JP2007249065A - Led illuminator for optical microscope - Google Patents

Led illuminator for optical microscope Download PDF

Info

Publication number
JP2007249065A
JP2007249065A JP2006075464A JP2006075464A JP2007249065A JP 2007249065 A JP2007249065 A JP 2007249065A JP 2006075464 A JP2006075464 A JP 2006075464A JP 2006075464 A JP2006075464 A JP 2006075464A JP 2007249065 A JP2007249065 A JP 2007249065A
Authority
JP
Japan
Prior art keywords
led element
optical microscope
base portion
led
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006075464A
Other languages
Japanese (ja)
Other versions
JP4959995B2 (en
Inventor
Masayoshi Karasawa
雅善 唐澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006075464A priority Critical patent/JP4959995B2/en
Publication of JP2007249065A publication Critical patent/JP2007249065A/en
Application granted granted Critical
Publication of JP4959995B2 publication Critical patent/JP4959995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an illuminator for an optical microscope, the illuminator using a silicone based resin enclosure type LED element as a light source, or to provide the optical microscope having such an illuminating part. <P>SOLUTION: The illuminator for the optical microscope includes: a casing 22 which can be provided in the optical microscope; a base part 16 arranged in the casing and to which at least one silicone based resin enclosure type LED element is fixed; and a collector lens 26 arranged on an aperture of the casing, on the side opposite from the base part across the LED element, and a space between the collector lens and the base part is sealed in the casing. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光学顕微鏡に係り、より詳細には、光学顕微鏡の照明装置に係る。   The present invention relates to an optical microscope, and more particularly to an illumination device for an optical microscope.

昨今の半導体技術の進歩により、高出力のLED(発光ダイオード)が低廉にて入手可能となり、また、LEDの発光波長が多様化されるようになったことから、光学顕微鏡の照明装置に於ける光源として、今までのハロゲンランプ、水銀ランプ或いはキセノンランプ等に代えて、LEDを採用する試みがなされている。周知の如く、LEDは、ハロゲンランプ等の電球に比して、機械的強度が大きい、寸法が小さい、低電圧で発光する、寿命が長い、といった利点を有し、また、発光波長が電圧によらず一定なので、レンズの色収差が問題となる光学顕微鏡の照明の光源として非常に便利であることが期待されている(明るさを変更しても実質的に色温度が変わらない。)。更に、LEDは、光源から発生する熱も、電球の場合に比して、極めて少ないので、光学顕微鏡に於ける試料の観察(特に、生物試料やその他の温度の変化に敏感な試料の観察)に適している。そのような光学顕微鏡の、主として、明視野観察のための光源として、LEDを用いた例は、例えば、下記の非特許文献1に見られる。   Due to recent advances in semiconductor technology, high-power LEDs (light-emitting diodes) can be obtained at low cost, and the emission wavelengths of LEDs have become diversified. Attempts have been made to adopt LEDs as the light source in place of conventional halogen lamps, mercury lamps, xenon lamps and the like. As is well known, LEDs have the advantages of greater mechanical strength, smaller dimensions, lower light emission, and longer life compared to light bulbs such as halogen lamps, and the emission wavelength is voltage-dependent. Therefore, it is expected to be very convenient as a light source for illumination of an optical microscope in which chromatic aberration of the lens is a problem (the color temperature does not substantially change even if the brightness is changed). Furthermore, since the heat generated from the light source of the LED is very small compared to that of a light bulb, observation of the sample with an optical microscope (especially observation of biological samples and other samples sensitive to temperature changes). Suitable for An example of using such an optical microscope as a light source mainly for bright-field observation can be found in Non-Patent Document 1 below, for example.

LEDは、通常、小さな、例えば、矩形状の半導体チップであり、照明装置として使用される場合には、半導体チップ自体が露出しないように透明なプラスチック樹脂又はガラスに封入され、埃やごみの付着や機械的な衝撃から保護されるようになっている。そして、特に、樹脂にて封入される場合には、樹脂は、半球状に型取られ、LEDから発せられた光を集光するレンズとして機能するようになっている。かくして、調製されたLED素子(以下、LEDを樹脂等に封入してなる装置を、LEDの半導体チップと区別する目的で、「LED素子」と称する。)は、適宜、基板上に固定され、任意の函体内に設置され、照明装置として用いられる(例えば、特許文献1参照)。電球に比して、LEDの発熱量は小さいものの、LED自体又はLED素子が過熱状態となることは、LED素子の寿命を短くすることとなるため、避けるべきである。例えば、非特許文献1に記載の光学顕微鏡の場合、照明部は、基板上に固定されたプラスチック樹脂のLED素子の周囲に空気の流れが許されるような構造を有し、LED自体から生ずる熱が放熱されるように構成されている。(プラスチック樹脂に封入されているタイプのLED素子が用いられているのは、一般の照明装置用の、可視光を十分に透過し且廉価に製造・入手可能なプラスチック樹脂封入型のLED素子が手軽に入手可能であったためと考えられる。)
特公平4−36595号公報 研究・臨床用生物顕微鏡 ECLIPSE 50i/55i [2006年2月24日検索]<URL:http://www.nikon-instruments.jp/jpn/page/products/50i55i.aspx]
The LED is usually a small, for example, rectangular semiconductor chip, and when used as a lighting device, the LED is encapsulated in a transparent plastic resin or glass so that the semiconductor chip itself is not exposed, and dust and dirt adhere to it. And is protected from mechanical shocks. In particular, when encapsulated with resin, the resin is shaped like a hemisphere, and functions as a lens that collects light emitted from the LED. Thus, the prepared LED element (hereinafter referred to as “LED element” for the purpose of distinguishing the device in which the LED is encapsulated in a resin or the like from the semiconductor chip of the LED) is appropriately fixed on the substrate, It is installed in an arbitrary box and used as a lighting device (see, for example, Patent Document 1). Although the amount of heat generated by the LED is smaller than that of a light bulb, the LED itself or the LED element becoming overheated should be avoided because it shortens the life of the LED element. For example, in the case of the optical microscope described in Non-Patent Document 1, the illumination unit has a structure that allows air to flow around the plastic resin LED element fixed on the substrate, and heat generated from the LED itself. Is configured to dissipate heat. (The type of LED elements encapsulated in plastic resin is used for general LED lighting devices that transmit visible light sufficiently and are inexpensive to manufacture and obtain. Probably because it was easily available.)
Japanese Patent Publication No. 4-36595 Research and clinical biological microscope ECLIPSE 50i / 55i [Search February 24, 2006] <URL: http://www.nikon-instruments.jp/jpn/page/products/50i55i.aspx]

光学顕微鏡の照明装置の光源は、可視光だけでなく、紫外光又は赤外光の照明も可能であることが好ましく、また、長時間又は種々の環境下に於ける観察に耐え得るように、熱に強く、又、湿度や(周囲のガス等に対する)化学的変化にも耐性を有していることも望まれる。しかしながら、プラスチック樹脂封入型のLED素子により、かかる光学顕微鏡用の照明装置の光源に望まれる条件を満たすことは、一般には、困難である。また、ガラス封止型のLED素子の場合、紫外光又は赤外光の照明も可能であるが、値段が高く、又、LEDを封入するガラスを集光レンズとして機能するように加工したものは、一般には流通しておらず、入手困難である。更に、LED素子等は、Rohs(Restricting the use of Hazardous
Substances:欧州連合が施行する有害物質規制指令)等の環境基準を満たす必要があるが、現在流通しているプラスチック又はガラス封入型のLED素子は、そのような環境対策を必ずしも取っていない場合が多い。
The light source of the illumination device of the optical microscope is preferably capable of illuminating not only visible light but also ultraviolet light or infrared light, and can withstand observation in a long time or in various environments. It is also desired to be resistant to heat and to be resistant to humidity and chemical changes (against surrounding gases, etc.). However, it is generally difficult to satisfy a desired condition for a light source of an illumination device for an optical microscope by using a plastic resin-encapsulated LED element. In the case of glass-sealed LED elements, illumination with ultraviolet light or infrared light is also possible, but the price is high, and the glass encapsulating the LED is processed so as to function as a condenser lens. Generally, it is not distributed and is difficult to obtain. Furthermore, LED elements etc. are based on the Rhos (Restricting the use of Hazardous
Substances: Hazardous Substances Control Directive (European Union Enforcement Directive), etc., must be met, but currently available plastic or glass-encapsulated LED elements may not always take such environmental measures. Many.

上記のプラスチック又はガラス封入型のLED素子の不具合を解決するものとして、近年、シリコン系の樹脂にてLEDを封入したLED素子(シリコン系樹脂封入型LED素子)が登場し始めている。かかるシリコン系樹脂封入型LED素子の場合、LEDを封入するシリコン系樹脂が、紫外光による劣化がプラスチック樹脂に比して著しく少なく、紫外光及び赤外光の透過性も良好であるので、紫外光又は赤外光の照明も可能である。また、シリコン系樹脂封入型LED素子は、耐熱及び耐環境変化性能も優れ、LEDを封入するシリコン系樹脂媒体を集光レンズとして機能するよう加工することも容易であり、更に、Rohs等の環境基準を満たしているものが多い。従って、シリコン系樹脂封入型LED素子は、プラスチック又はガラス封入型のLED素子に代えて、光学顕微鏡用の照明装置の光源として有利に用いることができる。   In recent years, LED elements (silicon-based resin-encapsulated LED elements) in which LEDs are encapsulated with a silicon-based resin have begun to appear as solutions for the problems of the plastic or glass-encapsulated LED elements. In the case of such a silicon-based resin-encapsulated LED element, the silicon-based resin encapsulating the LED is significantly less deteriorated by ultraviolet light than plastic resin, and has good ultraviolet and infrared light transmittance. Illumination with light or infrared light is also possible. In addition, the silicon-based resin-encapsulated LED element is excellent in heat resistance and environmental change resistance, and can be easily processed so that the silicon-based resin medium encapsulating the LED functions as a condensing lens. Many of them meet the standards. Accordingly, the silicon-based resin-encapsulated LED element can be advantageously used as a light source of an illumination device for an optical microscope, instead of a plastic or glass-encapsulated LED element.

しかしながら、シリコン系樹脂封入型LED素子は、表面に埃を吸着しやすいという性質を有している。特に、発光動作中に於いては、光源の表面には、静電気が生じ、埃が引き付けられることがあるので、適宜、表面の埃や汚れを拭き取ることが好ましいところ、シリコン系樹脂は、比較的柔らかく、一般に、一旦吸着した埃を溶剤などでふき取ることは困難である。従って、光学顕微鏡用の照明装置の光源としてシリコン系樹脂封入型LED素子を採用する場合には、素子の表面への埃の吸着についての問題にも配慮する必要がある。   However, the silicon-based resin-encapsulated LED element has a property of easily adsorbing dust on the surface. In particular, during light emitting operation, static electricity may be generated on the surface of the light source and dust may be attracted. Therefore, it is preferable to wipe off dust and dirt on the surface as appropriate. Generally, it is difficult to wipe off dust once adsorbed with a solvent or the like. Therefore, when a silicon-based resin-encapsulated LED element is used as the light source of an illumination device for an optical microscope, it is necessary to consider the problem of dust adsorption on the surface of the element.

本発明によれば、光源としてシリコン系樹脂封入型LED素子を用いた光学顕微鏡用の照明装置又はそのような照明部を有する光学顕微鏡が提供される。   According to the present invention, an illumination device for an optical microscope using a silicon-based resin-encapsulated LED element as a light source or an optical microscope having such an illumination unit is provided.

本発明の光学顕微鏡用の照明装置は、光学顕微鏡に備え付け可能な函体と、函体内に配置され少なくとも一つのLED素子が固定された基台部と、LED素子を挟んで基台とは反対側の函体の開口部に配置されたコレクタレンズとを含んでいる。LED素子としては、シリコン系樹脂封入型LED素子、即ち、シリコン系の樹脂にてLEDを封入して成るものが採用され、しかも、LED素子は、函体内のコレクタレンズと基台部との間の空間に在って、外部から密封されている。かくして、本発明の照明装置によれば、前記のシリコン系樹脂封入型LED素子の利点、即ち、照明光として、可視光だけなく、紫外光及び赤外光も安定的に利用することができるようになり、また、耐熱及び耐環境変化性能も良いシリコン系樹脂封入型LED素子を採用することにより、照明装置の寿命が延び、経済的に有利となる。LED素子自体は、大気又は周囲の雰囲気から隔離され、LED素子表面上への外部空気の流通が遮断されることになるので、装置の使用中に、LED素子の表面に埃や汚れが付着することが回避され、使用者による使用中の埃や汚れの除去が不要となる。更に、シリコン系樹脂封入型LED素子の採用によれば、Rohs等の環境基準を満たす照明装置が提供される。   The illumination device for an optical microscope of the present invention includes a box that can be provided in the optical microscope, a base that is arranged in the box and has at least one LED element fixed thereto, and is opposite to the base across the LED element. And a collector lens disposed in the opening of the side box. As the LED element, a silicon-based resin-encapsulated LED element, that is, an LED encapsulated with a silicon-based resin is employed, and the LED element is disposed between the collector lens and the base portion in the box. And is sealed from the outside. Thus, according to the illumination device of the present invention, it is possible to stably use not only visible light but also ultraviolet light and infrared light as illumination light, that is, the advantage of the silicon-based resin-encapsulated LED element. In addition, by adopting a silicon-based resin-encapsulated LED element having good heat resistance and environmental resistance change performance, the life of the lighting device is extended, which is economically advantageous. Since the LED element itself is isolated from the atmosphere or the surrounding atmosphere, and the flow of external air on the LED element surface is blocked, dust and dirt adhere to the surface of the LED element during use of the device. This eliminates the need for the user to remove dust and dirt during use. Furthermore, the adoption of the silicon-based resin-encapsulated LED element provides an illumination device that satisfies environmental standards such as Rohs.

上記の本発明の照明装置に於いて、LED素子への電力の供給は、基台部を介した適当な電力を伝達する手段が設けられるが、ケーブルにて行われる場合には、かかるケーブルは、函体の一部又は基台部の一部に穿孔された配線孔を貫通し、配線孔は気体の流通を阻止するべく封止されていることが好ましい。封止する器具は、例えば、孔を適宜密閉し得るケーブル固定具が用いられてよい。   In the lighting device of the present invention described above, the power supply to the LED element is provided with a means for transmitting an appropriate power through the base portion. It is preferable that the wiring hole is perforated through a part of the box or a part of the base part, and the wiring hole is sealed to prevent the flow of gas. As the instrument to be sealed, for example, a cable fixture that can appropriately seal the hole may be used.

また、上記の照明装置に於いて、函体内のコレクタレンズと基台部との間の空間は、照明装置の製造・組立時の周囲の空気であってもよいが、長時間、LED素子を点灯し続ける場合には、空気の酸素等のガス若しくは水分がシリコン表面を劣化させる可能性もあるので、好ましくは、不活性ガスにて充填されるか、或いは乾燥されてよい。特に、発熱することにより、空間内のガスの膨張が問題になる場合には、空間内は真空に維持されるようになっていてよい。他方、外部からの空気の流入を防止する目的で、空間内の空気又はガスは、高圧に保持されていてもよい。   In the above lighting device, the space between the collector lens and the base portion in the box may be ambient air during manufacture and assembly of the lighting device. In the case of continuing lighting, gas such as oxygen in the air or moisture may deteriorate the silicon surface, so that it may be preferably filled with an inert gas or dried. In particular, if the expansion of gas in the space becomes a problem due to heat generation, the space may be maintained in a vacuum. On the other hand, in order to prevent the inflow of air from the outside, the air or gas in the space may be held at a high pressure.

既に述べた如く、LED素子は過熱状態となると劣化して寿命が短くなる可能性がある。LED素子自身の発熱量は、ランプに比べれば微弱であるが、長時間使用すると、熱が蓄積し、素子が過熱状態となる。そこで、上記の本発明に於いては、基台部に放熱フィンが設けられ、その基台部上に固定されたLED素子の発する熱を放熱できるようになっていてよい。また、基台部が熱伝導性の高い材料にて構成され、これにより、放熱効果が増大されるようになっていてもよい。   As already described, the LED element may be deteriorated when it is overheated to shorten its life. The amount of heat generated by the LED element itself is slightly weaker than that of a lamp, but when used for a long time, heat accumulates and the element becomes overheated. Therefore, in the present invention described above, a heat radiating fin may be provided in the base portion so that heat generated by the LED element fixed on the base portion can be radiated. Moreover, the base part is comprised with the material with high heat conductivity, and, thereby, the thermal radiation effect may be increased.

上記の本発明の照明装置に於ける技術思想は、光学顕微鏡に一体的に構成される照明部に適用されてもよい。その場合には、本発明の光学顕微鏡には、照明光を通すための光路と、該光路の端部に設けられる開口部とが設けられ、かかる開口部には、少なくとも一つのシリコン系の樹脂にてLEDを封入して成るLED素子が固定された基台部が、LED素子を光学顕微鏡の内方に向けて配置される。光路中の光源から見て出射側に設けられるコレクタレンズは、基台と、LED素子を挟むように配置され、LED素子を内包するコレクタレンズと基台部との間の空間は密封される。かかる場合、LED素子に電気的に接続されたケーブルは、基台部の一部に穿孔された配線孔を貫通し、配線孔が気体の流通を阻止するべく封止されることが好ましく、また、光路内のコレクタレンズと基台部との間の空間は、上記と同様の理由により、不活性ガスにて充填されるか、真空とされるか、高圧に保持されるか、或いは、乾燥された状態となっていてよい。また、LED素子の放熱の目的で、基台部に放熱フィンが設けられていてよく、或いは、基台部が熱伝導性の高い材料にて構成されていてよい。   The technical idea of the illumination device of the present invention described above may be applied to an illumination unit configured integrally with an optical microscope. In that case, the optical microscope of the present invention is provided with an optical path for passing illumination light and an opening provided at an end of the optical path, and at least one silicon-based resin is provided in the opening. The base portion to which the LED element formed by encapsulating the LED is fixed is arranged with the LED element facing inward of the optical microscope. The collector lens provided on the emission side when viewed from the light source in the optical path is disposed so as to sandwich the base and the LED element, and the space between the collector lens including the LED element and the base is sealed. In such a case, it is preferable that the cable electrically connected to the LED element passes through the wiring hole drilled in a part of the base part, and the wiring hole is sealed to prevent the flow of gas. The space between the collector lens and the base part in the optical path is filled with an inert gas, evacuated, kept at a high pressure, or dried for the same reason as above. It may be in the state which was made. Further, for the purpose of heat dissipation of the LED element, the base portion may be provided with heat radiation fins, or the base portion may be made of a material having high thermal conductivity.

現在のところ、LED素子を照明用光源に使用している光学顕微鏡では、既に触れたように、LED素子は、プラスチック樹脂封入型のものであるので、主として、明視野観察又は透過光観察のためのハロゲンランプの代用として用いられている。しかしながら、本発明の照明装置又は光学顕微鏡は、紫外光照明が可能なシリコン系樹脂封入型LED素子が採用されているので、種々の蛍光色素を用いた蛍光観察或いは生体試料の自家蛍光の観察を行えることとなり、ハロゲンランプの代用としてだけなく、水銀ランプ、キセノンランプ或いはレーザーに代える照明装置として用いることができる。このような照明は、紫外光をある程度透過し紫外光による劣化の少ないガラス封入型LED素子でも可能であるが、LED素子自体の製造コスト、封入媒体の加工の容易性の観点から、シリコン系樹脂封入型LED素子を用いた照明装置の方が有利であり、便利であるといえる。   At present, in an optical microscope using an LED element as a light source for illumination, as already mentioned, the LED element is of a plastic resin-encapsulated type, and therefore mainly for bright field observation or transmitted light observation. It is used as a substitute for halogen lamps. However, since the illumination device or the optical microscope of the present invention employs a silicon-based resin-encapsulated LED element capable of ultraviolet illumination, fluorescence observation using various fluorescent dyes or observation of autofluorescence of a biological sample is possible. Thus, the light source can be used not only as a substitute for a halogen lamp but also as a lighting device in place of a mercury lamp, a xenon lamp or a laser. Such illumination is possible even with a glass-encapsulated LED element that transmits ultraviolet light to some extent and is less deteriorated by ultraviolet light. However, from the viewpoint of the manufacturing cost of the LED element itself and the ease of processing of the encapsulating medium, a silicon resin A lighting device using an encapsulated LED element is more advantageous and convenient.

更に、本発明の照明装置又は光学顕微鏡に於いては、LED素子は、外部空気から隔離された密閉された空間内に配置されることになるので、照明装置又は光学顕微鏡の使用中に主として静電気の作用によるLED素子表面上の埃や汚れの蓄積が回避され、従って、照明装置のメンテナンスが不要若しくは極めて容易になる。更に、LED素子周囲に外部空気の流通がないことから、LED素子表面の劣化を大幅に低減若しくは遅延されることとなり、従って、装置の照明用光源としての耐用寿命(表面が劣化により曇ると、半導体チップの寿命が来る前に、照明装置として使用できなくなる。)を延長することが可能となる。   Furthermore, in the illuminating device or optical microscope of the present invention, the LED element is disposed in a sealed space isolated from the external air. Accumulation of dust and dirt on the surface of the LED element due to the above action is avoided, so that maintenance of the lighting device is unnecessary or extremely easy. Furthermore, since there is no circulation of external air around the LED element, the deterioration of the LED element surface will be greatly reduced or delayed, and therefore, the useful life as the illumination light source of the device (if the surface becomes cloudy due to deterioration, Before the life of the semiconductor chip comes to an end, it can no longer be used as a lighting device.).

本発明のその他の目的及び利点は、以下の本発明の好ましい実施形態の説明により明らかになるであろう。   Other objects and advantages of the present invention will become apparent from the following description of preferred embodiments of the present invention.

以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳細に説明する。図中、同一の符号は、同一の部位を示す。   The present invention will now be described in detail with reference to a few preferred embodiments with reference to the accompanying drawings. In the figure, the same reference numerals indicate the same parts.

図1は、本発明の好ましい実施形態の一つである光学顕微鏡に任意の手段により着脱可能に外付けして用いられる光学顕微鏡用照明装置(所謂「ランプハウス」)10の正面図(A)及び側方断面図(B)を模式的に示している。同図を参照して、シリコン系樹脂封入型LED素子12は、該LED素子に電力を供給するためのケーブル18を、例えば、はんだ付けにより電気的接続する基板14上に固定され、基板14は、熱伝導性グリース等を介して基台部16上に配置される。基台部16は、外周に螺刻された面20と函体22に嵌合して光軸中心位置を確保する面20’とを有し、LED素子12が略筒状の函体22の内部へ進入するように、函体22の一方の開口部へねじ込まれる。函体22の内部には、LED素子12を挟んで基台部16に対向する位置にコレクタレンズ26が設けられ、コレクタレンズ26は、その外周が函体22の内壁に対して密着するような寸法を有し、コレクタレンズ26の外周と函体22の内壁は、真空パッキング、封止リング28により封止される。   FIG. 1 is a front view (A) of an illumination device for an optical microscope (so-called “lamp house”) 10 that is detachably attached to an optical microscope that is one of preferred embodiments of the present invention. And side sectional drawing (B) is shown typically. With reference to the figure, a silicon-based resin-encapsulated LED element 12 is fixed on a substrate 14 to which a cable 18 for supplying power to the LED element is electrically connected, for example, by soldering. In addition, it is disposed on the base portion 16 via a heat conductive grease or the like. The base portion 16 has a surface 20 threaded on the outer periphery and a surface 20 ′ that fits into the box 22 to secure the center position of the optical axis, and the LED element 12 is a substantially cylindrical box 22. It is screwed into one opening of the box 22 so as to enter the inside. Inside the box 22, a collector lens 26 is provided at a position facing the base portion 16 with the LED element 12 interposed therebetween, and the collector lens 26 has an outer periphery that is in close contact with the inner wall of the box 22. The outer periphery of the collector lens 26 and the inner wall of the box 22 are sealed by vacuum packing and a sealing ring 28.

一方、基台部16の外壁と函体22内壁には、相補的な周状肩部がそれぞれ設けられ、真空パッキン、封止リング30を挟んで係合する。LED素子12へ電力を供給するケーブル18は、基台部16に穿孔された配線孔32を貫通し、照明装置の外部の電源装置(図示せず)へ接続される。配線孔32に於いて、基板14と基台部16との接触面が密封され、空気の流通が阻止されていることが好ましいが、そうでなくても、配線孔32の外端口は、密封可能にケーブルを固定する器具又はブシュ等の手段34により、封止されていることが好ましい。かくして、LED素子12の存在する函体22内のコレクタレンズ26と基台部16との間の空間は、密閉された状態となり、外部よりの空気の流通が阻止されることとなるので、照明装置の組立後に(組立は、好適には、クリーンルームで行われてよい。)、LED素子の表面近傍に埃や汚れが進入することが防止され、表面に吸着した埃や汚れを除去することが難しいというシリコン系樹脂封入型LED素子の不具合は、使用に於いて、何等気にする必要がなくなることとなる。なお、図1(B)の例では、配線孔32は、基台部16に設けられているが、図1(C)の如く、任意に函体の内壁から外壁へ貫通するようになっていてよい。この場合、基台部16には、螺刻された面20は無く、一本又は複数本のセットビス100にて固定される。   On the other hand, complementary circumferential shoulder portions are respectively provided on the outer wall of the base portion 16 and the inner wall of the box 22 and are engaged with each other with the vacuum packing and the sealing ring 30 interposed therebetween. The cable 18 that supplies power to the LED element 12 passes through the wiring hole 32 drilled in the base portion 16 and is connected to a power supply device (not shown) outside the lighting device. In the wiring hole 32, it is preferable that the contact surface between the substrate 14 and the base portion 16 is sealed to prevent the air flow, but the outer end port of the wiring hole 32 is sealed even if this is not the case. It is preferably sealed by means 34 such as an instrument or bushing for fixing the cable as possible. Thus, the space between the collector lens 26 and the base portion 16 in the box 22 where the LED element 12 exists is sealed, and air circulation from the outside is prevented. After the device is assembled (the assembly may be preferably performed in a clean room), dust and dirt are prevented from entering near the surface of the LED element, and dust and dirt adsorbed on the surface can be removed. The difficulty of the silicon-based resin-encapsulated LED element, which is difficult, eliminates the need for care during use. In the example of FIG. 1 (B), the wiring hole 32 is provided in the base portion 16, but as shown in FIG. 1 (C), it arbitrarily penetrates from the inner wall to the outer wall of the box. It's okay. In this case, the base portion 16 has no threaded surface 20 and is fixed by one or a plurality of set screws 100.

シリコン系樹脂封入型LED素子は、シリコン系樹脂媒体が、可視光だけなく、紫外光又は赤外光も透過するので、紫外光又は赤外光の照明光源として用いることができる。従って、本発明の照明装置によれば、LED照明により、光学顕微鏡に於ける紫外光又は赤外光を用いた観察が可能となる。また、LED素子のLEDチップ表面に所望の発光波長を有する蛍光色素を塗布したものを用いることにより、種々の波長の光に対してLED照明装置が構成される。既に述べた如く、LED照明装置は、従前のハロゲンランプを用いたランプハウスに比して、小型、軽量であるので、種々の波長の光のLED照明装置を複数準備し、観察前後又は観察中に適宜複数個の照明装置を交換することも容易である。本発明の実施形態に於いて、好適に用いられるLED素子は、例えば、Lumileds社のLUXEON(登録商標)K2などであるが、これに限定するものではない。   Since the silicon-based resin medium transmits not only visible light but also ultraviolet light or infrared light, the silicon-based resin-encapsulated LED element can be used as an illumination light source for ultraviolet light or infrared light. Therefore, according to the illumination device of the present invention, observation using ultraviolet light or infrared light in an optical microscope can be performed by LED illumination. Moreover, an LED illumination apparatus is comprised with respect to the light of various wavelengths by using what apply | coated the fluorescent pigment | dye which has a desired light emission wavelength on the LED chip surface of an LED element. As already described, the LED illumination device is smaller and lighter than a conventional lamp house using a halogen lamp. Therefore, a plurality of LED illumination devices for light of various wavelengths are prepared, before and after observation, or during observation. It is also easy to replace a plurality of lighting devices as appropriate. In the embodiment of the present invention, the LED element suitably used is, for example, LUXEON (registered trademark) K2 manufactured by Lumileds, but is not limited thereto.

コレクタレンズ26と基台部16との間の函体内の空間は、通常の空気であってよいが、好ましくは、窒素、アルゴン等の不活性ガスにて充填されていてよい。上記の如く、本発明の照明装置は、紫外光を用いた観察が可能となる。その場合、コレクタレンズ26と基台部16との間の函体内の空間が、不活性ガスにて充填されていると、紫外光による樹脂の劣化をより一層遅らせることができ、これにより、照明装置の寿命が延びることとなる。同様に、かかる空間は、真空状態にされてもよく、或いは、乾燥剤等を配するなどして乾燥され、水分が除去されていることが望ましい。また、逆に、外部からの空気の流入を回避すべく、コレクタレンズ26と基台部16との間の函体内の空間が高圧で維持されるようになっていてよい。更に、図示していないが、コレクタレンズ26と基台部16との間の函体内の空間を形成する函体又は基台部の一部がゴムシート等の弾性材にて形成されていてよい。この場合、LEDの発熱による函体内の空間の気体の圧力の増大が緩和されることとなる。   The space in the box between the collector lens 26 and the base part 16 may be normal air, but may preferably be filled with an inert gas such as nitrogen or argon. As described above, the illumination device of the present invention can be observed using ultraviolet light. In that case, if the space in the box between the collector lens 26 and the base portion 16 is filled with an inert gas, it is possible to further delay the deterioration of the resin due to ultraviolet light. The lifetime of the device will be extended. Similarly, such a space may be in a vacuum state or is preferably dried by arranging a desiccant or the like to remove moisture. Conversely, the space in the box between the collector lens 26 and the base portion 16 may be maintained at a high pressure in order to avoid the inflow of air from the outside. Further, although not shown, a box or a part of the base part that forms a space in the box between the collector lens 26 and the base part 16 may be formed of an elastic material such as a rubber sheet. . In this case, the increase in the gas pressure in the space in the box due to the heat generated by the LED is alleviated.

既に述べた如く、LED素子が過熱状態となると、LEDが熱により損傷するおそれがある。本発明の上記の照明装置では、LED素子が密閉された空間に配置されているので、従前の如く、外部空気の流通による放熱はできない。そこで、上記の照明装置の基台部16は、好ましくは、熱伝導性の高い材料、例えば、アルミニウムなどの金属材料にて形成される。また、図1(D)に示されている如く、基台部に放熱フィンが設けられ、LED素子の過熱状態を回避するようになっていてよい。   As already described, when the LED element is overheated, the LED may be damaged by heat. In the above-described lighting device of the present invention, since the LED elements are arranged in a sealed space, it is not possible to dissipate heat by circulating external air as before. Therefore, the base portion 16 of the lighting device is preferably formed of a material having high thermal conductivity, for example, a metal material such as aluminum. In addition, as shown in FIG. 1D, heat radiation fins may be provided on the base so as to avoid overheating of the LED elements.

上記の本発明の照明装置に於いて、特記すべきことは、LED素子を封入した空間の出射側がコレクタレンズ26より成っているので、LED素子を外部空気から隔離する手段に要する部材数が低減されていることとなる(LED素子は小形なので、コレクタレンズ26を図示の如く設けるスペースが確保される。なお、所望の光束を得るべく、コレクタレンズ26の後に任意に、破線にて示されている如き集光レンズ101、又は、選択した波長の光のみを透過する干渉膜を形成した励起フィルタ102、更には、照明装置10を顕微鏡本体に取り付けたときに開き、取り外すと閉じられるシャッター103が備えられていてよい。   In the lighting device of the present invention described above, it should be noted that since the exit side of the space in which the LED element is enclosed is composed of the collector lens 26, the number of members required for the means for isolating the LED element from the external air is reduced. (Since the LED element is small, a space for providing the collector lens 26 as shown in the figure is secured. In order to obtain a desired luminous flux, it is arbitrarily indicated by a broken line after the collector lens 26. A condensing lens 101 or an excitation filter 102 having an interference film that transmits only light of a selected wavelength, and a shutter 103 that opens when the illumination device 10 is attached to the microscope body and is closed when the illumination device 10 is removed. It may be provided.

図2(A)は、図2(B)に例示されている如く、光学顕微鏡38の照明光の光路44の内部に挿入される形式の照明装置10の側方断面図を示す。基本的な構成は、図1の照明装置と同様であるが(簡単のため、ケーブル18等は、記載を省略している。)、顕微鏡内部にて位置決めされるよう、函体22の外周にフランジ40が設けられている。任意に例えば、円板状の放熱フィン42が設けられていてよい。   FIG. 2A shows a side cross-sectional view of the illumination apparatus 10 of the type inserted into the optical path 44 of the illumination light of the optical microscope 38 as illustrated in FIG. 2B. The basic configuration is the same as that of the illumination device of FIG. 1 (for the sake of simplicity, description of the cable 18 and the like is omitted), but on the outer periphery of the box 22 so as to be positioned inside the microscope. A flange 40 is provided. Optionally, for example, disk-shaped heat radiation fins 42 may be provided.

図3は、LED素子が固定された基台部16が、光学顕微鏡の照明光の光路44の開口端46に直接に取り付けられた例を示している。この場合には、図示していないが、電力供給用のケーブルを通す配線孔は、基台部16に設けられてもよいが、光学顕微鏡の照明光の光路の壁の一部が穿孔され、図1の例の如く、任意の密封可能にケーブルを固定する器具又はブシュ等の手段により封止される配線孔が設けられていて良い。   FIG. 3 shows an example in which the base portion 16 to which the LED element is fixed is directly attached to the opening end 46 of the optical path 44 of the illumination light of the optical microscope. In this case, although not shown, a wiring hole for passing a power supply cable may be provided in the base portion 16, but a part of the wall of the optical path of the illumination light of the optical microscope is perforated, As in the example of FIG. 1, a wiring hole that is sealed by means such as an instrument or bushing for fixing the cable so as to be sealed in an arbitrary manner may be provided.

以上の説明は、本発明の実施の形態に関連してなされているが、当業者にとつて多くの修正及び変更が容易に可能であり、本発明は、上記に例示された実施形態のみに限定されるものではなく、本発明の概念から逸脱することなく種々の装置に適用されることは明らかであろう。   Although the above description has been made in relation to the embodiment of the present invention, many modifications and changes can be easily made by those skilled in the art, and the present invention is limited to the embodiment exemplified above. It will be apparent that the invention is not limited and applies to various devices without departing from the inventive concept.

特に、本発明には、以下の態様が含まれる。
請求項1又は2の照明装置であって、前記函体内の前記コレクタレンズと前記基台部との間の空間に不活性ガスが充填されていることを特徴とする装置。
請求項1又は2の照明装置であって、前記函体内の前記コレクタレンズと前記基台部との間が真空であることを特徴とする装置。
請求項1又は2の照明装置であって、前記函体内の前記コレクタレンズと前記基台部との間の空間が高圧に保持されていることを特徴とする装置。
請求項1又は2の照明装置であって、前記函体内の前記コレクタレンズと前記基台部との間の空間が乾燥されていることを特徴とする装置。
請求項1又は2の照明装置であって、前記基台部に放熱フィンが設けられていることを特徴とする装置。
請求項1又は2の装置であって、前記基台部が熱伝導性の高い材料にて構成されていることを特徴とする装置。
請求項1又は2の照明装置であって、前記函体は、前記光学顕微鏡に着脱可能である照明装置。
請求項3又は4の光学顕微鏡であって、前記光路内の前記コレクタレンズと前記基台部との間の空間に不活性ガスが充填されていることを特徴とする光学顕微鏡。
請求項3又は4の光学顕微鏡であって、前記光路内の前記コレクタレンズと前記基台部との間が真空であることを特徴とする光学顕微鏡。
請求項3又は4の光学顕微鏡であって、前記光路内の前記コレクタレンズと前記基台部との間の空間が高圧に保持されていることを特徴とする光学顕微鏡。
請求項3又は4の光学顕微鏡であって、前記光路内の前記コレクタレンズと前記基台部との間の空間が乾燥されていることを特徴とする光学顕微鏡。
請求項3又は4の光学顕微鏡であって、前記基台部に放熱フィンが設けられていることを特徴とする光学顕微鏡。
請求項3又は4の光学顕微鏡であって、前記基台部が熱伝導性の高い材料にて構成されていることを特徴とする光学顕微鏡。
In particular, the present invention includes the following aspects.
3. The illumination device according to claim 1, wherein a space between the collector lens and the base portion in the box is filled with an inert gas.
3. The lighting device according to claim 1, wherein a vacuum is provided between the collector lens and the base portion in the box.
3. The illumination device according to claim 1, wherein a space between the collector lens and the base portion in the box is maintained at a high pressure.
3. The illumination device according to claim 1, wherein a space between the collector lens and the base portion in the box is dried.
3. The lighting device according to claim 1, wherein a radiating fin is provided on the base portion. 4.
3. The apparatus according to claim 1, wherein the base is made of a material having high thermal conductivity.
3. The illumination device according to claim 1 or 2, wherein the box is detachable from the optical microscope.
5. The optical microscope according to claim 3, wherein a space between the collector lens and the base portion in the optical path is filled with an inert gas.
5. The optical microscope according to claim 3, wherein a vacuum is provided between the collector lens and the base portion in the optical path.
5. The optical microscope according to claim 3, wherein a space between the collector lens and the base portion in the optical path is maintained at a high pressure.
5. The optical microscope according to claim 3, wherein a space between the collector lens and the base portion in the optical path is dried.
5. The optical microscope according to claim 3, wherein a radiation fin is provided on the base portion.
5. The optical microscope according to claim 3, wherein the base is made of a material having high thermal conductivity.

図1(A)は、本発明の好ましい実施形態の一つである光学顕微鏡用の照明装置の正面図であり、図1(B)は、その側方断面図を示す。破線で描かれたものは、任意で設けられる集光レンズ、励起フィルタ、シャッター等である。図1(C)及び(D)は、図1(B)の修正例の側方断面図を示す。FIG. 1A is a front view of an illumination device for an optical microscope which is one of the preferred embodiments of the present invention, and FIG. 1B shows a side sectional view thereof. What is drawn with a broken line is a condensing lens, an excitation filter, a shutter, etc. that are optionally provided. 1C and 1D are side sectional views of the modified example of FIG. 図2(A)は、光学顕微鏡の照明光の光路内に備えられるようになった本発明による別の好ましい実施形態である照明装置の側方断面図であり、図2(B)は、図2(A)の照明装置を光学顕微鏡に設置した状態を示す。照明装置の近傍のみ破断して断面図が描かれている。図中、破線は、顕微鏡内の照明光の光路の内壁とミラーを示す。FIG. 2A is a side sectional view of an illuminating device which is another preferred embodiment according to the present invention which is provided in the optical path of illumination light of an optical microscope, and FIG. The state which installed the illuminating device of 2 (A) in the optical microscope is shown. Only the vicinity of the lighting device is broken and a cross-sectional view is drawn. In the figure, the broken line indicates the inner wall and mirror of the optical path of the illumination light in the microscope. 図3は、光学顕微鏡の照明光の光路の入口端近傍の断面図であって、入口端にLED素子を担持する基台部が直接設けられた場合の例を示す。FIG. 3 is a cross-sectional view of the vicinity of the entrance end of the optical path of the illumination light of the optical microscope, and shows an example in which a base portion that carries an LED element is directly provided at the entrance end.

符号の説明Explanation of symbols

10…照明装置
12…シリコン系樹脂封入型LED素子
14…基板
16…基台部
18…ケーブル
22…函体
26…コレクタレンズ
28…真空パッキン
30…真空パッキン
32…配線孔
34…密封可能にケーブルを固定する器具(ブシュ)
36…放熱フィン
38…光学顕微鏡
42…放熱フィン
44…光路

DESCRIPTION OF SYMBOLS 10 ... Illuminating device 12 ... Silicone resin enclosure type | mold LED element 14 ... Board | substrate 16 ... Base part 18 ... Cable 22 ... Box 26 ... Collector lens 28 ... Vacuum packing 30 ... Vacuum packing 32 ... Wiring hole 34 ... Cable which can be sealed Fixing device (bush)
36 ... Radiating fin 38 ... Optical microscope 42 ... Radiating fin 44 ... Optical path

Claims (4)

光学顕微鏡用の照明装置であって、光学顕微鏡に備え付け可能な函体と、前記函体内に配置されシリコン系の樹脂にてLEDを封入して成る少なくとも一つのLED素子が固定された基台部と、前記LED素子を挟んで前記基台部とは反対側の前記函体の開口部に配置されたコレクタレンズとを含み、前記函体内にて前記コレクタレンズと前記基台部との間の空間が密封されていることを特徴とする光学顕微鏡用の照明装置。   An illuminating device for an optical microscope, comprising a box that can be provided in the optical microscope, and a base portion to which at least one LED element is fixed, which is disposed in the box and encapsulates an LED with a silicon-based resin And a collector lens disposed in the opening of the box opposite to the base part across the LED element, between the collector lens and the base part in the box An illumination device for an optical microscope, characterized in that a space is sealed. 請求項1の照明装置であって、前記LED素子に電気的に接続されたケーブルが前記函体の一部又は前記基台部の一部に穿孔された配線孔を貫通し、前記配線孔が気体の流通を阻止するべく密封可能なケーブル固定具により封止されていることを特徴とする装置。   The lighting device according to claim 1, wherein a cable electrically connected to the LED element passes through a wiring hole drilled in a part of the box or a part of the base part, and the wiring hole A device characterized in that it is sealed by a cable fixture that can be sealed to prevent the flow of gas. 光学顕微鏡であって、該光学顕微鏡の照明光を通すための光路と、該光路の端部に設けられる開口部と、シリコン系の樹脂にてLEDを封入して成る少なくとも一つのLED素子が固定され前記LED素子を前記開口部に向けて配置された基台部と、前記LED素子を挟んで前記基台部とは反対側の前記光路に配置されたコレクタレンズとを含み、前記光路内にて前記コレクタレンズと前記基台部との間の空間が密封されていることを特徴とする光学顕微鏡。   An optical microscope having an optical path for passing illumination light of the optical microscope, an opening provided at an end of the optical path, and at least one LED element formed by encapsulating an LED with a silicon-based resin is fixed. A base portion disposed with the LED element facing the opening, and a collector lens disposed on the optical path opposite to the base portion with the LED element interposed therebetween, An optical microscope, wherein a space between the collector lens and the base portion is sealed. 請求項3の光学顕微鏡であって、前記LED素子に電気的に接続された配線が前記基台部の一部に穿孔された配線孔を貫通し、前記配線孔が気体の流通を阻止するべく密封可能なケーブル固定具により封止されていることを特徴とする光学顕微鏡。
4. The optical microscope according to claim 3, wherein the wiring electrically connected to the LED element passes through the wiring hole drilled in a part of the base portion, and the wiring hole prevents the gas from flowing. An optical microscope which is sealed by a sealable cable fixture.
JP2006075464A 2006-03-17 2006-03-17 LED illumination device for optical microscope Active JP4959995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006075464A JP4959995B2 (en) 2006-03-17 2006-03-17 LED illumination device for optical microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006075464A JP4959995B2 (en) 2006-03-17 2006-03-17 LED illumination device for optical microscope

Publications (2)

Publication Number Publication Date
JP2007249065A true JP2007249065A (en) 2007-09-27
JP4959995B2 JP4959995B2 (en) 2012-06-27

Family

ID=38593397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006075464A Active JP4959995B2 (en) 2006-03-17 2006-03-17 LED illumination device for optical microscope

Country Status (1)

Country Link
JP (1) JP4959995B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018313A (en) * 2010-07-08 2012-01-26 Sokkia Topcon Co Ltd Two-dimensional measuring device
JP2015162271A (en) * 2014-02-26 2015-09-07 株式会社ファーストシステム lighting module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381992A (en) * 1986-09-26 1988-04-12 Hitachi Tobu Semiconductor Ltd Opto-electronic device
JPH03217061A (en) * 1990-01-22 1991-09-24 Nec Corp Optical semiconductor device
JP2005010364A (en) * 2003-06-18 2005-01-13 Olympus Corp Lighting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381992A (en) * 1986-09-26 1988-04-12 Hitachi Tobu Semiconductor Ltd Opto-electronic device
JPH03217061A (en) * 1990-01-22 1991-09-24 Nec Corp Optical semiconductor device
JP2005010364A (en) * 2003-06-18 2005-01-13 Olympus Corp Lighting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018313A (en) * 2010-07-08 2012-01-26 Sokkia Topcon Co Ltd Two-dimensional measuring device
JP2015162271A (en) * 2014-02-26 2015-09-07 株式会社ファーストシステム lighting module

Also Published As

Publication number Publication date
JP4959995B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP5881185B2 (en) LED-type lighting unit comprising a substantially sealed LED
JP5371990B2 (en) Light emitting device and method for cooling light emitting device
US8858039B2 (en) Illuminating apparatus
US8092054B2 (en) LED illuminating device and light engine thereof
US8007143B2 (en) LED illuminating device and light engine thereof
US8596821B2 (en) LED light bulbs
RU2583901C2 (en) Lighting fixture
US8287145B2 (en) Lamp
JP2016103404A (en) Illuminating device
JP2010157506A (en) Heat dissipation device and lighting device equipped with the same
JP2018505532A (en) LIGHTING MODULE AND LIGHTING DEVICE PROVIDED WITH LIGHTING MODULE
JP2007287684A (en) Lamp device
US9057488B2 (en) Liquid-cooled LED lamp
JP4959995B2 (en) LED illumination device for optical microscope
JP5575624B2 (en) Lighting unit and lighting device
FR3000782A1 (en) Public outdoor lighting lamp for use in public outdoor lighting device, has radiator comprising ventilation openings for circulation of outdoor air, and bulb partially filled with transparent or translucent liquid in which LEDs bathe
US9041272B2 (en) Control of lumen loss in a liquid-filled LED bulb
CN107250662B (en) Lighting device with heat conducting fluid
WO2013175356A1 (en) Illumination device
JP2013507746A (en) LED module, operation method of LED module, and lighting device including LED module
TWI603035B (en) Illumination apparatus
JP2014011029A (en) Lighting apparatus
JP2019029207A (en) Lamp device and illuminating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4959995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250