JP2003281942A - Low thermal expansion wire shaped body - Google Patents

Low thermal expansion wire shaped body

Info

Publication number
JP2003281942A
JP2003281942A JP2002083665A JP2002083665A JP2003281942A JP 2003281942 A JP2003281942 A JP 2003281942A JP 2002083665 A JP2002083665 A JP 2002083665A JP 2002083665 A JP2002083665 A JP 2002083665A JP 2003281942 A JP2003281942 A JP 2003281942A
Authority
JP
Japan
Prior art keywords
thermal expansion
low thermal
dyneema
trolley wire
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002083665A
Other languages
Japanese (ja)
Other versions
JP4281891B2 (en
Inventor
Hirotaka Kamijiyou
弘貴 上條
Hitoshi Nagasaka
整 長坂
Kazuyoshi Nezu
一嘉 根津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2002083665A priority Critical patent/JP4281891B2/en
Publication of JP2003281942A publication Critical patent/JP2003281942A/en
Application granted granted Critical
Publication of JP4281891B2 publication Critical patent/JP4281891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low thermal expansion wire shaped body reducing expansion from heat as much as possible by a composit structure of conductive material provided with positive linear expanding characteristic with organic material provided with negative linear expanding characteristic. <P>SOLUTION: A trolley wire 11 consisting of low thermal expansion wire shape body is formed by embedding organic material 13 provided with negative linear expansion coefficient in filler state, wire state, cable state or stick state into copper and aluminum conductor 12. Ultra large molecular weight polyethelene fiber 'Dyneema' (manufactured by Toyobo) or 'Zylon' (manufactured by Toyobo) which is liquid crystalline spinning carried out on polyparaphenylenebenzobisoxazole (PBO) is used as the organic material 13 provided with the negative linear expansion coefficient. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、低熱膨張線状体に
係り、特に、トロリ線に適用される低熱膨張線状体に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low thermal expansion linear body, and more particularly to a low thermal expansion linear body applied to a trolley wire.

【0002】[0002]

【従来の技術】トロリ線などの線状体は、温度変化によ
り収縮膨張する。このため熱膨張の影響を防止するため
の設備(張力調整装置)が不可欠であり、敷設時の作業
が増加するとともに、設備のメンテナンスなどが必要に
なる。
2. Description of the Related Art A linear body such as a trolley wire contracts and expands due to a change in temperature. For this reason, equipment (tension adjusting device) for preventing the influence of thermal expansion is indispensable, and the work at the time of laying increases, and maintenance of the equipment is required.

【0003】そこで、かかる熱膨張による影響をなくす
ためには、線膨張係数の小さい線状体の開発が必要であ
る。
Therefore, in order to eliminate the influence of such thermal expansion, it is necessary to develop a linear body having a small linear expansion coefficient.

【0004】図9は従来のトロリ線を架設した状態を示
す図である。
FIG. 9 is a view showing a state in which a conventional trolley wire is installed.

【0005】この図において、101,102は支持
体、103は支持体101と102間に架設されたトロ
リ線、104は張力調整装置である。
In this figure, 101 and 102 are supports, 103 is a trolley wire installed between the supports 101 and 102, and 104 is a tension adjusting device.

【0006】この図に示すように、トロリ線103は、
車両の高速化に伴い弦としての横波の伝搬速度を向上さ
せるため高張力で架設する必要がある。しかし、温度変
化によりトロリ線103は伸縮するため、端部には張力
調整装置104を設置して張力を一定に保持するように
している。
As shown in this figure, the trolley wire 103 is
As the speed of vehicles increases, it is necessary to erect with high tension in order to improve the propagation speed of transverse waves as a string. However, since the trolley wire 103 expands and contracts due to temperature changes, a tension adjusting device 104 is installed at the end to keep the tension constant.

【0007】[0007]

【発明が解決しようとする課題】上記したように、従来
のトロリ線では、温度変化により伸縮するため、端部に
は張力調整装置104を設置して張力を一定に保持する
必要があり、そのため、張力調整装置の設置コストが嵩
み、また点検保守が必要である。
As described above, since the conventional trolley wire expands and contracts due to temperature changes, it is necessary to install a tension adjusting device 104 at the end to keep the tension constant. The installation cost of the tension adjusting device is high, and inspection and maintenance are required.

【0008】もともと、トロリ線は、耐摩耗性と機械的
強度を上げることを目的としており、複合構造のトロリ
線として、導体にアルミ、芯材に軟鋼を用いた鋼心アル
ミニウムトロリ線(TAトロリ線)と、導体に銅、芯材
に炭素鋼を用いた銅被覆鋼線(CSトロリ線)の開発実
績がある。
Originally, the trolley wire was intended to improve wear resistance and mechanical strength, and as a trolley wire of a composite structure, a steel core aluminum trolley wire (TA trolley wire using aluminum as a conductor and mild steel as a core material). Wire) and copper-coated steel wire (CS trolley wire) using copper for the conductor and carbon steel for the core material.

【0009】しかしながら、上記した複合構造のトロリ
線では複合される材料は全て正の熱膨張係数を有する材
料であり、その熱膨張を極力抑えるには難があった。
However, in the trolley wire having the above-mentioned composite structure, the materials to be composited are all materials having a positive coefficient of thermal expansion, and it has been difficult to suppress the thermal expansion as much as possible.

【0010】本発明は、上記状況に鑑みて、正の線膨張
特性を持つ導電性材料と負の線膨張特性を持つ材料との
複合構造化を図り、熱膨張を極力抑えることができる低
熱膨張線状体を提供することを目的とする。
In view of the above situation, the present invention has a low thermal expansion capable of suppressing the thermal expansion as much as possible by achieving a composite structure of a conductive material having a positive linear expansion characteristic and a material having a negative linear expansion characteristic. It is intended to provide a linear body.

【0011】[0011]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕正の線膨張特性を持つ導電性材料と負の線膨張特
性を持つ材料との複合構造からなることを特徴とする。
In order to achieve the above object, the present invention comprises [1] a composite structure of a conductive material having a positive linear expansion characteristic and a material having a negative linear expansion characteristic. Is characterized by.

【0012】〔2〕上記〔1〕記載の低熱膨張線状体に
おいて、前記材料が超高分子量ポリエチレン繊維である
ことを特徴とする。
[2] The low thermal expansion linear member as described in [1] above is characterized in that the material is an ultra high molecular weight polyethylene fiber.

【0013】〔3〕上記〔1〕記載の低熱膨張線状体に
おいて、前記材料がポリパラフェニレンベンゾビスオキ
サゾール(PBO)を液晶紡糸した繊維であることを特
徴とする。
[3] The low thermal expansion linear body according to the above [1], characterized in that the material is a liquid crystal-spun fiber of polyparaphenylenebenzobisoxazole (PBO).

【0014】〔4〕上記〔1〕、〔2〕又は〔3〕記載
の低熱膨張線状体がトロリ線であることを特徴とする。
[4] The low thermal expansion linear body according to the above [1], [2] or [3] is a trolley wire.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て、詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0016】ここでは、本発明をトロリ線に適用した場
合について説明する。
Here, a case where the present invention is applied to a trolley wire will be described.

【0017】図1は本発明の実施例を示すトロリ線を架
設した状態を示す図である。
FIG. 1 is a view showing a state in which a trolley wire according to an embodiment of the present invention is installed.

【0018】この図において、1,2は支持体、3は支
持体1と2間に架設された低熱膨張線状体からなるトロ
リ線、4は簡易張力調整装置である。
In this figure, 1 and 2 are supports, 3 is a trolley wire made of a low thermal expansion linear member that is installed between the supports 1 and 2, and 4 is a simple tension adjusting device.

【0019】なお、従来用いられている張力調整装置
は、滑車と重りを組み合わせた構造が主流であり、その
機構が複雑であり定期的に検査が必要であった。本発明
のように線膨張係数が小さくなると、トロリ線の伸縮量
が小さくなるので、油圧、ガス圧、バネ式などの簡易な
張力調整装置が使用できる。また、線膨張係数を0にで
きれば、伸縮がなくなり、張力をかけて架設すれば、張
力調整装置は不要となる。
Incidentally, the tension adjusting device used conventionally has a structure in which a pulley and a weight are combined, and its mechanism is complicated, so that periodical inspection is required. When the linear expansion coefficient is small as in the present invention, the amount of expansion and contraction of the trolley wire is small, so that a simple tension adjusting device such as hydraulic pressure, gas pressure, or spring type can be used. Further, if the linear expansion coefficient can be set to 0, expansion and contraction will disappear, and if tension is applied to construct the structure, the tension adjusting device becomes unnecessary.

【0020】まず、低熱膨張線状体からなるトロリ線に
ついて説明する。
First, a trolley wire made of a low thermal expansion linear material will be described.

【0021】図2は本発明にかかる低熱膨張線状体から
なるトロリ線の模式図である。
FIG. 2 is a schematic view of a trolley wire made of a low thermal expansion linear body according to the present invention.

【0022】本発明の低熱膨張線状体からなるトロリ線
11は、銅、アルミニウム導体12の中に、フィラ状、
線状、ケーブル状、棒状の負の線膨張係数を持つ有機材
料13を埋め込む。この負の線膨張係数を持つ有機材料
13として、超高分子量ポリエチレン繊維「ダイニー
マ」(東洋紡製)やポリパラフェニレンベンゾビスオキ
サゾール(PBO)を液晶紡糸した繊維「ザイロン」
(東洋紡製)を用いる。
The trolley wire 11 made of the low-thermal-expansion linear material of the present invention comprises a copper- and aluminum conductor 12 and a filler-like
An organic material 13 having a linear, cable, or rod-shaped negative linear expansion coefficient is embedded. As the organic material 13 having this negative linear expansion coefficient, ultra high molecular weight polyethylene fiber "Dyneema" (manufactured by Toyobo) or polyparaphenylene benzobisoxazole (PBO) liquid crystal spun fiber "Zylon"
(Manufactured by Toyobo) is used.

【0023】有機材料系の新材料である超高分子量ポリ
エチレン繊維(ダイニーマ)、PBO繊維(ザイロン)
は、負の線膨張係数を持つ材料であり、ザイロンは、室
温付近で−8×10-6/K程度での負膨張を示し、ダイ
ニーマはザイロンより大きな負膨張の特性がある。な
お、ダイニーマ、ザイロンなどの新材料には、高強力、
高弾性率で耐衝撃特性が高い、比重が小さいなどの特性
もある。
Ultra-high molecular weight polyethylene fiber (Dyneema), PBO fiber (Zylon), which is a new organic material
Is a material having a negative linear expansion coefficient, Zylon exhibits a negative expansion of about −8 × 10 −6 / K around room temperature, and Dyneema has a larger negative expansion characteristic than Zyron. For new materials such as Dyneema and Zylon, high strength,
It also has high elastic modulus, high impact resistance, and low specific gravity.

【0024】また、ダイニーマ、ザイロンの他にも、−
2〜8×10-6/K程度の負の線膨張特性を示す負膨張
ガラスセラミックスが開発されており、こうした材料を
使用することもできる。
In addition to Dyneema and Zylon,
Negative expansion glass-ceramics exhibiting a negative linear expansion characteristic of about 2 to 8 × 10 −6 / K have been developed, and such materials can also be used.

【0025】ダイニーマ、ザイロンを芯材に使用する場
合には、従来のCSトロリ線の製造方法が使用できる可
能性がある。この場合、熱的な問題があるため、ディッ
プフォーミング法よりコンフォーム法のような方法が適
していると考えられる。
When Dyneema or Zylon is used as the core material, there is a possibility that the conventional CS trolley wire manufacturing method can be used. In this case, since there is a thermal problem, it is considered that a method such as the conform method is more suitable than the dip forming method.

【0026】表1に、ダイニーマ、ザイロンとの比較の
ためにスチールファイバーの諸特性を示した。
Table 1 shows various characteristics of steel fibers for comparison with Dyneema and Zylon.

【0027】[0027]

【表1】 [Table 1]

【0028】ダイニーマ、ザイロンともに繊維方向に負
の線膨張係数を持つ他、比重が金属の数分の1と軽量
で、特にザイロンは金属やアラミドなどの従来の高機能
繊維などに比べて高強度、高弾性率で、耐衝撃特性の良
い材料である。
Both Dyneema and Zylon have a negative linear expansion coefficient in the fiber direction, and their specific gravity is a fraction of that of metal, which is light weight. Especially, Zylon has higher strength than conventional high-performance fibers such as metal and aramid. It has high elastic modulus and good impact resistance.

【0029】ダイニーマ、ザイロンの比重は、0.98
g/cm3 及び1.56g/cm3で、鋼線の比重7.
8g/cm3 と比べて1/9および1/5である。
The specific gravity of Dyneema and Zylon is 0.98.
In g / cm 3 and 1.56 g / cm 3, the specific gravity of the steel wire 7.
1/9 and 1/5 compared to 8 g / cm 3 .

【0030】ダイニーマ、ザイロンを芯材に用いたトロ
リ線では、低熱収縮の効果の他に、ダイニーマ、ザイロ
ンの機械特性などから、以下のような効果も期待でき
る。
In the trolley wire using Dyneema or Zylon as the core material, the following effects can be expected from the mechanical properties of Dyneema and Zylon in addition to the effect of low heat shrinkage.

【0031】(1)鋼線に比べるとダイニーマ、ザイロ
ンは比重が1/9および1/5と小さく、トロリ線の軽
量化ができる。
(1) Compared with steel wire, Dyneema and Zylon have a small specific gravity of 1/9 and 1/5, and the weight of the trolley wire can be reduced.

【0032】(2)耐衝撃特性が高く、エネルギー吸収
部材として使用できるので、トロリ線の振動特性を向上
させることができる。
(2) Since it has a high impact resistance and can be used as an energy absorbing member, it is possible to improve the vibration characteristics of the trolley wire.

【0033】(3)トロリ線交換後の処理において、芯
材が有機材料であることから銅と分離が容易になり、リ
サイクルが容易になる。
(3) In the process after the exchange of the trolley wire, since the core material is an organic material, it is easy to separate it from copper, which facilitates recycling.

【0034】負の線膨張係数を持つ材料との複合化によ
る低熱膨張線状体開発の可能性を確認するため、以下の
実験を行った。
The following experiment was conducted to confirm the possibility of developing a low thermal expansion linear body by compounding with a material having a negative linear expansion coefficient.

【0035】実験は、銅板、負の線膨張係数を持つダイ
ニーマのプリプレグシート、および両者をエポキシ系接
着剤により張り合わせた材料について、温度変化による
線膨張を歪みゲージにより測定した。
In the experiment, a linear expansion due to temperature change was measured by a strain gauge for a copper plate, a dynaima prepreg sheet having a negative linear expansion coefficient, and a material obtained by bonding the both with an epoxy adhesive.

【0036】図3は各種の熱膨張体の熱膨張をみるため
のサンプルを示す図である。
FIG. 3 is a diagram showing samples for observing the thermal expansion of various thermal expansion bodies.

【0037】(1)サンプル (a)図3(a)に示すように、銅板(0.3mm厚)
のサンプル21 (b)図3(b)に示すように、ダイニーマのUD(一
方向)プリプレグ(繊維と樹脂からなる)のサンプル3
1 (c)図3(c)に示すように、銅板41にダイニーマ
42を貼り付けた複合部材のサンプル40 (d)図3(d)に示すように、ダイニーマ51−銅板
52−ダイニーマ53の複合部材のサンプル50 (e)図3(e)に示すように、銅板61−ダイニーマ
(5枚)62−銅板63の複合部材のサンプル60 なお、各サンプルとも、50×20mmであり、また、
22,32,43,54,64はそれぞれ測定用の歪み
ゲージである。
(1) Sample (a) As shown in FIG. 3 (a), a copper plate (thickness: 0.3 mm)
Sample 21 of (b) As shown in FIG. 3 (b), sample 3 of UD (unidirectional) prepreg (comprising fibers and resin) of Dyneema
1 (c) As shown in FIG. 3 (c), a sample 40 of a composite member in which a dyneema 42 is attached to a copper plate 41 (d) As shown in FIG. 3 (d), a dyneema 51-copper plate 52-dyneema 53 Sample 50 of composite member (e) As shown in FIG. 3 (e), sample 60 of composite member of copper plate 61-dyneema (5 sheets) 62-copper plate 63 Note that each sample has a size of 50 × 20 mm, and
Reference numerals 22, 32, 43, 54 and 64 are strain gauges for measurement.

【0038】(2)測定方法 歪みゲージ:歪みゲージ(適合線膨張係数:SUS鋼
用) 3枚/サンプル 温度変化:室温(25℃程度)から80℃まで、3回の
測定 (3)測定結果 各サンプルについて、3回目の温度変化時の線膨張を、
歪みゲージの見かけ歪みによる影響を除去し、30℃を
基準にして、図4から図8に示した。すなわち、図4は
サンプル21〔図3(a)〕の熱膨張特性図、図5はサ
ンプル31〔図3(b)〕の熱膨張特性図、図6はサン
プル40〔図3(c)〕の熱膨張特性図、図7はサンプ
ル50〔図3(d)〕の熱膨張特性図、図8はサンプル
60〔図3(e)〕の熱膨張特性図である。なお、これ
らの図においては、+が膨張、−が収縮となり、図4か
ら図8のシンボルは、3点測定したそれぞれの歪みゲー
ジ毎の測定結果を示している。それぞれの値は、30℃
を基準(0)としたときの各温度までの歪み=線膨張の
値である。図6の銅−ダイニーマのサンプルでは、銅面
とダイニーマ面にそれぞれに歪みゲージを張り付けて測
定したので、銅面とダイニーマ面の結果がある。図8の
ダイニーマを銅板で挟んだサンプルでは、両面に歪みゲ
ージを3枚ずつ貼り付けて測定したので、合計6点の測
定結果が得られる。
(2) Measuring method Strain gauge: Strain gauge (Compatible linear expansion coefficient: for SUS steel) 3 sheets / Sample temperature change: 3 times measurement from room temperature (about 25 ° C) to 80 ° C (3) Measurement result For each sample, the linear expansion during the third temperature change,
The effect of the apparent strain of the strain gauge was removed, and the results are shown in FIGS. That is, FIG. 4 is a thermal expansion characteristic diagram of sample 21 [FIG. 3 (a)], FIG. 5 is a thermal expansion characteristic diagram of sample 31 [FIG. 3 (b)], and FIG. 6 is sample 40 [FIG. 3 (c)]. 7 is a thermal expansion characteristic diagram of Sample 50 [FIG. 3 (d)], and FIG. 8 is a thermal expansion characteristic diagram of Sample 60 [FIG. 3 (e)]. In these figures, + is expansion and − is contraction, and the symbols in FIGS. 4 to 8 show the measurement results for each strain gauge measured at three points. Each value is 30 ℃
Is the value of strain = linear expansion up to each temperature, where is the reference (0). In the copper-dyneema sample of FIG. 6, strain gauges were attached to the copper surface and the dyneema surface, respectively. Therefore, there are results for the copper surface and the dyneema surface. In the sample in which the Dyneema shown in FIG. 8 is sandwiched between copper plates, three strain gauges were attached on both sides for measurement, so that a total of 6 measurement results can be obtained.

【0039】測定結果から、各サンプルの平均の線膨張
係数をまとめると表2のようになる。
The average linear expansion coefficient of each sample is summarized in Table 2 from the measurement results.

【0040】[0040]

【表2】 [Table 2]

【0041】図5に示すサンプル31のダイニーマで
は、線膨張係数が0から負を示している。銅板41とダ
イニーマ42を貼り付けた、図6に示すサンプル40で
は銅板の面とダイニーマの面で線膨張係数に大きな差が
あり、バイメタル的な特性を示し、銅部分の線膨張係数
が単体の場合(図4参照)より大きくなっている。銅板
61,63でダイニーマ5枚62を挟んだ、図8に示す
サンプル60では、銅板の線膨張係数が13.1と、図
4に示すサンプル21の銅板単体に比べて78%に減少
しており、銅板とダイニーマとの複合化により低熱膨張
材料を得ることができることが分かる。実験は一例であ
り、割合や複合方法により調整できる。
In the dyneema of sample 31 shown in FIG. 5, the linear expansion coefficient is 0 to negative. In the sample 40 shown in FIG. 6 in which the copper plate 41 and the dyneema 42 are attached, there is a large difference in the coefficient of linear expansion between the surface of the copper plate and the surface of the dyneema, exhibiting bimetallic characteristics, and the linear expansion coefficient of the copper portion It is larger than the case (see FIG. 4). In the sample 60 shown in FIG. 8 in which five dyneema 62 are sandwiched between the copper plates 61 and 63, the linear expansion coefficient of the copper plate is 13.1, which is reduced to 78% as compared with the single copper plate of the sample 21 shown in FIG. Therefore, it is understood that the low thermal expansion material can be obtained by combining the copper plate and the dyneema. The experiment is an example, and can be adjusted by the ratio or the composite method.

【0042】上記したように、銅のトロリ線等の線状体
では、温度変化に伴う熱伸縮があるため、敷設や保守管
理において問題となる。そこで、極力線膨張係数の小さ
い材料の適用により低熱膨張の線状体の開発を行い、低
熱膨張線状体を得ることができた。
As described above, a linear body such as a copper trolley wire causes thermal expansion and contraction due to temperature change, which causes a problem in laying and maintenance. Therefore, we have developed a linear body with low thermal expansion by applying a material with a linear expansion coefficient as low as possible, and obtained a linear body with low thermal expansion.

【0043】なお、上記実施例では、低熱膨張線状体の
適用を主にトロリ線について述べたが、その他の給電線
やレールへの適用も可能である。
In the above embodiment, the application of the low thermal expansion linear body was mainly described for the trolley wire, but the application to other power supply lines and rails is also possible.

【0044】また、負の線膨張特性を持つ材料に代え
て、熱膨張係数の小さいインバー合金などを用いるよう
にすることもできる。
Further, instead of a material having a negative linear expansion characteristic, an Invar alloy having a small coefficient of thermal expansion may be used.

【0045】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、それらを本発明の範囲から排除するものではな
い。
The present invention is not limited to the above embodiments, and various modifications can be made based on the spirit of the present invention, and these modifications are not excluded from the scope of the present invention.

【0046】[0046]

【発明の効果】以上、詳細に説明したように、トロリ線
等の線状体では、温度変化に伴う熱伸縮があるため、敷
設や保守管理において問題となるが、本発明によれば、
導電性材料と負の熱膨張係数の材料との複合構造の線状
体により、極力線膨張係数の小さい低熱膨張の線状体を
得ることができる。
As described above in detail, a linear body such as a trolley wire causes thermal expansion and contraction due to temperature change, which causes a problem in laying and maintenance. However, according to the present invention,
A linear body having a composite structure of a conductive material and a material having a negative coefficient of thermal expansion makes it possible to obtain a linear body having a low coefficient of thermal expansion and low thermal expansion.

【0047】従って、トロリ線の熱伸縮に伴う架線支持
部構造を簡素化することができた。
Therefore, the structure of the overhead wire supporting portion associated with the thermal expansion and contraction of the trolley wire could be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すトロリ線を架設した状態
を示す図である。
FIG. 1 is a view showing a state in which a trolley wire according to an embodiment of the present invention is installed.

【図2】本発明にかかる低熱膨張線状体からなるトロリ
線の模式図である。
FIG. 2 is a schematic view of a trolley wire made of a low thermal expansion linear body according to the present invention.

【図3】各種の熱膨張体の熱膨張をみるためのサンプル
を示す図である。
FIG. 3 is a diagram showing samples for observing thermal expansion of various thermal expansion bodies.

【図4】サンプル〔図3(a)〕の熱膨張特性図であ
る。
FIG. 4 is a thermal expansion characteristic diagram of a sample [FIG. 3 (a)].

【図5】サンプル〔図3(b)〕の熱膨張特性図であ
る。
FIG. 5 is a thermal expansion characteristic diagram of a sample [FIG. 3 (b)].

【図6】サンプル〔図3(c)〕の熱膨張特性図であ
る。
FIG. 6 is a thermal expansion characteristic diagram of the sample [FIG. 3 (c)].

【図7】サンプル〔図3(d)〕の熱膨張特性図であ
る。
FIG. 7 is a thermal expansion characteristic diagram of a sample [FIG. 3 (d)].

【図8】サンプル〔図3(e)〕の熱膨張特性図であ
る。
FIG. 8 is a thermal expansion characteristic diagram of a sample [FIG. 3 (e)].

【図9】従来のトロリ線を架設した状態を示す図であ
る。
FIG. 9 is a view showing a state in which a conventional trolley wire is installed.

【符号の説明】[Explanation of symbols]

1,2 支持体 3 支持体間に架設される低熱膨張線状体からなるト
ロリ線 4 簡易張力調整装置 11 低熱膨張線状体からなるトロリ線 12 銅、アルミニウム導体 13 負の線膨張係数を持つ有機材料 21 銅板(0.3mm厚)のサンプル 22,32,43,54,64 歪みゲージ 31 ダイニーマのUD(一方向)プリプレグのサン
プル 40 銅板とダイニーマを貼り付けた複合部材のサン
プル 41,52,61,63 銅板 42,51,53,62 ダイニーマ 50 ダイニーマ−銅板−ダイニーマの複合部材のサ
ンプル 60 銅板−ダイニーマ(5枚)−銅板の複合部材の
サンプル
1, 2 support 3 trolley wire made of a low thermal expansion linear body installed between the supports 4 simple tension adjusting device 11 trolley wire 12 made of a low thermal expansion linear body 12 copper, aluminum conductor 13 having a negative linear expansion coefficient Organic material 21 Copper plate (0.3 mm thickness) samples 22, 32, 43, 54, 64 Strain gauge 31 Dyneema UD (one direction) prepreg sample 40 Composite member samples 41, 52 with copper plate and dyneema attached 61, 63 Copper plate 42, 51, 53, 62 Dyneema 50 Dyneema-Copper plate-Dyneema composite member sample 60 Copper plate-Dyneema (5 sheets) -Copper plate composite member sample

───────────────────────────────────────────────────── フロントページの続き (72)発明者 根津 一嘉 東京都国分寺市光町二丁目8番地38 財団 法人 鉄道総合技術研究所内 Fターム(参考) 5G309 AA11 5G311 AB01 AD03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kazuyoshi Nezu             38-8, Hikarimachi, Kokubunji, Tokyo 38 Foundation             Corporate Railway Technical Research Institute F-term (reference) 5G309 AA11                 5G311 AB01 AD03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正の線膨張特性を持つ導電性材料と負の
線膨張特性を持つ材料との複合構造からなる低熱膨張線
状体。
1. A low thermal expansion linear body having a composite structure of a conductive material having a positive linear expansion characteristic and a material having a negative linear expansion characteristic.
【請求項2】 請求項1記載の低熱膨張線状体におい
て、前記材料が超高分子量ポリエチレン繊維であること
を特徴とする低熱膨張線状体。
2. The low thermal expansion linear body according to claim 1, wherein the material is an ultrahigh molecular weight polyethylene fiber.
【請求項3】 請求項1記載の低熱膨張線状体におい
て、前記材料がポリパラフェニレンベンゾビスオキサゾ
ールを液晶紡糸した繊維であることを特徴とする低熱膨
張線状体。
3. The low thermal expansion linear body according to claim 1, wherein the material is a liquid crystal spun fiber of polyparaphenylenebenzobisoxazole.
【請求項4】 請求項1、2又は3記載の低熱膨張線状
体がトロリ線であることを特徴とする低熱膨張線状体。
4. The low thermal expansion linear body according to claim 1, 2 or 3, wherein the low thermal expansion linear body is a trolley wire.
JP2002083665A 2002-03-25 2002-03-25 Low thermal expansion trolley wire Expired - Fee Related JP4281891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002083665A JP4281891B2 (en) 2002-03-25 2002-03-25 Low thermal expansion trolley wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002083665A JP4281891B2 (en) 2002-03-25 2002-03-25 Low thermal expansion trolley wire

Publications (2)

Publication Number Publication Date
JP2003281942A true JP2003281942A (en) 2003-10-03
JP4281891B2 JP4281891B2 (en) 2009-06-17

Family

ID=29231344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002083665A Expired - Fee Related JP4281891B2 (en) 2002-03-25 2002-03-25 Low thermal expansion trolley wire

Country Status (1)

Country Link
JP (1) JP4281891B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006085914A (en) * 2004-09-14 2006-03-30 Railway Technical Res Inst Linear body with small thermal expansion and manufacturing method therefor
JP2006164692A (en) * 2004-12-06 2006-06-22 Railway Technical Res Inst Permanent arranging method of low thermal expansion linear body
JP2007118670A (en) * 2005-10-26 2007-05-17 Railway Technical Res Inst Permanent arranging method of low thermal expansion linear body
JP2007250972A (en) * 2006-03-17 2007-09-27 Railway Technical Res Inst Low-heat invasion current lead device
JP2012129094A (en) * 2010-12-16 2012-07-05 Railway Technical Research Institute Composite electric wire
JP2012129093A (en) * 2010-12-16 2012-07-05 Railway Technical Research Institute Composite trolley wire
WO2012172736A1 (en) 2011-06-15 2012-12-20 Canon Kabushiki Kaisha Organic-inorganic composite molded product and optical element
WO2013179603A1 (en) 2012-05-30 2013-12-05 Canon Kabushiki Kaisha Molded article and method of producing the same
CN106838183A (en) * 2017-04-09 2017-06-13 北京工业大学 A kind of ball screw assembly, of automatic compensation thermal deformation
CN112164508A (en) * 2020-09-21 2021-01-01 安徽同胜电力科技有限公司 Flame-retardant and high-temperature-resistant cable

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006085914A (en) * 2004-09-14 2006-03-30 Railway Technical Res Inst Linear body with small thermal expansion and manufacturing method therefor
JP4727961B2 (en) * 2004-09-14 2011-07-20 公益財団法人鉄道総合技術研究所 Low thermal expansion linear body and method for producing the same
JP2006164692A (en) * 2004-12-06 2006-06-22 Railway Technical Res Inst Permanent arranging method of low thermal expansion linear body
JP4642448B2 (en) * 2004-12-06 2011-03-02 財団法人鉄道総合技術研究所 Permanent disposition method of low thermal expansion linear body
JP2007118670A (en) * 2005-10-26 2007-05-17 Railway Technical Res Inst Permanent arranging method of low thermal expansion linear body
JP4489685B2 (en) * 2005-10-26 2010-06-23 財団法人鉄道総合技術研究所 Arrangement method of low thermal expansion linear body
JP2007250972A (en) * 2006-03-17 2007-09-27 Railway Technical Res Inst Low-heat invasion current lead device
JP2012129093A (en) * 2010-12-16 2012-07-05 Railway Technical Research Institute Composite trolley wire
JP2012129094A (en) * 2010-12-16 2012-07-05 Railway Technical Research Institute Composite electric wire
WO2012172736A1 (en) 2011-06-15 2012-12-20 Canon Kabushiki Kaisha Organic-inorganic composite molded product and optical element
US9376553B2 (en) 2011-06-15 2016-06-28 Canon Kabushiki Kaisha Organic-inorganic composite molded product and optical element
WO2013179603A1 (en) 2012-05-30 2013-12-05 Canon Kabushiki Kaisha Molded article and method of producing the same
US9353247B2 (en) 2012-05-30 2016-05-31 Canon Kabushiki Kaisha Molded article and method of producing the same
CN106838183A (en) * 2017-04-09 2017-06-13 北京工业大学 A kind of ball screw assembly, of automatic compensation thermal deformation
CN112164508A (en) * 2020-09-21 2021-01-01 安徽同胜电力科技有限公司 Flame-retardant and high-temperature-resistant cable
CN112164508B (en) * 2020-09-21 2022-03-08 江苏科信光电科技有限公司 Flame-retardant and high-temperature-resistant cable

Also Published As

Publication number Publication date
JP4281891B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
Douglas et al. Transverse compressional damping in the vibratory response of elastic-viscoelastic-elastic beams
JP2003281942A (en) Low thermal expansion wire shaped body
Hsueh et al. Residual stresses and cracking in metal/ceramic systems for microelectronics packaging
Andrew et al. The role of adhesively bonded super hybrid external patches on the impact and post-impact response of repaired glass/epoxy composite laminates
El-Hacha et al. Flexural strengthening of large-scale reinforced concrete beams using near-surface-mounted self-prestressed iron-based shape-memory alloy strips
JPH026341A (en) Material for contact-reinforcing of glass
Choi et al. The active buckling control of laminated composite beams with embedded shape memory alloy wires
Xie et al. Deformation and failure of clamped shallow sandwich arches with foam core subjected to projectile impact
Deng et al. Influence of fibre cross-sectional aspect ratio on mechanical properties of glass fibre/epoxy composites I. Tensile and flexure behaviour
Ichikawa et al. A three-dimensional finite-element stress analysis and strength evaluation of stepped-lap adhesive joints subjected to static tensile loadings
Khalili et al. Mechanical behavior of notched plate repaired with polymer composite and smart patches-experimental study
Kim et al. Effect of the smart cure cycle on the performance of the co-cured aluminum/composite hybrid shaft
Xu et al. A novel technique for fabricating SMA/CFRP adaptive composites using ultrathin TiNi wires
Zhang et al. The influence of asymmetric faces on low-velocity impact failure of CFRP/aluminum foam composite sandwich beams
US11667531B2 (en) Thermal interface material, method for thermally coupling with thermal interface material, and method for preparing thermal interface material
CN105928644B (en) A kind of strain gauge for pavement structure monitoring
Park et al. Optimum design of the co-cured double lap joint composed of aluminum and carbon epoxy composite
Dève Importance of materials in composite conductors
Yuse et al. Development and experimental consideration of SMA/CFRP actuator for vibration control
JP2010189244A (en) Graphite block and graphite-oriented thermal conductive sheet
JP6847686B2 (en) Interlayer heat bonding method, cooling system
JP2012255303A (en) Method for reinforcing steel structure, and lamination material for reinforcing steel structure
JP4642448B2 (en) Permanent disposition method of low thermal expansion linear body
Li et al. Bond behavior of CFRP/steel double strap joint at elevated temperatures
CN220235324U (en) Inner shielding plate for ultrahigh-speed low-vacuum pipeline magnetic levitation transportation system ground module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070105

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070206

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees