リード導体1の各ターン間の隙間は互いに密着することになり、結果としてスパイラル状の電流リード導体1は、円筒形状になり、電流リード導体1の断面積が大きくなるとともにその長さは短くなる。   On the other hand, when the current is flowing, as shown in FIGS. 3B and 4B, the current lead conductor 1 expands and the material 4 contracts due to heating, so that each turn of the spiral current lead conductor 1 occurs. As a result, the spiral current lead conductor 1 has a cylindrical shape, and as a result, the cross-sectional area of the current lead conductor 1 increases and its length decreases.

図5は本発明の第3実施例を示す低熱侵入電流リード装置とその通電電流による作用を示す図であり、図5(a)は電流が小さいときや電流が流れていないときの低熱侵入電流リード装置の状態を示す縦断断面図、図5(b)は電流が流れているときの低熱侵入電流リード装置の状態を示す縦断断面図である。図6は本発明の第3実施例を示す低熱侵入電流リード装置とその通電電流による作用を示す図であり、図6(a)は電流が小さいときや電流が流れていないときの低熱侵入電流リード装置の状態を示す横断断面図、図6(b)は電流が流れているときの低熱侵入電流リード装置の状態を示す横断断面図である。   FIG. 5 is a diagram showing a low thermal invasion current lead device according to a third embodiment of the present invention and the operation of the energization current. FIG. 5A shows a low thermal invasion current when the current is small or when no current is flowing. FIG. 5B is a longitudinal sectional view showing the state of the low heat penetration current lead device when a current is flowing. FIG. 6 is a diagram showing a low heat penetration current lead device according to a third embodiment of the present invention and the action of the energization current. FIG. 6A shows a low heat penetration current when the current is small or when no current flows. FIG. 6B is a cross-sectional view showing the state of the low heat penetration current lead device when current is flowing.

この実施例では、第1実施例における正の線膨張係数を持つ電流リード導体1のスパイラルの外周に、熱伝導接続部3を介して電流リード導体1に全体が接触固定しないように配置される負の線膨張係数を持つ材料(例えばザイロン)2だけでなく、更に、第2実施例におけるように、電流リード導体1のスパイラルの内周にも、熱伝導接続部5を介して負の線膨張係数を持つ材料(例えばザイロン)4を配置するようにした。   In this embodiment, the current lead conductor 1 having a positive linear expansion coefficient in the first embodiment is arranged on the outer periphery of the spiral so as not to be fixed to the current lead conductor 1 as a whole via the heat conduction connecting portion 3. Not only the material 2 having a negative linear expansion coefficient (for example, xylon) 2 but also the inner periphery of the spiral of the current lead conductor 1 through the heat conducting connection 5 as in the second embodiment, the negative wire A material (for example, xylon) 4 having an expansion coefficient is arranged.

ここでも、第1実施例と同様に、この熱伝導接続部3,5は、前記材料2,4との接触面積が小さくなるような断面形状(熱伝導接続部の先端が小さい形状)を有することが望ましい。例えば、その接続形状を突起状形状などにして、負の線膨張係数を持つ材料2との接続面積が小さくなるような形状であることが望ましい。   Here, as in the first embodiment, the heat conduction connecting portions 3 and 5 have a cross-sectional shape (a shape where the tip of the heat conduction connecting portion is small) so that the contact area with the materials 2 and 4 is small. It is desirable. For example, it is desirable that the connection shape be a protrusion shape or the like so that the connection area with the material 2 having a negative linear expansion coefficient is small.

また、電流リード導体1は、電流が流れて各ターン間がくっついた際に、大電流を通電可能なように、各ターン間の接触面積を大きくすることが望ましい。   In addition, it is desirable that the current lead conductor 1 has a large contact area between the turns so that a large current can be applied when the currents flow and the turns adhere to each other.

このように、電流リード導体1を負の線膨張係数を持つ材料2と4によってスパイラルの内周、外周両面から変位させるようにしたので、より確実に電流リード導体1の変位を行わせることができる。   In this way, the current lead conductor 1 is displaced from both the inner and outer peripheral surfaces of the spiral by the materials 2 and 4 having a negative linear expansion coefficient, so that the current lead conductor 1 can be displaced more reliably. it can.

図7は本発明の第4実施例を示す低熱侵入電流リード装置における負の線膨張係数を持つ材料(例えばザイロン)からなる導体の配置を示す図、図8は本発明の第5実施例を示す低熱侵入電流リード装置における負の線膨張係数を持つ材料(例えばザイロン)からなる導体の配置を示す図である。   FIG. 7 is a diagram showing the arrangement of conductors made of a material having a negative linear expansion coefficient (for example, xylon) in the low thermal intrusion current lead device according to the fourth embodiment of the present invention, and FIG. 8 shows the fifth embodiment of the present invention. It is a figure which shows arrangement | positioning of the conductor which consists of material (for example, xylon) with a negative linear expansion coefficient in the low thermal penetration | invasion electric current lead apparatus shown.

これらの実施例では、負の線膨張係数を持つ材料(例えばザイロン)6,8を、上記第1,第2実施例のように、電流リード導体1のスパイラルの全周に配置するのではなく、その周囲の一部分(例えば、1/2)にのみ配置するようにしたものである。また、その配置範囲は全周の1/4の周囲に配置するようにしてもよい。   In these embodiments, instead of disposing a material (for example, xylon) 6, 8 having a negative linear expansion coefficient around the entire circumference of the spiral of the current lead conductor 1 as in the first and second embodiments. , It is arranged only in a part of the periphery (for example, 1/2). Further, the arrangement range may be arranged around 1/4 of the entire circumference.

図9は本発明の第6実施例を示す低熱侵入電流リード装置における負の線膨張係数を持つ材料(例えばザイロン)からなる導体の配置を示す図である。   FIG. 9 is a diagram showing an arrangement of conductors made of a material having a negative linear expansion coefficient (for example, xylon) in the low thermal intrusion current lead device according to the sixth embodiment of the present invention.

この実施例では、図9に示すように、かかる負の線膨張係数を持つ材料(例えばザイロン)6,8を電流リード導体1のスパイラルの外周と内周の両方に一部分だけ配置するようにしてもよい。   In this embodiment, as shown in FIG. 9, only a part of the material (for example, xylon) 6 and 8 having such a negative linear expansion coefficient is arranged on both the outer periphery and the inner periphery of the spiral of the current lead conductor 1. Also good.

図10は本発明の第7実施例を示す低熱侵入電流リード装置とその通電電流による作用を示す平面図であり、図10(a)は電流が小さいときや電流が流れていないときの低熱侵入電流リード装置の状態を示す平面図、図10(b)は電流が流れているときの低熱侵入電流リード装置の状態を示す平面図である。図11は本発明の第7実施例を示す低熱侵入電流リード装置とその通電電流による作用を示す側面図であり、図11(a)は電流が小さいときや電流が流れていないときの低熱侵入電流リード装置の状態を示す側面図、図11(b)は電流が流れているときの低熱侵入電流リード装置の状態を示す側面図である。   FIG. 10 is a plan view showing a low heat penetration current lead device according to a seventh embodiment of the present invention and the action of the energization current. FIG. 10 (a) shows a low heat penetration current when the current is small or no current flows. FIG. 10B is a plan view showing the state of the current lead device, and FIG. 10B is a plan view showing the state of the low heat penetration current lead device when current is flowing. FIG. 11 is a side view showing a low heat penetration current lead device according to a seventh embodiment of the present invention and the action of the energization current. FIG. 11A shows a low heat penetration current when the current is small or no current is flowing. FIG. 11B is a side view showing the state of the current lead device, and FIG. 11B is a side view showing the state of the low heat penetration current lead device when current flows.

この実施例では、正の線膨張係数を持つ電流リード導体11がミアンダ状で、その折り返し部分が柔軟であり、その片面に電流通電方向と垂直方向に負の線膨張係数を持つ材料12を配置し、その材料12は熱伝導接続部13により電流リード導体11に取り付けられるように構成されている。   In this embodiment, the current lead conductor 11 having a positive linear expansion coefficient has a meander shape, its folded portion is flexible, and a material 12 having a negative linear expansion coefficient in the direction perpendicular to the direction of current application is arranged on one side. However, the material 12 is configured to be attached to the current lead conductor 11 by the heat conducting connection 13.

このように構成したので、図10(a)や図11(a)に示すように、電流が小さいときや電流が流れていないときには、電流リード導体11は発熱しておらず材料12は延びた状態にあるため、ミアンダ状の電流リード導体11の各ターン(折り返し)間には隙間が生じて、実質的に電流リード導体11の断面積は小さく、長さは長くなった状態にある。つまり、電流が小さいときや電流が流れていないときには熱侵入を小さく抑えることができる。   With this configuration, as shown in FIGS. 10A and 11A, when the current is small or when no current flows, the current lead conductor 11 does not generate heat and the material 12 extends. Therefore, a gap is generated between each turn (turnback) of the meander-shaped current lead conductor 11, so that the cross-sectional area of the current lead conductor 11 is substantially small and the length is long. That is, when the current is small or no current flows, the heat intrusion can be suppressed to a small value.

一方、電流が流れているときには、図10(b)や図11(b)に示すように、ミアンダ状の電流リード導体11の発熱により導体11は膨張し、材料12は縮むのでミアンダ状の電流リード導体11の各ターン間は互いに密着することになり、結果としてミアンダ状の電流リード導体11は矩形形状になり、電流リード導体11の断面積が大きくなるとともにその長さは短くなる。   On the other hand, when the current is flowing, as shown in FIGS. 10B and 11B, the conductor 11 expands and the material 12 contracts due to heat generated by the meander-shaped current lead conductor 11, so that the meander-shaped current is reduced. The turns of the lead conductor 11 are in close contact with each other. As a result, the meander-shaped current lead conductor 11 has a rectangular shape, and the cross-sectional area of the current lead conductor 11 increases and its length decreases.

すなわち、大きな電流を流そうとする場合には導体の断面積を大きくし、導体の長さも短くして電気抵抗をできるだけ抑えることができ、電流が小さいときや電流が流れていないときには導体の断面積を小さくし導体を長くすることにより、熱侵入を小さく抑えることができる。   In other words, when a large current is to be applied, the conductor cross-sectional area can be increased and the conductor length can be shortened to suppress the electrical resistance as much as possible. When the current is small or no current is flowing, the conductor is disconnected. By reducing the area and lengthening the conductor, heat intrusion can be reduced.

図12は本発明の第8実施例を示す低熱侵入電流リード装置とその通電電流による作用を示す平面図であり、図12(a)は電流が小さいときや電流が流れていないときの低熱侵入電流リード装置の状態を示す平面図、図12(b)は電流が流れているときの低熱侵入電流リード装置の状態を示す平面図である。図13は本発明の第8実施例を示す低熱侵入電流リード装置とその通電電流による作用を示す側面図であり、図13(a)は電流が小さいときや電流が流れていないときの低熱侵入電流リード装置の状態を示す側面図、図13(b)は電流が流れているときの低熱侵入電流リード装置の状態を示す側面図である。   FIG. 12 is a plan view showing a low heat penetration current lead device according to an eighth embodiment of the present invention and the action of the energization current. FIG. 12 (a) shows a low heat penetration current when the current is small or no current flows. FIG. 12B is a plan view showing the state of the current lead device, and FIG. 12B is a plan view showing the state of the low heat penetration current lead device when current is flowing. FIG. 13 is a side view showing a low heat penetration current lead device according to an eighth embodiment of the present invention and the action of the energization current. FIG. 13A shows a low heat penetration current when the current is small or when no current flows. FIG. 13B is a side view showing the state of the current lead device, and FIG. 13B is a side view showing the state of the low heat penetration current lead device when current is flowing.

この実施例では、ミアンダ状で、その折り返し部分が柔軟である正の線膨張係数を持つ電流リード導体11の両面に、通電電流方向と垂直方向に線膨張係数が非常に小さいか負の線膨張係数を持つ材料12,14を配置し、その材料12,14は熱伝導接続部13,15により電流リード導体11に取り付けられるように構成されている。   In this embodiment, the linear expansion coefficient is very small or negative in the direction perpendicular to the energizing current direction on both surfaces of the current lead conductor 11 having a positive linear expansion coefficient that is meander-shaped and flexible at its folded portion. The materials 12 and 14 having the coefficients are arranged, and the materials 12 and 14 are configured to be attached to the current lead conductor 11 by the heat conductive connection portions 13 and 15.

このように構成したので、ミアンダ状の電流リード導体11の片面にのみ材料12を配置した第7実施例に比べて、ミアンダ状の電流リード導体11の両面に材料12,14を配置するようにしたので、ミアンダ状の電流リード導体11の変位をより確実なものとすることができる。   With this configuration, the materials 12 and 14 are arranged on both sides of the meandering current lead conductor 11 as compared with the seventh embodiment in which the material 12 is arranged only on one side of the meandering current lead conductor 11. As a result, the displacement of the meandering current lead conductor 11 can be made more reliable.

図14は本発明の効果の確認試験の平面模式図であり、図14(a)は導体の温度が低い状態を示す図、図14(b)は導体の温度が高い状態を示す図である。図15はその確認試験の側面模式図であり、図15(a)は導体の温度が低い状態を示す図、図15(b)は導体の温度が高い状態を示す図である。   FIG. 14 is a schematic plan view of a confirmation test of the effect of the present invention. FIG. 14 (a) shows a state where the temperature of the conductor is low, and FIG. 14 (b) shows a state where the temperature of the conductor is high. . 15A and 15B are schematic side views of the confirmation test, in which FIG. 15A shows a state where the temperature of the conductor is low, and FIG. 15B shows a state where the temperature of the conductor is high.

これらの図において、21〜23は銅の導体、24はその導体21〜23の両面に熱伝導接続部25を介して配置される負の線膨張係数を持つザイロン繊維からなる材料である。ここで、導体21と22との間の抵抗を抵抗1とし、導体22と23との間の抵抗を抵抗2とする。   In these drawings, reference numerals 21 to 23 denote copper conductors, and 24 denotes a material made of zylon fibers having a negative linear expansion coefficient disposed on both surfaces of the conductors 21 to 23 via the heat conductive connection portions 25. Here, a resistance between the conductors 21 and 22 is a resistance 1, and a resistance between the conductors 22 and 23 is a resistance 2.

そこで、室温の場合と液体窒素で冷却して温度を変えた場合の導体21〜23間の抵抗を測定して抵抗の変化を調べた。   Therefore, the resistance change was examined by measuring the resistance between the conductors 21 to 23 at room temperature and when the temperature was changed by cooling with liquid nitrogen.

図16は図14及び図15における確認試験の結果を示す図であり、図16(a)は抵抗1の変化を示す図、図16(b)は抵抗2の変化を示す図である。   FIGS. 16A and 16B are diagrams showing the results of the confirmation test in FIGS. 14 and 15, FIG. 16A is a diagram showing a change in resistance 1, and FIG. 16B is a diagram showing a change in resistance 2.

これらの図において、Rは抵抗、Tは温度を示しており、RL は導体が接触しており抵抗が0の場合、RH は導体が接触しておらず、抵抗が∞の場合を示している。 In these figures, R represents resistance, T represents temperature, R L represents a case where the conductor is in contact and the resistance is 0, and R H represents a case where the conductor is not in contact and the resistance is ∞. ing.

これらの図から明らかなように、導体の温度が高くなると、導体21と22間及び導体22と23の間の隙間がなくなり、導体間が接触して抵抗1,2はそれに伴って低くなることが実証できた。   As is clear from these figures, when the temperature of the conductor increases, there is no gap between the conductors 21 and 22 and between the conductors 22 and 23, the conductors come into contact, and the resistances 1 and 2 are lowered accordingly. Was able to prove.

次に、例えば、図5に示すような、負の線膨張係数を持つ材料(例えばザイロン)2,4と熱伝導接続部3,5との接触部位は四角形状となっているが、これに代えて更に接触面積が小さくなるような断面形状にすることができる。   Next, for example, as shown in FIG. 5, the contact portion between the material (for example, xylon) 2, 4 having a negative linear expansion coefficient and the heat conduction connecting portions 3, 5 has a quadrangular shape. Instead, the cross-sectional shape can be such that the contact area is further reduced.

図17は本発明の実施例を示す熱伝導接続部と負の線膨張係数を持つ材料との接触面積が小さくなるような断面形状を示す拡大図である。   FIG. 17 is an enlarged view showing a cross-sectional shape in which the contact area between the heat conduction connecting portion and the material having a negative linear expansion coefficient according to the embodiment of the present invention becomes small.

図17(a)は熱伝導接続部33,35を断面が半円形状になるようにして、負の線膨張係数を持つ材料32と34に接触面積が小さくなるようして接触させるようにしたり、図17(b)で示すように、熱伝導接続部43,45を断面が三角形状になるようにして、負の線膨張係数を持つ材料42と44に接触面積が小さくなるようして接触させるようにしてもよい。   In FIG. 17 (a), the heat conductive connection portions 33 and 35 are made to have a semicircular cross section so that the contact areas of the materials 32 and 34 having a negative coefficient of linear expansion are reduced. As shown in FIG. 17 (b), the heat conductive connection portions 43 and 45 are in contact with the materials 42 and 44 having a negative linear expansion coefficient so that the contact area is reduced by making the cross section triangular. You may make it make it.

図18は本発明の実施例を示す熱伝導接続部と負の線膨張係数を持つ材料との接触面積が小さくなるような形状を示す拡大図である。   FIG. 18 is an enlarged view showing a shape in which the contact area between the heat conduction connecting portion and the material having a negative linear expansion coefficient according to the embodiment of the present invention becomes small.

この実施例では、低熱侵入電流リード装置において、熱伝導接続部51は、負の線膨張係数を持つ材料52と電流リード導体53の中央部54のみで固定されることより構成され、この中央部54以外はフリー部55とするようにした。   In this embodiment, in the low heat penetration current lead device, the heat conduction connecting portion 51 is configured by being fixed only by the material 52 having a negative linear expansion coefficient and the central portion 54 of the current lead conductor 53. Except for 54, the free part 55 was used.

このように構成することにより、中央部54のみで固定されて確実に接触し、その中央部54以外では自由に移動することができる。   By constituting in this way, it is fixed only at the central portion 54 and reliably contacts, and can move freely except at the central portion 54.

なお、上記実施例では、負の線膨張係数を持つ材料を用いるようにしたが、線膨張係数が非常に小さい材料の場合でも適宜適用可能である。   In the above embodiment, a material having a negative linear expansion coefficient is used. However, even a material having a very small linear expansion coefficient can be appropriately applied.

また、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   Further, the present invention is not limited to the above-described embodiments, and various modifications can be made based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

本発明の低熱侵入電流リード装置は、高温超電導ケーブルを鉄道のき電線に応用した場合の電流リードに適している。   The low heat penetration current lead device of the present invention is suitable for a current lead when a high temperature superconducting cable is applied to a railway feeder.

本発明の第1実施例を示す低熱侵入電流リード装置とその通電電流による作用を示す図である。It is a figure which shows the effect | action by the low thermal penetration electric current lead apparatus which shows 1st Example of this invention, and its energization current. 本発明の第1実施例を示す低熱侵入電流リード装置とその通電電流による作用を示す図である。It is a figure which shows the effect | action by the low thermal penetration electric current lead apparatus which shows 1st Example of this invention, and its energization current. 本発明の第2実施例を示す低熱侵入電流リード装置とその通電電流による作用を示す図である。It is a figure which shows the effect | action by the low thermal penetration electric current lead apparatus which shows 2nd Example of this invention, and its energization current. 本発明の第2実施例を示す低熱侵入電流リード装置とその通電電流による作用を示す図である。It is a figure which shows the effect | action by the low thermal penetration electric current lead apparatus which shows 2nd Example of this invention, and its energization current. 本発明の第3実施例を示す低熱侵入電流リード装置とその通電電流による作用を示す図である。It is a figure which shows the effect | action by the low thermal penetration electric current lead apparatus which shows 3rd Example of this invention, and its energization current. 本発明の第3実施例を示す低熱侵入電流リード装置とその通電電流による作用を示す図である。It is a figure which shows the effect | action by the low thermal penetration electric current lead apparatus which shows 3rd Example of this invention, and its energization current. 本発明の第4実施例を示す低熱侵入電流リード装置における負の線膨張係数を持つ材料(例えばザイロン)からなる導体の配置を示す図である。It is a figure which shows arrangement | positioning of the conductor which consists of a material (for example, xylon) with a negative linear expansion coefficient in the low thermal penetration | invasion electric current lead apparatus which shows 4th Example of this invention. 本発明の第5実施例を示す低熱侵入電流リード装置における負の線膨張係数を持つ材料(例えばザイロン)からなる導体の配置を示す図である。It is a figure which shows arrangement | positioning of the conductor which consists of a material (for example, xylon) with a negative linear expansion coefficient in the low thermal penetration | invasion electric current lead apparatus which shows 5th Example of this invention. 本発明の第6実施例を示す低熱侵入電流リード装置における負の線膨張係数を持つ材料(例えばザイロン)からなる導体の配置を示す図である。It is a figure which shows arrangement | positioning of the conductor which consists of a material (for example, xylon) with a negative linear expansion coefficient in the low thermal penetration | invasion electric current lead apparatus which shows 6th Example of this invention. 本発明の第7実施例を示す低熱侵入電流リード装置とその通電電流による作用を示す平面図である。It is a top view which shows the effect | action by the low thermal penetration electric current lead apparatus which shows 7th Example of this invention, and its energization current. 本発明の第7実施例を示す低熱侵入電流リード装置とその通電電流による作用を示す側面図である。It is a side view which shows the effect | action by the low thermal penetration electric current lead apparatus which shows 7th Example of this invention, and its energization current. 本発明の第8実施例を示す低熱侵入電流リード装置とその通電電流による作用を示す平面図である。It is a top view which shows the effect | action by the low thermal penetration electric current lead apparatus which shows 8th Example of this invention, and its energization current. 本発明の第8実施例を示す低熱侵入電流リード装置とその通電電流による作用を示す側面図である。It is a side view which shows the effect | action by the low thermal penetration electric current lead apparatus which shows 8th Example of this invention, and its energization current. 本発明の効果の確認試験の平面模式図である。It is a plane schematic diagram of the confirmation test of the effect of the present invention. 本発明の効果の確認試験の側面模式図である。It is a side surface schematic diagram of the confirmation test of the effect of this invention. 図14及び図15における確認試験の結果を示す図である。It is a figure which shows the result of the confirmation test in FIG.14 and FIG.15. 本発明の実施例を示す熱伝導接続部と負の線膨張係数を持つ材料との接触面積が小さくなるような断面形状を示す拡大図である。It is an enlarged view which shows the cross-sectional shape that the contact area of the heat conductive connection part which shows the Example of this invention, and the material with a negative linear expansion coefficient becomes small. 本発明の実施例を示す熱伝導接続部と負の線膨張係数を持つ材料との接触面積が小さくなるような形状を示す拡大図である。It is an enlarged view which shows the shape where the contact area of the heat conductive connection part which shows the Example of this invention, and the material with a negative linear expansion coefficient becomes small.

符号の説明Explanation of symbols

1,11,53 正の線膨張係数を持つ電流リード導体
2,4,6,8,12,14,24,32,34,42,44,52 負の線膨張係数を持つ材料(例えばザイロン)
3,5,13,15,25,33,35,43,45,51 熱伝導接続部
21〜23 銅の導体
54 電流リード導体の中央部
55 電流リード導体のフリー部
1,11,53 Current lead conductor having a positive coefficient of linear expansion 2,4,6,8,12,14,24,32,34,42,44,52 Material having a negative coefficient of linear expansion (eg, xylon)
3, 5, 13, 15, 25, 33, 35, 43, 45, 51 Thermal conduction connection portion 21-23 Copper conductor 54 Central portion of current lead conductor 55 Free portion of current lead conductor

Claims (15)

(a)正の線膨張係数を持つターン形状の電流リード導体と、
(b)熱伝導接続部を介して前記電流リード導体と軸方向に全体が接触せず一部のみ接続させるように配置される、負の線膨張係数を持つ材料とを具備することを特徴とする低熱侵入電流リード装置。
(A) a turn-shaped current lead conductor having a positive coefficient of linear expansion;
(B) comprising a material having a negative linear expansion coefficient, which is arranged so as to be connected only partially with the current lead conductor in the axial direction through the heat conduction connecting portion. Low thermal intrusion current lead device.
請求項1記載の低熱侵入電流リード装置において、前記電流リード導体がスパイラル状の電流リード導体であることを特徴とする低熱侵入電流リード装置。   2. The low heat penetration current lead device according to claim 1, wherein the current lead conductor is a spiral current lead conductor. 請求項2記載の低熱侵入電流リード装置において、前記材料を前記スパイラル状の電流リード導体の外周に配置することを特徴とする低熱侵入電流リード装置。   3. The low heat penetration current lead device according to claim 2, wherein the material is disposed on an outer periphery of the spiral current lead conductor. 請求項2記載の低熱侵入電流リード装置において、前記材料を前記スパイラル状の電流リード導体の内周に配置することを特徴とする低熱侵入電流リード装置。   3. The low heat penetration current lead device according to claim 2, wherein the material is arranged on an inner periphery of the spiral current lead conductor. 請求項2記載の低熱侵入電流リード装置において、前記材料を前記スパイラル状の電流リード導体の外周及び内周に配置することを特徴とする低熱侵入電流リード装置。   3. The low heat penetration current lead device according to claim 2, wherein the material is disposed on an outer circumference and an inner circumference of the spiral current lead conductor. 請求項2記載の低熱侵入電流リード装置において、前記材料を前記スパイラル状の電流リード導体の外周の一部に配置することを特徴とする低熱侵入電流リード装置。   3. The low heat penetration current lead device according to claim 2, wherein the material is disposed on a part of an outer periphery of the spiral current lead conductor. 請求項2記載の低熱侵入電流リード装置において、前記材料を前記スパイラル状の電流リード導体の内周の一部に配置することを特徴とする低熱侵入電流リード装置。   3. The low heat penetration current lead device according to claim 2, wherein the material is disposed on a part of an inner periphery of the spiral current lead conductor. 請求項2記載の低熱侵入電流リード装置において、前記材料を前記スパイラル状の電流リード導体の外周及び内周の一部に配置することを特徴とする低熱侵入電流リード装置。   3. The low heat penetration current lead device according to claim 2, wherein the material is disposed on a part of the outer periphery and the inner periphery of the spiral current lead conductor. 請求項1記載の低熱侵入電流リード装置において、前記電流リード導体がミアンダ状の電流リード導体であることを特徴とする低熱侵入電流リード装置。   2. The low heat penetration current lead device according to claim 1, wherein the current lead conductor is a meander-shaped current lead conductor. 請求項9記載の低熱侵入電流リード装置において、前記材料を前記ミアンダ状の電流リード導体の片面に配置することを特徴とする低熱侵入電流リード装置。   10. The low heat penetration current lead device according to claim 9, wherein the material is disposed on one surface of the meander-shaped current lead conductor. 請求項9記載の低熱侵入電流リード装置において、前記材料を前記ミアンダ状の電流リード導体の両面に配置することを特徴とする低熱侵入電流リード装置。   10. The low heat penetration current lead device according to claim 9, wherein the material is disposed on both surfaces of the meander-shaped current lead conductor. 請求項9〜11の何れか一項記載の低熱侵入電流リード装置において、前記材料を前記ミアンダ状の電流リード導体の外周に配置することを特徴とする低熱侵入電流リード装置。   The low heat penetration current lead device according to any one of claims 9 to 11, wherein the material is disposed on an outer periphery of the meander-shaped current lead conductor. 請求項12記載の低熱侵入電流リード装置において、前記材料を前記ミアンダ状の電流リード導体の外周の一部に配置することを特徴とする低熱侵入電流リード装置。   13. The low heat penetration current lead device according to claim 12, wherein the material is disposed on a part of the outer periphery of the meander-shaped current lead conductor. 請求項1記載の低熱侵入電流リード装置において、前記熱伝導接続部が、前記材料との接触面積が小さくなるような断面形状を有することを特徴とする低熱侵入電流リード装置。   2. The low thermal intrusion current lead device according to claim 1, wherein the heat conduction connecting portion has a cross-sectional shape that reduces a contact area with the material. 請求項1記載の低熱侵入電流リード装置において、前記熱伝導接続部は、前記材料と電流リード導体の中央部のみで固定されることより構成され、該中央部以外はフリーにすることを特徴とする低熱侵入電流リード装置。   2. The low thermal intrusion current lead device according to claim 1, wherein the heat conduction connecting portion is formed by being fixed only at a central portion of the material and the current lead conductor, and the portions other than the central portion are made free. Low thermal intrusion current lead device.
JP2006074453A 2006-03-17 2006-03-17 Low thermal intrusion current lead device Expired - Fee Related JP4813221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006074453A JP4813221B2 (en) 2006-03-17 2006-03-17 Low thermal intrusion current lead device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006074453A JP4813221B2 (en) 2006-03-17 2006-03-17 Low thermal intrusion current lead device

Publications (2)

Publication Number Publication Date
JP2007250972A true JP2007250972A (en) 2007-09-27
JP4813221B2 JP4813221B2 (en) 2011-11-09

Family

ID=38594924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006074453A Expired - Fee Related JP4813221B2 (en) 2006-03-17 2006-03-17 Low thermal intrusion current lead device

Country Status (1)

Country Link
JP (1) JP4813221B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232014A (en) * 2009-03-27 2010-10-14 Railway Technical Res Inst Current lead
WO2023280556A1 (en) * 2021-07-06 2023-01-12 Koninklijke Philips N.V. Electrical connection for use in cryogenic applications

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204910A (en) * 1989-12-29 1991-09-06 Furukawa Electric Co Ltd:The Conductor for current lead
JPH10188754A (en) * 1996-12-27 1998-07-21 Fujitsu Ltd Superconducting relay
JPH10321049A (en) * 1997-05-16 1998-12-04 Furukawa Electric Co Ltd:The Composite strand and manufacture thereof and lightweight/low slackness overhead wire using the compound stand
JPH11505967A (en) * 1995-06-01 1999-05-25 シーメンス アクチエンゲゼルシヤフト Resistive current limiting device using high temperature superconductor
JP2003281942A (en) * 2002-03-25 2003-10-03 Railway Technical Res Inst Low thermal expansion wire shaped body
WO2005104143A1 (en) * 2004-04-23 2005-11-03 Gesellschaft Fuer Schwerionenforschung Mbh Supraconductive cable and method for the production thereof
JP2006085914A (en) * 2004-09-14 2006-03-30 Railway Technical Res Inst Linear body with small thermal expansion and manufacturing method therefor
JP2006164692A (en) * 2004-12-06 2006-06-22 Railway Technical Res Inst Permanent arranging method of low thermal expansion linear body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204910A (en) * 1989-12-29 1991-09-06 Furukawa Electric Co Ltd:The Conductor for current lead
JPH11505967A (en) * 1995-06-01 1999-05-25 シーメンス アクチエンゲゼルシヤフト Resistive current limiting device using high temperature superconductor
JPH10188754A (en) * 1996-12-27 1998-07-21 Fujitsu Ltd Superconducting relay
JPH10321049A (en) * 1997-05-16 1998-12-04 Furukawa Electric Co Ltd:The Composite strand and manufacture thereof and lightweight/low slackness overhead wire using the compound stand
JP2003281942A (en) * 2002-03-25 2003-10-03 Railway Technical Res Inst Low thermal expansion wire shaped body
WO2005104143A1 (en) * 2004-04-23 2005-11-03 Gesellschaft Fuer Schwerionenforschung Mbh Supraconductive cable and method for the production thereof
JP2006085914A (en) * 2004-09-14 2006-03-30 Railway Technical Res Inst Linear body with small thermal expansion and manufacturing method therefor
JP2006164692A (en) * 2004-12-06 2006-06-22 Railway Technical Res Inst Permanent arranging method of low thermal expansion linear body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232014A (en) * 2009-03-27 2010-10-14 Railway Technical Res Inst Current lead
WO2023280556A1 (en) * 2021-07-06 2023-01-12 Koninklijke Philips N.V. Electrical connection for use in cryogenic applications

Also Published As

Publication number Publication date
JP4813221B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
KR101118749B1 (en) superconducting wire
JPWO2009072263A1 (en) Contact device
JP4770752B2 (en) Contact device
KR20150038570A (en) Connection terminal for power module
JP5053466B2 (en) Terminal structure of superconducting cable conductor
JP6426945B2 (en) Power storage device
EP1489693A1 (en) joint structure of superconducting cable and insulating spacer for connecting superconducting cable
JP2009299487A (en) Shape memory alloy actuator
JP2005012911A (en) Terminal structure of cryogenic cable
JP4813221B2 (en) Low thermal intrusion current lead device
US11041923B2 (en) Directly coolable multifilament conductor
JP2007266444A (en) Thermoelectric conversion module
JP5178576B2 (en) Contact structure
JP5375599B2 (en) Superconducting equipment
JP4662307B2 (en) Polyimide-coated sheath thermocouple
JP5284158B2 (en) Current lead
CN215869857U (en) Connecting terminal of power module, power module and connecting terminal reel
JP2009049036A (en) Terminal for superconducting wire and superconducting coil with the same
JP2008153372A (en) Superconducting coil, and superconducting apparatus provided with the superconducting coil
US8466763B2 (en) Electromagnetic device
TWI820649B (en) Sheathed heater and substrate supporting device having the same
JPS64805B2 (en)
JP2019039756A (en) probe
JP4738755B2 (en) Superconducting conductor connection device
JPH0769341B2 (en) Fluid velocity measurement probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110824

R150 Certificate of patent or registration of utility model

Ref document number: 4813221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees