JP2007248058A - Optical axis adjustment method of radar device - Google Patents

Optical axis adjustment method of radar device Download PDF

Info

Publication number
JP2007248058A
JP2007248058A JP2006067845A JP2006067845A JP2007248058A JP 2007248058 A JP2007248058 A JP 2007248058A JP 2006067845 A JP2006067845 A JP 2006067845A JP 2006067845 A JP2006067845 A JP 2006067845A JP 2007248058 A JP2007248058 A JP 2007248058A
Authority
JP
Japan
Prior art keywords
optical axis
axis
radar
reflecting object
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006067845A
Other languages
Japanese (ja)
Other versions
JP5186724B2 (en
Inventor
Motoi Nakanishi
基 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2006067845A priority Critical patent/JP5186724B2/en
Publication of JP2007248058A publication Critical patent/JP2007248058A/en
Application granted granted Critical
Publication of JP5186724B2 publication Critical patent/JP5186724B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical axis adjustment method of a radar device performing optical axis adjustment, having simple constitution and a relatively easy method. <P>SOLUTION: The radar device 10 mounted on a vehicle body 11 includes a reference axis 101 along the front direction of the vehicle body 11. An antenna device 20 provided to the radar device 10 includes an optical axis 201. The antenna device 20 performs object detection, while performing beam scanning orthogonal to the optical axis 201 along a scanning axis 301 that is substantially parallel to the front of the vehicle 11. A reflective object 1 moves along the movement axis 100, orthogonal to a reference axis 101 and substantially parallel to the scanning axis 301. With reference to the optical axis 201, the azimuth with which a reflecting object distance is minimum is calculated, on the basis of the detection result, and the correction is performed so that the calculated azimuth coincides with the direction of the reference axis 101 (azimuth of 0°). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、レーダ装置の光軸調整方法、特に、レーダ装置の検知角と実際の方位角との誤差をなくす補正を行う光軸調整方法に関するものである。   The present invention relates to an optical axis adjustment method for a radar apparatus, and more particularly to an optical axis adjustment method for performing correction to eliminate an error between a detection angle of a radar apparatus and an actual azimuth angle.

現在、自動車の衝突回避を目的として、被装着体である車体にレーダ装置が設置されているものがある。このレーダ装置は、前方等の検知領域に放射面が向くアンテナ装置を備え、当該アンテナ装置から検知領域に電磁波を送信して、検知領域内の物体(例えば、先行車)からの反射波を受信し、送信波と受信波とを用いて物体の速度および距離を検知している。   Currently, for the purpose of avoiding collision of automobiles, there is a type in which a radar device is installed on a vehicle body that is a mounted body. This radar device includes an antenna device having a radiation surface facing a detection region such as the front, transmits an electromagnetic wave from the antenna device to the detection region, and receives a reflected wave from an object (for example, a preceding vehicle) in the detection region. Then, the speed and distance of the object are detected using the transmission wave and the reception wave.

そして、このようなレーダ装置の基準軸およびこのレーダ装置が装着される車体の基準軸とアンテナの光軸とは一致させなければならず、特許文献1に示すような光軸の調整方法が各種考案されている。   And the reference axis of such a radar apparatus and the reference axis of the vehicle body on which this radar apparatus is mounted must coincide with the optical axis of the antenna, and there are various methods for adjusting the optical axis as shown in Patent Document 1. It has been devised.

特許文献1では、レーダ装置(アンテナ装置)が装着された車体から所定距離(約20m〜40m)だけ離れた基準位置に受信アンテナを設置する。そして、この方法では、アンテナ装置から送信した送信波を受信アンテナで受信し、当該受信信号の電界強度分布に基づいてアンテナ装置の光軸を調整する。
特開2001−174540公報
In Patent Document 1, a receiving antenna is installed at a reference position that is a predetermined distance (approximately 20 m to 40 m) away from a vehicle body on which a radar device (antenna device) is mounted. In this method, the transmission wave transmitted from the antenna device is received by the receiving antenna, and the optical axis of the antenna device is adjusted based on the electric field strength distribution of the received signal.
JP 2001-174540 A

しかしながら、特許文献1に記載の光軸調整方法では、光軸調整用の受信アンテナを約20m〜40mの距離でレーダ装置から離間して設置し、さらにこの受信アンテナによる受信強度分布から軸のズレ量を算出する処理装置をも別途設置しなければならなかった。さらには、正確な受信強度を得るためには、電波暗室のような場所で行わなければならなかった。このため、光軸調整のための測定システムが大掛かりなものになり、且つ非常に高価なものとなってしまう。さらには、このように、光軸のズレ量の計測系を別途用意することで、操作が煩雑になってしまう。   However, in the optical axis adjustment method described in Patent Document 1, the receiving antenna for adjusting the optical axis is set apart from the radar device at a distance of about 20 m to 40 m, and further, the axis is shifted from the received intensity distribution by the receiving antenna. A processing device for calculating the quantity had to be installed separately. Furthermore, in order to obtain an accurate reception intensity, it has to be performed in a place such as an anechoic chamber. For this reason, the measurement system for adjusting the optical axis becomes large and very expensive. Furthermore, the operation becomes complicated by separately preparing a measurement system for the amount of deviation of the optical axis.

したがって、この発明の目的は、簡素な構成で且つ比較的に容易な方法にて光軸調整を行うレーダ装置の光軸調整方法を提供するものである。   Therefore, an object of the present invention is to provide an optical axis adjustment method for a radar apparatus that performs optical axis adjustment with a simple configuration and a relatively easy method.

(1) この発明のレーダ装置の光軸調整方法は、検知領域に対して所定の基準軸を有するレーダ装置または該レーダ装置が装着された被装着体に備えられたアンテナ装置の光軸を、基準軸に一致させるものである。この光軸調整方法は、基準軸上でアンテナ装置から所定距離にある一点で基準軸に対して垂直に通過する軌道で反射物体を移動させる。アンテナ装置で反射物体の移動領域内に送信波を送信するとともに、当該送信波に対する反射物体の反射波を受信する。この光軸調整方法は、レーダ装置で得られる反射物体の検出結果の経時的変化に基づいて光軸と基準軸とのズレ量を検出することを特徴としている。   (1) An optical axis adjustment method for a radar apparatus according to the present invention includes: a radar apparatus having a predetermined reference axis with respect to a detection region; or an optical axis of an antenna apparatus provided on a mounted body on which the radar apparatus is mounted. It matches the reference axis. In this optical axis adjustment method, the reflecting object is moved in a trajectory that passes perpendicularly to the reference axis at one point at a predetermined distance from the antenna device on the reference axis. The antenna device transmits a transmission wave in the moving area of the reflection object, and receives a reflection wave of the reflection object with respect to the transmission wave. This optical axis adjustment method is characterized in that the amount of deviation between the optical axis and the reference axis is detected based on the change over time of the detection result of the reflecting object obtained by the radar apparatus.

この方法では、アンテナ装置から通常の検知と同様に検知領域に対して送信波を送信し、検知領域内からの反射波を受信する。反射物体が検知領域内の基準軸上で基準軸に対して垂直に通過する軌道で移動する(経時的位置変化が生じる)と、反射物体の経時的な位置変化に応じて反射波の信号強度や反射波到来方向(方位)が変化する。この時、レーダ装置で、この変化に応じた反射物体の距離や速度の経時的変化が検出される。この際、反射物体の位置(距離)や速度は送信タイミングと受信タイミングとの差や、送信周波数と受信周波数との差(ドップラ周波数)から算出され、基準軸方向で特徴的な値をとるため、検出値の経時的変化に基づいて光軸と基準軸とのズレ量が算出される。   In this method, a transmission wave is transmitted from the antenna device to the detection area in the same manner as normal detection, and a reflected wave from within the detection area is received. When the reflecting object moves on the reference axis in the detection area in a trajectory that passes perpendicularly to the reference axis (changes in position over time), the signal intensity of the reflected wave is changed according to the position change of the reflecting object with time. The reflected wave arrival direction (azimuth) changes. At this time, the radar apparatus detects changes with time in the distance and speed of the reflecting object in accordance with this change. At this time, the position (distance) and speed of the reflecting object are calculated from the difference between the transmission timing and the reception timing and the difference between the transmission frequency and the reception frequency (Doppler frequency), and take characteristic values in the reference axis direction. The amount of deviation between the optical axis and the reference axis is calculated based on the change with time of the detected value.

(2) また、この発明のレーダ装置の光軸調整方法は、レーダ装置で送信波と反射波とからアンテナ装置から反射物体までの距離変化を検出し、該検出された距離変化における距離の極小値が得られたときのレーダ装置での角度検出結果に基づいてズレ量を検出することを特徴としている。   (2) Further, according to the method of adjusting the optical axis of the radar apparatus of the present invention, the radar apparatus detects a change in the distance from the antenna apparatus to the reflecting object from the transmitted wave and the reflected wave, and minimizes the distance in the detected distance change. It is characterized in that the amount of deviation is detected based on the angle detection result in the radar device when the value is obtained.

この方法では、具体的な経時的変化として距離変化を算出する。そして、基準軸上で反射物体がアンテナ装置に最も近づくことを利用し、算出した距離が極小値になる点を基準軸方向として光軸とのズレ量を算出する。   In this method, a change in distance is calculated as a specific change over time. Then, using the fact that the reflecting object is closest to the antenna device on the reference axis, the amount of deviation from the optical axis is calculated with the point where the calculated distance becomes the minimum value as the reference axis direction.

(3) また、この発明のレーダ装置の光軸調整方法は、レーダ装置で送信波と反射波とからアンテナ装置に対する反射物体のドップラ速度変化を検出し、該検出されたドップラ速度の絶対値の極小値が得られたときのレーダ装置での角度検出結果に基づいてズレ量を検出することを特徴としている。   (3) Further, according to the optical axis adjustment method of the radar apparatus of the present invention, the radar apparatus detects a change in Doppler speed of the reflecting object with respect to the antenna apparatus from the transmission wave and the reflected wave, and the absolute value of the detected Doppler speed is detected. It is characterized in that the amount of deviation is detected based on the angle detection result in the radar apparatus when the minimum value is obtained.

この方法では、具体的な経時的変化としてドップラ速度変化を算出する。そして、基準軸上でアンテナ装置に対する反射物体のドップラ速度が「0」になることを利用し、算出したドップラ速度が極小値になる点を基準軸方向として光軸とのズレ量を算出する。   In this method, a change in Doppler velocity is calculated as a specific change over time. Then, using the fact that the Doppler velocity of the reflecting object with respect to the antenna device on the reference axis becomes “0”, the amount of deviation from the optical axis is calculated with the point where the calculated Doppler velocity becomes the minimum value as the reference axis direction.

(4) また、この発明のレーダ装置の光軸調整方法は、レーダ装置で、送信波と受信波とから、アンテナ装置から反射物体までの距離変化を検出し、この検出された距離変化における距離の極小値に対応する反射物体の位置と、反射波の受信強度の極大値に対応する反射物体の位置とを一致させる処理を行うことを特徴としている。   (4) According to the radar apparatus optical axis adjustment method of the present invention, the radar apparatus detects a change in the distance from the antenna apparatus to the reflecting object from the transmitted wave and the received wave, and the distance in the detected distance change. The position of the reflecting object corresponding to the local minimum value of the reflection wave and the position of the reflecting object corresponding to the maximum value of the reception intensity of the reflected wave are matched.

この方法では、光軸方向からの受信信号強度が最も強いことを利用し、反射波の受信強度の極大な方向をアンテナ装置の光軸方向として検出する。そして、この受信信号強度により得られる光軸方向と、距離の極小値により得られる基準軸の方向とから、光軸と基準軸とのズレ量を算出する。   In this method, utilizing the fact that the received signal intensity from the optical axis direction is the strongest, the maximum direction of the received intensity of the reflected wave is detected as the optical axis direction of the antenna device. Then, the amount of deviation between the optical axis and the reference axis is calculated from the optical axis direction obtained from the received signal intensity and the reference axis direction obtained from the minimum distance.

(5) また、この発明のレーダ装置の光軸調整方法は、レーダ装置で、送信波と受信波とから、アンテナ装置に対する反射物体のドップラ速度変化を検出し、この検出されたドップラ速度の絶対値の極小値に対応する反射物体の位置と、反射波の受信強度の極大値に対応する反射物体の位置とを一致させる処理を行うことを特徴としている。   (5) Further, according to the optical axis adjustment method of the radar apparatus of the present invention, the radar apparatus detects a change in Doppler speed of the reflecting object with respect to the antenna apparatus from the transmitted wave and the received wave, and the absolute value of the detected Doppler speed is detected. It is characterized in that a process of matching the position of the reflecting object corresponding to the minimum value of the value and the position of the reflecting object corresponding to the maximum value of the reception intensity of the reflected wave is performed.

この方法では、光軸方向からの受信信号強度が最も強いことを利用し、反射波の受信強度の極大な方向をアンテナ装置の光軸方向として検出する。そして、この受信信号強度により得られる光軸方向と、ドップラ速度の絶対値の極小値(「0」)により得られる基準軸の方向とから、光軸と基準軸とのズレ量を算出する。   In this method, utilizing the fact that the received signal intensity from the optical axis direction is the strongest, the maximum direction of the received intensity of the reflected wave is detected as the optical axis direction of the antenna device. Then, the amount of deviation between the optical axis and the reference axis is calculated from the optical axis direction obtained from the received signal intensity and the reference axis direction obtained from the minimum value (“0”) of the absolute value of the Doppler velocity.

(6) また、この発明のレーダ装置の光軸調整方法は、アンテナ装置からビーム走査した送信波を送信し、ビーム走査の走査軸と光軸とを含む平面に平行な面内で反射物体を移動させ、走査軸と光軸とを含む平面に平行な方向に光軸調整を行うことを特徴としている。   (6) According to the optical axis adjustment method of the radar apparatus of the present invention, a transmission wave obtained by beam scanning is transmitted from the antenna apparatus, and the reflecting object is placed in a plane parallel to a plane including the scanning axis and the optical axis of the beam scanning. The optical axis is adjusted in a direction parallel to a plane including the scanning axis and the optical axis.

この方法では、アンテナ装置で送信波をビーム走査するレーダ装置に関して、ビームの走査軸と光軸とを含む平面に対して平行に反射物体を移動させる。これにより、各送信波ビームによりビーム走査軸に沿った反射物体の位置や位置変化すなわちアンテナ装置から反射物体までの距離やアンテナ装置に対する反射物体のドップラ速度が検出される。   In this method, a reflection object is moved in parallel with a plane including a scanning axis and an optical axis of a beam with respect to a radar apparatus that performs beam scanning of a transmission wave with an antenna apparatus. Thereby, the position and position change of the reflecting object along the beam scanning axis, that is, the distance from the antenna device to the reflecting object and the Doppler velocity of the reflecting object with respect to the antenna device are detected by each transmission wave beam.

(7) また、この発明のレーダ装置の光軸調整方法は、アンテナ装置からビーム走査した送信波を送信し、該ビーム走査の走査軸と光軸とを含む平面に垂直な面内で反射物体を移動させ、走査軸と光軸とを含む平面に垂直な方向に光軸調整を行うことを特徴としている。   (7) According to the optical axis adjustment method of the radar apparatus of the present invention, a transmission wave obtained by beam scanning from the antenna apparatus is transmitted, and the reflecting object is reflected in a plane perpendicular to the plane including the scanning axis and the optical axis of the beam scanning. The optical axis is adjusted in a direction perpendicular to a plane including the scanning axis and the optical axis.

この方法では、アンテナ装置で送信波をビーム走査するレーダ装置に関して、ビームの走査軸と光軸とを含む平面に対して垂直に反射物体を移動させる。これにより、各送信波ビームによりビーム走査軸に垂直な方向に沿った反射物体の位置や位置変化すなわちアンテナ装置から反射物体までの距離やアンテナ装置に対する反射物体のドップラ速度が検出される。   In this method, a reflection object is moved perpendicularly to a plane including a beam scanning axis and an optical axis for a radar apparatus that performs beam scanning of a transmission wave with an antenna apparatus. Thereby, the position and position change of the reflecting object along the direction perpendicular to the beam scanning axis, that is, the distance from the antenna device to the reflecting object and the Doppler velocity of the reflecting object with respect to the antenna device are detected by each transmission wave beam.

(8) また、この発明のレーダ装置の光軸調整方法は、アンテナ装置からビーム走査した送信波を送信し、ビーム走査の走査軸を含む平面に平行な周回面で、円周状で且つ基準軸上で反射物体までの距離が最短となるように反射物体を移動させることを特徴としている。   (8) According to the optical axis adjustment method of the radar apparatus of the present invention, a transmission wave obtained by beam scanning from the antenna apparatus is transmitted, and is a circumferential surface parallel to a plane including the scanning axis of the beam scanning. The reflective object is moved so that the distance to the reflective object is the shortest on the axis.

この方法では、ビーム走査軸に沿って反射物体を移動させるよりも円周状に反射物体を移動させる方が、基準軸上の位置から離れるに従い反射物体とアンテナ装置との距離が大きく変化する。   In this method, the distance between the reflecting object and the antenna device greatly changes as the reflecting object moves away from the position on the reference axis, rather than moving the reflecting object along the beam scanning axis.

(9) また、この発明のレーダ装置の光軸調整方法は、それぞれにアンテナ装置が備えられ各基準軸が平行である複数のレーダ装置を被装着体に装着し、該基準軸の並ぶ方向と平行に反射物体を移動させることを特徴としている。   (9) Further, according to the optical axis adjustment method of the radar apparatus of the present invention, a plurality of radar apparatuses each provided with an antenna apparatus and parallel to each reference axis are mounted on the mounted body, and the direction in which the reference axes are arranged It is characterized by moving the reflecting object in parallel.

この方法では、複数のアンテナ装置のそれぞれで、移動する1つの反射物体の距離、ドップラ速度の検出が行われるので、それぞれのアンテナ装置に対して個別で且つ全てのアンテナ装置で同時に基準軸と光軸とのズレ量が検出される。   In this method, since the distance and Doppler velocity of one moving reflecting object are detected by each of the plurality of antenna devices, the reference axis and light are individually detected for each antenna device and simultaneously for all antenna devices. The amount of deviation from the axis is detected.

この発明によれば、単に反射物体を所定方向に移動させるだけで光軸と基準軸とのズレ量が検出されるので、従来技術のような大がかりな測定システムを用いることなく、正確な光軸の調整を安価に行うことができる。   According to this invention, since the amount of deviation between the optical axis and the reference axis is detected simply by moving the reflecting object in a predetermined direction, an accurate optical axis can be obtained without using a large-scale measurement system as in the prior art. Can be adjusted at low cost.

また、この発明によれば、距離やドップラ速度のような通常の物体検知に利用する項目を用いて光軸のズレ量を検出するので、光軸ズレ量測定の専用の処理を行う必要がなくなり、簡素な方法で調整を行うことができる。   In addition, according to the present invention, since the amount of deviation of the optical axis is detected using items used for normal object detection such as distance and Doppler velocity, it is not necessary to perform a dedicated process for measuring the amount of optical axis deviation. Adjustments can be made in a simple way.

また、この発明によれば、距離やドップラ速度の極小値を算出するとともに受信強度の極大値を算出し、これらに対応する方向を検出することで、光軸と基準軸とのズレ量を検出して光軸調整を行うことができる。   In addition, according to the present invention, the amount of deviation between the optical axis and the reference axis is detected by calculating the minimum value of the distance and the Doppler velocity and calculating the maximum value of the received intensity and detecting the corresponding direction. Thus, the optical axis can be adjusted.

また、この発明によれば、特に、ビーム走査軸に沿って反射物体を移動させることで、ビーム走査方向に平行な方向の反射物体の距離やドップラ速度が検出されるので、走査軸に平行な方向の光軸調整を行うことができる。   In addition, according to the present invention, the distance of the reflecting object in the direction parallel to the beam scanning direction and the Doppler velocity are detected by moving the reflecting object along the beam scanning axis. The optical axis of the direction can be adjusted.

また、この発明によれば、特に、ビーム走査軸に垂直な方向に沿って反射物体を移動させることで、ビーム走査方向に垂直な方向の反射物体の距離やドップラ速度が検出されるので、走査軸に垂直な方向であっても光軸と基準軸とのズレ量を検出して、光軸調整を行うことができる。   In addition, according to the present invention, the distance and Doppler velocity of the reflecting object in the direction perpendicular to the beam scanning direction can be detected by moving the reflecting object along the direction perpendicular to the beam scanning axis. Even in the direction perpendicular to the axis, it is possible to adjust the optical axis by detecting the amount of deviation between the optical axis and the reference axis.

また、この発明によれば、ビーム走査軸を含む面で円周状に物体を移動させることで、異なる反射物体の位置間での距離差やドップラ速度差が大きくなり、より正確で且つ小型なシステムで光軸と基準軸とのズレ量を検出することができる。   Further, according to the present invention, by moving the object circumferentially on the plane including the beam scanning axis, the distance difference and the Doppler speed difference between the positions of different reflecting objects are increased, and the more accurate and compact size is achieved. The amount of deviation between the optical axis and the reference axis can be detected by the system.

また、この発明によれば、それぞれにアンテナ装置を備えた複数のレーダ装置で、光軸と基準軸とのズレ量を同時に検出することができる。これにより、複数のレーダ装置で同時に光軸調整を行うことができる。   In addition, according to the present invention, it is possible to simultaneously detect the amount of deviation between the optical axis and the reference axis with a plurality of radar devices each including an antenna device. Thereby, the optical axis can be adjusted simultaneously by a plurality of radar apparatuses.

本発明の第1の実施形態に係るレーダ装置の光軸調整方法について図を参照して説明する。
図1は本実施形態に係るレーダ装置の光軸調整方法に用いる各装置および物体の関係を示す平面図である。なお、本実施形態では、レーダ装置の基準軸と被装着体である車体の基準軸とが一致しており、レーダ装置の基準軸とアンテナ装置の光軸とがずれている(一致していない)場合を示す。また、本実施形態では、レーダ装置として、FM−CW方式のレーダ装置を例に説明する。
車体11の前方端部付近には、当該車体11とレーダ装置10とが基準軸101を一致させるように設置されている。レーダ装置10の前方端部付近には、車体11の前方の検知領域に、周波数変調を行った連続波を送信して、当該検知領域に存在する反射物体1からの反射波を受信するアンテナ装置20が設置されている。
An optical axis adjustment method for a radar apparatus according to a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a plan view showing the relationship between each device and an object used in the optical axis adjustment method of the radar device according to the present embodiment. In the present embodiment, the reference axis of the radar apparatus and the reference axis of the vehicle body that is the mounted body are matched, and the reference axis of the radar apparatus and the optical axis of the antenna apparatus are shifted (not matched). ) Indicates the case. In this embodiment, an FM-CW radar device will be described as an example of the radar device.
In the vicinity of the front end portion of the vehicle body 11, the vehicle body 11 and the radar apparatus 10 are installed so that the reference axis 101 coincides. Near the front end of the radar apparatus 10, an antenna apparatus that transmits a continuous wave subjected to frequency modulation to a detection area in front of the vehicle body 11 and receives a reflected wave from the reflective object 1 existing in the detection area. 20 is installed.

アンテナ装置20は、検知領域に連続波を送信する送信アンテナ22と、検知領域からの反射波をそれぞれ受信する複数の受信アンテナ21A〜21Nとが設置されている。受信アンテナ21A〜21Nは、アンテナ装置20の正面方向に対して垂直な方向で且つ車体11の車幅方向に対して略平行な方向へ直線状に配列されている。これら受信アンテナ21A〜21Nで取得した反射波に基づく受信信号はレーダ装置20に与えられる。レーダ装置20は、各受信アンテナ21A〜21Nの受信信号に対して所定の位相差処理を行うことにより、それぞれに異なる方位を指向性中心軸とする受信ビーム31A〜31Iを形成する。そして、レーダ装置20は、受信ビーム31A〜31Iと送信信号とを用いてビーム毎のビート信号を生成し、検知領域内の反射物体1までの距離およびドップラ速度を検出する。   The antenna device 20 is provided with a transmission antenna 22 that transmits a continuous wave to the detection area and a plurality of reception antennas 21A to 21N that receive reflected waves from the detection area. The receiving antennas 21 </ b> A to 21 </ b> N are linearly arranged in a direction perpendicular to the front direction of the antenna device 20 and substantially parallel to the vehicle width direction of the vehicle body 11. Received signals based on the reflected waves acquired by the receiving antennas 21 </ b> A to 21 </ b> N are given to the radar device 20. The radar apparatus 20 performs predetermined phase difference processing on the reception signals of the reception antennas 21A to 21N, thereby forming reception beams 31A to 31I having directional central axes in different directions. The radar apparatus 20 generates a beat signal for each beam using the reception beams 31A to 31I and the transmission signal, and detects the distance to the reflecting object 1 in the detection region and the Doppler velocity.

これら受信ビーム31A〜31Iの指向性中心軸はアンテナ装置20に対して設計に応じた等角度間隔で扇形状に設定され、受信ビーム31A〜31Iで形成される扇形状ビーム領域の中心軸がアンテナ装置20の光軸201となる。また、この光軸201に垂直で前記扇形状ビーム領域の弦に平行な方向がビーム走査軸301となる。   The directivity central axes of the reception beams 31A to 31I are set in a fan shape at equal angular intervals according to the design with respect to the antenna device 20, and the central axis of the fan beam region formed by the reception beams 31A to 31I is the antenna. It becomes the optical axis 201 of the apparatus 20. A direction perpendicular to the optical axis 201 and parallel to the chord of the fan-shaped beam region is a beam scanning axis 301.

反射物体1は、金属球、金属板や、コーナリフレクタ等により形成され、アンテナ装置20から車体11の前方に所定距離離れた位置(例えば約5m)で基準軸101に垂直で且つビーム走査軸301に略平行な軸を移動軸100として移動する。この際、反射物体1は、少なくとも基準軸101と移動軸100との交点で、基準軸101に対して垂直に通過するように移動する。なお、反射物体1を移動させる機構は、レールやガイドを用いて反射物体1を搬送する機構や、ベルトコンベアにより搬送する機構等がある。   The reflecting object 1 is formed of a metal ball, a metal plate, a corner reflector, or the like, and is perpendicular to the reference axis 101 and a beam scanning axis 301 at a position (for example, about 5 m) away from the antenna device 20 in front of the vehicle body 11 by a predetermined distance. A movement axis 100 is moved as an axis substantially parallel to the axis. At this time, the reflecting object 1 moves so as to pass perpendicularly to the reference axis 101 at least at the intersection of the reference axis 101 and the movement axis 100. The mechanism for moving the reflecting object 1 includes a mechanism for transporting the reflecting object 1 using rails and guides, a mechanism for transporting it by a belt conveyor, and the like.

次に、このような状況においてズレ角θを検出する方法を、図を参照して説明する。
図2(A)は、移動軸100上の反射物体1の位置とアンテナ装置20から反射物体1までの距離との関係を示した図であり、図2(B)は、図2(A)に対応した反射物体1の方位角とアンテナ装置20から反射物体1までの距離との関係を示した図である。図2において、実線は基準軸101と光軸201とが一致する場合を示し、破線は基準軸101と光軸201とがズレ角θでずれている場合を示す。また、図2(A)では、基準軸101と移動軸100との交点を移動軸100上での原点に設定し、図2(B)では、基準軸101と移動軸100との交点方向を方位角0°に設定している。また、この結果はアンテナ装置20から基準軸101上で5mの位置で反射物体1が通過するように反射物体1を設置した例を示す。
Next, a method for detecting the deviation angle θ in such a situation will be described with reference to the drawings.
FIG. 2A is a diagram showing the relationship between the position of the reflecting object 1 on the moving shaft 100 and the distance from the antenna device 20 to the reflecting object 1, and FIG. 2B is a diagram showing the relationship between FIG. 6 is a diagram showing a relationship between the azimuth angle of the reflecting object 1 corresponding to the distance from the antenna device 20 to the reflecting object 1. FIG. In FIG. 2, a solid line indicates a case where the reference axis 101 and the optical axis 201 coincide with each other, and a broken line indicates a case where the reference axis 101 and the optical axis 201 are shifted by a deviation angle θ. 2A, the intersection of the reference axis 101 and the movement axis 100 is set as the origin on the movement axis 100, and in FIG. 2B, the intersection direction of the reference axis 101 and the movement axis 100 is set. The azimuth angle is set to 0 °. Further, this result shows an example in which the reflecting object 1 is installed so that the reflecting object 1 passes through the antenna apparatus 20 at a position of 5 m on the reference axis 101.

反射物体1を移動軸100上に沿って移動させると、基準軸101に近接するほどアンテナ装置20と反射物体1との距離が短くなる。このため、反射物体距離は、移動軸100と基準軸101との交点の位置で極小になる。したがって、基準軸101と光軸201とが一致していれば、図2(A)の実線に示すように、移動軸100上の原点位置で反射物体距離が極小になり、これに対応する方向が基準軸101方向の位置となる。   When the reflecting object 1 is moved along the moving axis 100, the distance between the antenna device 20 and the reflecting object 1 becomes shorter as the reflecting object 1 is closer to the reference axis 101. For this reason, the reflection object distance becomes minimum at the position of the intersection of the movement axis 100 and the reference axis 101. Therefore, if the reference axis 101 and the optical axis 201 coincide with each other, as shown by the solid line in FIG. 2A, the reflecting object distance becomes minimum at the origin position on the moving axis 100, and the direction corresponding to this. Is the position in the direction of the reference axis 101.

しかしながら、基準軸101と光軸201とが一致していなければ、このズレ角θに応じて、移動軸100上の原点ではない位置で反射物体距離が極小となる。例えば、図2(A)の破線に示すように、移動軸上の+約0.2m(図1の上側方向)の位置で、反射物体距離が極小になる。したがって、基準軸101と移動軸100との交点は、光軸201を基準(原点方向)とした場合に、移動軸100上の+約0.2mの位置になり、この点が基準軸101の位置となる。   However, if the reference axis 101 and the optical axis 201 do not coincide with each other, the reflecting object distance is minimized at a position other than the origin on the moving axis 100 according to the deviation angle θ. For example, as shown by a broken line in FIG. 2A, the reflection object distance becomes minimum at a position of about +0.2 m (upward direction in FIG. 1) on the movement axis. Therefore, the intersection of the reference axis 101 and the movement axis 100 is a position of about +0.2 m on the movement axis 100 when the optical axis 201 is the reference (origin direction). Position.

この結果、アンテナ装置20から5mの位置で光軸201と基準軸101とが約0.2mずれていることを検出することができる。このような状況での移動軸上のズレ量Lは、次式によりアンテナ装置20からの方位角θに換算することができる。   As a result, it can be detected that the optical axis 201 and the reference axis 101 are shifted by about 0.2 m at a position 5 m from the antenna device 20. The shift amount L on the moving axis in such a situation can be converted into the azimuth angle θ from the antenna device 20 by the following equation.

θ=arctan(L/5)
例えば、ズレ量が前述の0.2mであれば、方位角θは、
θ=arctan(0.2/5)≒2.26°
となる。これはまさにレーダ装置10の基準軸101とアンテナ装置20の光軸201とのズレ角である。このような演算処理を行うことで、図2(A)に示すズレ量に関する結果が、図2(B)に示すズレ角に関する結果に変換される。
θ = arctan (L / 5)
For example, if the deviation is 0.2 m as described above, the azimuth angle θ is
θ = arctan (0.2 / 5) ≈2.26 °
It becomes. This is exactly the deviation angle between the reference axis 101 of the radar apparatus 10 and the optical axis 201 of the antenna apparatus 20. By performing such calculation processing, the result relating to the deviation amount shown in FIG. 2A is converted into the result relating to the deviation angle shown in FIG.

このように算出された基準軸101と光軸201とのズレ角θに基づき、レーダ装置20は、光軸201すなわち全ての受信ビームにより形成される受信ビーム領域の中心方向を基準軸101と一致させるシフト処理を行う。例えば、図1、図2の場合であれば、光軸201を−2.26°(図1における上側方向)にシフトさせる。具体的には、アンテナ21A〜21Nで取得する受信信号からなる各受信ビーム信号に対して、前記ズレ量に対応するオフセット量を付加してから、物体の方位検出処理を行う。   Based on the deviation angle θ between the reference axis 101 and the optical axis 201 calculated in this way, the radar apparatus 20 matches the center direction of the optical axis 201, that is, the reception beam region formed by all the reception beams, with the reference axis 101. Shift processing is performed. For example, in the case of FIGS. 1 and 2, the optical axis 201 is shifted to −2.26 ° (upward direction in FIG. 1). Specifically, an object azimuth detection process is performed after adding an offset amount corresponding to the shift amount to each reception beam signal including reception signals acquired by the antennas 21A to 21N.

このような処理を行うことで、大がかりな測定システムを用いることなく、レーダ装置10の基準軸101と光軸201とを容易に一致させて、光軸補正を行うことができる。そして、基準軸101と光軸102とが一致することで、正確に物体の方位を検出することができる。   By performing such processing, the optical axis correction can be performed by easily matching the reference axis 101 and the optical axis 201 of the radar apparatus 10 without using a large-scale measurement system. Since the reference axis 101 and the optical axis 102 coincide with each other, the orientation of the object can be accurately detected.

また、本発明のように移動する反射物体を用いることにより、周囲の静止体との識別が容易であるため、測定用の大規模な施設を必要とすることがない。   Further, by using a reflecting object that moves as in the present invention, it is easy to distinguish from a surrounding stationary body, so that a large-scale facility for measurement is not required.

なお、前述の説明では、連続的な測定結果から極小値を算出する例を示したが、これら測定結果から近似的に二次曲線を算出して極小値を算出してもよい。   In the above description, the minimum value is calculated from the continuous measurement results. However, the minimum value may be calculated by approximately calculating a quadratic curve from the measurement results.

より具体的には、測定結果は離散的に取得されるので、これらの測定結果から近似的に二次曲線等の偶関数を算出して、当該偶関数の極小値を算出する。このような近似関数による極小値の算出を行うことで、測定結果をそのまま用いた場合よりも高精度に極小値を算出することができ、ひいては、より高精度に光軸調整を行うことができる。さらに、算出した極小値を挟んで略同一距離となる二点の測定結果を抽出してそれぞれの角度を算出し、これら二つの測定結果の平均(中心)を極小点の角度とすることで、ノイズの影響を除去でき、さらに高精度にズレ角を検出することができる。   More specifically, since the measurement results are obtained discretely, an even function such as a quadratic curve is approximately calculated from these measurement results, and the minimum value of the even function is calculated. By calculating the minimum value using such an approximate function, it is possible to calculate the minimum value with higher accuracy than when the measurement result is used as it is, and thus to adjust the optical axis with higher accuracy. . Furthermore, by extracting the measurement results of two points that are approximately the same distance across the calculated minimum value, calculating each angle, and by taking the average (center) of these two measurement results as the angle of the minimum point, The influence of noise can be removed, and the deviation angle can be detected with higher accuracy.

図3は、測定結果のみの場合と近似処理を行った場合とにおける検知方位(光軸201に基づく方位)と反射物体方位(基準軸101に基づく方位)との関係を示した図である。図3において、破線は近似結果を表し、細実線は測定結果を表し、検知方位の軸は基準軸101に相当する。図3に示すように、測定結果のみを用いる方式では、他方位の測定値に関係なく、基準軸101と移動軸100との交点での測定値がそのままズレ量に設定されるが、近似を行うことにより、他方位の測定値をも含む複数の測定値により、交点でのズレ量が算出される。これにより、測定による誤差の影響を低減することができるので、より高精度に極小値を算出することができる。   FIG. 3 is a diagram illustrating the relationship between the detection direction (the direction based on the optical axis 201) and the reflection object direction (the direction based on the reference axis 101) when only the measurement result is used and when the approximation process is performed. In FIG. 3, the broken line represents the approximation result, the thin solid line represents the measurement result, and the axis of the detection direction corresponds to the reference axis 101. As shown in FIG. 3, in the method using only the measurement result, the measurement value at the intersection of the reference axis 101 and the moving axis 100 is set as it is regardless of the measurement value of the other position, but the approximation is approximated. By doing so, the amount of deviation at the intersection is calculated from a plurality of measured values including the measured value at the other position. Thereby, since the influence of the error by measurement can be reduced, the minimum value can be calculated with higher accuracy.

また、前述の説明では、レールやベルトコンベア等を用いて、反射物体1を移動軸100に沿って移動させる例を示したが、本実施形態の場合、連続的に移動させる必要はなく、移動軸100に沿って所定間隔で反射物体1を離散的に配置、移動させるようにしてもよい。この場合、図2に示すような連続的な曲線を得ることができないが、測定結果から近似的に二次曲線を算出して、極小値を算出すればよい。   In the above description, an example in which the reflecting object 1 is moved along the movement axis 100 using a rail, a belt conveyor, or the like has been described. However, in the present embodiment, it is not necessary to move the reflecting object 1 continuously. The reflecting objects 1 may be discretely arranged and moved at predetermined intervals along the axis 100. In this case, although a continuous curve as shown in FIG. 2 cannot be obtained, a minimum value may be calculated by calculating a quadratic curve approximately from the measurement result.

また、前述の説明では、反射物体1を移動軸100に沿って一方向に移動させた場合について示したが、移動軸100上を往復運動させる等、複数回に亘り測定を行い、測定結果を平均化することで、より高精度に極小値を算出することができる。さらに、この複数回の測定により得られる結果から近似的に二次関数を算出して極小値を算出すれば、測定による誤差の影響をさらに低減することができるので、より高精度に極小値を算出することができる。   In the above description, the case where the reflecting object 1 is moved in one direction along the movement axis 100 has been shown. However, measurement is performed a plurality of times, such as reciprocating on the movement axis 100, and the measurement result is obtained. By averaging, the minimum value can be calculated with higher accuracy. Furthermore, if the minimum value is calculated by calculating a quadratic function approximately from the results obtained by the multiple measurements, the influence of errors due to the measurement can be further reduced, so the minimum value can be obtained with higher accuracy. Can be calculated.

また、前述の説明では、レーダ装置の信号処理により基準軸と光軸とのズレを補正する方法を示したが、算出したズレ量に応じて、レーダ取り付け作業者が機構的にアンテナ装置を回動させ、光軸補正を行ってもよい。   In the above description, the method of correcting the deviation between the reference axis and the optical axis by the signal processing of the radar apparatus has been described. However, the radar installation worker mechanically rotates the antenna apparatus according to the calculated deviation amount. It may be moved to correct the optical axis.

また、前述の説明では、反射物体1の移動軸100と基準軸101とが空間的に直交する例を示したが、図4に示すように、平面視した状態で直交するように反射物体1を移動させてもよい。図4は、移動軸100と基準軸101とが空間的に直交しない場合の概念図である。このように、移動軸100と基準軸101とが平面的に交差する位置で、双方に対し垂直な方向へ所定量オフセット(yoff)していてもよい。すなわち、移動軸100と基準軸101とが平面的に交差する位置で、反射物体1が基準軸101から所定距離離れた位置を通過するようにしてもよい。   In the above description, the example in which the moving axis 100 of the reflecting object 1 and the reference axis 101 are spatially orthogonal is shown. However, as shown in FIG. 4, the reflecting object 1 is orthogonal to each other in a plan view. May be moved. FIG. 4 is a conceptual diagram when the moving axis 100 and the reference axis 101 are not spatially orthogonal. As described above, the movement axis 100 and the reference axis 101 may be offset by a predetermined amount (yoff) in a direction perpendicular to both at a position where the movement axis 100 and the reference axis 101 intersect in a plane. That is, the reflective object 1 may pass through a position away from the reference axis 101 by a predetermined distance at a position where the movement axis 100 and the reference axis 101 intersect in a plane.

次に、第2の実施形態に係るレーダ装置の光軸調整方法について、図を参照して説明する。本実施形態は、第1の実施形態と構成は同じであるが、測定量としてドップラ速度を用いる。
図5は、移動軸100上の反射物体1の位置とアンテナ装置20に対する反射物体1のドップラ速度との関係を示した図である。図5において、実線は基準軸101と光軸201とが一致する場合を示し、破線は基準軸101と光軸201とが走査軸方向に所定角θでずれている場合を示す。また、この結果はアンテナ装置20から基準軸101上で5mの位置で反射物体1が時速10kmで移動する例を示す。
Next, an optical axis adjustment method of the radar apparatus according to the second embodiment will be described with reference to the drawings. This embodiment has the same configuration as that of the first embodiment, but uses a Doppler velocity as a measurement amount.
FIG. 5 is a diagram showing the relationship between the position of the reflecting object 1 on the moving shaft 100 and the Doppler speed of the reflecting object 1 with respect to the antenna device 20. In FIG. 5, a solid line indicates a case where the reference axis 101 and the optical axis 201 coincide with each other, and a broken line indicates a case where the reference axis 101 and the optical axis 201 are shifted by a predetermined angle θ in the scanning axis direction. This result shows an example in which the reflecting object 1 moves at a speed of 10 km / h at a position of 5 m on the reference axis 101 from the antenna device 20.

第1の実施形態のように、アンテナ装置20の送信アンテナ22から連続波を送信し、各受信アンテナ21A〜21Nで反射波を受信すると、レーダ装置20は、ビート信号を生成し、ビート信号から既知の方法で、各測定位置でのドップラ速度を算出する。ここで、反射物体1が基準軸101に垂直な移動軸100上を移動するので、算出されるドップラ速度は基準軸101に近づくにつれて低くなり、基準軸101上で「0」になる。そして、基準軸101から離れるにつれて高くなる。このため、算出されたドップラ速度が「0」の位置が基準軸101との交点に相当する(図5の実線参照)。ここで、基準軸101と光軸201とが一致しなければ、図5の破線に示すように、所定の移動軸上位置でドップラ速度が「0」になる。この点が本来の基準軸101上の点になるので、この移動軸上位置のズレ量が、アンテナ装置20から5mの位置での基準軸101と光軸201とのズレ量となる。そして、このズレ量を前述の式でズレ角に換算することで、基準軸101と光軸201とのズレ角を算出することができる。これにより、第1の実施形態と同様の効果を得ることができる。   As in the first embodiment, when a continuous wave is transmitted from the transmitting antenna 22 of the antenna device 20 and the reflected waves are received by the receiving antennas 21A to 21N, the radar device 20 generates a beat signal, and the beat signal The Doppler velocity at each measurement position is calculated by a known method. Here, since the reflecting object 1 moves on the moving axis 100 perpendicular to the reference axis 101, the calculated Doppler speed decreases as the reference axis 101 is approached, and becomes “0” on the reference axis 101. Then, the distance from the reference axis 101 increases. For this reason, the position where the calculated Doppler speed is “0” corresponds to the intersection with the reference axis 101 (see the solid line in FIG. 5). If the reference axis 101 and the optical axis 201 do not coincide with each other, the Doppler speed becomes “0” at a predetermined position on the moving axis as shown by a broken line in FIG. Since this point is a point on the original reference axis 101, the amount of deviation of the position on the moving axis is the amount of deviation between the reference axis 101 and the optical axis 201 at a position 5 m from the antenna device 20. Then, the shift angle between the reference axis 101 and the optical axis 201 can be calculated by converting this shift amount into a shift angle using the above-described equation. Thereby, the effect similar to 1st Embodiment can be acquired.

なお、本実施形態においても連続的な測定結果から極小値を算出する例を示したが、これら測定結果から近似的に一次関数等の奇関数を算出してゼロクロス点を算出してもよい。   In this embodiment, the example in which the minimum value is calculated from the continuous measurement results has been described. However, an odd function such as a linear function may be approximately calculated from these measurement results to calculate the zero cross point.

また、本実施形態においても、移動軸100上を一定速度で往復動させる等、複数回に亘り測定を行い、測定結果を平均化してからゼロクロス点を算出しても良く、より高精度に極小値を算出することができる。   Also in this embodiment, the measurement may be performed a plurality of times, such as reciprocating on the moving shaft 100 at a constant speed, and the zero cross point may be calculated after averaging the measurement results. A value can be calculated.

また、基準軸101との交点に対して、対称の位置でのドップラ速度は、絶対値が同じで、符号が異なるだけであるので、符号の異なるドップラ速度となる移動軸上の二つの位置を平均化して得られる位置からズレ量を算出しても良い。   Further, since the Doppler velocities at symmetrical positions with respect to the intersection with the reference axis 101 have the same absolute value and only different signs, the two positions on the moving axis where the Doppler speeds have different signs are determined. The amount of deviation may be calculated from the position obtained by averaging.

また、第1の実施形態のように、平面視した状態で基準軸と移動軸とが直交すれば、基準軸に対して所定のオフセットがあっても良い。   Further, as in the first embodiment, if the reference axis and the movement axis are orthogonal to each other in a plan view, there may be a predetermined offset with respect to the reference axis.

次に、第3の実施形態に係るレーダ装置の光軸調整方法について、図を参照して説明する。
図6(A)は、本実施形態に係るレーダ装置の光軸調整方法に用いる各装置および物体の関係を示す平面図であり、図6(B)はその側面図である。
図6に示すように、本実施形態では、移動軸100が基準軸101および光軸201に対して垂直で且つ走査軸301に対しても垂直である場合を示し、他の構成は第1の実施形態の図1と同じである。
Next, an optical axis adjustment method of the radar apparatus according to the third embodiment will be described with reference to the drawings.
FIG. 6A is a plan view showing the relationship between each device and an object used in the optical axis adjustment method of the radar apparatus according to this embodiment, and FIG. 6B is a side view thereof.
As shown in FIG. 6, in the present embodiment, the moving axis 100 is perpendicular to the reference axis 101 and the optical axis 201 and also perpendicular to the scanning axis 301, and the other configuration is the first configuration. It is the same as FIG. 1 of the embodiment.

このような処理の場合でも、受信ビーム31(31A〜31I)は、所定のビーム広がりを有するので、走査軸301および光軸201に対して垂直な方向に移動する反射物体1の距離および速度を検出することができる。したがって、前述の走査軸301と移動軸101とが略平行な場合(図2、図3)と同様に、反射物体距離およびドップラ速度の測定結果を得ることができる。   Even in such a process, the reception beam 31 (31A to 31I) has a predetermined beam spread, and therefore the distance and speed of the reflecting object 1 moving in the direction perpendicular to the scanning axis 301 and the optical axis 201 are set. Can be detected. Therefore, as in the case where the scanning axis 301 and the moving axis 101 are substantially parallel (FIGS. 2 and 3), the measurement results of the reflecting object distance and the Doppler velocity can be obtained.

このとき、反射物体からの受信信号強度が極大になる方向は、走査軸を含む平面に対する光軸201に略一致する。そして、反射物体の距離が極小となる方向、またはドップラ速度の絶対値が極小となる方向は、基準軸101方向となる。このため、この受信信号強度が極大となる方向と距離またはドップラ速度の絶対値が極小となる方向とのズレが光軸のズレ量(ズレ角)になる。   At this time, the direction in which the received signal intensity from the reflecting object is maximized substantially coincides with the optical axis 201 with respect to the plane including the scanning axis. The direction in which the distance of the reflecting object is minimized, or the direction in which the absolute value of the Doppler velocity is minimized is the direction of the reference axis 101. For this reason, the deviation between the direction in which the received signal intensity is maximized and the direction in which the absolute value of the distance or Doppler velocity is minimized is the deviation amount (deviation angle) of the optical axis.

図7は、移動軸100と走査軸301とが直交する場合で、光軸201と基準軸101とが一致しない場合における、移動軸上位置に対する受信信号強度と反射物体距離との関係を示した図である。図7において、実線が反射物体距離を示し、破線が受信信号強度を示す。   FIG. 7 shows the relationship between the received signal intensity and the reflection object distance with respect to the position on the movement axis when the movement axis 100 and the scanning axis 301 are orthogonal to each other and the optical axis 201 and the reference axis 101 do not match. FIG. In FIG. 7, the solid line indicates the reflecting object distance, and the broken line indicates the received signal strength.

図7に示すように、受信信号強度は極大値を有し、反射物体距離は極小値を有する。受信信号強度の極大値は光軸201方向の受信ビームで反射物体1を検知した場合に対応するので、極大値となる移動軸上位置が光軸201方向の受信ビームで検知した時点に対応する。一方、反射物体距離の極小値は基準軸101を通過する時点で反射物体1を検知した場合に対応するので、極小値となる移動軸上位置が基準軸101方向に対応する。したがって、これら受信信号強度の極大値に対応する移動軸上位置と、反射物体距離の極小値に対応する移動軸上位置との差を算出し、角度変換すれば、光軸201と基準軸101とのズレ角を検出することができる。そして、このズレ角を用いて光軸を基準軸に一致させる補正(光軸調整)を行うことができる。そして、図7に示すように、光軸201と基準軸101とが一致しない場合、このズレ角に応じてレーダ取り付け作業者が機械的にアンテナ装置もしくはレーダ装置を回動させて光軸調整を行う。   As shown in FIG. 7, the received signal intensity has a maximum value, and the reflection object distance has a minimum value. Since the maximum value of the received signal intensity corresponds to the case where the reflecting object 1 is detected by the reception beam in the direction of the optical axis 201, the maximum value on the moving axis corresponds to the point in time when the position on the movement axis is detected by the reception beam in the direction of the optical axis 201. . On the other hand, the minimum value of the reflecting object distance corresponds to the case where the reflecting object 1 is detected when passing through the reference axis 101, and therefore the position on the moving axis corresponding to the minimum value corresponds to the direction of the reference axis 101. Therefore, if the difference between the position on the moving axis corresponding to the maximum value of the received signal intensity and the position on the moving axis corresponding to the minimum value of the reflection object distance is calculated and the angle is converted, the optical axis 201 and the reference axis 101 are calculated. Can be detected. Then, correction (optical axis adjustment) for matching the optical axis with the reference axis can be performed using the deviation angle. As shown in FIG. 7, when the optical axis 201 and the reference axis 101 do not coincide with each other, the radar installation worker mechanically rotates the antenna device or the radar device according to the deviation angle to adjust the optical axis. Do.

なお、本実施形態でも、前述の各実施形態に示したような、平均化、複数測定等を用いてより高精度にズレ角を算出することができる。   In this embodiment as well, the deviation angle can be calculated with higher accuracy by using averaging, multiple measurements, and the like as shown in the above embodiments.

また、本実施形態では移動軸方向に対してビームを走査させていない。したがって、本実施形態の方法は、ビーム走査を行わない測距のみを行うレーダ装置に対しても適用することができる。この際、ビーム走査を行わず、或る程度の広がりを有する受信信号で測距を行うが、移動軸上の各位置に対して複数回測定を行ったり、さらに受信信号強度特性や反射物体距離特性を近似する等の処理を行えば、受信信号の広がりによる誤差要因を低減することができ、正確にズレ量を算出することができる。   In this embodiment, the beam is not scanned in the direction of the movement axis. Therefore, the method of this embodiment can be applied to a radar apparatus that performs only distance measurement without performing beam scanning. At this time, the beam is not scanned and the distance is measured with the received signal having a certain extent, but the measurement is performed several times for each position on the moving axis, and the received signal strength characteristics and the reflection object distance are measured. If processing such as approximating the characteristics is performed, the error factor due to the spread of the received signal can be reduced, and the amount of deviation can be calculated accurately.

次に、第4の実施形態に係るレーダ装置の光軸調整方法について、図を参照して説明する。
図8(A)は、本実施形態に係るレーダ装置の光軸調整方法に用いる各装置および物体の関係を示す平面図であり、図8(B)はその側面図である。
本実施形態のレーダ装置の光軸調整方法は、走査軸301を含む平面に平行な周回面を有する円軌道からなる移動軌道100’で反射物体1を移動させるものある。この際、反射物体1は移動軌道100’と基準軸101との交点で、基準軸101に対して直交して通過するように配置されている。これにより、基準軸101上で反射物体1までの距離が極小、または反射物体1のドップラ速度の絶対値が極小となる。この反射物体1は、前記円軌道となるように反射物体1を回動自在に支持する取り付け装置の回転軸を回転させることにより移動軌道100’に沿って所定角速度で移動する。そして、この取り付け装置としては、回転するアーム状部材を有するものや、反射物体1を載置可能な円盤状の部材を有するものを利用する。なお、その他の構成は、第1の実施形態に示したレーダ装置の光軸調整方法と同じである。
Next, an optical axis adjustment method for a radar apparatus according to the fourth embodiment will be described with reference to the drawings.
FIG. 8A is a plan view showing the relationship between each device and an object used in the optical axis adjustment method of the radar apparatus according to this embodiment, and FIG. 8B is a side view thereof.
The method of adjusting the optical axis of the radar apparatus according to the present embodiment is to move the reflecting object 1 on a moving trajectory 100 ′ composed of a circular trajectory having a circular surface parallel to a plane including the scanning axis 301. At this time, the reflecting object 1 is disposed so as to pass orthogonally to the reference axis 101 at the intersection of the moving track 100 ′ and the reference axis 101. As a result, the distance to the reflecting object 1 on the reference axis 101 is minimized, or the absolute value of the Doppler velocity of the reflecting object 1 is minimized. The reflecting object 1 moves at a predetermined angular velocity along the moving track 100 ′ by rotating the rotating shaft of the mounting device that rotatably supports the reflecting object 1 so as to form the circular orbit. And as this attachment apparatus, the thing which has a rotating arm-like member and the thing which has a disk-shaped member which can mount the reflective object 1 are utilized. The other configuration is the same as the optical axis adjustment method of the radar apparatus shown in the first embodiment.

このように、反射物体を円軌道で移動させる場合、アンテナ装置20から反射物体1までの距離X、およびアンテナ装置20に対する基準軸101を基準とした方位φは、図9のような関係になる。   As described above, when the reflecting object is moved in a circular orbit, the distance X from the antenna device 20 to the reflecting object 1 and the azimuth φ with respect to the reference axis 101 with respect to the antenna device 20 have a relationship as shown in FIG. .

図9は円軌道の反射物体1の距離xおよび方位φの概念図である。図9において、Rはアンテナ装置20(レーダ装置10)から円軌道上におけるアンテナ装置20側の基準軸101との交点までの距離を示し、rは円軌道の半径を示し、ψは前記基準軸101との交点方向を基準とした円軌道の中心に対する反射物体の角度を示す。   FIG. 9 is a conceptual diagram of the distance x and the azimuth φ of the reflecting object 1 in a circular orbit. In FIG. 9, R indicates the distance from the antenna device 20 (radar device 10) to the intersection with the reference axis 101 on the antenna device 20 side on the circular orbit, r indicates the radius of the circular orbit, and ψ indicates the reference axis. The angle of the reflecting object with respect to the center of the circular orbit with reference to the direction of the intersection with 101 is shown.

このような場合、反射物体1の距離x、方位θは、それぞれ次式で表すことができる。   In such a case, the distance x and the azimuth θ of the reflecting object 1 can be expressed by the following equations, respectively.

x=SQRT{(R+r)2+r2−2・(R+r)・r・cosψ}
φ=arcsin(r・sinψ/x)
これに基づいてR=5(m)、r=0.2(m)の場合における反射物体1の角度ψに対する距離xを算出すると図10の関係が得られる。
x = SQRT {(R + r) 2 + r 2 −2 · (R + r) · r · cos ψ}
φ = arcsin (r · sinψ / x)
Based on this, when the distance x with respect to the angle ψ of the reflecting object 1 in the case of R = 5 (m) and r = 0.2 (m) is calculated, the relationship of FIG. 10 is obtained.

図10は、反射物体1の方位φと距離xとの関係式を示したものである。   FIG. 10 shows a relational expression between the azimuth φ of the reflecting object 1 and the distance x.

このように、反射物体1を回動させることにより、少ない角度(方位)変化で距離xの変化量を大きく得られるので、前述の第1の実施形態のように直線状に反射物体1を移動させるよりも、光軸201と基準軸101とのずれ角による距離の変化量を大きくとることができる。これにより、小型の構成で高精度にズレ角を検出することができる。   As described above, since the amount of change in the distance x can be obtained with a small change in angle (orientation) by rotating the reflecting object 1, the reflecting object 1 is moved linearly as in the first embodiment. Rather, the amount of change in distance due to the deviation angle between the optical axis 201 and the reference axis 101 can be increased. Thereby, it is possible to detect the deviation angle with high accuracy with a small configuration.

なお、この際、距離xとは別に反射物体1のドップラ速度Vdopを算出して利用することもできる。   At this time, the Doppler velocity Vdop of the reflecting object 1 can be calculated and used separately from the distance x.

図11は反射物体1のドップラ速度Vdopおよび方位φの概念図である。なお、図9と同じ要素には同じ符号を付し説明は省略する。   FIG. 11 is a conceptual diagram of the Doppler velocity Vdop and the direction φ of the reflecting object 1. In addition, the same code | symbol is attached | subjected to the same element as FIG. 9, and description is abbreviate | omitted.

このような場合、反射物体1のドップラ速度Vdopは、角速度をωとした場合に、次式で表すことができる。   In such a case, the Doppler velocity Vdop of the reflecting object 1 can be expressed by the following equation when the angular velocity is ω.

Vdop=ω・r・cos(π/2−ψ−φ)
これに基づいてR=5(m)、r=0.2(m)、ω=2π(rad/s)の場合における反射物体1の方位φに対するドップラ速度Vdopを算出すると図12の関係が得られる。
Vdop = ω · r · cos (π / 2−ψ−φ)
Based on this, the relationship of FIG. 12 is obtained by calculating the Doppler velocity Vdop with respect to the direction φ of the reflecting object 1 in the case of R = 5 (m), r = 0.2 (m), and ω = 2π (rad / s). It is done.

図12は反射物体1の方位φとドップラ速度Vdopとの関係式を示したものである。
このように、反射物体1を回動させることにより、少ない角度(方位)変化でドップラ速度Vdopの変化量を大きく得られるので、前述の第2の実施形態のように直線状に反射物体1を移動させるよりも、光軸201と基準軸101とのずれ角によるドップラ速度の変化量を大きくとることができる。これにより、小型の構成で高精度にズレ角を検出することができる。
FIG. 12 shows a relational expression between the azimuth φ of the reflecting object 1 and the Doppler velocity Vdop.
Thus, by rotating the reflecting object 1, a large change amount of the Doppler velocity Vdop can be obtained with a small change in angle (orientation). Therefore, the reflecting object 1 is linearly formed as in the second embodiment described above. The amount of change in the Doppler speed due to the deviation angle between the optical axis 201 and the reference axis 101 can be made larger than the movement. Thereby, it is possible to detect the deviation angle with high accuracy with a small configuration.

次に、第5の実施形態に係るレーダ装置の光軸調整方法を、図を参照して説明する。
図13は本実施形態に係る複数のレーダ装置の光軸調整方法の概念図である。
図14は1つの車体に複数のレーダ装置を装着し、これらレーダ装置の光軸調整を行う場合の概念図である。
Next, an optical axis adjustment method for a radar apparatus according to the fifth embodiment will be described with reference to the drawings.
FIG. 13 is a conceptual diagram of an optical axis adjustment method for a plurality of radar apparatuses according to this embodiment.
FIG. 14 is a conceptual diagram when a plurality of radar devices are mounted on one vehicle body and the optical axes of these radar devices are adjusted.

前述の第1の実施形態では、車体に対して1つのレーダ装置(アンテナ装置)を装着した場合について説明したが、本実施形態は、レーダ装置数(アンテナ装置数)を複数として、第1の実施形態に示したレーダ装置(アンテナ装置)の光軸調整を行うものである。   In the first embodiment described above, the case where one radar device (antenna device) is mounted on the vehicle body has been described. However, in the present embodiment, the number of radar devices (number of antenna devices) is set to be a plurality of values. The optical axis of the radar apparatus (antenna apparatus) shown in the embodiment is adjusted.

図13に示すように、複数のレーダ装置10A〜10Eに対してアンテナ装置の光軸201A〜201Eを調整する場合、全ての装置の基準軸101が平行になるように、全てのレーダ装置10A〜10Eを配置する。そして、これらレーダ装置10A〜10Eの配列方向に平行に移動軸100を設定して、全てのレーダ装置10A〜10Eの受信ビーム領域を通過するように、反射物体1を移動させる。   As shown in FIG. 13, when adjusting the optical axes 201A to 201E of the antenna apparatus with respect to the plurality of radar apparatuses 10A to 10E, all the radar apparatuses 10A to 10A to be parallel so that the reference axes 101 of all the apparatuses are parallel. 10E is placed. Then, the moving axis 100 is set parallel to the arrangement direction of the radar apparatuses 10A to 10E, and the reflecting object 1 is moved so as to pass through the reception beam areas of all the radar apparatuses 10A to 10E.

このような構成とすることで、レーダ装置10A〜10Eのそれぞれが第1の実施形態のレーダ装置10に対応するので、それぞれのレーダ装置10A〜10Eで、第1の実施形態のズレ角の補正処理を行えば、全てのレーダ装置10A〜10Eを同時に光軸調整することができる。   With such a configuration, each of the radar devices 10A to 10E corresponds to the radar device 10 of the first embodiment. Therefore, in each of the radar devices 10A to 10E, the deviation angle correction of the first embodiment is performed. If processing is performed, the optical axes of all the radar apparatuses 10A to 10E can be adjusted simultaneously.

また、図14に示すように、車体11の正面にレーダ装置10B〜10Dを設置し、側面にレーダ装置10A、10Eを設置する場合には、車体11の正面方向を基準軸101方向に設定する。さらに、車体11の幅方向に平行で、基準軸101に垂直な方向を移動軸100に設定する。そして、この移動軸100に沿って反射物体1を移動させれば、レーダ装置10A〜10Eを同時に光軸調整することができる。   As shown in FIG. 14, when the radar devices 10 </ b> B to 10 </ b> D are installed on the front surface of the vehicle body 11 and the radar devices 10 </ b> A and 10 </ b> E are installed on the side surfaces, the front direction of the vehicle body 11 is set to the reference axis 101 direction. . Furthermore, a direction parallel to the width direction of the vehicle body 11 and perpendicular to the reference axis 101 is set as the movement axis 100. If the reflecting object 1 is moved along the movement axis 100, the optical axes of the radar apparatuses 10A to 10E can be adjusted simultaneously.

なお、前述の各実施形態では、アンテナ装置の光軸をレーダ装置および被装着体の基準軸に一致させる場合を示したが、アンテナ装置とレーダ装置とが固定であり、レーダ装置と被装着体との位置関係を補正するできる場合には、レーダ装置の光軸を被装着体の基準軸に一致させる処理を行えばよい。   In each of the above-described embodiments, the case where the optical axis of the antenna device is made to coincide with the reference axis of the radar device and the mounted body is shown. However, the antenna device and the radar device are fixed, and the radar device and the mounted body are fixed. Can be corrected, the processing may be performed so that the optical axis of the radar apparatus matches the reference axis of the mounted body.

第1の実施形態に係るレーダ装置の光軸調整方法に用いる各装置および物体の関係を示す平面図である。It is a top view which shows the relationship between each apparatus used for the optical axis adjustment method of the radar apparatus which concerns on 1st Embodiment, and an object. 移動軸100上の反射物体1の位置とアンテナ装置20から反射物体1までの距離との関係を示した図、反射物体1の方位角とアンテナ装置20から反射物体1までの距離との関係を示した図である。The figure which showed the relationship between the position of the reflective object 1 on the movement axis 100, and the distance from the antenna apparatus 20 to the reflective object 1, The relationship between the azimuth of the reflective object 1 and the distance from the antenna apparatus 20 to the reflective object 1 FIG. 測定結果のみの場合と近似処理を行った場合とにおける検知方位(光軸201に基づく方位)と反射物体方位(基準軸101に基づく方位)との関係を示した図である。It is the figure which showed the relationship between the detection azimuth | direction (direction based on the optical axis 201) and the reflective object azimuth | direction (direction based on the reference axis 101) in the case of only a measurement result, and the case where an approximation process is performed. 移動軸100と基準軸101とが空間的に直交しない場合の概念図である。It is a conceptual diagram in case the moving axis 100 and the reference axis 101 are not spatially orthogonal. 第2に実施形態に係る移動軸100上の反射物体1の位置とアンテナ装置20に対する反射物体1のドップラ速度との関係を示した図である。It is the figure which showed the relationship between the position of the reflective object 1 on the moving shaft 100 which concerns on 2nd Embodiment, and the Doppler speed of the reflective object 1 with respect to the antenna apparatus 20. FIG. 第3の実施形態に係るレーダ装置の光軸調整方法に用いる各装置および物体の関係を示す平面図および側面図である。It is the top view and side view which show the relationship between each apparatus and object which are used for the optical axis adjustment method of the radar apparatus which concerns on 3rd Embodiment. 移動軸100と走査軸301とが直交する場合で、光軸201と基準軸101とが一致しない場合における、移動軸上位置に対する受信信号強度と反射物体距離との関係を示した図である。FIG. 6 is a diagram illustrating a relationship between a received signal intensity and a reflection object distance with respect to a position on the movement axis when the movement axis 100 and the scanning axis 301 are orthogonal to each other and the optical axis 201 and the reference axis 101 do not coincide with each other. 第4の実施形態に係るレーダ装置の光軸調整方法に用いる各装置および物体の関係を示す平面図および側面図である。It is the top view and side view which show the relationship between each apparatus and object which are used for the optical axis adjustment method of the radar apparatus which concerns on 4th Embodiment. 円軌道の反射物体1の距離xおよび方位φの概念図である。It is a conceptual diagram of distance x and azimuth | direction (phi) of the reflective object 1 of a circular orbit. 反射物体1の方位φと距離xとの関係式を示したものである。A relational expression between the azimuth φ of the reflecting object 1 and the distance x is shown. 反射物体1のドップラ速度Vdopおよび方位φの概念図である。It is a conceptual diagram of the Doppler velocity Vdop and the direction φ of the reflective object 1. 反射物体1の方位φとドップラ速度Vdopとの関係式を示したものである。The relational expression between the azimuth φ of the reflecting object 1 and the Doppler velocity Vdop is shown. 第5の実施形態に係る複数のレーダ装置の光軸調整方法の概念図である。It is a conceptual diagram of the optical axis adjustment method of the some radar apparatus which concerns on 5th Embodiment. 1つの車体に複数のレーダ装置を装着し、これらレーダ装置の光軸調整を行う場合の概念図である。It is a conceptual diagram in the case of mounting a plurality of radar devices on one vehicle body and adjusting the optical axes of these radar devices.

符号の説明Explanation of symbols

1−反射物体、10,10A〜10E−レーダ装置、20−アンテナ装置、21,21A〜21N−受信アンテナ、22−送信アンテナ、31,31A〜31I−受信ビーム、
100−移動軸、100’−移動軌道、101−基準軸、201,201A〜201E−光軸、301−走査軸
1-reflective object, 10, 10A-10E-radar apparatus, 20-antenna apparatus, 21,21A-21N-receiving antenna, 22-transmitting antenna, 31, 31A-31I-receiving beam,
100-movement axis, 100'-movement trajectory, 101-reference axis, 201, 201A to 201E-optical axis, 301-scanning axis

Claims (9)

検知領域に対して所定の基準軸を有するレーダ装置または該レーダ装置が装着された被装着体に備えられたアンテナ装置の光軸を、前記基準軸に一致させるレーダ装置の光軸調整方法であって、
前記基準軸上で前記アンテナ装置から所定距離にある一点で前記基準軸に対して垂直に通過する軌道で反射物体を移動させ、
前記アンテナ装置で、前記反射物体の移動領域内に送信波を送信するとともに、当該送信波に対する前記反射物体の反射波を受信し、
前記レーダ装置で得られる前記反射物体の検出結果の経時的変化に基づいて前記光軸と前記基準軸とのズレ量を検出する、
ことを特徴とするレーダ装置の光軸調整方法。
A method of adjusting an optical axis of a radar apparatus that matches an optical axis of a radar apparatus having a predetermined reference axis with respect to a detection region or an antenna apparatus provided on a mounted object on which the radar apparatus is mounted, to the reference axis. And
Moving the reflecting object in a trajectory that passes perpendicularly to the reference axis at a point at a predetermined distance from the antenna device on the reference axis;
The antenna device transmits a transmission wave in the moving area of the reflective object, and receives a reflected wave of the reflective object with respect to the transmission wave,
Detecting the amount of deviation between the optical axis and the reference axis based on the change over time of the detection result of the reflective object obtained by the radar device;
An optical axis adjustment method for a radar device.
前記レーダ装置で、前記送信波と前記反射波とから前記アンテナ装置から反射物体までの距離変化を検出し、該検出された距離変化における距離の極小値が得られた時の前記レーダ装置での角度検出結果に基づいて前記ズレ量を検出する請求項1に記載のレーダ装置の光軸調整方法。   In the radar device, a change in distance from the antenna device to a reflecting object is detected from the transmission wave and the reflected wave, and a minimum value of the distance in the detected distance change is obtained in the radar device. The method of adjusting an optical axis of a radar apparatus according to claim 1, wherein the deviation amount is detected based on an angle detection result. 前記レーダ装置で、前記送信波と前記反射波とから前記アンテナ装置に対する反射物体のドップラ速度変化を検出し、該検出されたドップラ速度の絶対値の極小値が得られた時の前記レーダ装置での角度検出結果に基づいて前記ズレ量を検出する請求項1に記載のレーダ装置の光軸調整方法。   The radar device detects a change in Doppler velocity of a reflecting object with respect to the antenna device from the transmission wave and the reflected wave and obtains a minimum value of the absolute value of the detected Doppler velocity. The method of adjusting an optical axis of a radar apparatus according to claim 1, wherein the amount of deviation is detected based on a result of angle detection. 前記レーダ装置で、前記送信波と前記受信波とから、前記アンテナ装置から反射物体までの距離変化を検出し、該検出された距離変化における距離の極小値に対応する前記反射物体の位置と、前記反射波の受信強度の極大値に対応する前記反射物体の位置とを一致させる処理を行う、請求項1に記載のレーダ装置の光軸調整方法。   The radar device detects a change in the distance from the antenna device to the reflective object from the transmission wave and the received wave, and the position of the reflective object corresponding to the minimum value of the distance in the detected distance change; The method of adjusting an optical axis of a radar apparatus according to claim 1, wherein processing for matching the position of the reflecting object corresponding to the maximum value of the reception intensity of the reflected wave is performed. 前記レーダ装置で、前記送信波と前記受信波とから、前記アンテナ装置に対する前記反射物体のドップラ速度変化を検出し、該検出されたドップラ速度の絶対値の極小値に対応する前記反射物体の位置と、前記反射波の受信強度の極大値に対応する前記反射物体の位置とを一致させる処理を行う、請求項1に記載のレーダ装置の光軸調整方法。   The radar device detects a change in Doppler velocity of the reflecting object with respect to the antenna device from the transmission wave and the received wave, and the position of the reflecting object corresponding to a minimum value of the absolute value of the detected Doppler velocity. The method of adjusting an optical axis of a radar apparatus according to claim 1, wherein a process of matching the position of the reflection object corresponding to the maximum value of the reception intensity of the reflected wave is performed. 前記アンテナ装置からビーム走査した送信波を送信し、
該ビーム走査の走査軸と前記光軸とを含む平面に平行な面内で前記反射物体を移動させ、前記走査軸と前記光軸とを含む平面に平行な方向に光軸調整を行う請求項1〜5のいずれかに記載のレーダ装置の光軸調整方法。
Transmitting a beam scanning beam from the antenna device,
The optical axis is adjusted in a direction parallel to a plane including the scanning axis and the optical axis by moving the reflecting object in a plane parallel to a plane including the scanning axis of the beam scanning and the optical axis. The optical axis adjustment method of the radar apparatus in any one of 1-5.
前記アンテナ装置からビーム走査した送信波を送信し、
該ビーム走査の走査軸と前記光軸とを含む平面に垂直な面内で前記反射物体を移動させ、前記走査軸と前記光軸とを含む平面に垂直な方向に光軸調整を行う請求項4または請求項5に記載のレーダ装置の光軸調整方法。
Transmitting a beam scanning beam from the antenna device,
The optical axis is adjusted in a direction perpendicular to a plane including the scanning axis and the optical axis by moving the reflecting object in a plane perpendicular to a plane including the scanning axis of the beam scanning and the optical axis. The method of adjusting an optical axis of a radar device according to claim 4 or 5.
前記アンテナ装置からビーム走査した送信波を送信し、
該ビーム走査の走査軸を含む平面に平行な周回面で、円周状で且つ基準軸上で最短距離となるように前記反射物体を移動させる請求項1〜7のいずれかに記載のレーダ装置の光軸調整方法。
Transmitting a beam scanning beam from the antenna device,
The radar apparatus according to any one of claims 1 to 7, wherein the reflecting object is moved so as to have a shortest distance on a reference axis along a circumferential surface parallel to a plane including a scanning axis of the beam scanning. Optical axis adjustment method.
それぞれにアンテナ装置が備えられ、各基準軸が平行である複数のレーダ装置を前記被装着体に装着し、
該基準軸の並ぶ方向と平行に前記反射物体を移動させる請求項1〜7に記載のレーダ装置の光軸調整方法。
Each is equipped with an antenna device, and a plurality of radar devices each having a parallel reference axis are mounted on the mounted body,
The method of adjusting an optical axis of a radar apparatus according to claim 1, wherein the reflecting object is moved in parallel with a direction in which the reference axes are arranged.
JP2006067845A 2006-03-13 2006-03-13 Optical axis adjustment method for radar apparatus Expired - Fee Related JP5186724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006067845A JP5186724B2 (en) 2006-03-13 2006-03-13 Optical axis adjustment method for radar apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006067845A JP5186724B2 (en) 2006-03-13 2006-03-13 Optical axis adjustment method for radar apparatus

Publications (2)

Publication Number Publication Date
JP2007248058A true JP2007248058A (en) 2007-09-27
JP5186724B2 JP5186724B2 (en) 2013-04-24

Family

ID=38592557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006067845A Expired - Fee Related JP5186724B2 (en) 2006-03-13 2006-03-13 Optical axis adjustment method for radar apparatus

Country Status (1)

Country Link
JP (1) JP5186724B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156023A1 (en) * 2018-02-06 2019-08-15 ヴィオニア スウェーデン エービー Method for manufacturing object detection device, vehicle manufacturing method and program
WO2021181981A1 (en) * 2020-03-10 2021-09-16 住友電気工業株式会社 Method for adjusting radio wave sensor, processing device, and computer program
EP3770630A4 (en) * 2018-03-23 2021-12-15 Hitachi Kokusai Electric Inc. Radar device, radar system, and method for adjusting radar antenna
WO2022244316A1 (en) * 2021-05-17 2022-11-24 日立Astemo株式会社 Radar device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102214332B1 (en) * 2014-04-30 2021-02-10 주식회사 만도 System for making a driver operate a car easily method for determining abnormality vertical angle of radar sensor at system for making a driver operate a car easily

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166062A (en) * 1979-06-13 1980-12-24 Mitsubishi Electric Corp Generator for spatial quasi-moving target
JPH0781490A (en) * 1993-09-10 1995-03-28 Hino Motors Ltd Radar device for automobile
JPH0933585A (en) * 1995-07-19 1997-02-07 Nec Corp Antenna measuring apparatus
JPH11194165A (en) * 1998-01-06 1999-07-21 Hitachi Ltd Method for adjusting axis of on-vehicle radar
JP2002174684A (en) * 2000-12-08 2002-06-21 Omron Corp Method for adjusting axis of distance measuring apparatus
JP2002236177A (en) * 2001-02-07 2002-08-23 Honda Motor Co Ltd Axis adjusting device of object detection device for vehicle
JP2003255042A (en) * 2002-03-06 2003-09-10 Honda Motor Co Ltd Method for adjusting detection axis of object detecting device
JP2004012183A (en) * 2002-06-04 2004-01-15 Honda Motor Co Ltd Detection axis adjustment method for object detector
JP2005049310A (en) * 2003-07-31 2005-02-24 Denso Corp Radar system for vehicle, and method for adjusting fitting angle of the radar system to the vehicle
JP2005134124A (en) * 2003-10-28 2005-05-26 Mitsubishi Electric Corp Testing device for moving object detection radar
JP2005172824A (en) * 2004-12-06 2005-06-30 Fujitsu Ten Ltd Method for adjusting setting angle of vehicular radar installation

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166062A (en) * 1979-06-13 1980-12-24 Mitsubishi Electric Corp Generator for spatial quasi-moving target
JPH0781490A (en) * 1993-09-10 1995-03-28 Hino Motors Ltd Radar device for automobile
JPH0933585A (en) * 1995-07-19 1997-02-07 Nec Corp Antenna measuring apparatus
JPH11194165A (en) * 1998-01-06 1999-07-21 Hitachi Ltd Method for adjusting axis of on-vehicle radar
JP2002174684A (en) * 2000-12-08 2002-06-21 Omron Corp Method for adjusting axis of distance measuring apparatus
JP2002236177A (en) * 2001-02-07 2002-08-23 Honda Motor Co Ltd Axis adjusting device of object detection device for vehicle
JP2003255042A (en) * 2002-03-06 2003-09-10 Honda Motor Co Ltd Method for adjusting detection axis of object detecting device
JP2004012183A (en) * 2002-06-04 2004-01-15 Honda Motor Co Ltd Detection axis adjustment method for object detector
JP2005049310A (en) * 2003-07-31 2005-02-24 Denso Corp Radar system for vehicle, and method for adjusting fitting angle of the radar system to the vehicle
JP2005134124A (en) * 2003-10-28 2005-05-26 Mitsubishi Electric Corp Testing device for moving object detection radar
JP2005172824A (en) * 2004-12-06 2005-06-30 Fujitsu Ten Ltd Method for adjusting setting angle of vehicular radar installation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156023A1 (en) * 2018-02-06 2019-08-15 ヴィオニア スウェーデン エービー Method for manufacturing object detection device, vehicle manufacturing method and program
JP2021060195A (en) * 2018-02-06 2021-04-15 ヴィオニア スウェーデン エービー Manufacturing method of target detection apparatus, manufacturing method of vehicle, and program
EP3770630A4 (en) * 2018-03-23 2021-12-15 Hitachi Kokusai Electric Inc. Radar device, radar system, and method for adjusting radar antenna
WO2021181981A1 (en) * 2020-03-10 2021-09-16 住友電気工業株式会社 Method for adjusting radio wave sensor, processing device, and computer program
WO2022244316A1 (en) * 2021-05-17 2022-11-24 日立Astemo株式会社 Radar device

Also Published As

Publication number Publication date
JP5186724B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
US7474256B2 (en) Position detecting system, and transmitting and receiving apparatuses for the position detecting system
US7612706B2 (en) Monopulse radar apparatus and antenna switch
JP4238375B2 (en) Radar equipment
JP5186724B2 (en) Optical axis adjustment method for radar apparatus
JP2010117313A (en) Radar apparatus
JP2016121959A (en) Radar device and cover member
US20240072577A1 (en) Antenna device, power supplying device, and power supplying method
JPWO2015104876A1 (en) Train position detector
JP5428488B2 (en) Vehicle tilt detection device
WO2012124352A1 (en) Vehicle inclination detection device
JP6207792B2 (en) Moving distance measuring device
KR100527848B1 (en) Apparatus for Antenna Alignment for Near-Field Measurement
WO2012042636A1 (en) Mobile body sensing device
JP2009198362A (en) Velocity measuring device and velocity measuring method of moving object
Fabrizio Geolocation of HF skywave radar signals using multipath in an unknown ionosphere
JP2012211794A (en) Angular characteristics measuring method and radar apparatus
JP2730521B2 (en) Antenna measuring device
JP2982751B2 (en) Position locating method and device
JPH11183174A (en) Position measuring apparatus for mobile
JP2005098897A (en) On-vehicle radar, reflector for on-vehicle radar, and adjustment method for setting angle of the on-vehicle radar
JP7064401B2 (en) Speed measuring device, radar system and speed measuring program
JPH05302971A (en) Position orientation system of radio-wave source
JP3751574B2 (en) Target position detection method and target position detection system
US20230384418A1 (en) Channel offset correction for radar data
JP7082853B2 (en) Rangefinder, distance measurement method, thickness gauge device and thickness measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5186724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees