JP2007248436A - Method and instrument for measuring internal flow in droplet dropping behavior - Google Patents

Method and instrument for measuring internal flow in droplet dropping behavior Download PDF

Info

Publication number
JP2007248436A
JP2007248436A JP2006076439A JP2006076439A JP2007248436A JP 2007248436 A JP2007248436 A JP 2007248436A JP 2006076439 A JP2006076439 A JP 2006076439A JP 2006076439 A JP2006076439 A JP 2006076439A JP 2007248436 A JP2007248436 A JP 2007248436A
Authority
JP
Japan
Prior art keywords
droplet
internal flow
movement behavior
measuring
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006076439A
Other languages
Japanese (ja)
Inventor
Munehisa Sakai
宗寿 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Original Assignee
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology filed Critical Kanagawa Academy of Science and Technology
Priority to JP2006076439A priority Critical patent/JP2007248436A/en
Publication of JP2007248436A publication Critical patent/JP2007248436A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an instrument capable of measuring precisely an internal flow of a droplet in a droplet moving behavior on a solid surface or the like, using an original particle image flow velocity measuring (PIV) method. <P>SOLUTION: In this method and instrument for measuring the internal flow in the droplet moving behavior, a particle is mixed in the droplet, the droplet is passed to irradiate a droplet inside with sheet light, and a motion of the droplet in a light emitting cross-sectional image of the particle is visualized regarded as the internal flow in a droplet cross-sectional part when the droplet is moved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固体表面上等での液滴移動挙動における液滴の内部流動の測定方法および装置に関する。   The present invention relates to a method and apparatus for measuring the internal flow of a droplet in the droplet movement behavior on a solid surface or the like.

固体表面の濡れ制御は物理と化学の境界に位置する技術課題であり、その応用範囲は表面機能や生産プロセス等あらゆる工学分野に及ぶ最も基礎的かつ重要な研究領域である。従来、固体表面の濡れはヤングの式を基礎として、組成や構造の変化と、接触角の測定等から得られるマクロな濡れとの関係が理論・実験両面から検討され、表面エネルギーやその分布、表面粗さや表面形状、電界などが複雑に関与することが知られている。   Control of wetting of solid surfaces is a technical issue located at the boundary between physics and chemistry, and its application range is the most fundamental and important research area covering all engineering fields such as surface functions and production processes. Conventionally, wetting of solid surfaces is based on Young's equation, and the relationship between changes in composition and structure and macro wetting obtained from contact angle measurement, etc. has been studied both theoretically and experimentally. It is known that surface roughness, surface shape, electric field, and the like are involved in a complicated manner.

加えて従来は、接触角測定による“静的”な濡れ性が主に評価されていたが、近年建築や輸送機械など各種の工学分野では“動的”な濡れの重要性が認識され始めている。この“動的”な濡れとは、親水性表面における濡れ広がりの速度の意味ではなく、主として撥水性表面における“液滴の除去性”のことである。今日動的な濡れ性として最も一般に評価されているものは、転落角、接触角ヒステリシスである。この接触角ヒステリシスとは前進接触角と後退接触角の差であり、図1に固体表面1上の液滴2(例えば、水滴) に関する転落角α、前進接触角θa と後退接触角θrの関係を示す。しかしながら、これらは水平に支持した試料表面を徐々に傾けていき、液滴が転落を開始した降の転落角度や前進、後退接触角を読むものであり、液滴除去速度に関する情報は全く含まれていない。例えば、液滴の転落角が1度であったとしても、超撥水表面上であれば一瞬のうちに転落するが、平滑な高分子表面では極めて遅いことが知られている。   In addition, “static” wetting by contact angle measurement has been mainly evaluated in the past, but in recent years, the importance of “dynamic” wetting has begun to be recognized in various engineering fields such as construction and transportation machinery. . This “dynamic” wetting does not mean the rate of wetting and spreading on the hydrophilic surface, but mainly “removability of droplets” on the water-repellent surface. The most commonly evaluated dynamic wettability today is the falling angle and contact angle hysteresis. This contact angle hysteresis is the difference between the advancing contact angle and the receding contact angle. FIG. 1 shows the relationship between the drop angle α, the advancing contact angle θa, and the receding contact angle θr for the droplet 2 (for example, a water droplet) on the solid surface 1. Indicates. However, these are used to gradually tilt the horizontally supported sample surface and read the falling angle, forward and backward contact angles when the droplet started to fall, and no information on the droplet removal speed is included. Not. For example, even if the drop angle of the droplet is 1 degree, it is known that it falls on a super water-repellent surface in an instant, but is extremely slow on a smooth polymer surface.

一方、実際の工業材料では大きさや機能、意匠などから表面の傾斜角度が決まっている場合がほとんどであり、「傾斜角が何度で転落するか」ではなく「一定の傾斜角でどれくらいの速さで転落するか」という情報がより重要となってきている。例えば特許文献1、特許文献2、特許文献3、特許文献4等に測定事例が見られる。また、学術雑誌においてもMiwaら超撥水面上での水について、非特許文献1で、等加速度運動で転落することが報告されており、また、非特許文献2では、超撥水表面上でグリセロールについて、粘性抵抗のために等速度運動で転落することが報告されている。また、非特許文献3や非特許文献4では、平滑撥水表面上での水について、転落条件により加速度の傾向が変化する場合があること、また転落しながら液滴が振動する場合があることが報告されている。   On the other hand, in actual industrial materials, the inclination angle of the surface is mostly determined by the size, function, design, etc., and not `` how many times the inclination angle falls '' but `` how fast at a certain inclination angle '' The information “whether it will fall down” is becoming more important. For example, measurement examples can be seen in Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, and the like. Also, in academic journals, Miwa et al. Reported that water on a super-water-repellent surface falls by non-patent document 1 with a uniform acceleration motion. Glycerol has been reported to fall with constant velocity motion due to viscous resistance. In Non-Patent Document 3 and Non-Patent Document 4, the tendency of acceleration may change depending on the falling condition for water on a smooth water-repellent surface, and the droplet may vibrate while falling. Has been reported.

しかしながらこれらは測定手法が一定していない。固体表面の種類や形状と液滴の種類には様々な組み合わせがあり、更には液滴の固体表面での加速度は液滴の大きさや傾斜角度、固体表面の材質により変化することが知られている。液滴の転落挙動は、加速度の測定と合わせて、液滴の形状変化も同時に評価しないと総合的な検討ができない。接触角や転落角の測定装置や計測原理については様々なものが知られており、特許文献5にあるように外見上の液滴転落挙動を総合的に計測・評価する手法や装置は開発されたが、液滴転落時の内部流動を観察する方法及び装置は未だに開発されていない。   However, the measurement method is not constant. There are various combinations of types and shapes of solid surfaces and types of droplets. Furthermore, it is known that the acceleration of droplets on the solid surface varies depending on the size and inclination angle of the droplets and the material of the solid surface. Yes. The drop-down behavior of the droplet cannot be comprehensively evaluated unless the shape change of the droplet is simultaneously evaluated together with the measurement of acceleration. Various measuring devices and measuring principles for contact angle and falling angle are known, and as disclosed in Patent Document 5, a method and apparatus for comprehensively measuring and evaluating the apparent droplet falling behavior has been developed. However, a method and an apparatus for observing the internal flow at the time of dropping the droplet have not been developed yet.

また、非特許文献5には、本願に関連する技術として、一般的な粒子画像流速測定(PIV)法(広義:流体の中にトレーサを混入することで流れを可視化し、デジタル画像処理技術により、流れ場の多点の速度情報を抽出するもの)が紹介されている。
特開2001-259509号公報 特開2002-29783号公報 特開2002-97192号公報 特開平11-116973号公報 特願2005-231801 Miwa, M., Nakajima, A., Fujishima, A., Hashimoto, K. and Watanabe, T., Langmuir, Vol 16, p. 5754-5760 (2000) Richard, D. and Quere, D., Europhys. Lett., Vol. 48, p. 286-291 (1999) Nakajima, A, Suzuki, S., Kameshima, Y., Yoshida, N., Watanabe, T. and Okada, K., Chem. Lett., VoL32, P.1148-1149 (2003) Suzuki, S., Kameshima, Y., Nakajima, A and Okada, K., Surf. Sci., Vo1.557/1-3. p. L163-L168 (2004) PIVの要点 (社)可視化情報学会
Non-Patent Document 5 describes a general particle image velocimetry (PIV) method (in a broad sense: a flow is visualized by mixing a tracer in a fluid, and a digital image processing technique as a technique related to the present application. , Which extracts multi-point velocity information of a flow field).
JP 2001-259509 A JP 2002-29783 A JP 2002-97192 A Japanese Patent Laid-Open No. 11-116973 Japanese Patent Application 2005-231801 Miwa, M., Nakajima, A., Fujishima, A., Hashimoto, K. and Watanabe, T., Langmuir, Vol 16, p. 5754-5760 (2000) Richard, D. and Quere, D., Europhys. Lett., Vol. 48, p. 286-291 (1999) Nakajima, A, Suzuki, S., Kameshima, Y., Yoshida, N., Watanabe, T. and Okada, K., Chem. Lett., VoL32, P.1148-1149 (2003) Suzuki, S., Kameshima, Y., Nakajima, A and Okada, K., Surf. Sci., Vo1.557 / 1-3.p.L163-L168 (2004) The main points of PIV The Visualization Society of Japan

前述したように、固体表面上での液滴の転落の場合を考えると、前述したように、固体表面の種類や形状と液滴の種類には様々な組み合わせがあり、液滴の固体表面での加速度は液滴の大きさや傾斜角度、固体表面の材質により変化することが知られている。例えば液滴が「回転」しながら転落すると、転落速度が速いとされていたが、実際に液滴内部流動の可視化を行い、実証された報告例はない。また、転落時の液滴の変形の度合いは必ずしも一様ではなく、転落の条件によっては周期的な変動を伴うことがあり、そのことが転落加速度に影響する場合がある。この周期的な変動の解析を転落加速度の測定と同時に行うには、転落方向に対して側面から見た液滴の前進接触角、転落方向に対して側面から見た液滴の後退接触角、転落方向に対して側面から見た液滴の固体との接触部分の長さ、転落方向に対して側面から見た液滴の高さ、液滴外周と固体表面とが交わる2点のうち転落方向側と逆側の点の加速度のうち少なくとも一つを転落加速度とともに連続的に計測することが有効である。図2に、これらを例示する。図2において、aa は外周と固体表面が交わる点の転落方向側の点の加速度、ar は外周と固体表面が交わる点の転落方向側と逆側の点の加速度、Va は外周と固体表面が交わる点の転落方向側の点の速度、Vr は外周と固体表面が交わる点と逆側の転落方向側の点の速度、θa は外周と固体表面が交わる点の前進接触角、θr は外周と固体表面が交わる点の後退接触角、hは液滴の高さ、dは外周と固体表面が交わる2点間の距離をそれぞれ示している。 As described above, considering the case of a drop falling on a solid surface, as described above, there are various combinations of types and shapes of solid surfaces and types of droplets. Is known to vary depending on the size and inclination angle of the droplet and the material of the solid surface. For example, when a droplet falls while “rotating”, the falling speed is said to be fast, but there is no report that has been demonstrated by actually visualizing the internal flow of the droplet. Further, the degree of deformation of the droplets at the time of falling is not necessarily uniform, and may be accompanied by periodic fluctuations depending on the conditions of falling, which may affect the falling acceleration. In order to analyze the periodic fluctuation simultaneously with the measurement of the falling acceleration, the advancing contact angle of the droplet viewed from the side with respect to the falling direction, the receding contact angle of the droplet viewed from the side with respect to the falling direction, The length of the contact portion of the droplet with the solid as viewed from the side with respect to the falling direction, the height of the droplet as viewed from the side with respect to the falling direction, and the falling of the two points where the outer periphery of the droplet intersects with the solid surface It is effective to continuously measure at least one of the accelerations at the point opposite to the direction side along with the falling acceleration. These are illustrated in FIG. In FIG. 2, a a is the acceleration at the point on the falling direction side at the point where the outer periphery and the solid surface intersect, a r is the acceleration at the point on the opposite side to the falling direction at the point where the outer periphery and the solid surface intersect, and V a is the outer periphery. speed of points falling direction of the point of intersection is the solid surface, V r is the outer circumference and that the solid surface intersects the opposite side speed of the points falling direction of, theta a is the advancing contact angle of the point of intersection is the outer periphery and the solid surface , Θ r is the receding contact angle at the point where the outer periphery and the solid surface intersect, h is the height of the droplet, and d is the distance between the two points where the outer periphery and the solid surface intersect.

このように、液滴の転落挙動をより正確に測定するためには、転落(加)速度の測定ととともに液滴の形態変化(前進接触角・後退接触角・液滴の高さ・液滴の長さ)も同時に評価することに加えて、固体から液体への相互作用を直接観察するために、液滴転落時の内部流動を計測することが必要である。そのためには、質量の小さい液滴本来の流動を阻害せず、液滴転落時における液滴内部流動の可視化方法を確立し、画像解析により液滴の内部流動の計測を可能にする独自の粒子画像流速測定(PIV)法及び装置の開発が望まれる。   In this way, in order to measure the drop falling behavior more accurately, the drop (acceleration) speed is measured and the drop shape change (advance contact angle / retreat contact angle / droplet height / droplet In order to directly observe the interaction from the solid to the liquid, it is necessary to measure the internal flow when the droplet falls. To that end, we have established a method for visualizing the internal flow of a droplet when it falls, and does not hinder the original flow of a droplet with a small mass. Development of an image velocimetry (PIV) method and apparatus is desired.

本発明の課題は、このような要望を満たすために、独自の粒子画像流速測定(PIV)法を確立し、それを用いて、固体表面上等での液滴移動挙動における液滴の内部流動を精度良く測定できる方法および装置を提供することにある。   The object of the present invention is to establish a unique particle image velocimetry (PIV) method in order to satisfy such demands, and to use it for internal flow of droplets in droplet movement behavior on a solid surface or the like. It is an object to provide a method and an apparatus capable of measuring the temperature with high accuracy.

上記課題を解決するために、本発明に係る液滴移動挙動における内部流動測定方法は、液滴に粒子を混入し、シート光が液滴内部に照射されるように液滴を通過させ、粒子の発光断面像における粒子の動きを、液滴移動時のその液滴断面部の内部流動とみなして可視化することを特徴とする方法からなる。このシート光としては、代表的にはレーザーシート光を用いることができる。ただし、光源自体はレーザー以外でも可能である。例えば、メタルハライド照明を光学レンズを使ってシート光にしたものも可能である。   In order to solve the above problems, the internal flow measurement method in the droplet movement behavior according to the present invention mixes particles in the droplets, passes the droplets so that the sheet light is irradiated inside the droplets, The movement of the particles in the emission cross-sectional image is visualized by regarding the movement of the particles as the internal flow of the droplet cross-section when the droplet moves. As the sheet light, laser sheet light can be typically used. However, the light source itself can be other than a laser. For example, it is possible to use metal halide illumination that is converted into sheet light using an optical lens.

本発明における液滴移動には、固体表面上で(上向きの表面、下向きの表面を問わず)液滴を移動(転落)させる場合は勿論のこと、空中での液滴移動も含まれる。   The droplet movement in the present invention includes not only the movement (falling) of the droplet on the solid surface (regardless of the upward surface or the downward surface) but also the movement of the droplet in the air.

混入する粒子の種類は特に限定されず、例えばポリスチレン粒子を使用でき、1μm〜220μmの粒子を0.01〜20wt%の濃度で混入することが好ましい。   The kind of particle to mix is not specifically limited, For example, a polystyrene particle can be used and it is preferable to mix a particle | grain of 1 micrometer-220 micrometers with a density | concentration of 0.01-20 wt%.

また、本発明に係る内部流動測定方法においては、液滴断面部の全速度成分から、液滴の前方及び/又は後方端点を用いて求めた進行方向の移動速度成分を差分し、液滴内部流動の速度成分のみを抽出するようにすることができる。   Further, in the internal flow measurement method according to the present invention, the moving velocity component in the traveling direction obtained using the front and / or rear end points of the droplet is subtracted from the total velocity component of the droplet cross-section, Only the velocity component of the flow can be extracted.

また、移動する液滴の側方に、一定以上の波長の光を反射し残りを透過する反射・透過フィルター又は一定以上の波長の光を透過し残りを反射する反射・透過フィルターを設置し、同一光軸の光を分岐させて、同一光軸の映像を複数のカメラで撮影できるように光学系を配置し、前記混入粒子による可視化映像と、液滴移動挙動を測定するためのシルエット映像を同時に撮影するようにすることもできる。   Also, on the side of the moving droplet, a reflection / transmission filter that reflects light of a certain wavelength or more and reflects the remaining light or a reflection / transmission filter that transmits light of a certain wavelength or more and reflects the remainder, The optical system is arranged so that light of the same optical axis is branched and images of the same optical axis can be taken by a plurality of cameras, and a visualization image by the mixed particles and a silhouette image for measuring the droplet movement behavior are provided. You can also shoot at the same time.

さらに、本発明に係る内部流動測定方法においては、液滴移動挙動と液滴内部流動を同時に計測するようにすることができる。   Furthermore, in the internal flow measuring method according to the present invention, it is possible to simultaneously measure the droplet movement behavior and the droplet internal flow.

また、本発明は、上記のような方法の少なくとも1つを用いる手段を含む液滴移動挙動における内部流動測定装置も提供する。   The present invention also provides an internal flow measurement device for droplet movement behavior comprising means using at least one of the methods as described above.

上記のような本発明に係る液滴転落挙動における内部流動測定方法および装置においては、液滴の移動時に、例えば、液滴の移動方向に対して平行にシート光(とくに、シートレーザー光)を照射し、液滴に混入された粒子により流動を可視化された、鮮明な断面映像を取得することが可能である。これを、液滴移動を対象とした独自の座標変換アルゴリズムにより、取得した映像を前処理することで、液滴の内部流動のみを測定を可能にすることができる。粒子画像流速測定(PIV)法は、粒子数密度と画像処理方法の違いから、高密度PIV(相関PIV法:高密度の粒子群により形成された濃度パターンの変位を追跡して流速を算出)と低密度PIV(PTV法:流れに投入された個々の粒子を追跡して流速を算出)の二つに分けられ、前述した非特許文献5等に記載の測定目的に則した方法を用いて、前処理した映像から内部流動速度を測定することができる。また、特定領域の波長の光を反射・透過するフィルター及び/又はプリズム等を利用することで、同画格の映像を2台の高速度カメラで取得することが可能になり、液滴移動時の液滴内部流動と液滴の移動挙動(転落(加)速度・形態変化)を同時に計測することが可能になる。   In the method and apparatus for measuring internal flow in the droplet falling behavior according to the present invention as described above, when the droplet moves, for example, sheet light (particularly, sheet laser light) is parallel to the moving direction of the droplet. It is possible to obtain a clear cross-sectional image in which the flow is visualized by the particles irradiated and mixed in the droplets. It is possible to measure only the internal flow of the droplet by pre-processing the acquired image using a unique coordinate transformation algorithm for droplet movement. The particle image velocimetry (PIV) method is a high density PIV (correlation PIV method: calculating the flow velocity by tracking the displacement of the density pattern formed by high density particles) due to the difference between the particle number density and the image processing method. And low-density PIV (PTV method: the flow velocity is calculated by tracking individual particles introduced into the flow), and the method according to the measurement purpose described in Non-Patent Document 5 etc. is used. The internal flow velocity can be measured from the preprocessed video. In addition, by using filters and / or prisms that reflect and transmit light of a specific wavelength range, it is possible to acquire images with the same image quality using two high-speed cameras. It is possible to simultaneously measure the internal flow of the liquid droplets and the movement behavior (drop (acceleration) speed / morphological change) of the liquid droplets.

本発明によれば、後述の実施例にも示すように、液滴移動時の内部流動を効果的に計測・評価することができ、様々な液滴と固体表面の組み合わせに対しても、液滴移動時の内部流動を計測・評価することができる。さらに、転落挙動・形態変化と同時に、内部流動の計測が可能である。その結果、液滴の動的挙動の評価解析方法において、新規な道を拓くことができた。   According to the present invention, as shown in Examples described later, it is possible to effectively measure and evaluate the internal flow during the movement of the droplet, and even for various combinations of droplets and solid surfaces. It is possible to measure and evaluate the internal flow during droplet movement. Furthermore, the internal flow can be measured simultaneously with the falling behavior and shape change. As a result, we were able to pioneer a new path in the method for evaluating and analyzing the dynamic behavior of droplets.

以下、本発明に係る液滴転落挙動における内部流動測定方法および装置について、特に液滴転落挙動の測定方法および装置を中心に、かつ、シート光としてはレーザーシート光を用いる場合について、望ましい実施の形態とともに詳細に説明する。   Hereinafter, the internal flow measuring method and apparatus in the droplet falling behavior according to the present invention, particularly in the case of using the laser sheet light as the sheet light, especially in the center of the measuring method and apparatus of the droplet falling behavior, It explains in detail with a form.

(シート光レーザーの設置)
図3に示すように、固体表面1上を移動する液滴2の断面を通過するように、レーザーシート光照射装置3から、液滴2の移動方向に対して平行にレーザーシート光4を照射する。液滴2には粒子5が混入されており、レーザーシート光4により映し出された粒子により表現された液滴断面を、液滴2の移動方向の側方に配置した高速度カメラで撮影すると、PIV解析に適した鮮明な映像を取得することができる。7はスクリーンを示している。このときのレーザーシート光4のシート厚みは、1mm未満が望ましく、より望ましくは、500μm未満で安定的なレーザーシート光を用いたほうがよい。また、レーザーの強度は強いほうが、例えば250mW以上であることが望ましく、1W以上であると被写体深度が増すので鮮明な断面映像が取得できる。蛍光塗料を表面に添付した粒子を用いる場合には、蛍光粒子の発光波長未満の波長の光をカットするフィルター8を、液滴とカメラの間に設置することが望ましい。
(Installation of sheet light laser)
As shown in FIG. 3, the laser sheet light 4 is irradiated in parallel to the moving direction of the droplet 2 from the laser sheet light irradiation device 3 so as to pass through the cross section of the droplet 2 moving on the solid surface 1. To do. When droplets 5 are mixed with particles 5 and a cross section of the droplets expressed by the particles projected by the laser sheet light 4 is photographed with a high-speed camera arranged on the side in the movement direction of the droplets 2, A clear image suitable for PIV analysis can be acquired. Reference numeral 7 denotes a screen. At this time, the sheet thickness of the laser sheet light 4 is desirably less than 1 mm, and more desirably, it is preferable to use a stable laser sheet light having a thickness of less than 500 μm. In addition, it is desirable that the intensity of the laser is higher, for example, 250 mW or more, and if it is 1 W or more, the depth of the subject increases, so that a clear sectional image can be acquired. When using particles with a fluorescent paint attached to the surface, it is desirable to install a filter 8 that cuts light having a wavelength less than the emission wavelength of the fluorescent particles between the droplet and the camera.

(固体表面上における液滴内部流動計測時のサンプルの設置)
本発明に用いられる液滴の種類は特に限定しないが、大きさは1〜50mgの範囲が望ましい。また、固体表面の種類も特に限定しないが、液滴との接触角が少なくとも45度以上あることが望ましく、80度以上がより望ましい。これは液滴が固体表面を濡らす際の濡れ広がりの速度効果が小さくなるためで、接触角が45度未満では先に述べた液滴の除去性と濡れ広がり特性の区別が付けにくくなる。また、測定の際の固体表面は平らなものが望ましい。更に、測定の際の表面の傾斜角度は10度以上80度以下が望ましく、より好ましくは30度以上70度以下である。傾斜角度が低いと液滴の転落が遅くなって時間がかかる。また傾斜が大きいと転落が速く、サンプル間の特性の差が見にくくなる。
(Installation of sample when measuring internal flow of liquid droplets on solid surface)
The type of droplet used in the present invention is not particularly limited, but the size is preferably in the range of 1 to 50 mg. The type of the solid surface is not particularly limited, but the contact angle with the droplet is preferably at least 45 degrees or more, more preferably 80 degrees or more. This is because the speed effect of wetting and spreading when the droplet wets the solid surface becomes small. When the contact angle is less than 45 degrees, it becomes difficult to distinguish between the above-described droplet removability and wetting and spreading characteristics. Further, it is desirable that the solid surface during measurement is flat. Further, the inclination angle of the surface at the time of measurement is desirably 10 degrees or more and 80 degrees or less, and more desirably 30 degrees or more and 70 degrees or less. If the tilt angle is low, the drop falls slowly and takes time. Moreover, if the inclination is large, the fall is quick and it becomes difficult to see the difference in characteristics between samples.

(粒子サイズ)
液滴内の内部流動を計測するために、液滴本来の流動を阻害しないように、例えば粒径1μm〜220μmのポリスチレン粒子を0.01〜20wt%の濃度で液滴に混入し、粒子の動きを液滴内部の流動を可視化することができる。粒子サイズは、液滴内部流動を阻害するので、小さいにこしたことはないが、撮影に用いるカメラの解像度にもよるので、一概には言えない。512×512 picelの解像度をもつ高速度カメラの場合、画格(例えば、図4に示す画像1や画像2のような画格)が15mmである場合、望ましくは、相関PIV法では、10〜40μm、PTV法では、100〜220μmの直径をもつ粒子を用いたほうがよい。これを、画像解析により速度分布を測定する方法(粒子画像流速計測法:PIV法)を用い、液滴内の速度分布を測定することで、液滴転落挙動を支配する因子の一つである、液滴と基板の間の剪断変位速度を測定することが可能になる。
(Particle size)
In order to measure the internal flow in the droplet, for example, polystyrene particles having a particle size of 1 μm to 220 μm are mixed in the droplet at a concentration of 0.01 to 20 wt% so as not to disturb the original flow of the droplet, thereby controlling the movement of the particle. The flow inside the droplet can be visualized. Since the particle size hinders the internal flow of the droplets, the particle size is not small, but it is unclear because it depends on the resolution of the camera used for photographing. In the case of a high-speed camera having a resolution of 512 × 512 picel, when the picture quality (for example, picture quality such as image 1 or image 2 shown in FIG. 4) is 15 mm, preferably 10 to In the 40 μm PTV method, it is better to use particles having a diameter of 100 to 220 μm. This is one of the factors governing the drop-falling behavior by measuring the velocity distribution in the droplets by measuring the velocity distribution by image analysis (particle image velocimetry: PIV method). It becomes possible to measure the shear displacement rate between the droplet and the substrate.

(動画解析方法)
移動する液滴の内部流動の速度分布を、外部座標でみると、液滴内部流動に加えて、液滴自体の運動の影響を受けてしまい、内部流動のみを計測することができない。よって、見かけ上、液滴自体が画格内で一定の位置にあって、内部が対流しているような画像を取得しなければならない。このためには、(1)液滴の運動に併せてカメラを移動させる、(2)画像処理により、見かけ上、一定の位置にあるように画像を抽出する、の2つの方法がある。今回は、(2)の方法を用いて、速度ベクトルの取得が可能なアルゴリズムを開発することにより、測定した。この場合、見かけ上、液滴自体が画格内で一定の位置にあって、内部が対流しているような画像を取得しなければならない。このためには、画像処理により、見かけ上、一定の位置にあるように画像を抽出する方法を用いて、速度ベクトルの取得が可能なアルゴリズムを開発することにより、液滴内部流動の速度分布が取得できる(図4)。
(Video analysis method)
When the velocity distribution of the internal flow of the moving droplet is viewed in external coordinates, it is affected by the motion of the droplet itself in addition to the internal flow of the droplet, and only the internal flow cannot be measured. Therefore, it is necessary to acquire an image in which the droplet itself appears to be at a certain position in the picture and the inside is convective. For this purpose, there are two methods: (1) moving the camera in accordance with the movement of the droplet, and (2) extracting an image so as to appear at a certain position by image processing. This time, the measurement was performed by developing an algorithm capable of acquiring the velocity vector using the method (2). In this case, it is necessary to obtain an image in which the droplet itself appears to be at a certain position in the picture and the inside is convective. For this purpose, by developing an algorithm capable of acquiring a velocity vector using a method of extracting an image so that it appears to be at a certain position by image processing, the velocity distribution of the liquid flow inside the droplet is reduced. Can be obtained (FIG. 4).

(移動速度・形態変化及び内部流動の同時計測)
例えば図5に示すように、液滴11の移動方向に対して、断面を切るようにレーザーシート光照射装置12からレーザーシート光13を照射し、バックライト照明14としてのメタルハライド照明をカメラの反対側に設置し、透過フィルター15および拡散板16を通してバックライト光を照射するとともに、液滴11が移動する固体表面17とカメラの間に一定以上の波長の光を反射し残りを透過する反射・透過フィルター又は一定以上の波長の光を透過し残りを反射する反射・透過フィルター18を、移動する液滴11の側方に設置し、同一光軸の光を分岐させ、同一光軸の映像を複数のカメラで撮影できるように同期した2台の高速度カメラ19、20を配置し、それぞれ、一方のレーザー光21の波長は透過した断面を高速度カメラ20で撮影できるよう配置し、他方のメタルハライドの光22によって映し出された液滴11のシルエットを高速度カメラ19で撮影できるよう配置した。これらの配置により、液滴移動挙動と内部流動の同時計測が可能になる。
(Simultaneous measurement of moving speed, shape change and internal flow)
For example, as shown in FIG. 5, the laser sheet light irradiation device 12 irradiates the laser sheet light 13 from the laser sheet light irradiation device 12 so as to cut the cross section with respect to the moving direction of the droplet 11, and the metal halide illumination as the backlight illumination 14 is opposite to the camera. Reflecting light that illuminates backlight through the transmission filter 15 and the diffusion plate 16 and reflects light of a certain wavelength or more between the solid surface 17 on which the droplet 11 moves and the camera, and transmits the rest. A transmission filter or a reflection / transmission filter 18 that transmits light of a certain wavelength or more and reflects the rest is placed on the side of the moving droplet 11 to branch the light of the same optical axis, and to display an image of the same optical axis. Two high-speed cameras 19 and 20 that are synchronized so as to be photographed by a plurality of cameras are arranged, and the wavelength of one laser beam 21 is transmitted through a cross section through which the high-speed camera is transmitted. Was arranged to be taken at 0, was positioned to the silhouette of the droplet 11 which is projected by the other metal halide light 22 can capture a high-speed camera 19. These arrangements enable simultaneous measurement of droplet movement behavior and internal flow.

以下、本発明に係る方法および装置を、実際に計測、評価した実施例を例示して、より具体的に説明する。なお、これらの実施例は単に例示であって本発明を制限するものではない。   Hereinafter, the method and apparatus according to the present invention will be described more specifically with reference to examples of actual measurement and evaluation. In addition, these Examples are only illustrations and do not restrict | limit this invention.

実施例1
オクタデシルトリメトキシシランをコーティングしたシリコン基板上で、30mlの水滴を、傾斜角35度で転落させた際、レーザーシート光により内部流動を可視化した状態の画像31を図6に示す。図6に示す画像31の図面では、混入粒子が若干見づらい図面となっているが、実際には、レーザーシート光により、混入粒子があたかも2次元平面上を流動するかの如く、明確に液滴の内部流動を可視化できた。
Example 1
FIG. 6 shows an image 31 in which the internal flow is visualized by laser sheet light when a 30 ml water droplet is dropped at an inclination angle of 35 degrees on a silicon substrate coated with octadecyltrimethoxysilane. In the drawing of the image 31 shown in FIG. 6, the mixed particles are slightly difficult to see, but in reality, the mixed particles are clearly dropped as if the mixed particles flow on a two-dimensional plane by the laser sheet light. Was able to visualize the internal flow.

比較例1
オクタデシルトリメトキシシランをコーティングしたシリコン基板上で、30mlの水滴を、傾斜角35度で転落させた際、メタルハライド照明のみにより、内部流動を可視化した状態の画像41を図7に示す。図7に示す画像41の図面では、混入粒子が若干見づらい図面となっているが、実際には、液滴のある断面ではなく、液滴内部の実質的に全体に存在する混入粒子がメタルハライド照明により映像化されるので、映像側から見て、粒子同士が複雑に重なりあい、液滴の内部流動を正確にとらえることは難しかった。
Comparative Example 1
FIG. 7 shows an image 41 in which the internal flow is visualized only by metal halide illumination when a 30 ml water droplet is dropped at an inclination angle of 35 degrees on a silicon substrate coated with octadecyltrimethoxysilane. In the drawing of the image 41 shown in FIG. 7, the mixed particles are slightly difficult to see. Actually, however, the mixed particles present not in the cross section of the liquid droplet but in the substantially entire inside of the liquid droplet are metal halide illumination. Therefore, it was difficult to accurately capture the internal flow of the droplets when viewed from the image side, with the particles overlapping in a complicated manner.

実施例2
オクタデシルトリメトキシシランをコーティングしたシリコン基板上で、30mlの水滴を、傾斜角35度で転落させる時の液滴の速度分布特性51を図8に示す。
Example 2
FIG. 8 shows a velocity distribution characteristic 51 of a droplet when a 30 ml water droplet is dropped at an inclination angle of 35 degrees on a silicon substrate coated with octadecyltrimethoxysilane.

本発明は、液滴移動時の内部流動を精度良く把握することが望まれるあらゆる産業分野において適用することができる。   The present invention can be applied to all industrial fields in which it is desired to accurately grasp the internal flow during droplet movement.

前進、後退接触角と転落角の関係を示す概略説明図である。It is a schematic explanatory drawing which shows the relationship between a forward and backward contact angle, and a fall angle. 移動加速度(転落加速度を含む)とともに測定する項目を示す概略説明図である。It is a schematic explanatory drawing which shows the item measured with a movement acceleration (a fall acceleration is included). レーザーシート光照射の様子を示す概略説明図(A)およびそれを側方からみた概略部分斜視図(B)である。It is the schematic explanatory drawing (A) which shows the mode of laser sheet light irradiation, and the schematic partial perspective view (B) which looked at it from the side. 内部流動速度成分を抽出するための前処理方法を示す概略説明図である。It is a schematic explanatory drawing which shows the pre-processing method for extracting an internal fluid velocity component. レーザーシート光とバックライト用の照明を配置し、フィルター及び/又は反射板を用い、同じ光軸で2台のカメラで撮影可能にした装置の概略説明図である。It is a schematic explanatory drawing of the apparatus which has arrange | positioned the illumination for laser sheet light and backlight, and was able to image | photograph with two cameras with the same optical axis using a filter and / or a reflecting plate. 実施例1における、レーザーシート光を用いたときのの液滴内の断面画像を示す図である。It is a figure which shows the cross-sectional image in the droplet when the laser sheet light in Example 1 is used. 比較例1における、メタルハライド照明のみを用いた時の液滴と粒子の画像を示す図である。It is a figure which shows the image of the droplet and particle | grains at the time of using only metal halide illumination in the comparative example 1. FIG. 実施例2における、液滴内部流動速度分布を表現した特性図である。FIG. 9 is a characteristic diagram expressing a droplet internal flow velocity distribution in Example 2.

符号の説明Explanation of symbols

1 固体表面
2 液滴
3 レーザーシート光照射装置
4 レーザーシート光
5 混入粒子
6 高速度カメラ
7 スクリーン
8 フィルター
11 液滴
12 レーザーシート光照射装置
13 レーザーシート光
14 バックライト照明(メタルハライド照明)
15 透過フィルター
16 拡散板
17 固体表面
18 反射・透過フィルター
19、20 高速度カメラ
21 レーザー光
22 メタルハライド光
31 実施例1における液滴の内部流動を可視化した状態の画像
41 比較例1における液滴の内部流動を可視化した状態の画像
51 実施例2における液滴の速度分布特性
DESCRIPTION OF SYMBOLS 1 Solid surface 2 Droplet 3 Laser sheet light irradiation apparatus 4 Laser sheet light 5 Mixed particle 6 High speed camera 7 Screen 8 Filter 11 Droplet 12 Laser sheet light irradiation apparatus 13 Laser sheet light 14 Backlight illumination (metal halide illumination)
DESCRIPTION OF SYMBOLS 15 Transmission filter 16 Diffusion plate 17 Solid surface 18 Reflection / transmission filter 19, 20 High-speed camera 21 Laser light 22 Metal halide light 31 Image 41 in a state of visualizing internal flow of liquid droplet in Example 1 Image 51 in a state of visualizing internal flow Droplet velocity distribution characteristics in Example 2

Claims (8)

液滴に粒子を混入し、シート光が液滴内部に照射されるように液滴を通過させ、粒子の発光断面像における粒子の動きを、液滴移動時のその液滴断面部の内部流動とみなして可視化することを特徴とする、液滴移動挙動における内部流動測定方法。   Particles are mixed in the droplet, and the droplet is passed so that the sheet light is irradiated inside the droplet, and the movement of the particle in the emission cross-sectional image of the particle is determined by the internal flow of the droplet cross-section when the droplet moves. A method for measuring internal flow in a droplet movement behavior, characterized in that it is visualized as if it were a droplet. 前記シート光としてレーザーシート光を用いる、請求項1に記載の液滴移動挙動における内部流動測定方法。   The method for measuring internal flow in the droplet movement behavior according to claim 1, wherein laser sheet light is used as the sheet light. 固体表面上で液滴を移動させる、請求項1または2に記載の液滴移動挙動における内部流動測定方法。   The method for measuring internal flow in a droplet movement behavior according to claim 1 or 2, wherein the droplet is moved on a solid surface. 1μm〜220μmの粒子を0.01〜20wt%の濃度で混入する、請求項1〜3のいずれかに記載の液滴移動挙動における内部流動測定方法。   The internal flow measurement method in the droplet movement behavior according to any one of claims 1 to 3, wherein particles of 1 µm to 220 µm are mixed at a concentration of 0.01 to 20 wt%. 液滴断面部の全速度成分から、液滴の前方及び/又は後方端点を用いて求めた進行方向の移動速度成分を差分し、液滴内部流動の速度成分のみを抽出する、請求項1〜4のいずれかに記載の液滴移動挙動における内部流動測定方法。   The moving velocity component in the traveling direction obtained by using the front and / or rear end points of the droplet is subtracted from the total velocity component of the droplet cross-section, and only the velocity component of the droplet internal flow is extracted. 5. The internal flow measurement method in the droplet movement behavior according to any one of 4 above. 移動する液滴の側方に、一定以上の波長の光を反射し残りを透過する反射・透過フィルター又は一定以上の波長の光を透過し残りを反射する反射・透過フィルターを設置し、同一光軸の光を分岐させて、同一光軸の映像を複数のカメラで撮影できるように光学系を配置し、前記混入粒子による可視化映像と、液滴移動挙動を測定するためのシルエット映像を同時に撮影する、請求項1〜5のいずれかに記載の液滴移動挙動における内部流動測定方法。   On the side of the moving droplet, a reflection / transmission filter that reflects light of a certain wavelength and transmits the rest or a reflection / transmission filter that transmits light of a certain wavelength and reflects the rest is installed. The optical system is arranged so that images of the same optical axis can be taken by multiple cameras by splitting the light of the axis, and the visualization image by the mixed particles and the silhouette image for measuring the droplet movement behavior are simultaneously shot The internal flow measurement method in the droplet movement behavior according to any one of claims 1 to 5. 液滴移動挙動と液滴内部流動を同時に計測する、請求項1〜6のいずれかに記載の液滴移動挙動における内部流動測定方法。   The method for measuring internal flow in droplet movement behavior according to any one of claims 1 to 6, wherein the droplet movement behavior and the internal flow of the droplet are measured simultaneously. 請求項1〜7のいずれかに記載の方法の少なくとも1つを用いる手段を含むことを特徴とする液滴移動挙動における内部流動測定装置。   An apparatus for measuring internal flow in a droplet movement behavior, comprising means for using at least one of the methods according to claim 1.
JP2006076439A 2006-03-20 2006-03-20 Method and instrument for measuring internal flow in droplet dropping behavior Pending JP2007248436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006076439A JP2007248436A (en) 2006-03-20 2006-03-20 Method and instrument for measuring internal flow in droplet dropping behavior

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006076439A JP2007248436A (en) 2006-03-20 2006-03-20 Method and instrument for measuring internal flow in droplet dropping behavior

Publications (1)

Publication Number Publication Date
JP2007248436A true JP2007248436A (en) 2007-09-27

Family

ID=38592875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006076439A Pending JP2007248436A (en) 2006-03-20 2006-03-20 Method and instrument for measuring internal flow in droplet dropping behavior

Country Status (1)

Country Link
JP (1) JP2007248436A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225720A (en) * 2011-04-19 2012-11-15 Hosokawa Micron Corp Angle measurement apparatus of powder sedimentation layer
JP2013029423A (en) * 2011-07-28 2013-02-07 Toshiba Corp Flow velocity and grain size measurement method, and system therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154666A (en) * 1982-03-10 1983-09-14 Mitsubishi Heavy Ind Ltd Method for measuring flow trace and camera for photographing flow trace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154666A (en) * 1982-03-10 1983-09-14 Mitsubishi Heavy Ind Ltd Method for measuring flow trace and camera for photographing flow trace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225720A (en) * 2011-04-19 2012-11-15 Hosokawa Micron Corp Angle measurement apparatus of powder sedimentation layer
JP2013029423A (en) * 2011-07-28 2013-02-07 Toshiba Corp Flow velocity and grain size measurement method, and system therefor

Similar Documents

Publication Publication Date Title
JP4563890B2 (en) Method and apparatus for measuring droplet movement behavior
Backholm et al. Water droplet friction and rolling dynamics on superhydrophobic surfaces
Ragni et al. Particle tracer response across shocks measured by PIV
Dussaud et al. Dynamics of spontaneous spreading with evaporation on a deep fluid layer
Ahn et al. The boiling phenomenon of alumina nanofluid near critical heat flux
Stöhr et al. Visualization of gas–liquid mass transfer and wake structure of rising bubbles using pH-sensitive PLIF
JP2006300824A (en) Fluid visualization measuring device and fluid visualization measuring method
JP2002257708A (en) Method of measuring size and distribution of fine bubble and fine droplet, and measuring optical system for measuring size and distribution of fine bubble and fine droplet
JP2004361291A (en) Droplet state measuring device and state measuring method
JP2007010524A (en) Apparatus and method for measuring velocity distribution in micropassage
JP2007248436A (en) Method and instrument for measuring internal flow in droplet dropping behavior
Cernuschi et al. Accurate particle speed prediction by improved particle speed measurement and 3-dimensional particle size and shape characterization technique
CN110118706A (en) A kind of spraying field distribution measuring mehtod of computed tomography scanning formula
JP2004340619A (en) Atomization measuring method and instrument
Vargas et al. Mechanism of water droplet breakup near the leading edge of an airfoil
JP2005164560A (en) Dark-field particle measurement device and method therefor
JP3211825B1 (en) Method and apparatus for measuring diameter and distribution of microbubbles and microdroplets
JP2008014860A (en) Fluid visualization measuring device and fluid visualization measurement method
JP2008046110A (en) Method and apparatus for measuring shape of droplet
Erinin et al. Comparison between shadow imaging and in-line holography for measuring droplet size distributions
Foltyn et al. Measurement of the lamella thickness during droplet impact onto differently wettable smooth surfaces using an extension of the LASER Pattern Shift Method with naturally occurring patterns
Usmanova et al. The study of vortexes based on the multi colored particle image velocimetry technique
Asl et al. Digital holographic microscopy for measurement of instantaneous contact angle of an evaporating droplet
Beringer et al. Noninvasive imaging of a liquid jet
JP2003270261A (en) Local space average particle tracing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090210

A977 Report on retrieval

Effective date: 20100903

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100910

A02 Decision of refusal

Effective date: 20110107

Free format text: JAPANESE INTERMEDIATE CODE: A02