JP2007247840A - Gas-spring vibration isolator and method of adjusting same - Google Patents

Gas-spring vibration isolator and method of adjusting same Download PDF

Info

Publication number
JP2007247840A
JP2007247840A JP2006074466A JP2006074466A JP2007247840A JP 2007247840 A JP2007247840 A JP 2007247840A JP 2006074466 A JP2006074466 A JP 2006074466A JP 2006074466 A JP2006074466 A JP 2006074466A JP 2007247840 A JP2007247840 A JP 2007247840A
Authority
JP
Japan
Prior art keywords
supply
gas
throttle
air
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006074466A
Other languages
Japanese (ja)
Other versions
JP4660403B2 (en
Inventor
Masashi Ono
将志 小野
Hiroshi Mizukawa
博史 水川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Kako Co Ltd
Original Assignee
Kurashiki Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Kako Co Ltd filed Critical Kurashiki Kako Co Ltd
Priority to JP2006074466A priority Critical patent/JP4660403B2/en
Publication of JP2007247840A publication Critical patent/JP2007247840A/en
Application granted granted Critical
Publication of JP4660403B2 publication Critical patent/JP4660403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration isolator A which supplies/exhausts air directly to/from an air chamber S depending on a change in the supporting height of an air spring 2 by changing over a supply/exhaust flow amount at a proper timing compatible with the condition of supplying/exhausting air to actualize quick reset to a reference height while sufficiently suppressing overshoot. <P>SOLUTION: A throttle valve 33 is provided in a first supply/exhaust duct 30 for supplying/exhausting air to the air chamber S of the air spring 2 via a levelling valve 31. In a second supply/exhaust duct 36 which is branch-connected to the first supply/exhaust duct 30 on the downstream side of the throttle valve 33, a control valve 37 is arranged which consists of a pressure reducing valve. With the reaction of the control valve 37 on differential pressure between the upstream and downstream sides of the throttle valve 33, pressure air is supplied to the air spring 2 when predetermined pressure or higher is on the throttle upstream side than on the downstream side and it is exhausted from the air spring 2 when predetermined pressure or higher is on the downstream side than on the upstream side. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば液晶関連の製造装置等、種々の精密機器を気体ばねを介して弾性支持するようにした気体ばね式の除振装置に関し、特に、機械式のレベリングバルブを介して気体ばねの気体室に直接、気体を給排するようにしたものに係る。   The present invention relates to a gas spring type vibration isolator that elastically supports various precision devices such as liquid crystal related manufacturing apparatuses via a gas spring, and more particularly, to a gas spring through a mechanical leveling valve. It relates to a gas chamber that supplies and discharges gas directly.

従来より、この種の除振装置としては例えば特許文献1に記載の如く、複数の空気ばねにより織機を支持するようにした防振架台が知られている。このものでは、架台を水平に保つための調整(レベリング調整)を、個々の空気ばねへの加圧空気の供給及び排気等により行っており、例えば織機の作動に伴い、いずれかの空気ばねの分担荷重が増大して、その支持高さが低くなれば、レベリングバルブのレバーが押し下げられて、加圧空気が直接、空気室に供給されるようになっている。   Conventionally, as this type of vibration isolator, for example, as described in Patent Document 1, a vibration isolator having a loom supported by a plurality of air springs is known. In this device, adjustment (leveling adjustment) for keeping the gantry horizontal is performed by supplying pressurized air to individual air springs, exhausting, etc. For example, with the operation of the loom, When the shared load increases and the supporting height decreases, the lever of the leveling valve is pushed down, and the pressurized air is supplied directly to the air chamber.

そうしてレベリングバルブのレバーが基準高さになるまでの間、空気室に加圧空気が供給されると、この加圧空気の供給量は必要以上に多くなってしまい、結果、空気ばねの支持高さは一旦、基準高さよりも高くなり(オーバーシュート)、これによりレベリングバルブのレバーが持ち上がって、空気室の空気が排出される。こうして空気室への空気の給排が数回、繰り返された後に、空気ばねの支持高さは基準高さに収束し、架台が水平に保たれるようになる。   Then, if pressurized air is supplied to the air chamber until the lever of the leveling valve reaches the reference height, the supply amount of this pressurized air becomes larger than necessary. The support height once becomes higher than the reference height (overshoot), thereby raising the lever of the leveling valve and discharging the air in the air chamber. After the air supply / discharge to / from the air chamber is repeated several times in this way, the support height of the air spring converges to the reference height, and the gantry is kept horizontal.

その際、前記のように空気室に過剰に供給される加圧空気の量が多ければ、多いほど、空気ばねの支持高さのオーバーシュート量も大きくなるから、基準高さへの収束に時間がかかるようになり、さらに、オーバーシュートによって防振架台が急激に変位すると、機器の誤作動を生じる虞れもあった。   At that time, as the amount of pressurized air supplied to the air chamber excessively increases as described above, the amount of overshoot of the support height of the air spring increases, so it takes time to converge to the reference height. Further, when the vibration isolator is suddenly displaced by overshoot, there is a possibility that the device malfunctions.

そこで、前記従来例のものでは、空気ばねへ加圧空気を供給するための通路に流量制御弁を配設して、流通する空気の流れを少量に絞ることにより、空気室への過剰な空気供給を減らして、オーバーシュートを抑制するようにしている。これにより基準高さへの収束が早まるとともに、オーバーシュートによって防振架台が急激に変位することを防止できる。   Therefore, in the above-mentioned conventional example, a flow control valve is provided in the passage for supplying pressurized air to the air spring, and the flow of the circulating air is reduced to a small amount, thereby excessive air to the air chamber. The supply is reduced to suppress overshoot. As a result, convergence to the reference height is accelerated, and it is possible to prevent the vibration isolator from being suddenly displaced by overshoot.

しかしながら、そうして空気ばねへの加圧空気の流量を少量に絞ってしまえば、必然的に空気の供給遅れは大きくなるから、空気ばねの基準高さへの復帰が遅くなって、防振架台の傾きが大きくなり、干渉の問題を生じる虞れがある。また、架台が傾いている時間も長くなり、例えば液晶パネル製造装置等の精密機器を搭載した場合は、それが傾いている間は機器を作動させることができない場合があるから、タクトタイムの徒な延長を招き、好ましくない。   However, if the flow rate of pressurized air to the air spring is reduced to a small amount, the air supply delay will inevitably increase. There is a possibility that the tilt of the gantry becomes large and causes a problem of interference. Also, the time for which the pedestal is tilted becomes longer. For example, when a precision instrument such as a liquid crystal panel manufacturing apparatus is mounted, the instrument may not be operated while it is tilted. This is not desirable because it causes excessive extension.

この点につき、例えば特許文献2に記載のレベリングバルブ(自動水平調整装置)は、2つの弁体を内蔵し、空気ばねの支持高さの変化(架台の傾き)が大きくて、レバーの作動量が大きいときには両方の弁体から空気ばねへ空気を供給する一方、支持高さの変化が小さくて、レバーの作動量が小さいときには、一方の弁体を閉じて、他方の弁体のみから空気を供給するようになっている。   In this regard, for example, the leveling valve (automatic leveling device) described in Patent Document 2 incorporates two valve bodies, and the change in the support height of the air spring (the tilt of the gantry) is large, and the lever operating amount When air pressure is large, air is supplied from both valve bodies to the air spring, while when the change in the support height is small and the lever operation amount is small, one valve body is closed and air is supplied only from the other valve body. It comes to supply.

このようなレベリングバルブを用いれば、空気ばねによる被支持体の支持高さの変化が大きいときには、2つの弁体を介して空気ばねへ比較的大流量で空気を供給することができるので、空気ばねを比較的早く基準高さに復帰させることができるとともに、基準高さに近づけば一方の弁体が閉じられ、空気供給量が絞られるので、オーバーシュートも抑制することができる。
実開平5−30180号公報 特許第2814077号公報
If such a leveling valve is used, air can be supplied at a relatively large flow rate to the air spring via the two valve bodies when the change in the support height of the supported body by the air spring is large. The spring can be returned to the reference height relatively quickly, and when close to the reference height, one valve body is closed and the air supply amount is reduced, so that overshoot can be suppressed.
Japanese Utility Model Publication No. 5-30180 Japanese Patent No. 2814077

しかしながら、前記後者の従来例では、レベリングバルブに2つの弁体を内蔵しているため、その構造が複雑になる上に、レバーの作動量によって一律に2つの弁体の開閉タイミングが決まり、これにより大流量から小流量への切換えのタイミングが決まってしまうから、必ずしも空気の供給過剰を解消して、オーバーシュートを充分に抑制しつつ、基準高さへの復帰時間も十分に短縮できるものとは言えない。   However, in the latter conventional example, since the leveling valve has two built-in valve bodies, the structure is complicated, and the opening / closing timing of the two valve bodies is determined uniformly by the amount of operation of the lever. Because the timing of switching from a large flow rate to a small flow rate is determined by this, it is not necessarily necessary to eliminate excessive air supply, sufficiently suppress overshoot, and sufficiently shorten the return time to the reference height. I can't say that.

すなわち、空気ばねへの空気の過剰な供給を抑えるためには、その供給状態に応じて、例えば空気の流量が多いときにはその分、早いタイミングで一方の弁体を閉じる必要があるが、前記のようにレバーの作動量のみによってタイミングが決まってしまうとすれば、これが適切なタイミングよりも遅すぎて供給過剰気味になったり、反対に適切なタイミングよりも早すぎて供給遅れが大きくなったりするのである。   That is, in order to suppress excessive supply of air to the air spring, depending on the supply state, for example, when the flow rate of air is large, it is necessary to close one of the valve bodies at an earlier timing. Thus, if the timing is determined only by the amount of lever operation, this is too late than the appropriate timing and it becomes oversupply, or conversely, it is too early than the appropriate timing and the supply delay becomes large. It is.

本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、気体室へ直接、気体を給排するようにした気体ばね式の除振装置において、気体を給排するための構成に工夫を凝らし、気体室への気体の給排状態に対応する適切なタイミングで供給流量を切換えることにより、オーバーシュートを十分に抑制しながら、高さの復帰時間も十分に短縮することにある。   The present invention has been made in view of such points, and an object of the present invention is to supply and discharge gas in a gas spring type vibration isolator that supplies and discharges gas directly to and from a gas chamber. By devising the configuration for this purpose and switching the supply flow rate at an appropriate timing corresponding to the gas supply / exhaust state to the gas chamber, the return time of the height can be sufficiently shortened while sufficiently suppressing overshoot. There is.

前記目的を達成するために、本発明では、気体室にレベリングバルブを介して気体を給排する第1の給排通路には絞り部を設ける一方、それとは別に気体室への気体の給排が可能な第2の給排通路を設けて、この第2給排通路に介設した制御弁を、前記絞り部の上下差圧に応じて作動させるようにした。   In order to achieve the above object, according to the present invention, the first supply / exhaust passage for supplying / exhausting gas to / from the gas chamber via the leveling valve is provided with a throttle portion, while separately supplying / exhausting gas to / from the gas chamber. A second supply / exhaust passage is provided, and a control valve interposed in the second supply / exhaust passage is operated in accordance with the pressure difference between the upper and lower portions of the throttle portion.

具体的に請求項1の発明では、被支持体を気体ばねにより弾性的に支持するとともに、該気体ばねの気体室に臨んで開口する第1の給排通路に機械式のレベリングバルブを介設し、被支持体の高さの変化に応じて気体室に直接、気体を給排するようにした気体ばね式の除振装置を対象とする。   Specifically, in the first aspect of the invention, the supported body is elastically supported by the gas spring, and a mechanical leveling valve is provided in the first supply / exhaust passage that opens toward the gas chamber of the gas spring. Then, the object is a gas spring type vibration isolator in which gas is directly supplied to and discharged from the gas chamber in accordance with the change in the height of the supported body.

そして、前記第1給排通路にはレベリングバルブと気体室との間で気体の流れを絞る絞り部を設けるとともに、この絞り部を介さずに前記気体室との気体の給排が可能な第2の給排通路を設け、当該第2給排通路には、前記絞り部の上流側(レベリングバルブ側)及び反対側の下流側からそれぞれパイロット圧を受けて、その上流側パイロット圧が下流側よりも所定以上、高いときに気体室に気体を供給する一方、下流側パイロット圧が上流側よりも所定以上、高いときには気体室から排気するように制御弁を介設したものである。   The first supply / exhaust passage is provided with a throttle portion for restricting the flow of gas between the leveling valve and the gas chamber, and the first supply / exhaust passage is capable of supplying / exhausting gas to / from the gas chamber without passing through the throttle portion. The second supply / discharge passage receives pilot pressure from the upstream side (leveling valve side) and the downstream side opposite to the throttle portion, and the upstream pilot pressure is downstream. When the gas pressure is supplied to the gas chamber when it is higher than a predetermined level, the control valve is provided so as to exhaust the gas from the gas chamber when the downstream pilot pressure is higher than the upstream side by a predetermined level.

前記の構成により、例えば被支持体である機器の作動に伴い、これを支持する気体ばねへの荷重が増大して、その支持高さが低くなると、レベリングバルブが作動して、気体が第1給排通路から直接、気体室に供給されるようになる。このとき、第1給排通路の絞り部において上流側の気体圧が下流側よりも高くなり、それらの差圧が所定以上であれば、制御弁が作動して、第2給排通路からも気体室に気体が供給される。   With the above-described configuration, for example, when a device that is a supported body is operated, a load on the gas spring that supports the device increases, and when the support height is lowered, the leveling valve is operated and the gas is first. The gas chamber is supplied directly from the supply / discharge passage. At this time, if the gas pressure on the upstream side is higher than that on the downstream side in the throttle portion of the first supply / exhaust passage and the pressure difference between them is greater than or equal to a predetermined value, the control valve is actuated and the Gas is supplied to the gas chamber.

そうして第1及び第2の両方の給排通路によって大流量で気体が供給されることで、気体ばねの内圧は速やかに上昇し、その支持高さも高くなるが、それが基準高さに到達する前に、第1給排通路の絞り部下流側の気体圧も高くなって上流側との差圧が減少し、第2給排通路の制御弁の作動が停止する。そして、その後は第1給排通路のみから、即ち絞り部によって絞られて、小流量で気体が供給されるようになる。   Then, by supplying gas at a large flow rate by both the first and second supply / discharge passages, the internal pressure of the gas spring rises quickly and its supporting height also increases, but it becomes the reference height. Before reaching, the gas pressure on the downstream side of the throttle portion of the first supply / exhaust passage also increases, the differential pressure with respect to the upstream side decreases, and the operation of the control valve of the second supply / exhaust passage stops. After that, the gas is supplied from the first supply / exhaust passage only, that is, by the restricting portion, at a small flow rate.

つまり、レベリングバルブのレバーの作動量ではなく、気体ばねの内圧の上昇に応じて、言い換えると、その気体室への気体の供給状態に対応した適切なタイミングでもって、気体の供給流量を大流量から小流量に切換ることができるので、気体室への供給遅れを可及的に減らして、基準高さへの復帰時間を十分に短縮できるとともに、気体の供給過剰を解消して、オーバーシュートを十分に抑制することができる。   In other words, the gas supply flow rate is increased according to the increase in the internal pressure of the gas spring instead of the operating amount of the lever of the leveling valve, in other words, at an appropriate timing corresponding to the gas supply state to the gas chamber. Since the flow rate can be switched from low to low, the supply delay to the gas chamber can be reduced as much as possible, the return time to the reference height can be sufficiently shortened, and the excess supply of gas can be eliminated to overshoot. Can be sufficiently suppressed.

そのような流量切換えの適切なタイミングは、例えば、気体ばねの容積、その減衰特性、第1及び第2給排通路の断面積や長さ、或いは気体圧源の供給圧力等によって変化し、さらには被支持体である機器の重量や重心の高さ、その作動による荷重の変化等によっても変化する。   The appropriate timing for such flow rate switching varies depending on, for example, the volume of the gas spring, its damping characteristics, the cross-sectional area and length of the first and second supply / exhaust passages, the supply pressure of the gas pressure source, and the like. Changes depending on the weight of the device as a supported body, the height of the center of gravity, a change in load due to its operation, and the like.

そこで、好ましいのは、前記のように第1給排通路に設ける絞り部を、絞り量が変更可能な可変絞りとすることである(請求項2の発明)。こうすれば、絞り量の変更によってその上下の差圧を変更することで、第2給排通路の制御弁が作動するタイミングを容易に変更できる。よって、実際に搭載した機器を作動させ、これにより気体ばねの支持高さが変化する様子に応じて、可変絞りの絞り量を調整すれば、前記のように数多くの要因によって変化する適切なタイミングに、絞り量の調整だけで設定することができる。   Therefore, it is preferable that the throttle portion provided in the first supply / exhaust passage as described above is a variable throttle that can change the throttle amount (the invention of claim 2). If it carries out like this, the timing which the control valve of a 2nd supply / exhaust passage act | operates can be changed easily by changing the differential pressure of the up-and-down by change of the amount of restriction. Therefore, if the mounted device is actually operated, and the amount of support of the gas spring is changed accordingly, the amount of adjustment of the variable throttle can be adjusted. In addition, it can be set only by adjusting the aperture amount.

より具体的に、前記絞り部の断面積は、第1給排通路の他の部位の通路断面積の5〜55%の範囲に設定するのが好ましい(請求項3の発明)。すなわち、5%以下では絞りが強すぎて、差圧が大きくなりすぎるため、なかなか小流量に切換わらず、供給過剰気味になって気体室の圧力変動(オーバーシュート)が大きくなってしまう一方、55%以上では絞りが緩すぎて差圧が生じ難いことから、なかなか制御弁が作動しない上に、一旦、作動しても直ぐに停止して、小流量へと切換わってしまい、気体の供給遅れが大きくなるからである。   More specifically, the cross-sectional area of the throttle portion is preferably set to a range of 5 to 55% of the cross-sectional area of the other part of the first supply / exhaust passage (Invention of Claim 3). That is, if the pressure is less than 5%, the throttle is too strong and the differential pressure becomes too large, so it is difficult to switch to a small flow rate, and the pressure fluctuation (overshoot) in the gas chamber increases due to excessive supply. If it is 55% or more, the throttle is too loose and it is difficult for differential pressure to occur. Therefore, the control valve does not operate easily, and even if it operates once, it immediately stops and switches to a small flow rate, and the gas supply delay This is because it becomes larger.

また、好ましいのは、前記第2給排通路を第1給排通路にその絞り部よりも下流側で連通させることであり、こうすれば、その第2給排通路のためだけに気体ばねに貫通路を設ける必要がなく、構造の簡略化が図られる。   Further, it is preferable that the second supply / exhaust passage communicates with the first supply / exhaust passage on the downstream side of the throttle portion, so that the gas spring is provided only for the second supply / exhaust passage. There is no need to provide a through passage, and the structure can be simplified.

そうした場合、第2給排通路から第1給排通路の絞り部下流側に気体が供給されるときに、この下流側の気体圧が上昇して上流側との差圧が急減する虞れがあるが、前記第2給排通路の制御弁を、前記第1給排通路に連通する下流側の気体圧が、前記絞り部の上流側からのパイロット圧に応じて調整される減圧弁によって構成すれば(請求項4の発明)、その下流側の気体圧があまり高くならないように設定できるから、第2給排通路からの気体の供給によって絞り部の上下差圧が急減することはなく、よって、差圧に応動する減圧弁の作動の安定性が担保される。   In such a case, when the gas is supplied from the second supply / exhaust passage to the downstream side of the throttle portion of the first supply / exhaust passage, there is a possibility that the gas pressure on the downstream side rises and the differential pressure from the upstream side is suddenly reduced. However, the control valve of the second supply / discharge passage is constituted by a pressure reducing valve in which the downstream gas pressure communicating with the first supply / discharge passage is adjusted in accordance with the pilot pressure from the upstream side of the throttle portion. If so (the invention of claim 4), it can be set so that the gas pressure on the downstream side does not become so high, the vertical pressure difference of the throttle portion does not rapidly decrease due to the supply of gas from the second supply and discharge passage, Therefore, the stability of the operation of the pressure reducing valve that responds to the differential pressure is ensured.

本発明は、また、前記請求項1に記載の気体ばね式除振装置を調整する調整方法であって、まず、前記第1給排通路の絞り部として絞り量が変更可能な可変絞りを用い、被支持体である機器を作動させて、その高さ位置の変化を計測し、この計測結果に基づいて前記可変絞りの絞り量を調整した後に、これを絞り量の変更不能な固定絞りに交換する、というものである。   The present invention is also an adjustment method for adjusting the gas spring vibration isolator according to claim 1, and first, a variable throttle that can change a throttle amount is used as a throttle portion of the first supply / discharge passage. Then, by operating the device that is the supported body, measure the change in its height position, adjust the aperture amount of the variable aperture based on this measurement result, and then change this to a fixed aperture that cannot change the aperture amount It is to exchange.

この方法によると、気体ばね式除振装置の絞り部としては安価な固定絞りを採用して、コストの低減を図りつつ、その調整の際には可変絞りを用いることで、前記請求項2の発明と同様の作用が得られる。つまり、除振装置において気体ばねへの供給流量を切換えるタイミングに影響を与える要因が数多く存在する場合でも、可変絞りの絞り量の調整だけで、容易に適切なタイミングに設定することができる。   According to this method, an inexpensive fixed throttle is adopted as the throttle portion of the gas spring type vibration isolator, and the variable throttle is used for the adjustment while reducing the cost. The same effect as the invention can be obtained. In other words, even when there are many factors that affect the timing of switching the supply flow rate to the gas spring in the vibration isolation device, it is possible to easily set the timing appropriately by simply adjusting the throttle amount of the variable throttle.

以上より、本発明に係る気体ばね式除振装置によれば、気体室へ直接、気体を給排するようにした気体ばね式の除振装置において、レベリングバルブの介在された第1給排通路には絞り部を設ける一方、それとは別の第2給排通路に制御弁を設けて、これを前記絞り部の上下差圧に応じて作動させるようにしたので、気体ばねへの気体の供給流量を、その給排状態に対応する適切なタイミングで大流量から小流量に切換えることができるようになり、これにより、オーバーシュートを十分に抑制しながら、高さの復帰時間も十分に短縮できる。   As mentioned above, according to the gas spring type vibration isolator which concerns on this invention, in the gas spring type vibration isolator which was made to supply and discharge gas directly to a gas chamber, the 1st supply / exhaust path where the leveling valve was interposed Since the throttle part is provided with a control valve in a second supply / exhaust passage that is different from the throttle part, and this is operated according to the differential pressure in the upper and lower sides of the throttle part, the supply of gas to the gas spring The flow rate can be switched from a large flow rate to a small flow rate at an appropriate timing corresponding to the supply / discharge state, thereby sufficiently reducing the return time of the height while sufficiently suppressing overshoot. .

特に、前記第1給排通路の絞り部として可変絞りを用い、実際に搭載した機器を作動させ、これにより気体ばねの支持高さが変化する様子に応じて、絞り量を所定範囲内で調整するようにすれば、気体ばねへの供給流量を切換えるタイミングに影響を与える要因が多いシステムにおいても、適切なタイミングに容易に設定することができる。
In particular, a variable throttle is used as the throttle section of the first supply / exhaust passage, and an actually mounted device is operated to adjust the throttle amount within a predetermined range according to the change in the support height of the gas spring. By doing so, even in a system having many factors that affect the timing of switching the supply flow rate to the gas spring, it can be easily set to an appropriate timing.

以下、本発明の実施形態を図面に基づいて説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.

図1及び2は、本発明の実施形態に係る除振装置Aの概略構成を示す。この除振装置Aは、図3に一例を示すように、液晶関連製造装置等の機器Dが搭載される搭載盤1を通常は複数の(図の例では3個であるが、4個以上であってもよい)空気ばね2(気体ばね)により弾性的に支持するようにした空気ばね式のものであり、被支持体である搭載機器D及び搭載盤1の高さが概略一定に保たれるように、空気ばね2の空気室S(気体室)に直接、空気を供給又は排気する空気圧回路3を備えている。尚、図2では空気圧回路3の要素をシンボルで表している。   1 and 2 show a schematic configuration of a vibration isolation device A according to an embodiment of the present invention. As shown in FIG. 3, the vibration isolator A usually has a plurality of mounting boards 1 on which devices D such as liquid crystal related manufacturing apparatuses are mounted (three in the example in the figure, but four or more). It is an air spring type that is elastically supported by the air spring 2 (gas spring), and the height of the mounted device D and the mounting board 1 that are the supported bodies is kept substantially constant. In order to sag, a pneumatic circuit 3 is provided for supplying or exhausting air directly to the air chamber S (gas chamber) of the air spring 2. In FIG. 2, elements of the pneumatic circuit 3 are represented by symbols.

前記空気ばね2は、図の例ではベローズ型のものであり、床上等に配置されるベース板20と、その上方に離間して配置され、上面に搭載盤1の下面が当接する天板21と、それらの中間に介設されて、内側に空気室Sを区画する提灯形の1段ベローズ22と、を備えている。天板21には、その下面において空気室Sに臨んで開口するように給排ポート23が形成され、天板21の側面に開口する給排ポート23の他端にはコネクタ24が嵌入されていて、これが空気圧回路3の第1給排管路30の下流端に接続されている。   The air spring 2 is of the bellows type in the example of the figure, and is a base plate 20 disposed on the floor or the like, and a top plate 21 that is spaced apart above the top plate 21 so that the lower surface of the mounting board 1 contacts the upper surface. And a lantern-shaped one-step bellows 22 that is interposed between them and divides the air chamber S inside. The top plate 21 has a supply / exhaust port 23 formed so as to open toward the air chamber S on the lower surface thereof, and a connector 24 is fitted to the other end of the supply / discharge port 23 opened on the side surface of the top plate 21. This is connected to the downstream end of the first supply / discharge line 30 of the pneumatic circuit 3.

尚、図の例では、空気ばね2の空気室S内に減衰機構25が配設されている。これは、ケース25a内のシリコンオイルに浸漬したダンピングプレート25bをシャフト25cにより空気ばね2の天板21に連結して、天板21の変位に対しシリコンオイルの粘性による抵抗を付与するようにしたものである。   In the illustrated example, a damping mechanism 25 is disposed in the air chamber S of the air spring 2. This is because the damping plate 25b immersed in the silicone oil in the case 25a is connected to the top plate 21 of the air spring 2 by the shaft 25c, and resistance due to the viscosity of the silicone oil is given to the displacement of the top plate 21. Is.

前記空気圧回路3は、前記空気ばね2の空気室Sに対して図外の空気圧源から加圧空気を直接、供給するための第1給排管路30を備え、この第1給排管路30には、搭載盤1の上下動に応じて加圧空気を空気ばね2に供給するか、又は空気ばね2から排気するレベリングバルブ31が介設されている。また、第1給排管路30には、レベリングバルブ31から空気ばね2に向かって順に、第1分岐部32、スロットルバルブ33、第2分岐部34が設けられている。   The pneumatic circuit 3 includes a first supply / exhaust pipe 30 for supplying pressurized air directly from an air pressure source (not shown) to the air chamber S of the air spring 2. 30 is provided with a leveling valve 31 that supplies pressurized air to the air spring 2 in accordance with the vertical movement of the mounting board 1 or exhausts the air from the air spring 2. The first supply / exhaust conduit 30 is provided with a first branch portion 32, a throttle valve 33, and a second branch portion 34 in order from the leveling valve 31 toward the air spring 2.

前記レベリングバルブ31は、この例では、外力によって位置が切り換わる機械式の3ポート比例切換弁であり、上下方向に回動可能に設けられ、搭載盤1の下面に先端部を接触させてその位置を検出するレバー31aと、空気ばね2との間で空気の給排を行う給排口31b(Aポート)と、図外の空気圧源から加圧空気の供給を受ける供給口31c(Pポート)と、図示しない排気口(Rポート)とを備えている。   In this example, the leveling valve 31 is a mechanical three-port proportional switching valve whose position is switched by an external force. The leveling valve 31 is provided so as to be pivotable in the vertical direction. A supply / exhaust port 31b (A port) for supplying and discharging air between the lever 31a for detecting the position and the air spring 2, and a supply port 31c (P port) for receiving pressurized air from an air pressure source (not shown) ) And an exhaust port (R port) (not shown).

すなわち、前記供給口31cには、図外の空気ポンプやリザーバタンク等の空気圧源から圧縮空気を供給する配管30aの下流端が接続されており、一方、前記給排口31bには、空気ばね2との間で空気を給排するための配管30bの上流端が接続されていて、この配管30bの下流端が第1分岐部32に接続されている。   That is, the supply port 31c is connected to the downstream end of a pipe 30a for supplying compressed air from an air pressure source such as an air pump or a reservoir tank (not shown), while the supply / exhaust port 31b is connected to an air spring. 2 is connected to the upstream end of a pipe 30 b for supplying and discharging air, and the downstream end of the pipe 30 b is connected to the first branch portion 32.

そして、搭載盤1の高さが予め設定されている高さ(基準高さ)よりも低くなり、レバー31aが下方に回動すると、レベリングバルブ31は図2に示す給気位置に切換わって、供給口31c(Pポート)と給排口31b(Aポート)とが連通され、空気圧源から空気ばね2の空気室Sに加圧空気を供給するようになる。   When the height of the mounting board 1 becomes lower than a preset height (reference height) and the lever 31a rotates downward, the leveling valve 31 is switched to the air supply position shown in FIG. The supply port 31c (P port) and the supply / exhaust port 31b (A port) communicate with each other so that pressurized air is supplied from the air pressure source to the air chamber S of the air spring 2.

一方、搭載盤1が前記基準高さよりも高くなってレバー31aが上方に回動すれば、図示しないが、レベリングバルブ31は排気位置に切換わって給排口31b(Aポート)と排気口(Rポート)とが連通され、空気ばね2の空気室Sから大気中に空気を排出させるようになる。尚、搭載盤1が略基準高さにあってレバー31aが上下いずれにも回動されていないときには、レベリングバルブ31は給気も排気も行わないようになっている。   On the other hand, if the mounting board 1 becomes higher than the reference height and the lever 31a rotates upward, the leveling valve 31 is switched to the exhaust position, and the supply / exhaust port 31b (A port) and the exhaust port (not shown) are not shown. R port) is communicated, and air is discharged from the air chamber S of the air spring 2 to the atmosphere. When the mounting board 1 is at a substantially reference height and the lever 31a is not turned up and down, the leveling valve 31 does not supply or exhaust air.

前記第1分岐部32には、前記のように上流側の配管30bの下流端が接続されるとともに、スロットルバルブ33に至る配管30cの上流端が接続され、さらに、後述する空気圧制御弁37にパイロット圧を供給するためのパイロット管路35が接続されている。スロットルバルブ33は、図の例では、調節ねじ33aによりニードルの位置を調整して、絞り量を変更可能な可変絞り弁であり、前記配管30cの下流端が接続されるとともに、第2分岐部34との間の配管30dの上流端が接続されている。   As described above, the downstream end of the upstream pipe 30b is connected to the first branch portion 32, and the upstream end of the pipe 30c leading to the throttle valve 33 is connected. A pilot line 35 for supplying pilot pressure is connected. In the example shown in the figure, the throttle valve 33 is a variable throttle valve that can change the throttle amount by adjusting the position of the needle with the adjusting screw 33a. The throttle valve 33 is connected to the downstream end of the pipe 30c, and is connected to the second branch portion. 34 is connected to the upstream end of the pipe 30d.

また、第2分岐部34には、前記配管30dの下流端が接続されるとともに、空気ばね2のコネクタ24に至る配管30eの上流端が接続され、さらに、前記レベリングバルブ31やスロットルバルブ33を介さずに、空気ばね2の空気室Sに空気を給排するための第2給排管路36の下流端が接続されている。つまり、第2給排管路36は、スロットルバルブ33よりも下流側の第1給排管路30の配管30eと給排ポート23とを介して、空気ばね2の空気室Sに接続されている。   Further, the downstream end of the pipe 30d is connected to the second branch portion 34, and the upstream end of the pipe 30e leading to the connector 24 of the air spring 2 is connected. Further, the leveling valve 31 and the throttle valve 33 are connected to the second branch portion 34. The downstream end of the second supply / exhaust pipe 36 for supplying / exhausting air to / from the air chamber S of the air spring 2 is connected without intervention. That is, the second supply / discharge pipe 36 is connected to the air chamber S of the air spring 2 via the pipe 30 e of the first supply / discharge pipe 30 downstream of the throttle valve 33 and the supply / discharge port 23. Yes.

前記第2給排管路36には、前記レベリングバルブ31と連動し、前記スロットルバルブ33の上下差圧に応じて空気ばね2に空気を給排する空気圧制御弁37が介設されている。この例では空気圧制御弁37は減圧弁からなり、配管36aにより前記第2分岐部34に接続され、空気ばね2との間で空気の給排を行う給排口37a(Aポート)と、配管36bを介して図外の空気圧源から加圧空気の供給を受ける供給口37b(Pポート)と、排気口37c(Rポート)と、パイロット管路35の接続されるパイロットポート37d(p1ポート)と、を備えている。   An air pressure control valve 37 for supplying and discharging air to the air spring 2 according to the vertical differential pressure of the throttle valve 33 is interposed in the second supply / exhaust pipe 36 in conjunction with the leveling valve 31. In this example, the air pressure control valve 37 is composed of a pressure reducing valve, connected to the second branch portion 34 by a pipe 36a, and a supply / exhaust port 37a (A port) for supplying and discharging air to and from the air spring 2, and a pipe Pilot port 37d (p1 port) to which a supply port 37b (P port) that receives supply of pressurized air from an air pressure source (not shown) through 36b, an exhaust port 37c (R port), and a pilot line 35 is connected And.

そして、前記空気圧制御弁37は、パイロット管路35を介してスロットルバルブ33の上流側からパイロット圧を受ける一方、配管36aを介してスロットルバルブ33下流側からもパイロット圧を受けており、両者の差圧(スロットルバルブ33の上下差圧)に応動して、給排口37aから加圧空気を供給するか或いは排気口37cから排気するかのいずれかの作動を行い、これにより給排口37a(Aポート)側の空気圧をスロットル上流側からのパイロット圧に応じて調整するようになっている。   The air pressure control valve 37 receives a pilot pressure from the upstream side of the throttle valve 33 via the pilot pipe line 35 and also receives a pilot pressure from the downstream side of the throttle valve 33 via the pipe 36a. In response to the differential pressure (up and down differential pressure of the throttle valve 33), either the supply of pressurized air from the supply / exhaust port 37a or the exhaust from the exhaust port 37c is performed, whereby the supply / exhaust port 37a is operated. The air pressure on the (A port) side is adjusted according to the pilot pressure from the upstream side of the throttle.

すなわち、前記第1給排管路30のレベリングバルブ31が給気位置にあって、これにより第1給排管路30を介して空気ばね2に加圧空気が供給されるときには、スロットルバルブ33上流側の気体圧が下流側よりも高くなるが、この上下差圧が所定値以上であれば、制御弁37の給排口37aと供給口37bとが連通されて、第2給排管路36によっても空気ばね2への加圧空気の供給が行われるようになる。   That is, when the leveling valve 31 of the first supply / exhaust pipe 30 is in the supply position, and thereby the pressurized air is supplied to the air spring 2 through the first supply / exhaust pipe 30, the throttle valve 33 Although the upstream gas pressure is higher than that on the downstream side, if this differential pressure is greater than or equal to a predetermined value, the supply / exhaust port 37a and the supply port 37b of the control valve 37 are connected to each other, and the second supply / exhaust conduit The pressurized air is supplied to the air spring 2 also by 36.

一方、前記レベリングバルブ31が排気位置にあって、これによりり第1給排管路30を介して空気ばね2から排気されるときには、スロットルバルブ33の上流側は概略、大気圧になるので、該スロットルバルブ33下流側の気体圧との差圧が所定値以上になり、制御弁37の給排口37aと排気口37cとが連通されて、第2給排管路36によっても排気が行われるようになる。   On the other hand, when the leveling valve 31 is in the exhaust position and is thereby exhausted from the air spring 2 via the first supply / exhaust conduit 30, the upstream side of the throttle valve 33 is generally at atmospheric pressure. The pressure difference with the gas pressure on the downstream side of the throttle valve 33 becomes a predetermined value or more, the supply / exhaust port 37a and the exhaust port 37c of the control valve 37 are communicated, and exhaust is also performed by the second supply / exhaust conduit 36. Will come to be.

また、レベリングバルブ31が前記給気位置及び排気位置のいずれにあっても、スロットルバルブ33の上下差圧の大きさが所定未満であれば、空気圧制御弁37は作動せず、給気も排気も行わない。勿論、レバー31aが概ね基準位置にあってレベリングバルブ31が給気も排気も行わないときには、スロットルバルブ33の上下差圧が零になるので、空気圧制御弁37も作動しない。   In addition, regardless of whether the leveling valve 31 is in the supply position or the exhaust position, the air pressure control valve 37 does not operate and the supply and exhaust air is exhausted if the magnitude of the differential pressure across the throttle valve 33 is less than a predetermined value. Also do not. Of course, when the lever 31a is substantially at the reference position and the leveling valve 31 does not supply or exhaust air, the air pressure control valve 37 does not operate because the differential pressure across the throttle valve 33 becomes zero.

尚、前記制御弁37は、レベリングバルブ31よりも最大流量の多い大容量のものを、空気ばね2の空気室Sの容量に応じて選定するのが好ましい。また、第1給排管路30及び第2給排管路36の空気圧源は共通にしてもよいが、第2給排管路36の空気圧源は、搭載機器Dの要求によって決まる最大空気圧、即ち、搭載機器Dの作動によって、いずれかの空気ばね2の分担荷重が最大になったときの、その最大の分担荷重に対応する空気圧を供給するように構成することが好ましい。   The control valve 37 preferably has a large capacity with a maximum flow rate higher than that of the leveling valve 31 according to the capacity of the air chamber S of the air spring 2. The air pressure source of the first supply / exhaust pipe line 30 and the second supply / exhaust pipe line 36 may be made common, but the air pressure source of the second supply / exhaust pipe line 36 is the maximum air pressure determined by the requirements of the mounted device D, That is, it is preferable that the air pressure corresponding to the maximum shared load is supplied when the shared load of any of the air springs 2 is maximized by the operation of the mounted device D.

次に、搭載盤1上の機器Dが作動して、その重心位置が水平方向に移動する場合のように、個々の空気ばね2の分担荷重が大きく変化するときの除振装置Aの作動について、説明する。   Next, regarding the operation of the vibration isolator A when the load sharing of each air spring 2 changes greatly, as in the case where the device D on the mounting board 1 is activated and the center of gravity moves in the horizontal direction. ,explain.

例えば図3に模式的に示すように、搭載機器D上の移動体d1が水平方向に移動して、いずれかの空気ばね2の分担荷重が増大し、その支持高さが基準高さよりも低くなると、レベリングバルブ31は給気位置に切り換わって、第1給排管路30により加圧空気が空気ばね2の空気室Sに直接、供給されるようになる。この際、前記空気ばね2の支持高さの変化が或る程度以上、大きければ、これに応じて供給圧が高くなり、第1給排管路30においてスロットルバルブ33上流側の空気圧が下流側よりも所定以上、高くなるので、制御弁37が作動して、第2給排管路36からも空気ばね2へ加圧空気が供給されるようになる。   For example, as schematically shown in FIG. 3, the moving body d <b> 1 on the mounted device D moves in the horizontal direction, the shared load of one of the air springs 2 increases, and the support height is lower than the reference height. Then, the leveling valve 31 is switched to the air supply position, and the pressurized air is directly supplied to the air chamber S of the air spring 2 by the first supply / exhaust pipe 30. At this time, if the change in the support height of the air spring 2 is larger than a certain level, the supply pressure is increased accordingly, and the air pressure upstream of the throttle valve 33 in the first supply / exhaust pipe 30 is reduced downstream. Therefore, the control valve 37 is operated, and the pressurized air is supplied to the air spring 2 also from the second supply / exhaust conduit 36.

そうして第1及び第2の両方の給排管路30,36によって大流量で加圧空気が供給されることで、空気ばね2の内圧は速やかに上昇し、やや遅れてその支持高さも高くなるが、それが基準高さに近づくに連れてレベリングバルブ31の開度が小さくなり、スロットルバルブ33の上流側へ供給される空気圧が徐々に低下するとともに、空気ばね2の内圧上昇に伴いスロットル下流側の空気圧は上昇する。   Then, by supplying pressurized air at a large flow rate by both the first and second supply / exhaust pipes 30 and 36, the internal pressure of the air spring 2 rises quickly, and the support height also increases slightly later. As it approaches the reference height, the opening of the leveling valve 31 decreases, the air pressure supplied to the upstream side of the throttle valve 33 gradually decreases, and the internal pressure of the air spring 2 increases. The air pressure on the downstream side of the throttle increases.

そうしてスロットルバルブ33の上下差圧が所定値未満になれば、制御弁37の作動が停止して、第2給排管路36による加圧空気の供給が停止され、その後、レベリングバルブ31のレバー31aが持ち上がり、空気ばね2の支持高さが概ね基準高さになるまでは、第1給排管路30のみから、即ちスロットルバルブ33によって絞られた小流量の加圧空気のみが空気ばね2に供給されるようになる。   If the upper / lower differential pressure of the throttle valve 33 becomes less than the predetermined value, the operation of the control valve 37 is stopped, the supply of pressurized air through the second supply / exhaust pipe 36 is stopped, and then the leveling valve 31 is stopped. Until the lever 31a is lifted and the support height of the air spring 2 is substantially equal to the reference height, only the small flow rate of pressurized air throttled by the throttle valve 33 is supplied from the first supply / exhaust pipe 30 alone. It is supplied to the spring 2.

このように、空気ばね2の支持高さの変化及びその内圧の上昇に応じて、即ち空気ばね2の空気室Sへの加圧空気の供給状態に対応した適切なタイミングでもって、加圧空気の供給状態が2つの給排管路30,36による大流量の供給状態から第1給排管路30のみによる小流量の供給状態へと切換えられるため、空気室Sへの加圧空気の供給遅れを招くことなく、その供給過剰を解消して、オーバーシュートを十分に抑制することができる。   As described above, the pressurized air according to the change in the support height of the air spring 2 and the increase in its internal pressure, that is, at an appropriate timing corresponding to the supply state of the pressurized air to the air chamber S of the air spring 2. Is switched from a large flow rate supply state by the two supply / discharge conduits 30, 36 to a small flow rate supply state by only the first supply / discharge conduit 30, so that pressurized air is supplied to the air chamber S Without causing a delay, the excessive supply can be eliminated and the overshoot can be sufficiently suppressed.

図4は、前記のように空気ばね2の分担荷重が増大したときの支持高さの変化を、この実施形態のように第1、第2の2つの給排管路30,36を切換えるようにしたものと、第1給排管路30のみによって空気ばね2に加圧空気を供給するものとで、比較して示す試験結果のグラフ図である。図(a)に示すように、この実施形態のものでは、分担荷重の変化による支持高さの最大変位量が2mmくらいになっており、図(b)に示す比較例(約5mm)に比べて大幅に小さくなることが分かる。しかも、この実施形態のものでは、オーバーシュートもなく、3秒足らずで変位量が0.5mm以下になっており、収束時間も非常に短いことが分かる。   FIG. 4 shows the change in the support height when the shared load of the air spring 2 is increased as described above so that the first and second supply / exhaust conduits 30 and 36 are switched as in this embodiment. It is a graph of the test result shown in comparison with what made it and what supplies pressurized air to the air spring 2 only by the 1st supply / exhaust pipe line 30. As shown in FIG. (A), in this embodiment, the maximum displacement of the support height due to the change in the shared load is about 2 mm, which is compared with the comparative example (about 5 mm) shown in FIG. (B). It can be seen that it becomes significantly smaller. Moreover, in this embodiment, there is no overshoot, the displacement amount is 0.5 mm or less in less than 3 seconds, and the convergence time is very short.

一方、いずれかの空気ばね2の分担荷重が減少し、その支持高さが基準高さよりも高くなると、レベリングバルブ31が排気位置に切り換わって空気ばね2から排気するとともに、これにより第1給排管路30においてスロットルバルブ33上流側が大気圧に近くなるので、その下流側との差圧が所定値以上になり、制御弁37が作動して第2給排管路36からも排気が行われるようになる。   On the other hand, when the shared load of one of the air springs 2 decreases and the support height becomes higher than the reference height, the leveling valve 31 switches to the exhaust position and exhausts from the air spring 2, thereby the first supply Since the upstream side of the throttle valve 33 in the exhaust pipe 30 is close to the atmospheric pressure, the differential pressure with the downstream side becomes a predetermined value or more, the control valve 37 is activated, and the second supply / exhaust pipe 36 also exhausts air. Will come to be.

そうして第1及び第2の両方の給排管路30,36によって大流量で排気が行われて、空気ばね2の内圧が急減し、スロットルバルブ33の上下差圧が所定未満になれば、第2給排管路36による排気が終了して、その後は、第1給排管路30のみにより、即ちスロットルバルブ33で少流量に絞られて排気が行われるるようになる。こうして前記した空気供給時と同様に適切なタイミングで排気流量の切換が行われる結果、空気ばね2からの排気の遅れを招くことなく、オーバーシュートを十分に抑制することができる。   If exhaust is performed at a large flow rate by both the first and second supply / exhaust pipes 30 and 36, the internal pressure of the air spring 2 is suddenly reduced, and the upper and lower differential pressure of the throttle valve 33 becomes less than a predetermined value. After the exhaust through the second supply / exhaust pipe 36 is finished, the exhaust is performed only by the first supply / exhaust pipe 30, that is, the throttle valve 33 is reduced to a small flow rate. As described above, as a result of switching the exhaust flow rate at an appropriate timing as in the air supply described above, overshoot can be sufficiently suppressed without causing a delay in exhaust from the air spring 2.

ここで、前記のように空気ばね2への空気の給排流量を切換える適切なタイミングは、例えば、空気室Sの容積、減衰機構25の特性、第1及び第2給排管路30,36のそれぞれの通路断面積や長さ、或いは空気圧源の圧力等によって変化し、さらには搭載機器Dの重量や重心の高さ、その作動に伴う空気ばね2の分担荷重の変化等によっても変化することになる。   Here, the appropriate timing for switching the air supply / discharge flow rate to the air spring 2 as described above is, for example, the volume of the air chamber S, the characteristics of the damping mechanism 25, the first and second supply / exhaust conduits 30, 36. Change depending on the cross-sectional area and length of each of the passages, the pressure of the air pressure source, and the like, and also change depending on the weight of the mounted device D, the height of the center of gravity, and the change in the shared load of the air spring 2 due to its operation. It will be.

この点につき、この実施形態では、第1給排管路30に絞り量の変更可能なスロットルバルブ33を配設しており、その調節ねじ33aによって絞り量を調整し、スロットルバルブ33の上下差圧を変更することによって、制御弁37の作動タイミングを極めて容易に変更することができる。   With respect to this point, in this embodiment, a throttle valve 33 whose throttle amount can be changed is disposed in the first supply / exhaust conduit 30, and the throttle amount is adjusted by the adjusting screw 33 a, so By changing the pressure, the operation timing of the control valve 37 can be changed very easily.

よって、実際に機器Dを搭載した状態でそれを作動させ、その高さ位置の変化を計測し、例えば変位のピークや収束時間等に基づいてスロットルバルブ33の絞り量を調整すれば、前記のように数多くの要因によって適切なタイミングが変化するにも拘わらず、スロットルバルブ33の絞り量の調整だけで適切なタイミングに設定することができる。   Therefore, when the device D is actually mounted and operated, the change in the height position thereof is measured, and if the throttle amount of the throttle valve 33 is adjusted based on, for example, the displacement peak or the convergence time, the above-mentioned As described above, the appropriate timing can be set only by adjusting the throttle amount of the throttle valve 33, although the appropriate timing changes due to many factors.

図5には、前記図4と同様にこの実施形態のものを比較例と比較して、空気ばね2の分担荷重が減少したときの支持高さの変化を示す。図(a)は比較例であり、図(b)、(c)は、この実施形態のものであるが、図(b)はスロットルバルブ33の絞り量が相対的に小さい(通路断面積が大きい)状態であり、図(c)は絞り量が相対的に大きい(通路断面積が小さい)状態である。   FIG. 5 shows the change in the support height when the shared load of the air spring 2 is reduced as compared with the comparative example in the embodiment as in FIG. Fig. (A) is a comparative example, and Figs. (B) and (c) are those of this embodiment, but Fig. (B) shows a relatively small throttle amount of the throttle valve 33 (passage cross-sectional area is small). (C) is a state where the amount of restriction is relatively large (the cross-sectional area of the passage is small).

図(a)に示す比較例に比べて、図(b)、(c)にそれぞれ示す実施形態のものではいずれも支持高さの最大変位量が低くなり(約9mm→2〜5mm)、変位量が0.5mm以下になるまでの時間も大幅に短縮されている(約10秒→約4秒)。一方、図(b)、(c)の実施形態同士で比較すると、図(b)に示すように相対的に絞り量の小さい方が、最大変位量が大きくなっているが、これは、絞り量が小さいときにはスロットルバルブ33の上下差圧が発生し難いため、なかなか制御弁37が作動せず、第2給排管路36による排気の開始が遅くなる上に、一旦、作動した制御弁37が直ぐに停止して、第2給排管路36による排気が行われなくなる(排気が小流量へと切換わってしまう)結果、空気ばね2からの排気遅れが大きくなることによると考えられる。   Compared to the comparative example shown in FIG. (A), the maximum displacement amount of the support height is lower in each of the embodiments shown in FIGS. (B) and (c) (about 9 mm → 2 to 5 mm). The time until the amount becomes 0.5 mm or less is also greatly shortened (about 10 seconds → about 4 seconds). On the other hand, when comparing the embodiments of FIGS. (B) and (c), as shown in FIG. (B), the smaller the amount of restriction, the larger the maximum displacement amount. When the amount is small, it is difficult for the pressure difference between the upper and lower sides of the throttle valve 33 to be generated. Therefore, the control valve 37 does not readily operate, the start of exhaust through the second supply / exhaust pipe 36 is delayed, and the control valve 37 that has once been operated. This is considered to be due to an increase in the exhaust delay from the air spring 2 as a result of immediately stopping and exhausting by the second supply / exhaust pipe 36 not being performed (exhaust is switched to a small flow rate).

また、図(b)、(c)の実施形態同士で比較して、支持高さの変位量が0.5mm以下になるまでの時間は、両方共に4秒くらいとなっているが、さらに変位量が0.25mm以下になるまでの時間では、図(b)に示す絞り量の小さい方が5秒程度で、図(c)の8秒程度に比べて短くなっている。これは、絞り量が大きくて上下差圧の発生しやすい方(図(c))が、排気流量の小流量への切換えタイミングが遅くなる結果、空気が供給過剰気味になり、図示の如く大きなオーバーシュートが生じたことによると考えられる。   In addition, compared with the embodiments of FIGS. (B) and (c), the time until the displacement of the support height becomes 0.5 mm or less is about 4 seconds in both cases. In the time until the amount becomes 0.25 mm or less, the smaller diaphragm amount shown in FIG. 5B is about 5 seconds, which is shorter than about 8 seconds in FIG. This is because when the throttle amount is large and the pressure difference between the top and bottom is likely to occur (Fig. (C)), the timing of switching the exhaust flow rate to a small flow rate is delayed, resulting in excessive supply of air, which is large as shown in the figure. This is probably due to overshoot.

尚、そうしてスロットルバルブ33の絞り量を調整する際には、その流路の断面積が、第1給排管路30の配管30c,30d等の通路断面積の5〜55%の範囲になるようにすることが好ましい。これは、5%以下では絞りが強すぎて、空気の供給流量の切換えタイミングが遅くなり、供給過剰気味になってしまう一方、55%を越えると絞りが緩すぎて、上下差圧が生じ難いため、なかなか制御弁が作動しない上に、一旦、作動しても直ぐに停止して、直ぐに小流量へと切換わってしまうからである。   When the throttle amount of the throttle valve 33 is adjusted in this manner, the cross-sectional area of the flow path is in the range of 5 to 55% of the cross-sectional area of the pipes 30c and 30d of the first supply / exhaust pipe 30. It is preferable that If the pressure is less than 5%, the throttle is too strong, and the switching timing of the air supply flow rate is delayed, resulting in an excessive supply. On the other hand, if it exceeds 55%, the throttle is too loose and it is difficult for a differential pressure to occur. For this reason, the control valve does not readily operate, and even if it is once activated, it immediately stops and immediately switches to a small flow rate.

したがって、この実施形態に係る除振装置Aによると、レベリングバルブ31の作動によって空気ばね2の気体室Sへ直接、空気を給排する第1給排管路30にはスロットルバルブ33を設けて、これにより空気の給排量を絞る一方、第2給排管路36には制御弁37を設けて、これを前記スロットルバルブ33の上下差圧に応じて作動させることにより、必要に応じて空気ばね2へ大流量で空気を給排できるとともに、その給排状態に対応する適切なタイミングで小流量へと切換えることができるようになり、これにより、オーバーシュートを十分に抑制しながら、基準高さへの復帰時間を短縮することができる。   Therefore, according to the vibration isolator A according to this embodiment, the throttle valve 33 is provided in the first supply / exhaust pipe 30 that supplies and discharges air directly to the gas chamber S of the air spring 2 by the operation of the leveling valve 31. Thus, while the air supply / discharge amount is reduced, a control valve 37 is provided in the second supply / exhaust pipe 36, and this is operated according to the differential pressure of the throttle valve 33 as required. Air can be supplied to and discharged from the air spring 2 at a large flow rate, and can be switched to a small flow rate at an appropriate timing corresponding to the supply / discharge state. The return time to height can be shortened.

また、前記のように第1給排管路30において差圧を発生させるスロットルバルブ33は、調節ねじ33aによって絞り量を調整可能なものであり、これによりスロットルバルブ33の上下差圧を変更して、制御弁37による流量の切換えタイミングを極めて容易に変更することができるので、最適なタイミングがシステムの種々の要因によって変化しても、それに応じてスロットルバルブ33の絞り量を調整するだけで、容易に適切なタイミングに設定することができる。   Further, as described above, the throttle valve 33 that generates the differential pressure in the first supply / exhaust conduit 30 can adjust the throttle amount by the adjusting screw 33a, thereby changing the vertical differential pressure of the throttle valve 33. Since the flow rate switching timing by the control valve 37 can be changed very easily, even if the optimum timing changes due to various factors of the system, it is only necessary to adjust the throttle amount of the throttle valve 33 accordingly. Can be easily set to the appropriate timing.

さらに、この実施形態では、前記第2給排管路36の下流端を前記スロットルバルブ33下流側の第2分岐部34で第1給排管路30に接続し、それよりも下流側の配管30e及び給排ポート23によって空気ばね2の空気室Sに連通させるようにしており、このことで、第2給排管路36のためだけに空気ばね2に新たに貫通路等を設ける必要がなく、構造の簡略化によって装置コストの低減が図られる。   Further, in this embodiment, the downstream end of the second supply / exhaust pipe line 36 is connected to the first supply / exhaust pipe line 30 by the second branching portion 34 on the downstream side of the throttle valve 33, and the downstream pipe is further connected thereto. 30e and the supply / exhaust port 23 communicate with the air chamber S of the air spring 2, so that it is necessary to newly provide a through passage or the like in the air spring 2 only for the second supply / exhaust pipe 36. In addition, the apparatus cost can be reduced by simplifying the structure.

しかも、そうしてスロットルバルブ33の下流側に第2給排管路36を接続すると、ここに大流量で加圧空気が供給されるときに、このことによってスロットル下流側の気体圧が上昇し、上流側との差圧が減少して制御弁37が停止してしまうことがあり、この制御弁37の作動が不安定になる虞れがあるが、この実施形態では制御弁37を減圧弁により構成し、その下流側の気体圧を抑えるようにしているので、制御弁37の作動の安定性を担保することができる。   In addition, when the second supply / discharge pipe 36 is connected downstream of the throttle valve 33, when pressurized air is supplied at a large flow rate, the gas pressure on the downstream side of the throttle increases. The control valve 37 may stop due to a decrease in the differential pressure from the upstream side, and the operation of the control valve 37 may become unstable. In this embodiment, the control valve 37 is replaced with a pressure reducing valve. Therefore, the operation pressure of the control valve 37 can be ensured.

尚、本発明は、前記の実施形態に限定されることなく、その他の種々の実施形態を包含する。すなわち、前記実施形態では、空気圧制御弁37として減圧弁を用いているが、これは、例えば方向制御弁等、他の空気圧制御弁とすることも可能である。   In addition, this invention is not limited to the said embodiment, Various other embodiment is included. That is, in the embodiment, a pressure reducing valve is used as the air pressure control valve 37, but this may be another air pressure control valve such as a direction control valve.

また、例えば図6、7に示すようにスロットルバルブ33を空気圧制御弁37と一体的に設ければ、配管の一部を省略することができる。この場合は、図6において破線で示す絞り部等が空気圧制御弁37に内蔵された一体の複合弁38を用いてもよいし、或いは破線で示す部分を、絞り部を内蔵したマニホルドとして別に設け、これを空気圧制御弁37に組み付けて一体化するようにしてもよい。   For example, if the throttle valve 33 is provided integrally with the air pressure control valve 37 as shown in FIGS. In this case, an integrated composite valve 38 in which the throttle portion or the like indicated by the broken line in FIG. 6 is built in the pneumatic control valve 37 may be used, or the portion indicated by the broken line is provided separately as a manifold having the throttle portion built in. This may be integrated with the pneumatic control valve 37.

また、気体ばねとして空気ばね2を用いているが、例えば窒素ガスを充填するなどした他の気体ばねを用いてもよい。また、減衰機構25としては種々の構成のものを採用できるし、減衰機構25を設けないこともできる。   Moreover, although the air spring 2 is used as a gas spring, you may use the other gas spring which filled nitrogen gas, for example. In addition, as the damping mechanism 25, various configurations can be adopted, and the damping mechanism 25 can be omitted.

さらに、前記の実施形態では、第1給排管路30の絞り部をスロットルバルブ33により構成しているが、これに限らず、例えば絞り量の変更ができない固定絞りによって構成してもよいし、或いは、第1給排管路30の配管30c,30dを互いに直径の異なる複数の管とすることで、絞り部を構成することもできる。   Furthermore, in the above-described embodiment, the throttle portion of the first supply / exhaust conduit 30 is configured by the throttle valve 33. However, the present invention is not limited thereto, and may be configured by, for example, a fixed throttle that cannot change the throttle amount. Alternatively, the throttle portion can be configured by making the pipes 30c and 30d of the first supply / exhaust pipe line 30 into a plurality of pipes having different diameters.

そうする場合、最初は絞り部をスロットルバルブ33のような可変絞りにより構成し、実際に搭載した機器Dを作動させてその高さ位置の変化する様子を計測し、この計測結果に基づいて、上述したようにスロットルバルブ33の絞り量を調整した後に、こうして調整した絞り量の固定絞りか、或いは前記配管の組合せに交換すればよい。こうすれば、スロットルバルブ33が要らない分、装置コストを低減できる。   When doing so, at first, the throttle part is configured by a variable throttle such as the throttle valve 33, and the actual mounted device D is actuated to measure the change of its height position. Based on the measurement result, After adjusting the throttle amount of the throttle valve 33 as described above, the fixed throttle with the throttle amount thus adjusted may be replaced with a combination of the pipes. By doing so, the cost of the apparatus can be reduced because the throttle valve 33 is not required.

本発明の実施形態に係る除振装置の概略構成を示す図である。It is a figure which shows schematic structure of the vibration isolator which concerns on embodiment of this invention. 空気圧回路の要素をシンボルで表した図1相当図である。FIG. 2 is a view corresponding to FIG. 1, in which elements of the pneumatic circuit are represented by symbols. 機器等を搭載した状態を示す上面図及び正面図である。It is the top view and front view which show the state which mounted apparatuses etc. 空気ばねの分担荷重が増大したときの支持高さの変化を示すグラフ図であり、(a)は実施形態について、また、(b)は比較例について示す。It is a graph which shows the change of the support height when the shared load of an air spring increases, (a) shows an embodiment and (b) shows a comparative example. 分担荷重が減少したときについての図4相当図であり、(a)は比較例について示し、(b)、(c)は実施形態について示す。FIG. 5 is a diagram corresponding to FIG. 4 when the shared load is reduced, where (a) shows a comparative example, and (b) and (c) show an embodiment. 絞り部を空気圧制御弁と一体化した他の実施形態に係る図1相当図である。FIG. 3 is a view corresponding to FIG. 1 according to another embodiment in which a throttle portion is integrated with a pneumatic control valve. 同図2相当図である。FIG. 3 is a view corresponding to FIG.

符号の説明Explanation of symbols

A 除振装置(気体ばね式除振装置)
S 空気室(気体室)
1 搭載盤
2 空気ばね
3 空気圧回路
30 第1給排管路(第1給排通路)
31 レベリングバルブ
33 スロットルバルブ(可変絞り)
35 パイロット管路(パイロット通路)
36 第2給排管路(第2給排通路)
37 制御弁(空気圧制御弁)
A Vibration isolation device (Gas spring type vibration isolation device)
S Air chamber (gas chamber)
DESCRIPTION OF SYMBOLS 1 Mounting board 2 Air spring 3 Pneumatic circuit 30 1st supply / discharge passage (1st supply / discharge passage)
31 Leveling valve 33 Throttle valve (variable throttle)
35 Pilot pipeline (pilot passage)
36 Second supply / discharge pipe (second supply / discharge passage)
37 Control valve (pneumatic control valve)

Claims (5)

被支持体を気体ばねにより弾性的に支持するとともに、その気体ばねの気体室に臨んで開口する第1の給排通路に機械式のレベリングバルブを介設し、被支持体の高さの変化に応じて前記気体室に直接、気体を給排するようにした気体ばね式除振装置であって、
前記第1給排通路には、レベリングバルブと気体室との間で気体の流れを絞る絞り部が設けられ、
前記絞り部を介さずに前記気体室への気体の給排が可能な第2の給排通路が設けられ、
前記第2給排通路には、前記絞り部の上流側であるレベリングバルブ側及びその反対側の下流側からそれぞれパイロット圧を受けて、その上流側パイロット圧が下流側よりも所定以上、高いときに気体室に気体を供給する一方、下流側パイロット圧が上流側よりも所定以上、高いときには気体室から排気するように、制御弁が介設されている
ことを特徴とする気体ばね式除振装置。
The supported body is elastically supported by a gas spring, and a mechanical leveling valve is provided in the first supply / exhaust passage that opens to face the gas chamber of the gas spring to change the height of the supported body. A gas spring type vibration isolator configured to supply and discharge gas directly to the gas chamber according to
The first supply / exhaust passage is provided with a throttle portion that restricts the flow of gas between the leveling valve and the gas chamber,
A second supply / discharge passage capable of supplying / discharging gas to / from the gas chamber without passing through the throttle portion is provided;
The second supply / exhaust passage receives pilot pressure from the leveling valve side upstream of the throttle and the downstream side opposite thereto, and the upstream pilot pressure is higher than a predetermined level than the downstream side. A gas spring type vibration isolation device is characterized in that a control valve is provided to supply gas to the gas chamber while exhausting from the gas chamber when the downstream pilot pressure is higher than the upstream side by a predetermined level or higher. apparatus.
第1給排通路の絞り部は、絞り量が変更可能な可変絞りからなることを特徴とする請求項1に記載の気体ばね式除振装置。   2. The gas spring type vibration damping device according to claim 1, wherein the throttle portion of the first supply / discharge passage includes a variable throttle whose amount of restriction can be changed. 第1給排通路の絞り部は、気体の流通する断面積が他の部位の通路断面積の5〜55%とされていることを特徴とする請求項1又は2のいずれかに記載の気体ばね式除振装置。   3. The gas according to claim 1, wherein the throttle portion of the first supply / exhaust passage has a cross-sectional area through which the gas flows is 5 to 55% of a passage cross-sectional area of another portion. Spring type vibration isolator. 第2給排通路が第1給排通路にその絞り部よりも下流側で連通し、
前記第2給排通路の制御弁は、前記第1給排通路に連通する下流側の気体圧が、前記絞り部の上流側からのパイロット圧に応じて調整される減圧弁からなることを特徴とする請求項1〜3のいずれか1つに記載の気体ばね式除振装置。
The second supply / discharge passage communicates with the first supply / discharge passage on the downstream side of the throttle portion;
The control valve of the second supply / exhaust passage is composed of a pressure reducing valve in which the downstream gas pressure communicating with the first supply / exhaust passage is adjusted according to the pilot pressure from the upstream side of the throttle portion. The gas spring type vibration isolator according to any one of claims 1 to 3.
請求項1に記載の気体ばね式除振装置を調整する調整方法であって、
まず、第1給排通路の絞り部として絞り量が変更可能な可変絞りを用い、
被支持体である機器を作動させて、その高さ位置の変化を計測し、
その計測結果に基づいて前記可変絞りの絞り量を調整した後に、
前記可変絞りを絞り量が変更不能な固定絞りに交換する
ことを特徴とする気体ばね式除振装置の調整方法。
An adjustment method for adjusting the gas spring vibration isolator according to claim 1,
First, using a variable throttle that can change the throttle amount as the throttle part of the first supply / discharge passage,
Operate the device that is the supported body, measure the change in its height position,
After adjusting the aperture amount of the variable aperture based on the measurement result,
A method for adjusting a gas spring type vibration damping device, characterized in that the variable throttle is replaced with a fixed throttle whose amount of change cannot be changed.
JP2006074466A 2006-03-17 2006-03-17 Gas spring type vibration isolator and adjustment method thereof Active JP4660403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006074466A JP4660403B2 (en) 2006-03-17 2006-03-17 Gas spring type vibration isolator and adjustment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006074466A JP4660403B2 (en) 2006-03-17 2006-03-17 Gas spring type vibration isolator and adjustment method thereof

Publications (2)

Publication Number Publication Date
JP2007247840A true JP2007247840A (en) 2007-09-27
JP4660403B2 JP4660403B2 (en) 2011-03-30

Family

ID=38592361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006074466A Active JP4660403B2 (en) 2006-03-17 2006-03-17 Gas spring type vibration isolator and adjustment method thereof

Country Status (1)

Country Link
JP (1) JP4660403B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264574A (en) * 2008-04-24 2009-11-12 Metrol Ltd Shock absorber
JP2012072841A (en) * 2010-09-29 2012-04-12 Advanced System Co Ltd Inclination prevention mechanism of air spring supporting structure
CN102748425A (en) * 2012-06-15 2012-10-24 中国人民解放军海军工程大学 Driving-driven hybrid vibration isolator
JP2014211202A (en) * 2013-04-19 2014-11-13 株式会社エーエス Apparatus for base isolation mechanism
CN106567901A (en) * 2015-10-08 2017-04-19 株洲时代新材料科技股份有限公司 Pillowy low-frequency airbag vibration isolator and mounting method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102506112A (en) * 2011-10-17 2012-06-20 杨洁 Air spring capable of adjusting static stiffness and dynamic stiffness in volume occupation and pressure difference classification manners

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263855A (en) * 1991-12-23 1993-10-12 Newport Corp System vibration isolator and its system
JPH1178877A (en) * 1997-09-05 1999-03-23 Kawasaki Heavy Ind Ltd Air spring device car body support

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263855A (en) * 1991-12-23 1993-10-12 Newport Corp System vibration isolator and its system
JPH1178877A (en) * 1997-09-05 1999-03-23 Kawasaki Heavy Ind Ltd Air spring device car body support

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264574A (en) * 2008-04-24 2009-11-12 Metrol Ltd Shock absorber
JP2012072841A (en) * 2010-09-29 2012-04-12 Advanced System Co Ltd Inclination prevention mechanism of air spring supporting structure
CN102748425A (en) * 2012-06-15 2012-10-24 中国人民解放军海军工程大学 Driving-driven hybrid vibration isolator
JP2014211202A (en) * 2013-04-19 2014-11-13 株式会社エーエス Apparatus for base isolation mechanism
CN106567901A (en) * 2015-10-08 2017-04-19 株洲时代新材料科技股份有限公司 Pillowy low-frequency airbag vibration isolator and mounting method thereof

Also Published As

Publication number Publication date
JP4660403B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP4660403B2 (en) Gas spring type vibration isolator and adjustment method thereof
JP4040898B2 (en) Method for regulating reservoir pressure in a closed vehicle height regulator
JP2010014159A (en) Vibration resistant device
JP2006283966A (en) Active vibration removing apparatus
JP2017023956A (en) Liquid material discharge device
KR101549881B1 (en) Vibration damping device of marine engine
KR100976358B1 (en) Hydraulic control apparatus
JP2006292147A (en) Gas spring type vibration isolator
JP2007536157A (en) Air quantity control method in closed air supply equipment for chassis
JP4408208B2 (en) Spring stiffness variable air spring vibration isolation unit
KR20100100013A (en) Apparatus for maintaining horizontality provided with a disturbance control plate
JP2000356240A (en) Pneumatic active vibration control device
JPH10115341A (en) Vibration isolation equipment
JP2007146899A (en) Vibration control device
JP4265820B2 (en) Chemical supply system
JP5635828B2 (en) Control mechanism for vibration isolation table
JP5134465B2 (en) Vibration isolator
JP2006220442A (en) Leveling valve device
JP2010127543A (en) Refrigerating cycle device
JP5379967B2 (en) Automatic leveling device and seismic isolation device
JP5426621B2 (en) Pulsation reduction device and inspection device
KR102166414B1 (en) Sealed pressure regulating valve and pressure regulating method thereof
JP2014517897A (en) Configuration and method for maintaining alignment of an internal combustion engine and method for aligning and maintaining the alignment of an internal combustion engine
JP4343322B2 (en) Pressure gas supply device
JP2005299874A (en) Vibration-isolating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4660403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250