JP2007249642A - Electromagnetic field analysis device - Google Patents

Electromagnetic field analysis device Download PDF

Info

Publication number
JP2007249642A
JP2007249642A JP2006072676A JP2006072676A JP2007249642A JP 2007249642 A JP2007249642 A JP 2007249642A JP 2006072676 A JP2006072676 A JP 2006072676A JP 2006072676 A JP2006072676 A JP 2006072676A JP 2007249642 A JP2007249642 A JP 2007249642A
Authority
JP
Japan
Prior art keywords
electromagnetic field
field analysis
difference
grid
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006072676A
Other languages
Japanese (ja)
Other versions
JP4946107B2 (en
Inventor
Naoya Tamaoki
尚哉 玉置
Tsuneo Tsukagoshi
常雄 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2006072676A priority Critical patent/JP4946107B2/en
Publication of JP2007249642A publication Critical patent/JP2007249642A/en
Application granted granted Critical
Publication of JP4946107B2 publication Critical patent/JP4946107B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic field analysis method which can contribute to easy, efficient and practical electronic equipment development. <P>SOLUTION: Electromagnetic field analysis is performed in a certain lattice size, and then in a lattice size smaller than it. The electromagnetic field analysis is continued while reducing the lattice size until the difference between the analysis result of the previous electromagnetic field analysis and the analysis result of the current electromagnetic field analysis is smaller than a predetermined value. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、FDTD(Finite Difference Time Domain)法などの、電磁界解析領域を格子で分割して電磁界解析を行う場合の電磁界解析モデルの作成技術、およびその技術を用いた電磁界解析方法、及び装置に関する。   The present invention relates to a technique for creating an electromagnetic field analysis model, such as FDTD (Finite Difference Time Domain) method, in which an electromagnetic field analysis region is divided by a grid to perform electromagnetic field analysis, and an electromagnetic field analysis method using the technique And an apparatus.

従来、電子機器または電子機器の一部構成要素における電磁界解析用モデルの作成方法の一つとして、CADデータを用いて電磁界解析用モデルを作成することがあった。
特願2000−028665号公報
Conventionally, as one method for creating an electromagnetic field analysis model for an electronic device or a partial component of an electronic device, an electromagnetic field analysis model has been created using CAD data.
Japanese Patent Application No. 2000-028665

しかし、一般にCADデータ量は非常に多く、構造が複雑すぎて解析時間が長い場合があった。例えば、FDTD法による電磁界解析を行う場合、電子機器構造を含めた解析領域を格子で分割して解析用モデルを作成するが、構造の最も小さい稜や構造間の最も小さい隙間などの寸法により格子寸法がほぼ決まるため、その最小寸法が解析領域に比べて極端に小さい場合には、解析時間が非常に長くなってしまうという問題があった。   However, in general, the amount of CAD data is very large, and the analysis time is sometimes long because the structure is too complicated. For example, when performing electromagnetic field analysis by the FDTD method, an analysis model including an electronic device structure is divided by a grid to create an analysis model. Depending on dimensions such as the smallest edge of the structure and the smallest gap between structures Since the lattice dimension is almost determined, there is a problem that the analysis time becomes very long when the minimum dimension is extremely smaller than the analysis region.

背景技術の代表的な電磁界解析フローを図16に示す。取り込んだCADデータから電磁界解析モデルを作成することについて、例えば特許文献1の第56段落、第73段落、第96段落に記述されている。それらによれば、CADデータが表す構造が消滅することなく、構造における最も小さい寸法以下に格子寸法を設定することが示されている。図3のCADデータを小格子で分割する例を図17に示す。CADデータの最小の線分を検出し、この線分の長さを辺の長さとする格子でCADデータ全体を分割する。このように細かい格子での分割によって、高精度の電磁界解析結果が得られる可能性が高いが、解析時間が非常に長い可能性がある。また、一部の解析領域のみ格子寸法を小さくする「サブグリッド法」と称される方法があるが、異なる寸法の格子間の界面接続条件など考慮すべき事項が増加し、高精度の解析を行うためにはその取り扱いに注意を要する。   A typical electromagnetic field analysis flow of the background art is shown in FIG. Creating an electromagnetic field analysis model from captured CAD data is described in paragraphs 56, 73, and 96 of Patent Document 1, for example. According to them, it is shown that the lattice dimension is set to be equal to or smaller than the smallest dimension in the structure without disappearance of the structure represented by the CAD data. FIG. 17 shows an example of dividing the CAD data of FIG. 3 with a small lattice. The minimum line segment of the CAD data is detected, and the entire CAD data is divided by a grid having the length of the line segment as the side length. Although it is highly likely that a highly accurate electromagnetic field analysis result can be obtained by such a fine grid division, the analysis time may be very long. In addition, there is a method called the “sub-grid method” in which the lattice size is reduced only in a part of the analysis area. Care must be taken in handling to do it.

本願発明は上記の問題を回避するとともに、簡便で効率的かつ実用的な電子機器開発に貢献できる電磁界解析方法、及びその方法を用いた電磁界解析装置を提供することにある。   An object of the present invention is to provide an electromagnetic field analysis method capable of contributing to the development of a simple, efficient and practical electronic device, and an electromagnetic field analysis apparatus using the method, while avoiding the above problems.

本発明は、電子機器における構成物のCADデータを読み込むCADデータ入力手段と、
解析モデルを分割する格子の寸法、もしくは解析モデルの分割数、もしくはその他格子の寸法を決めるためのパラメータ条件を入力する小格子条件入力手段と、
電磁界解析領域を、その辺の長さがCADデータ構造に含まれる最小の線分または隙間を越える大きさの格子で分割することで電磁界解析モデルデータを作成する電磁界解析モデルデータ作成手段と、
電磁界解析モデルデータを電磁界解析する電磁界解析手段と、
電磁界解析結果データを記憶する結果データ記憶手段と、
異なる小格子条件でのそれぞれの電磁界解析結果データの許容差分を入力する許容差分入力手段と、
異なる小格子条件でのそれぞれの電磁界解析結果データの差分と前記許容差分を比較する結果データ比較手段を有する電磁界解析装置を提供する。
The present invention provides CAD data input means for reading CAD data of components in an electronic device,
A small lattice condition input means for inputting a parameter condition for determining the size of the lattice for dividing the analysis model, or the number of divisions of the analysis model, or other lattice size;
Electromagnetic field analysis model data creation means for creating electromagnetic field analysis model data by dividing the electromagnetic field analysis region by a grid whose side length exceeds the minimum line segment or gap included in the CAD data structure When,
Electromagnetic field analysis means for electromagnetic field analysis of electromagnetic field analysis model data;
Result data storage means for storing electromagnetic field analysis result data;
Tolerance difference input means for inputting the tolerance difference of each electromagnetic field analysis result data under different small lattice conditions,
There is provided an electromagnetic field analysis apparatus having result data comparison means for comparing a difference between respective electromagnetic field analysis result data under different small lattice conditions and the allowable difference.

また、電子機器における構成物のうち同一材質かつ分離していない構成要素において、構成要素が内部に納まる一つの直方体、または板状の構成要素のひとつの面の外形が内部に納まる一つの長方形を簡略化構造とする簡略化構造データ作成手段を有し、
電磁界解析モデルデータ作成手段が前記簡略化構造データから電磁界解析モデルデータを作成することを特徴とする電磁界解析装置を提供する。
In addition, among the components in the electronic device, the same material and not separated, one rectangular parallelepiped in which the component is contained, or one rectangle in which the outer shape of one surface of the plate-like component is contained. Having simplified structure data creation means for simplified structure,
An electromagnetic field analysis apparatus is characterized in that electromagnetic field analysis model data creation means creates electromagnetic field analysis model data from the simplified structure data.

また、電磁界解析モデルデータ作成手段が、
電磁界解析領域を、その辺の長さがCADデータ構造に含まれる最小の線分または隙間を越える大きさの格子で分割し、一つの格子の半分以上の領域にCADデータ構造領域、もしくは簡略化構造領域を含む格子の集まりで電磁界解析モデルデータを作成することを特徴とする電磁界解析装置を提供する。
The electromagnetic field analysis model data creation means
The electromagnetic field analysis area is divided by a grid whose side length exceeds the minimum line segment or gap included in the CAD data structure, and the CAD data structure area or simplified area is divided into more than half of one grid. An electromagnetic field analysis apparatus is characterized in that electromagnetic field analysis model data is created from a collection of lattices including a structured area.

また、電磁界解析モデルデータ作成手段が、
電磁界解析領域を、その辺の長さがCADデータ構造に含まれる最小の線分または隙間を越える大きさの格子で分割し、CADデータ構造領域、もしくは簡略化構造領域を含む格子の集まりで電磁界解析モデルデータを作成することを特徴とする電磁界解析装置を提供する。
The electromagnetic field analysis model data creation means
The electromagnetic field analysis area is divided by a grid whose side length exceeds the minimum line segment or gap included in the CAD data structure, and is a collection of grids including the CAD data structure area or the simplified structure area. An electromagnetic field analysis apparatus characterized by creating electromagnetic field analysis model data is provided.

また、前記いずれかの電磁界解析装置により得られる電磁界解析結果の格子条件を入力する入力手段と、
前記格子条件により電磁界解析モデルデータを作成する電磁界解析モデルデータ作成手段と、
電磁界解析モデルデータを電磁界解析する電磁界解析手段を有する電磁界解析装置を提供する。
An input means for inputting a lattice condition of an electromagnetic field analysis result obtained by any one of the electromagnetic field analysis devices;
Electromagnetic field analysis model data creating means for creating electromagnetic field analysis model data according to the lattice conditions;
An electromagnetic field analysis apparatus having electromagnetic field analysis means for performing electromagnetic field analysis on electromagnetic field analysis model data is provided.

本発明によれば、CADデータを簡略化して作成する電磁界解析用モデルにより電磁界解析を行うことで、実用的な解析の時間と精度が得られる。   According to the present invention, practical analysis time and accuracy can be obtained by performing electromagnetic field analysis using a model for electromagnetic field analysis created by simplifying CAD data.

以下、図面を参照して本発明を実施するための最良の形態について詳細に説明する。   The best mode for carrying out the present invention will be described below in detail with reference to the drawings.

図1は、以下に示す本発明の第1〜5の実施例に共通の電磁界解析装置の構成である。入力部、出力部、記憶部が情報処理部に接続している。   FIG. 1 shows the configuration of an electromagnetic field analysis apparatus common to the following first to fifth embodiments of the present invention. An input unit, an output unit, and a storage unit are connected to the information processing unit.

(第1の実施の形態)
図2は本発明の第1の実施の形態である電磁界解析方法を示すフロー図である。
(First embodiment)
FIG. 2 is a flowchart showing an electromagnetic field analysis method according to the first embodiment of the present invention.

図2のフロー図を用いて詳細な説明を行う。   A detailed description will be given with reference to the flowchart of FIG.

電子機器の構成物であるプリント回路基板の一導体層に設けている図3のグラウンドパターンCADデータを電磁界解析装置に取り込む。ここでは、導体層の厚みは非常に薄いためこれを無視し、2次元構造のグラウンドパターンを一例とする。ちなみに、厚みを無視できないブロック状の構成物については、3次元構造として取り扱うことになるが、次元を一つ増やすだけで同様に取り扱うことができる。   The ground pattern CAD data of FIG. 3 provided on one conductor layer of the printed circuit board, which is a component of the electronic device, is taken into the electromagnetic field analysis apparatus. Here, since the thickness of the conductor layer is very thin, this is ignored and a ground pattern having a two-dimensional structure is taken as an example. By the way, a block-like structure whose thickness cannot be ignored is handled as a three-dimensional structure, but can be handled in the same manner by increasing one dimension.

CADデータパターンに含まれる最小の線分または隙間を検出して、その最小長さを記憶媒体に記憶する。CADデータパターンを分割する小格子の辺の長さが、この最小長さを超えるように、小格子の辺の長さを入力するか、またはCADデータパターンの分割数を入力するか、あるいはその他小格子の辺の長さを決めるためのパラメータを入力する。この入力条件に従って、CADデータパターンを小格子で分割する(図4)。この時の小格子条件を、第1番目の小格子条件とする。なお、フローにおいてフィードバックした後の第2番目以降の小格子条件を決めるための、小格子条件を盛り込んでもよい。例えば、N番目の小格子条件における格子の辺の長さを0.1×N[mm]ずつ小さくしたり、または1/Nに小さくしたりしてもよい。あるいは、フィードバックした後の第2番目以降の小格子条件を、その都度入力することもできる。   The minimum line segment or gap included in the CAD data pattern is detected, and the minimum length is stored in the storage medium. Enter the length of the side of the small grid so that the length of the side of the small grid that divides the CAD data pattern exceeds this minimum length, or enter the number of divisions of the CAD data pattern, or others Enter parameters to determine the side length of the lattice. In accordance with this input condition, the CAD data pattern is divided by a small lattice (FIG. 4). The small lattice condition at this time is defined as a first small lattice condition. Note that small lattice conditions for determining the second and subsequent small lattice conditions after feedback in the flow may be included. For example, the length of the side of the lattice in the Nth small lattice condition may be decreased by 0.1 × N [mm] or decreased to 1 / N. Alternatively, the second and subsequent small lattice conditions after the feedback can be input each time.

装置の動作速度や記憶容量などの基本的な装置仕様、及び解析領域の格子数などの解析条件によって、一般におおよその解析時間の見積もりは可能である。機器開発の現場では、許される解析時間がほぼ決まっている場合がほとんどであることを考慮すると、装置操作者はその許される解析時間で解析を完了するような格子寸法を設定することができる。例えば、許される解析時間が通常より短くなった場合には大きめの格子寸法を選択し、逆に許される解析時間が長くなった場合には小さめの格子寸法を選択するなど、解析の時間と精度を勘案することで自由度の高い機器開発を行うことができる。   In general, an approximate analysis time can be estimated based on basic apparatus specifications such as the operation speed and storage capacity of the apparatus, and analysis conditions such as the number of grids in the analysis area. In consideration of the fact that, in the field of equipment development, the permitted analysis time is almost always determined, the device operator can set a grid size to complete the analysis within the permitted analysis time. For example, if the allowed analysis time is shorter than usual, select a larger grid size, and conversely, if the allowed analysis time is longer, select a smaller grid size. Considering the above, it is possible to develop equipment with a high degree of freedom.

ここで、小格子は、CADデータが本実施例のように2次元構造の場合には正方形、また3次元構造の場合には立方体に近いことが、精度の高い解析結果データを得るためには望ましく、そのようになるように小格子の辺の長さ、またはCADデータパターンの分割数、あるいはその他小格子の辺の長さを決めるためのパラメータを入力することが望ましい。   Here, in order to obtain highly accurate analysis result data, the small lattice is close to a square when the CAD data has a two-dimensional structure as in the present embodiment and close to a cube when the CAD data has a three-dimensional structure. Desirably, it is desirable to input a parameter for determining the length of the side of the small lattice, the number of divisions of the CAD data pattern, or the length of the other side of the small lattice so as to be so.

CADデータパターンの小格子分割以外に、給電点や解析領域境界の吸収境界条件など必要な設定を行って電磁界解析モデルデータを作成し、電磁界解析を行う。   In addition to the small grid division of the CAD data pattern, electromagnetic field analysis model data is created by performing necessary settings such as a feeding point and an absorption boundary condition of the analysis region boundary, and electromagnetic field analysis is performed.

電磁界解析が終了したら、解析結果データと第1番目の小格子条件と関連付けて記憶媒体に記憶する。この時の解析結果データを、第1番目の解析結果データとする。   When the electromagnetic field analysis is completed, the analysis result data and the first small lattice condition are associated with each other and stored in the storage medium. The analysis result data at this time is set as the first analysis result data.

次に、辺の長さが、第1番目の小格子条件における小格子の辺の長さより小さく、かつCADデータ構造に含まれる最小の線分または隙間を越える長さの辺を持つ小格子でCADデータパターンを分割する。この時の小格子条件を、第2番目の小格子条件とする。   Next, a small lattice having a side whose length is smaller than the length of the small lattice side in the first small lattice condition and whose length exceeds the minimum line segment or gap included in the CAD data structure. Divide the CAD data pattern. The small lattice condition at this time is the second small lattice condition.

小格子で分割された解析領域において、給電点や解析領域境界の吸収境界条件など必要な設定を行って電磁界解析モデルデータを作成し、電磁界解析を行う。   In the analysis region divided by the small grid, electromagnetic field analysis model data is created by performing necessary settings such as a feeding point and an absorption boundary condition of the analysis region boundary, and electromagnetic field analysis is performed.

電磁界解析が終了したら、解析結果データと小格子条件を関連付けて記憶媒体に記憶する。この時の解析結果データを、第2番目の解析結果データとする。   When the electromagnetic field analysis is completed, the analysis result data and the small lattice condition are associated with each other and stored in the storage medium. The analysis result data at this time is set as second analysis result data.

次に、第1の解析結果データと第2の解析結果データを比較し、差分を計算する。この時の差分を、第1番目の差分とする。   Next, the first analysis result data and the second analysis result data are compared, and a difference is calculated. The difference at this time is defined as a first difference.

ここで、第N−1番目の解析結果データと第N番目の解析結果データの許容差分を、例えば1dBとして入力する。この入力処理は、第1番目の解析結果データが得られる前など上記差分を計算する前に行ってもよいし、または直後に行ってもよい。また、第1番目と第2番目の解析結果データの差分をD12とし、同様に第2番目と第3番目の解析結果データの差分をD23とすると、図5のような傾向のグラフが描かれ。Nを増やすと解析精度が高くなることから、ある値に漸近していくことを示している。したがって、D12−D23、D23−D34・・・・の各解析結果データ差分間の許容差分を、例えば1dBとして入力する方法でもよい。   Here, an allowable difference between the (N-1) th analysis result data and the Nth analysis result data is input as 1 dB, for example. This input process may be performed before the difference is calculated, such as before the first analysis result data is obtained, or may be performed immediately after. Also, if the difference between the first and second analysis result data is D12, and similarly the difference between the second and third analysis result data is D23, a trend graph as shown in FIG. 5 is drawn. . As N increases, the analysis accuracy increases, indicating that the value gradually approaches a certain value. Therefore, a method of inputting the allowable difference between the analysis result data differences of D12-D23, D23-D34,.

第1番目の差分と許容差分を比較し、許容差分のほうが大きい場合にはディスプレイなどによって処理の終了を装置操作者に知らせるともに、解析結果データと小格子条件の関連を示す情報を出力する。   The first difference is compared with the allowable difference, and if the allowable difference is larger, the end of the process is notified to the apparatus operator by a display or the like, and information indicating the relation between the analysis result data and the small lattice condition is output.

すなわち、差分の差分が許容差分よりも小さいということは、解析結果が収束値にかなり近づいていることを意味するので、差分の差分が許容差分よりも小さくなったならば、解析を終了する。   That is, the fact that the difference difference is smaller than the allowable difference means that the analysis result is very close to the convergence value. Therefore, if the difference difference becomes smaller than the allowable difference, the analysis is terminated.

一方、許容差分の方が小さい場合には、辺の長さが第2番目の小格子条件における小格子の辺の長さより小さく、かつCADデータ構造に含まれる最小の線分または隙間を越える長さの辺を持つ小格子でCADデータパターンを含む解析領域を分割する。この時の小格子条件を、第3番目の小格子条件とする。   On the other hand, when the allowable difference is smaller, the length of the side is smaller than the length of the side of the small lattice in the second small lattice condition and exceeds the minimum line segment or gap included in the CAD data structure. The analysis region including the CAD data pattern is divided by a small grid having the side. The small lattice condition at this time is defined as a third small lattice condition.

以降は、第N−1番目の解析結果データと第N番目の解析結果データの差分が、許容差分以下となるまで、Nを一つずつ増やして同様に処理を繰り返す。   Thereafter, N is incremented by one until the difference between the (N-1) th analysis result data and the Nth analysis result data is equal to or less than the allowable difference, and the process is repeated in the same manner.

(第2の実施の形態)
図6は本発明の第1の実施の形態である電磁界解析方法を示すフロー図である。
(Second Embodiment)
FIG. 6 is a flowchart showing the electromagnetic field analysis method according to the first embodiment of the present invention.

図6のフロー図を用いて詳細な説明を行う。   A detailed description will be given with reference to the flowchart of FIG.

このパターンにおけるX軸方向とY軸方向の最小座標値と最大座標値を検出し、それらの差を求めることで各軸方向の長さLxとLyを求める(図7)。LxとLyを辺の長さとする長方形を第1番目の簡略化構造とする。この第1番目の簡略化構造をCADパターンの材質で満たす。   The minimum coordinate value and the maximum coordinate value in the X-axis direction and the Y-axis direction in this pattern are detected, and the lengths Lx and Ly in each axis direction are obtained by obtaining the difference between them (FIG. 7). A rectangle having side lengths Lx and Ly is defined as a first simplified structure. This first simplified structure is filled with a CAD pattern material.

CADデータパターンに含まれる最小の線分または隙間を検出して、第1番目の簡略化構造を分割する小格子の辺の長さが、この最小長さを超えるように、小格子の辺の長さを入力するか、または第1番目の簡略化構造の分割数を入力するか、あるいはその他小格子の辺の長さを決めるためのパラメータを入力する。この入力条件に従って第1番目の簡略化構造を小格子で分割する(図8)。この時の小格子条件を、第1番目の小格子条件とする。なお、フローにおいてフィードバックした後の第2番目以降の小格子条件を決めるための、小格子条件を盛り込んでもよい。例えば、N番目の小格子条件における格子の辺の長さを0.1×N[mm]ずつ小さくしたり、または1/Nに小さくしたりしてもよい。あるいは、フィードバックした後の第2番目以降の小格子条件を、その都度入力することもできる。   The minimum line segment or gap included in the CAD data pattern is detected, and the length of the side of the small lattice that divides the first simplified structure exceeds the minimum length. Enter the length, enter the number of divisions of the first simplified structure, or enter other parameters for determining the side length of the small lattice. According to this input condition, the first simplified structure is divided by a small lattice (FIG. 8). The small lattice condition at this time is defined as a first small lattice condition. Note that small lattice conditions for determining the second and subsequent small lattice conditions after feedback in the flow may be included. For example, the length of the side of the lattice in the Nth small lattice condition may be decreased by 0.1 × N [mm] or decreased to 1 / N. Alternatively, the second and subsequent small lattice conditions after the feedback can be input each time.

第1番目の簡略化構造の小格子分割以外に、給電点や解析領域境界の吸収境界条件など必要な設定を行って電磁界解析モデルデータを作成し、電磁界解析を行う。   In addition to the small lattice division of the first simplified structure, electromagnetic field analysis model data is created by performing necessary settings such as the feeding boundary and the absorption boundary condition of the analysis region boundary, and electromagnetic field analysis is performed.

電磁界解析が終了したら、解析結果データと第1番目の小格子条件と関連付けて記憶媒体に記憶する。この時の解析結果データを、第1番目の解析結果データとする。   When the electromagnetic field analysis is completed, the analysis result data and the first small lattice condition are associated with each other and stored in the storage medium. The analysis result data at this time is set as the first analysis result data.

次に、X軸方向の辺の長さがLxより小さく、Y軸方向の辺の長さがLyより小さく、かつCADデータ構造に含まれる最小の線分または隙間を越える長さの辺を持つ大格子でCADデータ構造を分割する(図9)。これを第2番目の簡略化構造とし、この時の大格子条件を第2番目の大格子条件とする。この第2番目の簡略化構造をCADパターンの材質で満たす。なお、フローにおいてフィードバックした後の第2番目以降の大格子条件を決めるための、大格子条件を盛り込んでもよい。例えば、N番目の大格子条件における格子の辺の長さを0.1×N[mm]ずつ小さくしたり、または1/Nに小さくしたりしてもよい。あるいは、フィードバックした後の第2番目以降の大格子条件を、その都度入力することもできる。   Next, the length of the side in the X-axis direction is smaller than Lx, the length of the side in the Y-axis direction is smaller than Ly, and has a length exceeding the minimum line segment or gap included in the CAD data structure. The CAD data structure is divided by a large lattice (FIG. 9). This is the second simplified structure, and the large lattice condition at this time is the second large lattice condition. This second simplified structure is filled with a CAD pattern material. Note that a large lattice condition for determining the second and subsequent large lattice conditions after feedback in the flow may be included. For example, the length of the side of the lattice in the Nth large lattice condition may be decreased by 0.1 × N [mm] or decreased to 1 / N. Alternatively, the second and subsequent large lattice conditions after the feedback can be input each time.

次に、辺の長さが、第1番目の小格子条件における小格子で第2番目の簡略化構造を分割する(図10)。図8の例では、大格子により構成される簡略化構造は長方形であるため、小格子は、この長方形全体を網羅するが、図10の例では、大格子により構成される簡略化構造はL字型であるため、小格子は、このL字型の部分のみを網羅するのみであり、右上の1/4の部分を覆わない。この時の小格子条件を、第2番目の小格子条件とする。なお、辺の長さが、第1番目の小格子条件における小格子の辺の長さより小さく、かつCADデータ構造に含まれる最小の線分または隙間を越える長さの辺を持つ小格子で第2番目の簡略化構造を分割してもよく、例えば図1のように第1番目の簡略化構造をX軸方向に6分割、Y軸方向に8分割した場合、第2番目の簡略化構造におけるひとつの大格子を、X軸方向に6分割、Y軸方向に8分割するなどしてもよい。   Next, the second simplified structure is divided by the small lattice in the first small lattice condition (FIG. 10). In the example of FIG. 8, since the simplified structure constituted by the large lattice is a rectangle, the small lattice covers the whole rectangle, but in the example of FIG. 10, the simplified structure constituted by the large lattice is L. Since it is letter-shaped, the small lattice only covers this L-shaped part, and does not cover the upper right quarter part. The small lattice condition at this time is the second small lattice condition. The length of the side is smaller than the length of the side of the small lattice in the first small lattice condition, and the small lattice has a side with a length exceeding the minimum line segment or gap included in the CAD data structure. The second simplified structure may be divided. For example, when the first simplified structure is divided into 6 parts in the X-axis direction and 8 parts in the Y-axis direction as shown in FIG. One large lattice may be divided into 6 parts in the X-axis direction and 8 parts in the Y-axis direction.

小格子で分割された解析領域において、給電点や解析領域境界の吸収境界条件など必要な設定を行って電磁界解析モデルデータを作成し、電磁界解析を行う。   In the analysis region divided by the small grid, electromagnetic field analysis model data is created by performing necessary settings such as a feeding point and an absorption boundary condition of the analysis region boundary, and electromagnetic field analysis is performed.

電磁界解析が終了したら、解析結果データと小格子条件及び大格子条件を関連付けて記憶媒体に記憶する。この時の解析結果データを、第2番目の解析結果データとする。   When the electromagnetic field analysis is completed, the analysis result data is associated with the small lattice condition and the large lattice condition and stored in the storage medium. The analysis result data at this time is set as second analysis result data.

次に、第1の解析結果データと第2の解析結果データを比較し、差分を計算する。この時の差分を、第1番目の差分とする。   Next, the first analysis result data and the second analysis result data are compared, and a difference is calculated. The difference at this time is defined as a first difference.

ここで、第N−1番目の解析結果データと第N番目の解析結果データの許容差分を、例えば1dBとして入力する。この入力処理は、第1番目の解析結果データが得られる前など上記差分を計算する前に行ってもよいし、または直後に行ってもよい。   Here, an allowable difference between the (N-1) th analysis result data and the Nth analysis result data is input as 1 dB, for example. This input process may be performed before the difference is calculated, such as before the first analysis result data is obtained, or may be performed immediately after.

第1番目の差分と許容差分を比較し、許容差分のほうが大きい場合にはディスプレイなどによって処理の終了を装置操作者に知らせるともに、解析結果データと小格子条件及び大格子条件の関連を示す情報を出力する。   The first difference is compared with the allowable difference, and if the allowable difference is larger, the end of the process is notified to the apparatus operator by a display or the like, and information indicating the relation between the analysis result data and the small lattice condition and the large lattice condition Is output.

一方、許容差分の方が小さい場合には、辺の長さが第2番目の大格子条件における大格子の辺の長さより小さく、かつCADデータ構造に含まれる最小の線分または隙間を越える長さの辺を持つ大格子でCADデータパターンを分割する。この時の大格子条件を、第3番目の小格子条件とする。   On the other hand, when the allowable difference is smaller, the length of the side is smaller than the length of the side of the large lattice in the second large lattice condition, and the length exceeds the minimum line segment or gap included in the CAD data structure. The CAD data pattern is divided by a large grid having the side. The large lattice condition at this time is defined as a third small lattice condition.

以降は、第N−1番目の解析結果データと第N番目の解析結果データの差分が、許容差分以下となるまで、Nを一つずつ増やして同様に処理を繰り返す。   Thereafter, N is incremented by one until the difference between the (N-1) th analysis result data and the Nth analysis result data is equal to or less than the allowable difference, and the process is repeated in the same manner.

また、Nを増す際に、大格子を小格子化して小格子は寸法を変えない、または小格子を小格子化して大格子は寸法を変えない、または大格子と小格子をともに小格子化する、のいずれかを選択してもよい。   Also, when increasing N, the large lattice is made smaller and the small lattice does not change the size, or the small lattice is made smaller and the large lattice does not change the size, or both the large lattice and the small lattice are made smaller. You may select either.

(第3の実施の形態)
図11は本発明の第3の実施の形態であり、第1または第2の実施の形態における大格子及び小格子への分割方法を示している。
(Third embodiment)
FIG. 11 shows a third embodiment of the present invention, and shows a method of dividing into a large lattice and a small lattice in the first or second embodiment.

CADパターンや簡略化構造を大格子または小格子に分割する際に、一つの格子の半分以上の領域にCADパターン領域、もしくは簡略化構造領域を含む格子の集まりにCADパターンの材質を満たす(図4、図11)。一つの格子の半分以上の領域にCADパターン領域、もしくは簡略化構造領域を含むかどうかの判断方法の例として、図12のように積分計算によって、CADパターン領域、もしくは簡略化構造領域を含む格子内面積(斜線部面積)S1〜S4、及びSall=S1+S2+S3+S4を求めることで、Sallが格子面積の半分以上かどうかを判断することができる。ここで、Sallは、格子中に実際に物質が存在する領域の面積である。またディスプレイ上において、図の斜線部に含まれる画素数をカウントすることによって判断することもできる。   When a CAD pattern or a simplified structure is divided into a large lattice or a small lattice, a CAD pattern material is filled in a CAD pattern region or a collection of lattices including a simplified structure region in a region more than half of one lattice (see FIG. 4, FIG. 11). As an example of a method for determining whether or not a CAD pattern region or a simplified structure region is included in more than half of one lattice, a lattice including a CAD pattern region or a simplified structure region by integral calculation as shown in FIG. By calculating the inner areas (hatched area) S1 to S4 and Sall = S1 + S2 + S3 + S4, it can be determined whether or not Sall is more than half of the lattice area. Here, Sall is the area of a region where a substance actually exists in the lattice. It can also be determined by counting the number of pixels included in the shaded area in the figure on the display.

(第4の実施の形態)
図13と図14は本発明の第4の実施の形態であり、第1または第2の実施の形態における大格子及び小格子への分割方法を示している。
(Fourth embodiment)
FIGS. 13 and 14 show a fourth embodiment of the present invention and show a method of dividing into a large lattice and a small lattice in the first or second embodiment.

CADパターンや簡略化構造を大格子または小格子に分割する際に、一つの格子内にCADパターン領域、もしくは簡略化構造領域を含む格子の集まりにCADパターンの材質を満たす。すなわち、物質の存在を表す画素が少なくとも1つでもある格子に含まれているならば、その格子を解析の対象とし、それ以外の格子は、解析の対象から外す(計算に入れない)。   When a CAD pattern or a simplified structure is divided into a large lattice or a small lattice, a CAD pattern material is filled in a lattice including a CAD pattern region or a simplified structure region in one lattice. That is, if at least one pixel indicating the presence of a substance is included in a lattice, that lattice is the object of analysis, and the other lattices are excluded from the object of analysis (cannot be calculated).

(第5の実施の形態)
図15は本発明の第5の実施の形態である。
(Fifth embodiment)
FIG. 15 shows a fifth embodiment of the present invention.

第1または第2の実施の形態のフローにより得られるが得られた場合に、この最終の小格子条件と大格子条件を図15のフロー図に入力し、電磁界解析を行う。   When obtained by the flow of the first or second embodiment, the final small lattice condition and the large lattice condition are input to the flow chart of FIG. 15 and electromagnetic field analysis is performed.

CADパターンにおいて一部形状の変更、または解析条件において給電位置の変更などを行うことで、電磁界解析結果がどのように変化するか知りたい場合、第1または第2の実施の形態のフローを再度行わずに、実用的な精度と時間で電磁界解析を行うことができる。   When it is desired to know how the electromagnetic field analysis result changes by changing a partial shape in the CAD pattern or changing the feeding position in the analysis condition, the flow of the first or second embodiment is used. The electromagnetic field analysis can be performed with practical accuracy and time without performing again.

なお電磁界解析の結果としては、解析領域内の各点における電界、磁界、電流などを例に挙げることができる。   Note that, as a result of the electromagnetic field analysis, an electric field, a magnetic field, a current, and the like at each point in the analysis region can be exemplified.

本発明の電磁解析装置の構成を示す図The figure which shows the structure of the electromagnetic analysis apparatus of this invention 本発明の第1の実施の形態を示すフロー図The flowchart which shows the 1st Embodiment of this invention CADパターンを示す図Diagram showing CAD pattern 小格子分割処理を示す図Diagram showing small grid division processing 解析結果が収束していく様子を示す図Diagram showing how analysis results converge 本発明の第2の実施の形態を示すフロー図The flowchart which shows the 2nd Embodiment of this invention 第1番目の簡略化構造を示す図Diagram showing the first simplified structure 小格子分割処理を示す図Diagram showing small grid division processing 第2番目の簡略化構造を示す図Diagram showing the second simplified structure 小格子分割処理を示す図Diagram showing small grid division processing 小格子分割処理を示す図Diagram showing small grid division processing 格子内面積の導出を示す図Diagram showing the derivation of the lattice area 小格子分割処理を示す図Diagram showing small grid division processing 小格子分割処理を示す図Diagram showing small grid division processing 本発明の第5の実施の形態を示すフロー図The flowchart which shows the 5th Embodiment of this invention 従来技術の実施の形態を示すフロー図Flow diagram showing an embodiment of the prior art 従来技術の小格子分割処理を示す図The figure which shows the small lattice division processing of the prior art

Claims (14)

電子機器における構成物のCADデータを読み込み、
解析モデルを分割する格子の寸法、もしくは解析モデルの分割数、もしくはその他格子の寸法を決めるためのパラメータ条件を入力し、
電磁界解析領域を、その辺の長さがCADデータ構造に含まれる最小の線分または隙間を越える大きさの格子で分割することで電磁界解析モデルデータを作成し、
電磁界解析モデルデータを電磁界解析し、
電磁界解析結果データとその格子条件の関係情報を記憶し、
異なる格子条件でのそれぞれの電磁界解析結果データの許容差分を入力し、
異なる格子条件でのそれぞれの電磁界解析結果データの差分と前記許容差分を比較し、
前記許容差分の方が大きい場合には処理を終了し、前記許容差分の方が小さい場合には、その辺の長さが、記憶した電磁界解析を行ったときの格子の辺の長さより小さく、かつCADデータ構造に含まれる最小の線分または隙間を越える大きさの格子で分割し、再び電磁界解析モデルデータの作成処理にフィードバックする電磁界解析方法。
Read CAD data of components in electronic equipment,
Enter the parameter conditions to determine the size of the grid that divides the analysis model, the number of divisions of the analysis model, or other dimensions of the lattice,
Electromagnetic field analysis model data is created by dividing the electromagnetic field analysis region by a grid whose side length exceeds the minimum line segment or gap included in the CAD data structure,
Analyze electromagnetic field analysis model data,
Stores the electromagnetic field analysis result data and the relation information of the lattice conditions,
Enter the allowable difference of each electromagnetic field analysis result data in different grid conditions,
Compare the difference of each electromagnetic field analysis result data in different lattice conditions and the allowable difference,
If the allowable difference is larger, the process is terminated. If the allowable difference is smaller, the length of the side is smaller than the length of the grid side when the stored electromagnetic field analysis is performed. And an electromagnetic field analysis method in which the data is divided by a grid having a size exceeding the minimum line segment or gap included in the CAD data structure and fed back to the electromagnetic field analysis model data creation process.
電子機器における構成物のうち同一材質かつ分離していない構成要素において、構成要素が内部に納まる一つの直方体、または板状の構成要素のひとつの面の外形が内部に納まる一つの長方形を簡略化構造として作成し、
前記簡略化構造データから電磁界解析モデルデータを作成することを特徴とする請求項1の電磁界解析方法。
Among components in electronic equipment, for components that are the same material and are not separated, a single rectangular parallelepiped in which components are contained or a rectangle in which the outer shape of one surface of a plate-like component is contained is simplified. Create as structure,
2. The electromagnetic field analysis method according to claim 1, wherein electromagnetic field analysis model data is created from the simplified structure data.
電磁界解析領域を、その辺の長さがCADデータ構造に含まれる最小の線分または隙間を越える大きさの格子で分割し、一つの格子の半分以上の領域にCADデータ構造領域、もしくは簡略化構造領域を含む格子の集まりで電磁界解析モデルデータを作成することを特徴とする請求項1、または請求項2の電磁界解析方法。   The electromagnetic field analysis area is divided by a grid whose side length exceeds the minimum line segment or gap included in the CAD data structure, and the CAD data structure area or a simplified area is divided into more than half of one grid. 3. The electromagnetic field analysis method according to claim 1, wherein electromagnetic field analysis model data is created from a collection of lattices including a structured structure region. 電磁界解析領域を、その辺の長さがCADデータ構造に含まれる最小の線分または隙間を越える大きさの格子で分割し、CADデータ構造領域、もしくは簡略化構造領域を含む格子の集まりで電磁界解析モデルデータを作成することを特徴とする請求項1、または請求項2の電磁界解析方法。   The electromagnetic field analysis area is divided by a grid whose side length exceeds the minimum line segment or gap included in the CAD data structure, and is a collection of grids including the CAD data structure area or the simplified structure area. 3. The electromagnetic field analysis method according to claim 1, wherein electromagnetic field analysis model data is created. 請求項1〜請求項4のいずれかの電磁界解析方法により得られる電磁界解析結果の格子条件を入力し、
前記格子条件により電磁界解析モデルデータを作成し、
電磁界解析モデルデータを電磁界解析する電磁界解析方法。
The grid condition of the electromagnetic field analysis result obtained by the electromagnetic field analysis method according to claim 1 is input,
Create electromagnetic field analysis model data according to the lattice conditions,
An electromagnetic field analysis method for electromagnetic field analysis of electromagnetic field analysis model data.
電子機器における構成物のCADデータを読み込むCADデータ入力手段と、
解析モデルを分割する格子の寸法、もしくは解析モデルの分割数、もしくはその他格子の寸法を決めるためのパラメータ条件を入力する格子条件入力手段と、
電磁界解析領域を、その辺の長さがCADデータ構造に含まれる最小の線分または隙間を越える大きさの格子で分割することで電磁界解析モデルデータを作成する電磁界解析モデルデータ作成手段と、
電磁界解析モデルデータを電磁界解析する電磁界解析手段と、
電磁界解析結果データとその格子条件の関係情報を記憶する結果データ記憶手段と、
異なる格子条件でのそれぞれの電磁界解析結果データの許容差分を入力する許容差分入力手段と、
異なる小格子条件でのそれぞれの電磁界解析結果データの差分と前記許容差分を比較する結果データ比較手段を有する電磁界解析装置。
CAD data input means for reading CAD data of components in the electronic device;
Grid condition input means for inputting parameter conditions for determining the dimensions of the grid for dividing the analysis model, or the number of divisions of the analysis model, or other grid dimensions;
Electromagnetic field analysis model data creation means for creating electromagnetic field analysis model data by dividing the electromagnetic field analysis region by a grid whose side length exceeds the minimum line segment or gap included in the CAD data structure When,
Electromagnetic field analysis means for electromagnetic field analysis of electromagnetic field analysis model data;
Result data storage means for storing electromagnetic field analysis result data and relation information of the lattice conditions;
Tolerance input means for inputting the tolerance of each electromagnetic field analysis result data under different lattice conditions;
An electromagnetic field analyzer having result data comparison means for comparing a difference between respective electromagnetic field analysis result data under different small lattice conditions and the allowable difference.
電子機器における構成物のうち同一材質かつ分離していない構成要素において、構成要素が内部に納まる一つの直方体、または板状の構成要素のひとつの面の外形が内部に納まる一つの長方形を簡略化構造とする簡略化構造データ作成手段を有し、
電磁界解析モデルデータ作成手段が前記簡略化構造データから電磁界解析モデルデータを作成することを特徴とする請求項6の電磁界解析装置。
Among components in electronic equipment, for components that are the same material and are not separated, a single rectangular parallelepiped in which components are contained or a rectangle in which the outer shape of one surface of a plate-like component is contained is simplified. It has simplified structure data creation means to make the structure,
7. The electromagnetic field analysis apparatus according to claim 6, wherein the electromagnetic field analysis model data creating means creates electromagnetic field analysis model data from the simplified structure data.
電磁界解析モデルデータ作成手段が、
電磁界解析領域を、その辺の長さがCADデータ構造に含まれる最小の線分または隙間を越える大きさの格子で分割し、一つの格子の半分以上の領域にCADデータ構造領域、もしくは簡略化構造領域を含む格子の集まりで電磁界解析モデルデータを作成することを特徴とする請求項6、または請求項7の電磁界解析装置。
Electromagnetic field analysis model data creation means
The electromagnetic field analysis area is divided by a grid whose side length exceeds the minimum line segment or gap included in the CAD data structure, and the CAD data structure area or simplified area is divided into more than half of one grid. The electromagnetic field analysis apparatus according to claim 6 or 7, wherein electromagnetic field analysis model data is created from a collection of lattices including a structured area.
電磁界解析モデルデータ作成手段が、
電磁界解析領域を、その辺の長さがCADデータ構造に含まれる最小の線分または隙間を越える大きさの格子で分割し、CADデータ構造領域、もしくは簡略化構造領域を含む格子の集まりで電磁界解析モデルデータを作成することを特徴とする請求項6、または請求項7の電磁界解析装置。
Electromagnetic field analysis model data creation means
The electromagnetic field analysis area is divided by a grid whose side length exceeds the minimum line segment or gap included in the CAD data structure, and is a collection of grids including the CAD data structure area or the simplified structure area. The electromagnetic field analysis apparatus according to claim 6 or 7, wherein electromagnetic field analysis model data is created.
請求項6〜請求項9のいずれかの電磁界解析装置により得られる電磁界解析結果の格子条件を入力する入力手段と、
前記格子条件により電磁界解析モデルデータを作成する電磁界解析モデルデータ作成手段と、
電磁界解析モデルデータを電磁界解析する電磁界解析手段を有する電磁界解析装置。
Input means for inputting a lattice condition of an electromagnetic field analysis result obtained by the electromagnetic field analysis device according to any one of claims 6 to 9,
Electromagnetic field analysis model data creating means for creating electromagnetic field analysis model data according to the lattice conditions;
An electromagnetic field analysis apparatus having electromagnetic field analysis means for electromagnetic field analysis of electromagnetic field analysis model data.
ある格子サイズで電磁界解析を行い、次に、それよりも小さい格子サイズで電磁界解析を行うことを、前々回の電磁界解析の解析結果と前回の電磁界解析の解析結果との差分と前回の電磁界解析の解析結果と今回の電磁界解析の解析結果との差分との差分(すなわち、差分の差分)が所定値よりも小さくなるまで、格子サイズを小さくしながら続けることを特徴とする電磁界解析方法。   The electromagnetic field analysis is performed with a certain grid size, and then the electromagnetic field analysis is performed with a smaller grid size. The difference between the analysis result of the electromagnetic field analysis of this time and the analysis result of the current electromagnetic field analysis (that is, the difference of the difference) is continued while reducing the lattice size until the difference becomes smaller than a predetermined value. Electromagnetic field analysis method. ある大格子サイズ及びその大格子サイズにおける小格子サイズで電磁界解析を行い、次に、それよりも小さい大格子サイズ、それよりも小さい小格子のサイズ又はそれよりも小さい大格子のサイズ及びそれよりも小さい小格子のサイズで電磁界解析を行うことを、前々回の電磁界解析の解析結果と前回の電磁界解析の解析結果との差分と前回の電磁界解析の解析結果と今回の電磁界解析の解析結果との差分との差分(すなわち、差分の差分)が所定値よりも小さくなるまで、大格子サイズ、小格子サイズ又はその双方を小さくしながら続けることを特徴とする電磁界解析方法。   Perform electromagnetic field analysis at a large lattice size and a small lattice size at that large lattice size, then smaller large lattice size, smaller small lattice size or smaller large lattice size and The electromagnetic field analysis is performed with a smaller grid size than the difference between the analysis result of the previous electromagnetic field analysis and the analysis result of the previous electromagnetic field analysis, the analysis result of the previous electromagnetic field analysis, and the current electromagnetic field. The electromagnetic field analysis method is characterized by continuing to make the large lattice size, the small lattice size, or both small, until the difference (that is, the difference of the difference) from the difference from the analysis result of the analysis becomes smaller than a predetermined value. . ある格子サイズで電磁界解析を行い、次に、それよりも小さい格子サイズで電磁界解析を行うことを、前々回の電磁界解析の解析結果と前回の電磁界解析の解析結果との差分と前回の電磁界解析の解析結果と今回の電磁界解析の解析結果との差分との差分(すなわち、差分の差分)が所定値よりも小さくなるまで、格子サイズを小さくしながら続けることを特徴とする電磁界解析装置。   The electromagnetic field analysis is performed with a certain grid size, and then the electromagnetic field analysis is performed with a smaller grid size. The difference between the analysis result of the electromagnetic field analysis of this time and the analysis result of the current electromagnetic field analysis (that is, the difference of the difference) is continued while reducing the lattice size until the difference becomes smaller than a predetermined value. Electromagnetic field analyzer. ある大格子サイズ及びその大格子サイズにおける小格子サイズで電磁界解析を行い、次に、それよりも小さい大格子サイズ、それよりも小さい小格子のサイズ又はそれよりも小さい大格子のサイズ及びそれよりも小さい小格子のサイズで電磁界解析を行うことを、前々回の電磁界解析の解析結果と前回の電磁界解析の解析結果との差分と前回の電磁界解析の解析結果と今回の電磁界解析の解析結果との差分との差分(すなわち、差分の差分)が所定値よりも小さくなるまで、大格子サイズ、小格子サイズ又はその双方を小さくしながら続けることを特徴とする電磁界解析装置。   Perform electromagnetic field analysis at a large lattice size and a small lattice size at that large lattice size, then smaller large lattice size, smaller small lattice size or smaller large lattice size and The electromagnetic field analysis is performed with a smaller lattice size than the difference between the analysis result of the previous electromagnetic field analysis and the analysis result of the previous electromagnetic field analysis, the analysis result of the previous electromagnetic field analysis, and the current electromagnetic field. An electromagnetic field analysis apparatus characterized by continuing to reduce a large lattice size, a small lattice size, or both until a difference (that is, a difference difference) with a difference from an analysis result of analysis becomes smaller than a predetermined value. .
JP2006072676A 2006-03-16 2006-03-16 Electromagnetic field analyzer Expired - Fee Related JP4946107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006072676A JP4946107B2 (en) 2006-03-16 2006-03-16 Electromagnetic field analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006072676A JP4946107B2 (en) 2006-03-16 2006-03-16 Electromagnetic field analyzer

Publications (2)

Publication Number Publication Date
JP2007249642A true JP2007249642A (en) 2007-09-27
JP4946107B2 JP4946107B2 (en) 2012-06-06

Family

ID=38593862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006072676A Expired - Fee Related JP4946107B2 (en) 2006-03-16 2006-03-16 Electromagnetic field analyzer

Country Status (1)

Country Link
JP (1) JP4946107B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010204859A (en) * 2009-03-02 2010-09-16 Fujitsu Ltd Electromagnetic field simulator and electromagnetic field simulation device
CN115358173A (en) * 2022-10-21 2022-11-18 芯和半导体科技(上海)有限公司 Electromagnetic modeling method and system for chip packaging power supply network

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440570A (en) * 1990-06-06 1992-02-10 Sharp Corp Automatic element generating device
JPH06259404A (en) * 1993-03-05 1994-09-16 Hitachi Ltd Analyzing method utilizing computer
JPH10261783A (en) * 1997-03-17 1998-09-29 Toshiba Corp Method and apparatus for evaluating electrical characteristic of semiconductor device and recording medium readable by computer with program stored for evaluating electrical characteristic of semiconductor device
JPH1153347A (en) * 1997-08-07 1999-02-26 Hitachi Ltd Analyzer
JPH11184838A (en) * 1997-12-18 1999-07-09 Matsushita Electric Ind Co Ltd Fluid analyzer
JPH11259684A (en) * 1998-03-09 1999-09-24 Hitachi Ltd Mesh rouch/close control unit for analysis
JP2002117085A (en) * 2000-10-11 2002-04-19 Sharp Corp System and method for design, and computer-readable recording medium with design program recorded thereon
JP2002169841A (en) * 2000-12-01 2002-06-14 Toyota Motor Corp Method for dividing element again in finite element method
JP2003167927A (en) * 2001-12-03 2003-06-13 Sharp Corp Element dividing device, element dividing method, element dividing program and computer readable recording medium with element dividing program recorded thereon
JP2003186920A (en) * 2001-12-19 2003-07-04 Japan Research Institute Ltd Mesh generating method and device, computer program, and recording medium
JP2003186919A (en) * 2001-12-19 2003-07-04 Japan Research Institute Ltd Mesh generating method and device and computer program and recording medium
JP2004094674A (en) * 2002-08-30 2004-03-25 Fujitsu Ltd Program for making computer execute mesh data generating method and mesh data generating device
JP2004094465A (en) * 2002-08-30 2004-03-25 Fujitsu Ltd Analysis support device
JP2005291948A (en) * 2004-03-31 2005-10-20 Fuji Heavy Ind Ltd Analyzing device and method for electromagnetic wave
JP2006012047A (en) * 2004-06-29 2006-01-12 Sharp Corp Characteristic analysis device and substrate layout design/verification device constituted by including the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440570A (en) * 1990-06-06 1992-02-10 Sharp Corp Automatic element generating device
JPH06259404A (en) * 1993-03-05 1994-09-16 Hitachi Ltd Analyzing method utilizing computer
JPH10261783A (en) * 1997-03-17 1998-09-29 Toshiba Corp Method and apparatus for evaluating electrical characteristic of semiconductor device and recording medium readable by computer with program stored for evaluating electrical characteristic of semiconductor device
JPH1153347A (en) * 1997-08-07 1999-02-26 Hitachi Ltd Analyzer
JPH11184838A (en) * 1997-12-18 1999-07-09 Matsushita Electric Ind Co Ltd Fluid analyzer
JPH11259684A (en) * 1998-03-09 1999-09-24 Hitachi Ltd Mesh rouch/close control unit for analysis
JP2002117085A (en) * 2000-10-11 2002-04-19 Sharp Corp System and method for design, and computer-readable recording medium with design program recorded thereon
JP2002169841A (en) * 2000-12-01 2002-06-14 Toyota Motor Corp Method for dividing element again in finite element method
JP2003167927A (en) * 2001-12-03 2003-06-13 Sharp Corp Element dividing device, element dividing method, element dividing program and computer readable recording medium with element dividing program recorded thereon
JP2003186920A (en) * 2001-12-19 2003-07-04 Japan Research Institute Ltd Mesh generating method and device, computer program, and recording medium
JP2003186919A (en) * 2001-12-19 2003-07-04 Japan Research Institute Ltd Mesh generating method and device and computer program and recording medium
JP2004094674A (en) * 2002-08-30 2004-03-25 Fujitsu Ltd Program for making computer execute mesh data generating method and mesh data generating device
JP2004094465A (en) * 2002-08-30 2004-03-25 Fujitsu Ltd Analysis support device
JP2005291948A (en) * 2004-03-31 2005-10-20 Fuji Heavy Ind Ltd Analyzing device and method for electromagnetic wave
JP2006012047A (en) * 2004-06-29 2006-01-12 Sharp Corp Characteristic analysis device and substrate layout design/verification device constituted by including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010204859A (en) * 2009-03-02 2010-09-16 Fujitsu Ltd Electromagnetic field simulator and electromagnetic field simulation device
US8412506B2 (en) 2009-03-02 2013-04-02 Fujitsu Limited Electromagnetic field simulation apparatus and computer readable storage medium storing electromagnetic field simulation program
CN115358173A (en) * 2022-10-21 2022-11-18 芯和半导体科技(上海)有限公司 Electromagnetic modeling method and system for chip packaging power supply network
WO2024082578A1 (en) * 2022-10-21 2024-04-25 芯和半导体科技(上海)股份有限公司 Electromagnetic modeling method for power network for chip packaging, and system

Also Published As

Publication number Publication date
JP4946107B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
CN109086639B (en) Method and apparatus for one-dimensional signal decimation
CN112868045B (en) Frame handling for ML-based magnification
US20130226530A1 (en) Mesh generation system
CN103703341B (en) Pattern measurement device and pattern measuring method
JP5915157B2 (en) Magnetic substance characteristic analysis program, magnetic substance characteristic analyzing apparatus, and magnetic substance characteristic analyzing method
JP4946107B2 (en) Electromagnetic field analyzer
US10408894B2 (en) Devices and methods for determining a magnetic field
JP5570190B2 (en) Shape simplification device, shape simplification method and program
JP2017146820A (en) Three-dimensional data processing apparatus and three-dimensional data processing method
JP2004273903A (en) Circuit simulator and simulation system
JP2009110398A (en) Analysis model generation system
JP4455527B2 (en) CAD equipment
WO2022113347A1 (en) Integrating device, integration method, and integration program
CN101689213B (en) Design support apparatus, and design support method
CN104517273A (en) Image super-resolution processing method and apparatus
JP4703907B2 (en) Object surface grid generation method
JP2010092190A (en) Analyzing apparatus, data storage method and data storage program
JP4520822B2 (en) Electromagnetic wave analysis apparatus, electromagnetic wave analysis method, and electromagnetic wave analysis program
CN116188633B (en) Method, device, medium and electronic equipment for generating simulated remote sensing image
JP7283967B2 (en) Permanent magnet demagnetization tolerance analysis method, calculation device, calculation system
CN117375577B (en) Numerical filtering method and device for sound propagation problem, electronic equipment and storage medium
JP3905373B2 (en) MESH GENERATION METHOD, MESH GENERATION DEVICE, COMPUTER PROGRAM, AND RECORDING MEDIUM
JP2008112337A (en) Unit and method for generating tool reference surface data
JP4493389B2 (en) Electromagnetic field analysis device, electromagnetic field analysis method, computer program, and computer-readable recording medium
JP4855853B2 (en) Analysis device, computer control method, and model creation program

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100915

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees