JP2007248390A - Breakage life evaluation device - Google Patents

Breakage life evaluation device Download PDF

Info

Publication number
JP2007248390A
JP2007248390A JP2006075273A JP2006075273A JP2007248390A JP 2007248390 A JP2007248390 A JP 2007248390A JP 2006075273 A JP2006075273 A JP 2006075273A JP 2006075273 A JP2006075273 A JP 2006075273A JP 2007248390 A JP2007248390 A JP 2007248390A
Authority
JP
Japan
Prior art keywords
crystal grain
grain size
life
average crystal
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006075273A
Other languages
Japanese (ja)
Inventor
Keiji Kubushiro
圭司 久布白
Natsuki Yoneyama
夏樹 米山
Takuya Ito
拓哉 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2006075273A priority Critical patent/JP2007248390A/en
Publication of JP2007248390A publication Critical patent/JP2007248390A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance life prediction precision and practical usability, when evaluating a breakage life, by inspecting a change in a surface texture of an evaluating object, using an EBSP method. <P>SOLUTION: This breakage life evaluation device is provided with an electron beam irradiating means for irradiating a sample of the evaluating object with an electron beam, while scanned, a photographing means for photographing an electron backscattered analytical image formed by backscattering the electron beam emitted to the sample, an image processing means for generating a crystal grain boundary distribution in a prescribed area of the sample, by image-processing the electron backscattered analytical image, an average crystal grain size calculating means for calculating an average crystal grain size, based on the crystal grain boundary distribution, a breakage life determination means for determining the breakage life of the evaluating object, based on a characteristic curve for indicating a correlation between the average crystal grain size and the breakage life of the evaluating object, and based on the average crystal grain size calculated by the average crystal grain size calculating means, and an output means for outputting a determination result of the breakage life. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、破壊寿命評価装置に関する。   The present invention relates to a fracture life evaluation apparatus.

ボイラー管やガスタービンエンジンの動翼等、高温・高応力に曝される金属部品には、経年劣化による疲労破壊やクリープ破壊等が生じる恐れがある。従って、このような金属部品の破壊寿命を正確且つ定量的に予測することは、当該金属部品の検査や交換等の時期を計画する上で非常に重要である。   Metal parts exposed to high temperatures and high stresses such as boiler tubes and gas turbine engine rotor blades may be subject to fatigue failure or creep failure due to aging. Therefore, accurately and quantitatively predicting the fracture life of such metal parts is very important in planning the timing of inspection and replacement of the metal parts.

従来では、クリープ破壊寿命を定量的に評価する方法として、所定の使用時間の経過毎に、金属部品の表面組織のレプリカを採取し、当該表面組織の時間的変化を検査することで余寿命を予測する方法や、ラーソン・ミラー曲線に基づいてクリープ破壊寿命を予測し、上記金属部品の使用時間が予測されたクリープ破壊寿命に到達すると、金属部品の検査対象領域において発生した空孔(ボイド)の面積率の検査を行い、事前に実験より求めたボイド面積率と寿命消費率との関係を示す特性曲線に基づいて余寿命を予測する方法等が知られている。   Conventionally, as a method for quantitatively evaluating the creep rupture life, a replica of the surface structure of a metal part is collected at each elapse of a predetermined use time, and the remaining life is checked by examining the temporal change of the surface structure. When the creep failure life is predicted based on the prediction method or the Larson-Miller curve, and the usage time of the metal part reaches the predicted creep failure life, voids generated in the inspection area of the metal part (void) A method for predicting the remaining life based on a characteristic curve indicating the relationship between the void area ratio and the lifetime consumption rate obtained by experiments in advance is known.

しかしながら、例えば、改良9Cr−1Mo鋼等の高Cr系材料からなる金属部品の場合、上記のようなクリープによる表面組織の変化が非常に微細であるため、レプリカを採取して表面組織の時間的変化を検査することができず、また、ボイドも金属部品内部には発生するが、表面には発生しないという問題がある。このような問題を解決するために、例えば、特開2005−24389号公報には、EBSP(Electron Back Scatter Diffraction Pattern)法を用いて、金属部品における特定の結晶粒について平均結晶方位差を測定し、事前に実験により求めたクリープ環境下での平均結晶方位差と寿命消費率との関係を示す特性曲線(図7参照)に基づいて余寿命を予測する技術が開示されている。
特に、母材と溶接継手部との溶接部分には溶接熱影響部が生じ、一般的にクリープ破壊はこの溶接熱影響部にて発生すると考えられているが、今までにその組織の複雑さから、評価方法が検討されていなかった。
特開2005−24389号公報
However, for example, in the case of a metal part made of a high Cr material such as modified 9Cr-1Mo steel, the change in surface texture due to creep as described above is very fine. There is a problem that the change cannot be inspected and voids are generated inside the metal part but not on the surface. In order to solve such a problem, for example, Japanese Patent Application Laid-Open No. 2005-24389 discloses an EBSP (Electron Back Scatter Diffraction Pattern) method for measuring an average crystal orientation difference for specific crystal grains in a metal part. A technique for predicting the remaining life based on a characteristic curve (see FIG. 7) showing the relationship between the average crystal orientation difference and the life consumption rate under a creep environment obtained in advance by experiments is disclosed.
In particular, a weld heat-affected zone occurs at the weld between the base metal and the welded joint, and creep rupture is generally considered to occur at this weld heat-affected zone. Therefore, the evaluation method was not examined.
JP 2005-24389 A

ところで、上記従来技術のように、EBSP法を用いて平均結晶方位差を測定する場合、試料表面の研磨状態や、測定装置に設けられたチャンバの真空度、測定装置の振動等、各種測定条件のバラツキによって、平均結晶方位差の測定値が大きく変動し、再現性の確保が困難であるという問題がある。従って、平均結晶方位差の再現性を確保するためには、研究所に匹敵する施設にて測定を行う必要があり、現場レベルでの対応が難しく、実用性に乏しかった。  By the way, when the average crystal orientation difference is measured using the EBSP method as in the above-described prior art, various measurement conditions such as the polishing state of the sample surface, the degree of vacuum of the chamber provided in the measurement apparatus, the vibration of the measurement apparatus, etc. Due to this variation, the measured value of the average crystal orientation difference greatly fluctuates, and it is difficult to ensure reproducibility. Therefore, in order to ensure the reproducibility of the average crystal orientation difference, it is necessary to perform the measurement at a facility comparable to the laboratory, and it is difficult to deal with at the field level and the practicality is poor.

また、図7に示す平均結晶方位差と寿命消費率との関係を示す特性曲線を用いたクリープ破壊寿命の予測において、最も重要な情報は、寿命消費率40%以降の特性である。しかしながら、図7からわかるように、寿命消費率40%〜60%の間において、平均結晶方位差の時間的変化はほとんどなく、およそ60%〜80%の間では大きな変化があるものの、およそ80%〜100%の間では緩やかな変化しかない。よって、測定した平均結晶方位差の変化に対する応答性が悪く、寿命予測精度が低いという問題がある。  In the prediction of the creep rupture life using the characteristic curve showing the relationship between the average crystal orientation difference and the life consumption rate shown in FIG. 7, the most important information is the property after the life consumption rate of 40%. However, as can be seen from FIG. 7, there is almost no temporal change in the average crystal orientation difference between the lifetime consumption rates of 40% to 60%, and there is a large change between about 60% and 80%, but about 80%. There is only a gradual change between% and 100%. Therefore, there is a problem that the response to changes in the measured average crystal orientation difference is poor and the life prediction accuracy is low.

本発明は、上述した事情に鑑みてなされたものであり、EBSP法を用いて評価対象物の表面組織の変化を検査することで破壊寿命を評価する場合において、寿命予測精度及び実用性の向上を目的とする。  The present invention has been made in view of the above-described circumstances, and in the case of evaluating the fracture life by inspecting the change in the surface texture of the evaluation object using the EBSP method, the life prediction accuracy and practicality are improved. With the goal.

上記目的を達成するため、本発明では、破壊寿命評価装置に係る第1の解決手段として、評価対象物の試料に対して電子線を走査しながら照射する電子線照射手段と、前記試料に照射された電子線が後方散乱することで形成された電子後方散乱解析像を撮影する撮影手段と、当該撮影手段によって撮影された電子後方散乱解析像を画像処理することにより前記試料の所定領域における結晶粒界分布を生成する画像処理手段と、前記結晶粒界分布に基づいて平均結晶粒径を算出する平均結晶粒径算出手段と、事前に求めた、前記平均結晶粒径と前記評価対象物の破壊寿命との関係を示す特性曲線と、前記平均結晶粒径算出手段にて算出された平均結晶粒径とに基づいて、前記評価対象物の破壊寿命を判定する破壊寿命判定手段と、当該破壊寿命判定手段による破壊寿命の判定結果を出力する出力手段とを具備する、という手段を採用する。   In order to achieve the above object, in the present invention, as a first solving means related to a fracture life evaluation apparatus, an electron beam irradiation means for irradiating a sample of an evaluation object while scanning an electron beam, and irradiating the sample A photographing means for photographing an electron backscattering analysis image formed by the backscattering of the electron beam, and a crystal in a predetermined region of the sample by image processing the electron backscattering analysis image photographed by the photographing means. Image processing means for generating a grain boundary distribution, average crystal grain size calculating means for calculating an average crystal grain size based on the crystal grain boundary distribution, and the average crystal grain size and the evaluation object obtained in advance. Based on a characteristic curve indicating a relationship with the fracture life and the average crystal grain size calculated by the average crystal grain size calculation unit, a fracture life determination unit that determines the fracture life of the evaluation object, and the breakdown lifespan And an output means for outputting the judgment result of the breakdown lifetime by constant means, to adopt a means of.

また、本発明では、破壊寿命評価装置に係る第2の解決手段として、上記第1の解決手
段において、前記画像処理手段は、前記試料の所定領域における結晶方位差が15°以上
の結晶粒界分布を生成し、前記平均結晶粒径算出手段は、前記結晶方位差が15°以上の
結晶粒界分布に基づいて平均結晶粒径を算出し、前記破壊寿命判定手段は、事前に求めた、
前記結晶方位差が15°以上の結晶粒界分布に基づいて得られる平均結晶粒径と前記評価
対象物の破壊寿命との関係を示す特性曲線と、前記平均結晶粒径算出手段にて算出された
平均結晶粒径とに基づいて前記評価対象物の破壊寿命を判定することを特徴とする。
According to the present invention, as the second solving means relating to the fracture life evaluation apparatus, in the first solving means, the image processing means includes a grain boundary having a crystal orientation difference of 15 ° or more in a predetermined region of the sample. A distribution is generated, the average crystal grain size calculating means calculates the average crystal grain size based on a grain boundary distribution having a crystal orientation difference of 15 ° or more, and the fracture life determining means is obtained in advance.
A characteristic curve showing the relationship between the average crystal grain size obtained based on the grain boundary distribution with the crystal orientation difference of 15 ° or more and the fracture life of the evaluation object, and the average crystal grain size calculating means The fracture life of the evaluation object is determined based on the average crystal grain size.

また、本発明では、破壊寿命評価装置に係る第3の解決手段として、上記第1または第
2の解決手段において、前記評価対象物は、高Cr系材料の溶接継手部であることを特徴とする
Further, in the present invention, as the third solving means relating to the fracture life evaluation apparatus, in the first or second solving means, the evaluation object is a welded joint portion of a high Cr material. Do

また、本発明では、破壊寿命評価装置に係る第4の解決手段として、上記第1〜3いず
れかの解決手段において、前記破壊寿命判定手段は、事前に求めた、前記平均結晶粒径と前記評価対象物のクリープ破壊寿命との関係を示す特性曲線と、前記平均結晶粒径算出手段にて算出された平均結晶粒径とに基づいて、前記評価対象物のクリープ破壊寿命を判定することを特徴とする。
Further, in the present invention, as a fourth solving means related to the fracture life evaluation apparatus, in any one of the above-mentioned first to third solving means, the breaking life determination means determines the average crystal grain size and the above-mentioned obtained in advance. Determining the creep rupture life of the evaluation object based on a characteristic curve showing a relationship with the creep rupture life of the evaluation object and the average crystal grain size calculated by the average crystal grain size calculating means. Features.

本発明によれば、EBSP法を用いて評価対象物の表面組織の変化を検査することで破壊寿命を評価する場合において、寿命消費率に対する時間的変化の大きい平均結晶粒径に基づいて破壊寿命を予測するため、従来と比べて精度良く、評価対象物の破壊寿命を予測することが可能である。また、上記のような平均結晶粒径は、試料表面の研磨状態や、破壊寿命予測装置に設けられたチャンバの真空度、破壊寿命予測装置の振動等、各種測定条件のバラツキに依存しない再現性の高いパラメータであるので、現場レベルでの対応が可能であり、実用性の向上を図ることができる。   According to the present invention, in the case where the fracture life is evaluated by inspecting the change in the surface texture of the evaluation object using the EBSP method, the fracture life is based on the average crystal grain size having a large temporal change with respect to the life consumption rate. Therefore, it is possible to predict the fracture life of the evaluation object with higher accuracy than in the past. In addition, the average crystal grain size as described above is reproducibility independent of variations in various measurement conditions such as the polishing state of the sample surface, the degree of vacuum of the chamber provided in the fracture life prediction device, and the vibration of the fracture life prediction device. Therefore, it is possible to cope with at the field level and improve the practicality.

以下、図面を参照して、本発明の一実施形態について説明する。図1は、本発明の実施形態に係る破壊寿命評価装置の構成概略図である。この図に示すように、本破壊寿命評価装置は、PC(Personal Computer)1、SEM(Scanning Electron Microscope)制御ユニット2、電子線照射部3、真空チャンバ4、試料用ステージ5、ステージ制御ユニット6、カメラ7及びカメラ制御ユニット8から構成されている。また、符号Xは、例えば改良9Cr−1Mo鋼(高Cr系材料)からなるボイラー管の溶接継手部(評価対象物)の切片であり、実際にプラントの配管として使用されているボイラー管において、クリープ破壊の恐れがある溶接継手部の検査対象領域から試料として採取したものである。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a fracture life evaluation apparatus according to an embodiment of the present invention. As shown in this figure, this fracture life evaluation apparatus includes a PC (Personal Computer) 1, a SEM (Scanning Electron Microscope) control unit 2, an electron beam irradiation unit 3, a vacuum chamber 4, a sample stage 5, and a stage control unit 6. The camera 7 and the camera control unit 8 are configured. Moreover, the code | symbol X is a section | slice of the welded joint part (evaluation object) of the boiler pipe which consists of improved 9Cr-1Mo steel (high Cr system material), for example, In the boiler pipe actually used as piping of a plant, The sample was taken from the inspection target area of the welded joint where there was a risk of creep fracture.

PC1は、図1に示すように、画像処理部1b、平均結晶粒径算出部1c及び破壊寿命判定部1dを内部に備える制御部1a、記憶部1e及び表示部1f(出力手段)から構成されている。制御部1aは、記憶部1eに予め記憶されているEBSP法用の制御プログラムに基づいて、画像処理部1b、平均結晶粒径算出部1c、破壊寿命判定部1d、SEM制御ユニット2、ステージ制御ユニット6及びカメラ制御ユニット8を制御する。   As shown in FIG. 1, the PC 1 includes an image processing unit 1b, an average crystal grain size calculation unit 1c, and a control unit 1a having a fracture life determination unit 1d therein, a storage unit 1e, and a display unit 1f (output means). ing. The control unit 1a is based on an EBSP method control program stored in advance in the storage unit 1e. The image processing unit 1b, the average crystal grain size calculation unit 1c, the fracture life determination unit 1d, the SEM control unit 2, and the stage control The unit 6 and the camera control unit 8 are controlled.

画像処理部1bは、制御部1aの制御の下、カメラ制御ユニット8から入力される画像信号、つまりカメラ7によって撮影された電子後方散乱解析像をEBSP法に基づいて画像処理し、試料X上の所定領域において電子線が照射された位置(照射ポイント)の結晶方位を判定すると共に、電子線が走査上に照射された試料X上の各照射ポイント毎に得られた結晶方位を、当該各照射ポイントの位置情報と共に順次記憶部1eに記憶させる。さらに、画像処理部1bは、記憶部1eに記憶された上記各照射ポイントの位置情報と、当該位置情報に対応する結晶方位とに基づいて、結晶方位差が15°以上の結晶粒界の分布データを生成し、当該結晶粒界分布データを平均結晶粒径算出部1cに出力する。   Under the control of the control unit 1a, the image processing unit 1b performs image processing on an image signal input from the camera control unit 8, that is, an electronic backscatter analysis image taken by the camera 7, based on the EBSP method, The crystal orientation of the position (irradiation point) irradiated with the electron beam in the predetermined region is determined, and the crystal orientation obtained for each irradiation point on the sample X irradiated with the electron beam on the scan is The information is sequentially stored in the storage unit 1e together with the position information of the irradiation points. Furthermore, the image processing unit 1b, based on the position information of each irradiation point stored in the storage unit 1e and the crystal orientation corresponding to the position information, the distribution of crystal grain boundaries having a crystal orientation difference of 15 ° or more. Data is generated, and the grain boundary distribution data is output to the average crystal grain size calculator 1c.

平均結晶粒径算出部1cは、制御部1aの制御の下、上記結晶粒界分布データに基づいて、試料Xの所定領域に存在する結晶粒の平均結晶粒径を算出し、当該平均結晶粒径を示す平均結晶粒径信号を破壊寿命判定部1dに出力する。   The average crystal grain size calculation unit 1c calculates the average crystal grain size of crystal grains existing in a predetermined region of the sample X based on the crystal grain boundary distribution data under the control of the control unit 1a. An average crystal grain size signal indicating the diameter is output to the fracture life determination unit 1d.

破壊寿命判定部1dは、制御部1aの制御の下、上記平均結晶粒径信号と、記憶部1eに予め記憶されている、平均結晶粒径とボイラー管の溶接継手部のクリープ破壊寿命との関係を示す特性曲線(以下余寿命曲線という)データとに基づいて、上記ボイラー管の溶接継手部のクリープ破壊寿命を判定する。より具体的には、上記余寿命曲線は、図2に示すように、平均結晶粒径と寿命消費率との関係を示すものであり、破壊寿命判定部1dは、平均結晶粒径算出部1cにて算出された平均結晶粒径と、図2の余寿命曲線とに基づいて、クリープ破壊に至るまでの余寿命を判定し、当該余寿命を表示部1fに表示させるための、余寿命表示信号を表示部1fに出力する。なお、上記余寿命曲線は、改良9Cr−1Mo鋼からなるボイラー管の溶接継手部を使用したクリープ破壊試験から事前に求められているものである。  Under the control of the control unit 1a, the fracture life determination unit 1d determines the average crystal grain size signal and the average crystal grain size and the creep rupture life of the welded joint of the boiler tube, which are stored in advance in the storage unit 1e. The creep rupture life of the welded joint portion of the boiler pipe is determined based on characteristic curve (hereinafter referred to as remaining life curve) data indicating the relationship. More specifically, as shown in FIG. 2, the remaining life curve shows the relationship between the average crystal grain size and the lifetime consumption rate, and the fracture life determination unit 1d includes the average crystal grain size calculation unit 1c. The remaining life display for determining the remaining life until creep rupture and displaying the remaining life on the display unit 1f based on the average crystal grain size calculated in step 1 and the remaining life curve of FIG. The signal is output to the display unit 1f. In addition, the said remaining life curve is calculated | required in advance from the creep fracture test using the welded joint part of the boiler pipe which consists of improved 9Cr-1Mo steel.

記憶部1eは、制御部1aが実行するEBSP法用の制御プログラムや他のシステムプログラム等を予め記憶すると共に、画像処理部1bの要求に応じて、電子線が走査上に照射された試料X上の各照射ポイント毎に得られた結晶方位を当該各照射ポイントの位置情報と共に記憶する。また、この記憶部1eは、図2に示す余寿命曲線データを予め記憶しており、破壊寿命判定部1dの要求に応じて、上記余寿命曲線データを破壊寿命判定部1dに出力する。表示部1fは、例えば液晶モニタであり、破壊寿命判定部1dから入力される余寿命表示信号を基に、ボイラー管の溶接継手部がクリープ破壊に至るまでの余寿命を表示する。  The storage unit 1e stores in advance a control program for the EBSP method executed by the control unit 1a, other system programs, and the like, and a sample X irradiated with an electron beam on the scan in response to a request from the image processing unit 1b. The crystal orientation obtained for each irradiation point is stored together with the position information of each irradiation point. Further, the storage unit 1e stores in advance the remaining life curve data shown in FIG. 2, and outputs the remaining life curve data to the failure life determination unit 1d in response to a request from the failure life determination unit 1d. The display unit 1f is, for example, a liquid crystal monitor, and displays the remaining life until the welded joint portion of the boiler tube reaches creep failure based on the remaining life display signal input from the failure life determination unit 1d.

SEM制御ユニット2は、PC1における制御部1aの制御の下、電子線照射部3の電子線照射動作を制御する。より具体的には、SEM制御ユニット2は、電子線の照射エネルギ、照射タイミング、走査方向等を制御するものである。電子線照射部3は、電子銃3a、電子レンズ3b、対物レンズ3c及び走査コイル3dから構成されている。電子銃3aは、SEM制御ユニット2による制御の下、所定の加速電圧によって電子線を電子レンズ3bに出射する。電子レンズ3bは、電子銃3aから入射された電子線を収束させて対物レンズ3cに出射する。対物レンズ3cは、電子レンズ3bから入射された電子線が試料X上で焦点を結ぶように当該電子線を試料X上の照射ポイントに照射する。上記電子レンズ3bと対物レンズ3cとの間には走査コイル3dが設けられており、当該走査コイル3dは、SEM制御ユニット2の制御の下、対物レンズ3cに対する電子線の入射方向を変化させる。これにより電子線は、走査状に試料Xに照射されることになる。  The SEM control unit 2 controls the electron beam irradiation operation of the electron beam irradiation unit 3 under the control of the control unit 1 a in the PC 1. More specifically, the SEM control unit 2 controls electron beam irradiation energy, irradiation timing, scanning direction, and the like. The electron beam irradiation unit 3 includes an electron gun 3a, an electron lens 3b, an objective lens 3c, and a scanning coil 3d. The electron gun 3a emits an electron beam to the electron lens 3b with a predetermined acceleration voltage under the control of the SEM control unit 2. The electron lens 3b converges the electron beam incident from the electron gun 3a and emits it to the objective lens 3c. The objective lens 3c irradiates the irradiation point on the sample X with the electron beam so that the electron beam incident from the electron lens 3b is focused on the sample X. A scanning coil 3d is provided between the electron lens 3b and the objective lens 3c, and the scanning coil 3d changes the incident direction of the electron beam to the objective lens 3c under the control of the SEM control unit 2. As a result, the electron beam is irradiated onto the sample X in a scanning manner.

真空チャンバ4は、上記電子線照射部3の直下に連結され、図示しない真空ポンプによって内部気圧を高真空状態まで降下可能なチャンバであり、試料用ステージ5及びカメラ7を内部に備えている。試料用ステージ5は、試料Xを載せるための円盤形状のステージであり、図示しない5軸制御モータによって5軸方向に駆動可能に真空チャンバ4の内部に設けられている。ここで5軸とは、XYZ方向とR方向(つまり試料用ステージ5の回転方向)と、T方向(つまり試料用ステージ5の傾斜方向)を指す。ステージ制御ユニット6は、PC1における制御部1aの制御の下、上記試料用ステージ5(具体的には5軸制御モータ)の駆動制御を行う。つまり、ステージ制御ユニット6は、5軸制御モータの駆動を制御することにより、試料用ステージ5の傾斜角や回転角、XYZ座標を制御する。   The vacuum chamber 4 is a chamber connected directly below the electron beam irradiation unit 3 and capable of lowering the internal atmospheric pressure to a high vacuum state by a vacuum pump (not shown), and includes a sample stage 5 and a camera 7 inside. The sample stage 5 is a disk-shaped stage on which the sample X is placed, and is provided inside the vacuum chamber 4 so as to be driven in a 5-axis direction by a 5-axis control motor (not shown). Here, the five axes indicate the XYZ direction, the R direction (that is, the rotation direction of the sample stage 5), and the T direction (that is, the tilt direction of the sample stage 5). The stage control unit 6 performs drive control of the sample stage 5 (specifically, a 5-axis control motor) under the control of the control unit 1a in the PC 1. That is, the stage control unit 6 controls the tilt angle, rotation angle, and XYZ coordinates of the sample stage 5 by controlling the drive of the 5-axis control motor.

カメラ7は、例えば高感度CCD(Charge Coupled Devices)カメラ等であり、真空チャンバ4内部において電子線の照射方向に対して略垂直に設けられ、カメラ制御ユニット8の制御の下、試料Xに電子線が照射されることによって生じる電子後方散乱解析像を撮影し、当該電子後方散乱解析像を示す画像信号をカメラ制御ユニット8に出力する。カメラ制御ユニット8は、PC1における制御部1aの制御の下、上記カメラ7の撮影タイミング、露光時間、焦点合わせ等の制御を行うと共に、カメラ7から入力される画像信号を画像処理部1bに出力する。   The camera 7 is, for example, a high-sensitivity CCD (Charge Coupled Devices) camera or the like, and is provided substantially perpendicular to the irradiation direction of the electron beam inside the vacuum chamber 4, and an electron is applied to the sample X under the control of the camera control unit 8. An electron backscatter analysis image generated by the irradiation of the line is taken, and an image signal indicating the electron backscatter analysis image is output to the camera control unit 8. The camera control unit 8 controls the photographing timing, exposure time, focusing, and the like of the camera 7 under the control of the control unit 1a in the PC 1, and outputs an image signal input from the camera 7 to the image processing unit 1b. To do.

なお、本破壊寿命予測装置は従来のSEM装置を流用できるため、図示は省略したが、試料Xに電子線が照射されることで発生する2次電子を検出し、当該2次電子の発生量を輝度信号に変換してPC1の制御部1aに出力する2次電子検出部が真空チャンバ4内部に設けられており、制御部1aは、当該2次電子検出部から入力される輝度信号に基づいてSEM画像を表示部1fに表示させる機能を備えている。   Since the present fracture life prediction apparatus can use a conventional SEM apparatus, the illustration is omitted, but secondary electrons generated by irradiating the sample X with an electron beam are detected, and the amount of generation of the secondary electrons is detected. Is converted into a luminance signal, and a secondary electron detector that outputs the signal to the controller 1a of the PC 1 is provided inside the vacuum chamber 4, and the controller 1a is based on the luminance signal input from the secondary electron detector. The SEM image is displayed on the display unit 1f.

次に、このように構成された本破壊寿命予測装置を用いた破壊寿命予測処理手順について、図3のフローチャートを用いて以下説明する。   Next, a breakdown life prediction processing procedure using the breakdown life prediction apparatus configured as described above will be described below with reference to the flowchart of FIG.

まず、所定の使用時間が経過したボイラー管の溶接継手部について、クリープ破壊の恐れがある検査対象領域の切片、つまり試料Xを採取する(ステップS1)。
ここで、溶接継手部の検査対象領域について説明する。例えば、図4に示すように、改良9Cr−1Mo鋼からなるボイラー管に溶接を施した場合、母材10と溶接継手部11との溶接部分には、溶接熱影響部(HAZ:Heat Affected Zone)12が生じる。一般的に、クリープ破壊は、HAZ12内に形成される細粒域13において発生することが知られている。このような細粒域13は、焼きならしマルテンサイト結晶粒及び焼き戻しマルテンサイト結晶粒が混在し、微細な組織構造となる領域であり、クリープボイドが発生しやすい。本実施形態では、検査対象領域を上記細粒域13とし、当該細粒域13から試料Xを採取する。実際の試験を行なう上では、ボイラー管外から表面部に出ているHAZ12から試料Xを採取して評価を行う。
First, for a welded joint portion of a boiler tube for which a predetermined usage time has elapsed, a section of a region to be inspected that may cause a creep failure, that is, a sample X is collected (step S1).
Here, the inspection object area of the welded joint will be described. For example, as shown in FIG. 4, when welding is performed on a boiler tube made of improved 9Cr-1Mo steel, a weld heat affected zone (HAZ: Heat Affected Zone) is formed on the welded portion between the base material 10 and the welded joint portion 11. ) 12 is generated. In general, it is known that creep fracture occurs in the fine grain region 13 formed in the HAZ 12. Such a fine grain region 13 is a region in which normalized martensite crystal grains and tempered martensite crystal grains are mixed to form a fine structure, and creep voids are likely to occur. In the present embodiment, the region to be inspected is the fine particle region 13, and the sample X is collected from the fine particle region 13. In conducting an actual test, a sample X is taken from the HAZ 12 that is exposed from the outside of the boiler tube to the surface portion, and evaluation is performed.

続いて、試料Xの加工を行う(ステップS2)。ここで、試料Xの加工とは、まず、試料Xを試料用ステージ5に設置可能な大きさに切断した後、試料Xの表面に研磨もしくは電解研磨を施す。   Subsequently, the sample X is processed (step S2). Here, the processing of the sample X is performed by first cutting the sample X into a size that can be set on the sample stage 5 and then polishing or electrolytic polishing the surface of the sample X.

次に、上記のように加工を終えた試料Xを試料用ステージ5に設置する(ステップS3)。具体的には、真空ポンプを操作して真空チャンバ4の内部を大気圧に戻し、試料挿入ロッドに試料Xを取り付け、真空チャンバ4に設けられた試料取入れ口(図示せず)より上記試料挿入ロッドを挿入し、試料Xを試料用ステージ5上に設置する。試料Xの設置が完了したら試料挿入ロッドを取り除き、真空ポンプを操作して真空チャンバ4の内部気圧を所定の気圧(高真空)まで降下させる。   Next, the sample X that has been processed as described above is placed on the sample stage 5 (step S3). Specifically, the vacuum pump is operated to return the inside of the vacuum chamber 4 to atmospheric pressure, the sample X is attached to the sample insertion rod, and the sample is inserted from a sample inlet (not shown) provided in the vacuum chamber 4. The rod is inserted, and the sample X is set on the sample stage 5. When the installation of the sample X is completed, the sample insertion rod is removed and the vacuum pump is operated to lower the internal pressure of the vacuum chamber 4 to a predetermined pressure (high vacuum).

続いて、電子線の照射開始位置を決定する(ステップS4)。この場合、本破壊寿命予測装置のSEM機能を用いる。つまり、電子線照射部3より電子線を試料Xに照射し、PC1の表示部1fに表示されるSEM画像を確認しながら所望の照射開始位置を決定する。ここで、5軸制御モータの操作により試料用ステージ5を、水平に対して70°程度に傾斜させる。なお、本実施形態では、試料X上における電子線照射領域を20μm×20μmの範囲とし、0.2μmピッチで電子線を照射する。   Subsequently, the irradiation start position of the electron beam is determined (step S4). In this case, the SEM function of the present fracture life prediction apparatus is used. That is, the electron beam irradiation unit 3 irradiates the sample X with the electron beam, and determines a desired irradiation start position while confirming the SEM image displayed on the display unit 1 f of the PC 1. Here, the sample stage 5 is tilted to about 70 ° with respect to the horizontal by operating the 5-axis control motor. In the present embodiment, the electron beam irradiation region on the sample X is set to a range of 20 μm × 20 μm, and the electron beam is irradiated at a pitch of 0.2 μm.

そして、電子線の照射開始位置決定後、PC1においてEBSP法用の制御プログラムを起動し、電子線の照射を開始する(ステップS5)。PC1(具体的には制御部1a)は、EBSP法用の制御プログラムに基づいてSEM制御ユニット2及びカメラ制御ユニット8を制御し、当該制御により電子線は上記電子線照射領域に0.2μmピッチで走査状に照射され、当該照射によって生じる電子後方散乱解析像が各照射ポイント毎にカメラ7で撮影される。   Then, after determining the electron beam irradiation start position, the control program for the EBSP method is activated in the PC 1 to start the electron beam irradiation (step S5). The PC 1 (specifically, the control unit 1a) controls the SEM control unit 2 and the camera control unit 8 based on a control program for the EBSP method, and the electron beam is 0.2 μm pitch in the electron beam irradiation area by the control. The electron backscattering analysis image generated by the irradiation is captured by the camera 7 for each irradiation point.

カメラ7は、各照射ポイント毎に撮影した電子後方散乱解析像を示す画像信号をカメラ制御ユニット8を介して画像処理部1bに順次出力する。画像処理部1bは、上記のように入力される画像信号、つまり電子後方散乱解析像をEBSP法に基づいて画像処理し、各照射ポイント毎の結晶方位を判定すると共に、当該結晶方位を各照射ポイントの位置情報と共に順次記憶部1eに順次記憶させる(ステップS6)。なお、上記電子線照射領域の大きさや走査ピッチ量は任意に設定可能である。  The camera 7 sequentially outputs an image signal indicating an electronic backscattering analysis image taken for each irradiation point to the image processing unit 1b via the camera control unit 8. The image processing unit 1b processes the image signal input as described above, that is, the electron backscatter analysis image based on the EBSP method, determines the crystal orientation for each irradiation point, and applies the crystal orientation to each irradiation. The information is sequentially stored in the storage unit 1e together with the point position information (step S6). The size of the electron beam irradiation region and the scanning pitch amount can be arbitrarily set.

上記ステップS6において、電子線照射領域の全照射ポイントにおける結晶方位の判定が終了すると、画像処理部1bは、記憶部1eに記憶されている各照射ポイントの位置情報及び結晶方位を取得し、当該位置情報及び結晶方位を基に、電子線照射領域において、結晶方位差が15°以上の結晶粒界の分布データを生成し、当該結晶粒界分布データを平均結晶粒径算出部1cに出力する(ステップS7)。   When the determination of the crystal orientation at all the irradiation points in the electron beam irradiation region is completed in step S6, the image processing unit 1b acquires the position information and the crystal orientation of each irradiation point stored in the storage unit 1e, and Based on the position information and the crystal orientation, distribution data of crystal grain boundaries having a crystal orientation difference of 15 ° or more is generated in the electron beam irradiation region, and the crystal grain boundary distribution data is output to the average crystal grain size calculation unit 1c. (Step S7).

図5に上記結晶粒界分布データの一例を示す。図5(a)は、初期状態、つまり未使用のボイラー管の溶接継手部の試料Xから得られた結晶粒界分布データである。図5(b)は、寿命消費率60%、つまりクリープ破壊寿命の60%に相当する使用時間経過後のボイラー管の溶接継手部の試料Xから得られた結晶粒界分布データである。図5(c)は、寿命消費率100%、つまりクリープ破壊後のボイラー管の溶接継手部の試料Xから得られた結晶粒界分布データである。これらの図に示すように、クリープ環境下では、時間経過と共に、細粒域13の結晶粒は大きくなる。つまり、結晶粒の大きさの変化とクリープ破壊寿命との間には、相関関係があることがわかる。   FIG. 5 shows an example of the grain boundary distribution data. FIG. 5A shows grain boundary distribution data obtained from the initial state, that is, the sample X of the welded joint portion of an unused boiler tube. FIG. 5 (b) shows grain boundary distribution data obtained from the sample X of the welded joint portion of the boiler tube after the usage time corresponding to 60% of the life consumption rate, that is, 60% of the creep rupture life. FIG.5 (c) is the grain boundary distribution data obtained from the sample X of the welded joint part of the boiler pipe after a creep fracture, ie, 100% lifetime consumption rate. As shown in these figures, under the creep environment, the crystal grains in the fine grain region 13 become larger with time. That is, it can be seen that there is a correlation between the change in crystal grain size and the creep rupture life.

平均結晶粒径算出部1cは、上記のような結晶粒界分布データに基づいて、電子線照射領域における各結晶粒について結晶粒径(平均相当径)を算出し、これらを平均して平均結晶粒径を算出する(ステップS8)。そして、平均結晶粒径算出部1cは、当該平均結晶粒径を示す平均結晶粒径信号を破壊寿命判定部1dに出力する。   The average crystal grain size calculation unit 1c calculates a crystal grain size (average equivalent diameter) for each crystal grain in the electron beam irradiation region based on the above-described crystal grain boundary distribution data, and averages these to obtain an average crystal The particle size is calculated (step S8). Then, the average crystal grain size calculation unit 1c outputs an average crystal grain size signal indicating the average crystal grain size to the fracture life determination unit 1d.

破壊寿命判定部1dは、上記平均結晶粒径信号と、記憶部1eに記憶されている図2に示す余寿命曲線データとに基づいて、クリープ破壊に至るまでの余寿命を判定する(ステップS9)。より具体的には、例えば、平均結晶粒径算出部1cにて算出された平均結晶粒径が4μmであった場合、図2の余寿命曲線から寿命消費率は約65%であることがわかる。つまり、クリープ破壊に至るまでのボイラー管の溶接継手部の余寿命は、クリープ破壊寿命の45%と判定される。  The failure life determination unit 1d determines the remaining life until creep failure based on the average crystal grain size signal and the remaining life curve data shown in FIG. 2 stored in the storage unit 1e (step S9). ). More specifically, for example, when the average crystal grain size calculated by the average crystal grain size calculating unit 1c is 4 μm, it can be seen from the remaining life curve of FIG. 2 that the lifetime consumption rate is about 65%. . That is, the remaining life of the welded joint portion of the boiler pipe until creep rupture is determined to be 45% of the creep rupture life.

破壊寿命判定部1dは、上記のように判定した余寿命を表示部1fに表示させるための、余寿命表示信号を表示部1fに出力する。表示部1fは、破壊寿命判定部1dから入力される余寿命表示信号を基に、ボイラー管の溶接継手部がクリープ破壊に至るまでの余寿命を表示する(ステップS10)。  The breakdown life determination unit 1d outputs a remaining life display signal for displaying the remaining life determined as described above on the display unit 1f. The display unit 1f displays the remaining life until the welded joint portion of the boiler pipe undergoes creep failure based on the remaining life display signal input from the failure life determination unit 1d (step S10).

上記のように、結晶方位差が15°以上の結晶粒界分布データから平均結晶粒径を算出し、当該平均結晶粒径とクリープ破壊寿命との関係を示す余寿命曲線から余寿命を定量的に判定することができる。以下では、本実施形態において、結晶方位差が15°以上の結晶粒界分布データを求める理由について説明する。  As described above, the average crystal grain size is calculated from the grain boundary distribution data having a crystal orientation difference of 15 ° or more, and the remaining life is quantitatively determined from the remaining life curve indicating the relationship between the average crystal grain size and the creep fracture life. Can be determined. Hereinafter, the reason for obtaining crystal grain boundary distribution data having a crystal orientation difference of 15 ° or more in this embodiment will be described.

図6は、改良9Cr−1Mo鋼からなるボイラー管を使用したクリープ破壊試験から得られた、結晶方位差が3°以上(符号20)、10°以上(符号21)、15°以上(符号22)、30°以上(符号23)のそれぞれの結晶粒界分布について求めた余寿命曲線の実験データである。この図に示すように、結晶方位差が15°以上の場合、特に必要な情報である寿命消費率40%以降における平均結晶粒径の変化が最も大きい、すなわち、平均結晶粒径の変化に対する寿命消費率の応答性が良く、寿命予測精度が最も高い条件であることがわかる。   FIG. 6 shows a crystal orientation difference of 3 ° or more (reference numeral 20), 10 ° or more (reference numeral 21), or 15 ° or more (reference numeral 22) obtained from a creep fracture test using a boiler tube made of modified 9Cr-1Mo steel. ), Experimental data of a remaining life curve obtained for each grain boundary distribution of 30 ° or more (reference numeral 23). As shown in this figure, when the crystal orientation difference is 15 ° or more, the change of the average crystal grain size after the life consumption rate of 40%, which is particularly necessary information, is the largest, that is, the life against the change of the average crystal grain size. It can be seen that the consumption rate is responsive and the life prediction accuracy is the highest.

従って、本実施形態によれば、EBSP法を用いて評価対象物の表面組織の変化を検査することで破壊寿命を評価する場合において、従来と比べて精度良く、評価対象物の余寿命、つまりクリープ破壊寿命を予測することが可能である。また、上記のような平均結晶粒径は、試料表面の研磨状態や、破壊寿命予測装置に設けられたチャンバの真空度、破壊寿命予測装置の振動等、各種測定条件のバラツキに依存しない再現性の高いパラメータであるので、現場レベルでの対応が可能であり、実用性の向上を図ることができる。  Therefore, according to the present embodiment, when the fracture life is evaluated by inspecting the change in the surface texture of the evaluation object using the EBSP method, the remaining life of the evaluation object, that is, with a higher accuracy than in the past, It is possible to predict the creep rupture life. In addition, the average crystal grain size as described above is reproducibility independent of variations in various measurement conditions such as the polishing state of the sample surface, the degree of vacuum of the chamber provided in the fracture life prediction device, and the vibration of the fracture life prediction device. Therefore, it is possible to cope with at the field level and improve the practicality.

なお、本発明は、上記実施形態に限定されるものではなく、例えば以下のような変形例が考えられる。   In addition, this invention is not limited to the said embodiment, For example, the following modifications can be considered.

(1)上記実施形態では、評価対象物として、改良9Cr−1Mo鋼からなるボイラー管を例示して説明したが、これに限定されず、他の高Cr系材料からなる金属部品であれば本発明は適用可能である。また、高Cr系材料以外であっても、EBSP法でなければ確認できない程微細な組織構造をとり、且つクリープ破壊の進行に応じて、結晶粒径が変化するような材料であれば、本発明は適用可能である。 (1) In the above embodiment, a boiler tube made of improved 9Cr-1Mo steel has been exemplified and described as an evaluation object. However, the present invention is not limited to this, and any metal part made of another high Cr material may be used. The invention is applicable. Moreover, even if it is a material other than a high Cr system material, if the material has a fine structure that cannot be confirmed by the EBSP method and the crystal grain size changes with the progress of creep fracture, The invention is applicable.

(2)上記実施形態では、結晶方位差が15°以上の結晶粒界分布から平均結晶粒径を算出したが、これに限定されず、図6に示す他の条件(結晶方位差が3°以上、10°以上、30°以上)を使用しても良い。これらの条件を使用した場合、余寿命の予測精度は若干低下するが、従来と比べた場合、図6に示すように、寿命消費率40%以降における平均結晶粒径の変化が大きいので、予測精度の向上に寄与することができる。
また、上記結晶方位差は62.8°以内であれば、これを使用しても良い。この62.8°とは、EBSP法を行なうにあたっての最大角度θmaxであり、EBSP法における立方晶間の方位関係の傾向を示すMackenzieプロットにおける下記(1)式から求められる。
θmax=cos−1{(2+√2)/4}=62.8° ・・・・・(1)
(2) In the above embodiment, the average crystal grain size was calculated from the grain boundary distribution with a crystal orientation difference of 15 ° or more. However, the present invention is not limited to this, and other conditions shown in FIG. Above, 10 ° or more, 30 ° or more) may be used. When these conditions are used, the prediction accuracy of the remaining life slightly decreases, but when compared with the conventional case, as shown in FIG. 6, the change in the average crystal grain size after the life consumption rate of 40% is large. This can contribute to improvement in accuracy.
If the crystal orientation difference is within 62.8 °, it may be used. This 62.8 ° is the maximum angle θmax in performing the EBSP method, and is obtained from the following equation (1) in the Mackenzie plot showing the tendency of the orientation relation between the cubic crystals in the EBSP method.
θmax = cos −1 {(2 + √2) / 4} = 62.8 ° (1)

(3)上記実施形態では、クリープに起因する破壊寿命を予測する場合について説明したが、これに限定されず、EBSP法でなければ確認できない程微細な組織構造をとり、且つ時間の経過と共に結晶粒径が変化するような特徴を有する破壊原因であれば、本発明は適用可能である。 (3) In the above embodiment, the case where the fracture life due to creep is predicted has been described. However, the present invention is not limited to this, and has a fine structure that cannot be confirmed unless the EBSP method is used. The present invention can be applied to any cause of destruction having a characteristic that the particle size changes.

本発明の一実施形態に係る破壊寿命予測装置の構成概略図である。1 is a schematic configuration diagram of a fracture life prediction apparatus according to an embodiment of the present invention. 本発明の一実施形態に係る破壊寿命予測装置にて使用する余寿命曲線である。It is a remaining life curve used with the fracture life prediction apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態係る破壊寿命予測手順を示すフローチャート図である。It is a flowchart figure which shows the fracture life prediction procedure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る評価対象物の説明図である。It is explanatory drawing of the evaluation target object which concerns on one Embodiment of this invention. 本発明の一実施形態に係る破壊寿命予測装置にて得られる結晶粒界分布の一例である。It is an example of the grain boundary distribution obtained by the fracture life prediction apparatus according to an embodiment of the present invention. 本発明の一実施形態に係る各種条件に対応する余寿命曲線の実験データである。It is an experimental data of the remaining life curve corresponding to the various conditions which concern on one Embodiment of this invention. 従来技術で使用される平均結晶方位差と寿命消費率との関係を示す特性曲線である。It is a characteristic curve which shows the relationship between the average crystal orientation difference used by a prior art, and a lifetime consumption rate.

符号の説明Explanation of symbols

1…PC(Personal Computer)、1a…制御部、1b…画像処理部、1c…平均結晶粒径算出部、1d…破壊寿命判定部、1e…記憶部、1f…表示部、2…SEM(Scanning Electron Microscope)制御ユニット、3…電子線照射部、4…真空チャンバ、5…試料用ステージ、6…ステージ制御ユニット、7…カメラ、8…カメラ制御ユニット、X…試料   DESCRIPTION OF SYMBOLS 1 ... PC (Personal Computer), 1a ... Control part, 1b ... Image processing part, 1c ... Average crystal grain size calculation part, 1d ... Destruction life judgment part, 1e ... Storage part, 1f ... Display part, 2 ... SEM (Scanning) Electron Microscope) control unit, 3 ... electron beam irradiation unit, 4 ... vacuum chamber, 5 ... sample stage, 6 ... stage control unit, 7 ... camera, 8 ... camera control unit, X ... sample

Claims (4)

評価対象物の試料に対して電子線を走査しながら照射する電子線照射手段と、
前記試料に照射された電子線が後方散乱することで形成された電子後方散乱解析像
を撮影する撮影手段と、
当該撮影手段によって撮影された電子後方散乱解析像を画像処理することにより前記試料の所定領域における結晶粒界分布を生成する画像処理手段と、
前記結晶粒界分布に基づいて平均結晶粒径を算出する平均結晶粒径算出手段と、
事前に求めた、前記平均結晶粒径と前記評価対象物の破壊寿命との関係を示す特性曲線
と、前記平均結晶粒径算出手段にて算出された平均結晶粒径とに基づいて、前記評価対象
物の破壊寿命を判定する破壊寿命判定手段と、
当該破壊寿命判定手段による破壊寿命の判定結果を出力する出力手段と
を具備することを特徴とする破壊寿命評価装置。
An electron beam irradiation means for irradiating the sample of the evaluation object while scanning the electron beam;
Imaging means for photographing an electron backscattering analysis image formed by backscattering the electron beam irradiated on the sample;
Image processing means for generating a grain boundary distribution in a predetermined region of the sample by image processing an electron backscattering analysis image photographed by the photographing means;
An average crystal grain size calculating means for calculating an average crystal grain size based on the crystal grain boundary distribution;
Based on the characteristic curve indicating the relationship between the average crystal grain size and the fracture life of the evaluation object obtained in advance, and the average crystal grain size calculated by the average crystal grain size calculating means, the evaluation A destructive life judging means for judging the destructive life of the object;
A failure life evaluation apparatus comprising: output means for outputting a result of determination of the destruction life by the destruction life determination means.
前記画像処理手段は、前記試料の所定領域における結晶方位差が15°以上の結晶粒界
分布を生成し、
前記平均結晶粒径算出手段は、前記結晶方位差が15°以上の結晶粒界分布に基づいて
平均結晶粒径を算出し、
前記破壊寿命判定手段は、事前に求めた、前記結晶方位差が15°以上の結晶粒界分布
に基づいて得られる平均結晶粒径と前記評価対象物の破壊寿命との関係を示す特性曲線と、
前記平均結晶粒径算出手段にて算出された平均結晶粒径とに基づいて前記評価対象物の破
壊寿命を判定することを特徴とする請求項1記載の破壊寿命評価装置。
The image processing means generates a crystal grain boundary distribution having a crystal orientation difference of 15 ° or more in a predetermined region of the sample,
The average crystal grain size calculating means calculates an average crystal grain size based on a grain boundary distribution in which the crystal orientation difference is 15 ° or more,
The fracture life determination means is a characteristic curve showing a relationship between an average crystal grain size obtained based on a grain boundary distribution having a crystal orientation difference of 15 ° or more and a fracture life of the evaluation object, which is obtained in advance. ,
2. The fracture life evaluation apparatus according to claim 1, wherein the fracture life of the evaluation object is determined based on the average crystal grain size calculated by the average crystal grain size calculation means.
前記評価対象物は、高Cr系材料の溶接継手部であることを特徴とする請求項1または
2記載の破壊寿命評価装置。
The fracture life evaluation apparatus according to claim 1 or 2, wherein the evaluation object is a welded joint portion of a high Cr material.
前記破壊寿命判定手段は、事前に求めた、前記平均結晶粒径と前記評価対象物のクリープ破壊寿命との関係を示す特性曲線と、前記平均結晶粒径算出手段にて算出された平均結晶粒径とに基づいて、前記評価対象物のクリープ破壊寿命を判定することを特徴とする請求項1〜3のいずれかに記載の破壊寿命評価装置。
The fracture life determination means includes a characteristic curve indicating a relationship between the average crystal grain size and the creep fracture life of the evaluation object obtained in advance, and an average crystal grain calculated by the average crystal grain size calculation means. The fracture life evaluation apparatus according to any one of claims 1 to 3, wherein a creep fracture life of the evaluation object is determined based on a diameter.
JP2006075273A 2006-03-17 2006-03-17 Breakage life evaluation device Pending JP2007248390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006075273A JP2007248390A (en) 2006-03-17 2006-03-17 Breakage life evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006075273A JP2007248390A (en) 2006-03-17 2006-03-17 Breakage life evaluation device

Publications (1)

Publication Number Publication Date
JP2007248390A true JP2007248390A (en) 2007-09-27

Family

ID=38592835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006075273A Pending JP2007248390A (en) 2006-03-17 2006-03-17 Breakage life evaluation device

Country Status (1)

Country Link
JP (1) JP2007248390A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002614A (en) * 2010-06-16 2012-01-05 Hitachi Ltd Damage evaluation method and apparatus for metallic material
JP2012073126A (en) * 2010-09-29 2012-04-12 Hitachi Ltd Evaluation method and device for crack evolution velocity of metallic material
CN102749199A (en) * 2012-07-17 2012-10-24 哈尔滨工业大学 Method for predicting residual service lives of turbine engines on basis of ESN (echo state network)
CN102789545A (en) * 2012-07-12 2012-11-21 哈尔滨工业大学 Method for predicating remaining life of turbine engine based on degradation model matching
CN104155323A (en) * 2014-07-23 2014-11-19 武汉钢铁(集团)公司 Analysis method for measuring large-grained silicon steel texture
CN110907272A (en) * 2018-09-14 2020-03-24 西门子股份公司 3D printing element life prediction method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113769A (en) * 1993-10-13 1995-05-02 Ishikawajima Harima Heavy Ind Co Ltd Creep life estimting method
JP2003107019A (en) * 2001-09-28 2003-04-09 Mitsubishi Heavy Ind Ltd Highly accurate method for evaluating creep damage
JP2005024389A (en) * 2003-07-02 2005-01-27 Mitsubishi Heavy Ind Ltd Lifetime evaluation method and lifetime evaluation system of metal material
JP2005062173A (en) * 2003-07-31 2005-03-10 National Institute For Materials Science Visualization observation method of minute diploid material structure having second phase particle
JP2005233862A (en) * 2004-02-23 2005-09-02 Toshiba Corp Method of preparing material characteristic distribution map

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113769A (en) * 1993-10-13 1995-05-02 Ishikawajima Harima Heavy Ind Co Ltd Creep life estimting method
JP2003107019A (en) * 2001-09-28 2003-04-09 Mitsubishi Heavy Ind Ltd Highly accurate method for evaluating creep damage
JP2005024389A (en) * 2003-07-02 2005-01-27 Mitsubishi Heavy Ind Ltd Lifetime evaluation method and lifetime evaluation system of metal material
JP2005062173A (en) * 2003-07-31 2005-03-10 National Institute For Materials Science Visualization observation method of minute diploid material structure having second phase particle
JP2005233862A (en) * 2004-02-23 2005-09-02 Toshiba Corp Method of preparing material characteristic distribution map

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002614A (en) * 2010-06-16 2012-01-05 Hitachi Ltd Damage evaluation method and apparatus for metallic material
JP2012073126A (en) * 2010-09-29 2012-04-12 Hitachi Ltd Evaluation method and device for crack evolution velocity of metallic material
CN102789545A (en) * 2012-07-12 2012-11-21 哈尔滨工业大学 Method for predicating remaining life of turbine engine based on degradation model matching
CN102789545B (en) * 2012-07-12 2015-08-19 哈尔滨工业大学 Based on the Forecasting Methodology of the turbine engine residual life of degradation model coupling
CN102749199A (en) * 2012-07-17 2012-10-24 哈尔滨工业大学 Method for predicting residual service lives of turbine engines on basis of ESN (echo state network)
CN104155323A (en) * 2014-07-23 2014-11-19 武汉钢铁(集团)公司 Analysis method for measuring large-grained silicon steel texture
CN110907272A (en) * 2018-09-14 2020-03-24 西门子股份公司 3D printing element life prediction method
CN110907272B (en) * 2018-09-14 2022-06-24 西门子股份公司 3D printing element life prediction method

Similar Documents

Publication Publication Date Title
Chauveau Review of NDT and process monitoring techniques usable to produce high-quality parts by welding or additive manufacturing
JP2007248390A (en) Breakage life evaluation device
JP5054297B2 (en) System and method for monitoring laser shock processing
CN101710038B (en) Method for determining reheat cracking susceptibility
US8681328B2 (en) Dark-field defect inspecting method, dark-field defect inspecting apparatus, aberration analyzing method, and aberration analyzing apparatus
US9170220B2 (en) X-ray analyzer
JP4797509B2 (en) Destruction cause estimation apparatus and destruction cause estimation method
JP2010164430A (en) Method and apparatus for evaluating creep damage of metallic material
JP2009156584A (en) Device and method for evaluation of breakdown life
Cederqvist et al. Reliability study of friction stir welded copper canisters containing Sweden's nuclear waste
JP5410395B2 (en) Method and apparatus for evaluating crack growth rate of metallic material
JP2005189064A (en) Small-sized fatigue tester and fatigue test method
JP2004003922A (en) Method for measuring remaining lifetime of material, and apparatus for measuring remaining lifetime using the same
JP2008267895A (en) Coating thickness measuring method and device, and sample manufacturing method and device
JP2010008403A (en) Method, apparatus and program for evaluating heat shield performance of coating layer
JPH03197856A (en) Inspecting device for surface layer defect
JP2008151653A (en) Inspection device, inspection method, inspection program and inspection system
JP2006275756A (en) X-ray analyzer by electron excitation
JP2009282020A (en) Method, apparatus and program for evaluating heat shielding performance of coating layer
JP3825378B2 (en) Life evaluation method of heat-resistant steel
JP2018091720A (en) Evaluation method and evaluation device for evaluating creep damage of metallic material
Eshtayeh et al. Nondestructive evaluation of welded joints using digital image correlation
JP5855881B2 (en) Metal material failure cause estimation method and failure cause estimation system
JP6904890B2 (en) Fracture cause estimation method and estimation system, and stress level estimation method and estimation system
JP2018059760A (en) Method of evaluating fatigue fracture of polycrystal metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809