JP2007246451A - Cancer vaccine - Google Patents

Cancer vaccine Download PDF

Info

Publication number
JP2007246451A
JP2007246451A JP2006073159A JP2006073159A JP2007246451A JP 2007246451 A JP2007246451 A JP 2007246451A JP 2006073159 A JP2006073159 A JP 2006073159A JP 2006073159 A JP2006073159 A JP 2006073159A JP 2007246451 A JP2007246451 A JP 2007246451A
Authority
JP
Japan
Prior art keywords
cell
sox6
cells
cancer
peptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006073159A
Other languages
Japanese (ja)
Other versions
JP4840858B2 (en
JP2007246451A5 (en
Inventor
Masahiro Toda
正博 戸田
Makoto Ueda
良 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Institute of Gene and Brain Science
Original Assignee
Keio University
Institute of Gene and Brain Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University, Institute of Gene and Brain Science filed Critical Keio University
Priority to JP2006073159A priority Critical patent/JP4840858B2/en
Publication of JP2007246451A publication Critical patent/JP2007246451A/en
Publication of JP2007246451A5 publication Critical patent/JP2007246451A5/ja
Application granted granted Critical
Publication of JP4840858B2 publication Critical patent/JP4840858B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a peptide capable of efficiently inducting tumor immunization, a composition containing the peptide, an antigen-presenting cell presenting an antigen originated from the peptide, a cytotoxic T cell stimulated with the antigen-presenting cell, a cancer vaccine utilizing the peptide and the cell, and a method for treating a tumor. <P>SOLUTION: A peptide having a specific sequence comprising about nine amino acids, a composition containing the peptide, an antigen-presenting cell, such as dendritic cells, presenting an antigen originated from the peptide, or a T-cell, such as a cytotoxic T-cell, activated with the antigen-presenting cell, is made, and the peptide, the antigen-presenting cell, or the cytotoxic T-cell is administered into a tumor patient as a vaccine. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、癌ワクチンに関する。   The present invention relates to a cancer vaccine.

近年、腫瘍免疫学において、免疫細胞による腫瘍抗原認識機構がかなり解明されてきた。それによると、まず、抗原提示細胞である樹状細胞(dendritic cells または DC)は、細胞内で、腫瘍が発現するタンパク質を分解する際に生じた8〜10個のアミノ酸からなる抗原ペプチドを、主要組織適合性抗原複合体(major histocompatibility complex または MHC;ヒトでは、human leukocyte antigen または HLA)と共に細胞表面に提示する。細胞障害性T細胞(cytotoxic T lymphocyte または CTL)は、樹状細胞表面のHLAクラスIに結合した抗原ペプチドを認識し、活性化・増殖し、腫瘍内に侵入し、抗原ペプチドが由来するタンパク質を有する腫瘍細胞に対し細胞障害を生じる( Arch.Surg. (1990) 126: 200〜205 )。   In recent years, the mechanism of tumor antigen recognition by immune cells has been elucidated considerably in tumor immunology. According to this, first, dendritic cells (DCs), which are antigen-presenting cells, express an antigenic peptide consisting of 8 to 10 amino acids generated when degrading a protein expressed by a tumor in the cell, Presented on the cell surface together with a major histocompatibility complex or MHC (human leukocyte antigen or HLA in humans). Cytotoxic T cells (cytotoxic T lymphocytes or CTLs) recognize antigen peptides bound to HLA class I on the surface of dendritic cells, activate and proliferate, invade tumors, and produce proteins derived from antigen peptides It causes cytotoxicity against tumor cells (Arch. Surg. (1990) 126: 200-205).

この機構を利用して、腫瘍の治療方法として癌ワクチンが開発されてきた。例えば、腫瘍特異的タンパク質由来の抗原ペプチドを細胞表面に提示する樹状細胞をin vitroで作製し、増殖させ、腫瘍患者に投与したり、その樹状細胞によって教育された細胞障害性T細胞を投与したりすることにより、腫瘍患者の体内で腫瘍免疫を誘導させる。あるいは、腫瘍特異的タンパク質を腫瘍患者に投与し、患者の体内で、腫瘍免疫機構の全過程を誘導させるのである( Science (1991) 254: 1643−1647; Exp.Med. (1996) 183: 1185−1192; J.Immunol. (1999) 163: 4994−5004; Proc.Natl.Acad.Sci.USA (1995) 92: 432−436; Science (1995) 269: 1281−1284; J.Exp.Med. (1997) 186: 785−793)。   By utilizing this mechanism, cancer vaccines have been developed as a method for treating tumors. For example, dendritic cells that present tumor-specific protein-derived antigenic peptides on the cell surface are generated in vitro, proliferated, administered to tumor patients, or cytotoxic T cells educated by the dendritic cells. In other words, tumor immunity is induced in the body of a tumor patient. Alternatively, a tumor-specific protein is administered to a tumor patient and induces the whole process of the tumor immune mechanism in the patient's body (Science (1991) 254: 1643-1647; Exp. Med. (1996) 183: 1185 -1192; J. Immunol. (1999) 163: 4994-5004; Proc. Natl. Acad. Sci. USA (1995) 92: 432-436; Science (1995) 269: 1281-1284; J. Exp. Med. (1997) 186: 785-793).

メラノーマ特異的腫瘍抗原については臨床試験における成果が報告されている。例えば、メラノーマ抗原gp100ペプチドをメラノーマ患者に皮下投与し、インターロイキン−2を静脈内投与することにより、42%の患者で腫瘍の縮小が認められている(Nature Medicine (1998) 4: 321)   Results from clinical trials have been reported for melanoma-specific tumor antigens. For example, tumor reduction has been observed in 42% of patients by subcutaneous administration of melanoma antigen gp100 peptide to melanoma patients and intravenous administration of interleukin-2 (Nature Medicine (1998) 4: 321).

しかし、腫瘍免疫を効率的に誘導することのできる腫瘍特異的タンパク質は、一部の腫瘍において、ほんの少数の例が知られているだけである。   However, only a few examples of tumor-specific proteins that can efficiently induce tumor immunity are known in some tumors.

そこで、本発明は、腫瘍免疫を効率的に誘導できるペプチド、そのペプチドを含有する組成物、そのペプチドを提示した抗原提示細胞、この抗原提示細胞によって刺激されたT細胞、およびこれらのペプチドや細胞を利用した癌ワクチン、及びそれらを用いた腫瘍患者の治療方法を提供することを目的としてなされた。   Therefore, the present invention provides a peptide capable of efficiently inducing tumor immunity, a composition containing the peptide, an antigen-presenting cell presenting the peptide, a T cell stimulated by the antigen-presenting cell, and these peptides and cells The purpose of the present invention was to provide a cancer vaccine utilizing the above and a method for treating tumor patients using the same.

本発明者らは、転写因子であるSOX6が、グリオーマに発現していることを既に見いだしていたが(Ueda et al., Oncogene 23, 1420-1427, 2004)、他の腫瘍においても発現していることを見出した(実施例2参照)。この知見に基づき、SOX6の様々な部分ペプチドに対し、HLAクラスI拘束性に細胞障害性T細胞に認識されるかどうか調べたところ、樹状細胞に添加したとき、効率よく細胞障害性T細胞によって認識されるいくつかの部分ペプチドを同定することができ、本発明の完成に至った。   The present inventors have already found that the transcription factor SOX6 is expressed in glioma (Ueda et al., Oncogene 23, 1420-1427, 2004), but is also expressed in other tumors. (See Example 2). Based on this finding, it was investigated whether various partial peptides of SOX6 were recognized by cytotoxic T cells in an HLA class I-restricted manner. When they were added to dendritic cells, they were efficiently cytotoxic T cells. Several partial peptides recognized by can be identified, and the present invention has been completed.

本発明にかかるペプチドは、配列番号10の配列を有する。このペプチドを提示した抗原提示細胞、及びこの抗原提示細胞によって誘導され、SOX6を発現する細胞を認識するT細胞も、本発明の技術的範囲に属する。このT細胞は細胞障害性T細胞であることが好ましく、SOX6を発現する細胞は、グリオーマ、肝癌細胞、肺癌細胞、膵癌細胞、食道癌細胞、メラノーマ細胞、前立腺癌細胞、乳癌細胞、腎癌細胞、または白血病細胞であることが好ましい。   The peptide according to the present invention has the sequence of SEQ ID NO: 10. Antigen-presenting cells presenting this peptide and T cells that are induced by this antigen-presenting cell and recognize cells that express SOX6 also belong to the technical scope of the present invention. This T cell is preferably a cytotoxic T cell, and cells expressing SOX6 are glioma, liver cancer cell, lung cancer cell, pancreatic cancer cell, esophageal cancer cell, melanoma cell, prostate cancer cell, breast cancer cell, renal cancer cell. Or a leukemia cell.

さらに、本発明にかかる癌ワクチンは、配列番号10の配列を有するペプチド及び/又は配列番号1〜3の各配列を有するペプチドから選択される一つ以上のペプチド、上記抗原提示細胞、上記T細胞のうち、少なくとも一つを含有する。この癌ワクチンは、SOX6を発現する癌細胞に対する癌ワクチンであり、特にグリオーマ、肝癌、肺癌、膵癌、食道癌、メラノーマ、前立腺癌、乳癌、腎癌、または白血病に対する癌ワクチンであることが好ましい。   Furthermore, the cancer vaccine according to the present invention includes one or more peptides selected from a peptide having the sequence of SEQ ID NO: 10 and / or a peptide having the sequences of SEQ ID NOs: 1 to 3, the antigen-presenting cell, and the T cell. Among them, at least one is contained. This cancer vaccine is a cancer vaccine against cancer cells expressing SOX6, and is particularly preferably a cancer vaccine against glioma, liver cancer, lung cancer, pancreatic cancer, esophageal cancer, melanoma, prostate cancer, breast cancer, kidney cancer, or leukemia.

本発明にかかる腫瘍治療方法は、ヒト及びヒト以外の脊椎動物に対しこの癌ワクチンを用いることを特徴とする。   The tumor treatment method according to the present invention is characterized by using this cancer vaccine against humans and non-human vertebrates.

本発明によって、腫瘍免疫を効率的に誘導できるペプチド、そのペプチドを含有する組成物、そのペプチドを提示した抗原提示細胞、この抗原提示細胞によって刺激されたT細胞、およびこれらのペプチドや細胞を利用した癌ワクチン、及びそれらを用いた腫瘍患者の治療方法を提供することが可能になった。   According to the present invention, a peptide capable of efficiently inducing tumor immunity, a composition containing the peptide, an antigen-presenting cell presenting the peptide, a T cell stimulated by the antigen-presenting cell, and these peptides and cells are used. It has become possible to provide a cancer vaccine and a method for treating a tumor patient using the same.

実施の形態及び実施例に特に説明がない場合には、J. Sambrook, E. F. Fritsch & T. Maniatis (Ed.), Molecular cloning, a laboratory manual (3rd edition), Cold Spring Harbor Press, Cold Spring Harbor, New York (2001); F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J.G. Seidman, J. A. Smith, K. Struhl (Ed.), Current Protocols in Molecular Biology, John Wiley & Sons Ltd.などの標準的なプロトコール集に記載の方法、あるいはそれを修飾したり、改変した方法を用いる。また、市販の試薬キットや測定装置を用いる場合には、特に説明が無い場合、それらに添付のプロトコールを用いる。   Unless otherwise stated in the embodiments and examples, J. Sambrook, EF Fritsch & T. Maniatis (Ed.), Molecular cloning, a laboratory manual (3rd edition), Cold Spring Harbor Press, Cold Spring Harbor, New York (2001); FM Ausubel, R. Brent, RE Kingston, DD Moore, JG Seidman, JA Smith, K. Struhl (Ed.), Standard Protocols in Molecular Biology, John Wiley & Sons Ltd. The method described in the protocol collection, or a modified or modified method thereof is used. In addition, when using commercially available reagent kits and measuring devices, unless otherwise explained, protocols attached to them are used.

なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的に実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。   The objects, features, advantages, and ideas of the present invention will be apparent to those skilled in the art from the description of the present specification, and those skilled in the art can easily reproduce the present invention from the description of the present specification. it can. The embodiments and specific examples of the invention described below show preferred embodiments of the present invention, and are shown for illustration or explanation. It is not limited. It will be apparent to those skilled in the art that various modifications and variations can be made based on the description of the present specification within the spirit and scope of the present invention disclosed herein.

==HLAクラスIと結合性が高いペプチドのスクリーニング==
ウエブサイト上のデータベースであるBioInformatics & Molecular Analysis Section (BIMAS) のHLA Peptide Binding predictions Program を用い、SOX6遺伝子がコードするアミノ酸配列から、HLAクラスIと結合性が高い、9〜10アミノ酸残基のペプチド配列を特定した。日本人のHLAクラスIのタイプは、HLA−A2とHLA−A24が多く、これらで日本人全体の約80%をカバーする。なお、日本人に多いHLA−Aの遺伝子型として、HLA−A2はA0201及びA0206、HLA−A24はA2402が挙げられ、本明細書では、細胞の遺伝子型としてA0201、A2402と記載した場合、記載したアレルを少なくとも一つ有することを意味する。
== Screening for peptides with high binding to HLA class I ==
A 9-10 amino acid residue peptide with high binding to HLA class I from the amino acid sequence encoded by the SOX6 gene using the HLA Peptide Binding predictions Program of BioInformatics & Molecular Analysis Section (BIMAS), a database on the website The sequence was identified. Japanese HLA class I types are mostly HLA-A2 and HLA-A24, which cover about 80% of all Japanese people. In addition, HLA-A2 includes A0201 and A0206, and HLA-A24 includes A2402 as HLA-A genotypes common in Japanese. In this specification, when the cell genotype is described as A0201, A2402, Means having at least one allele.

ここでは、A24に対する結合性についてスクリーニングした。表1に、このスクリーニングによって得られたスコアの高いペプチド配列の例を示す。
Here, screening was performed for binding to A24. Table 1 shows examples of high-scoring peptide sequences obtained by this screening.

これらのペプチドを実際に合成し、抗原として抗原提示細胞である樹状細胞表面に投与したとき、HLAクラスI分子に結合することにより細胞表面に提示され、細胞障害性T細胞に認識されることで特異的な細胞障害性T細胞を誘導できるペプチドを同定するため、樹状細胞と共培養された細胞障害性T細胞のヒト・グリオーマ細胞に対する反応性を調べた。その結果、配列番号1〜3のペプチドを細胞表面に提示する樹状細胞が効率よく細胞障害性T細胞を刺激し、また各ペプチドの刺激により樹立された細胞障害性T細胞がSOX6を発現するグリオーマ細胞を効率よく認識することが明らかになった。   When these peptides are actually synthesized and administered as antigens on the surface of dendritic cells, which are antigen-presenting cells, they are presented on the cell surface by binding to HLA class I molecules and recognized by cytotoxic T cells. In order to identify peptides capable of inducing specific cytotoxic T cells, the reactivity of cytotoxic T cells co-cultured with dendritic cells to human glioma cells was examined. As a result, dendritic cells presenting the peptides of SEQ ID NOs: 1 to 3 efficiently stimulate cytotoxic T cells, and cytotoxic T cells established by stimulation of each peptide express SOX6. It was revealed that glioma cells were recognized efficiently.

以下の実施例には、これらの実験結果を示すことにより、配列番号1〜3のペプチドを抗原提示細胞に添加すると、それらのペプチドがHLA上に提示され、共培養したT細胞を刺激することにより抗原特異的なT細胞を誘導し、この抗原特異的なT細胞はSOX6を発現するグリオーマ細胞と反応するか、またはSOX6を発現する細胞に対し細胞障害性を有することを示す。このことから、配列番号1〜3のペプチド、そのペプチドを細胞表面に提示した抗原提示細胞、及びその抗原提示細胞の刺激によって樹立された細胞障害性T細胞は、グリオーマに対する癌ワクチンとして有用であることがわかる。   In the following examples, by showing the results of these experiments, when the peptides of SEQ ID NOs: 1 to 3 are added to antigen-presenting cells, the peptides are presented on HLA and stimulate co-cultured T cells. Induces antigen-specific T cells that react with glioma cells that express SOX6 or are cytotoxic to cells that express SOX6. From this, the peptide of SEQ ID NOs: 1 to 3, the antigen-presenting cell presenting the peptide on the cell surface, and the cytotoxic T cell established by stimulation of the antigen-presenting cell are useful as a cancer vaccine against glioma. I understand that.

さらに、このようにして明らかになったペプチドの一つであるSOX6-504の配列(配列番号1:RFENLGPQL)に変異を導入し、同様にHLA-A2402に対する結合親和性などを調べたところ、下記の実施例に示すように、配列番号10(RYENLGPQL)の配列を有するペプチドSOX6-504M(表2)によって刺激し、誘導した細胞障害性T細胞は、SOX6-504によって刺激し、誘導した細胞障害性T細胞より、増殖能や細胞傷害活性が高いことが明らかになった。
Furthermore, when a mutation was introduced into the sequence of SOX6-504 (SEQ ID NO: 1: RFENLGGPQL), one of the peptides thus identified, the binding affinity for HLA-A2402 and the like were examined. As shown in the Examples, cytotoxic T cells stimulated by peptide SOX6-504M (Table 2) having the sequence of SEQ ID NO: 10 (RYENLGGPQL) were stimulated by SOX6-504 and induced cytotoxicity. It was revealed that proliferative ability and cytotoxic activity are higher than those of sex T cells.

従って、配列番号10の配列を有するペプチド、そのペプチドを細胞表面に提示した抗原提示細胞、及びその抗原提示細胞の刺激によって樹立された細胞障害性T細胞は、グリオーマに対する癌ワクチンとして有用である。   Therefore, a peptide having the sequence of SEQ ID NO: 10, an antigen-presenting cell presenting the peptide on the cell surface, and a cytotoxic T cell established by stimulation of the antigen-presenting cell are useful as a cancer vaccine against glioma.

==癌ワクチンの投与方法==
現在、癌ワクチンとして、腫瘍特異的癌抗原、癌抗原提示抗原提示細胞、または癌抗原反応性細胞障害性T細胞を腫瘍患者に投与する方法が開発されている。本発明においては、SOX6の部分ペプチドを用いているので、治療(予防も含まれる)対象となる腫瘍は、SOX6が発現している腫瘍であれば何でもよく、特にSOX6を高レベルに発現しているグリオーマ、肝癌、肺癌、膵癌、食道癌、メラノーマ、前立腺癌、乳癌、腎癌、または白血病も治療対象の一つとなる。主な治療対象は、こうした腫瘍を有するヒト患者であるが、腫瘍を有するヒト以外の脊椎動物でもかまわない。
== Method of administration of cancer vaccine ==
Currently, methods for administering tumor-specific cancer antigens, cancer antigen-presenting antigen-presenting cells, or cancer antigen-reactive cytotoxic T cells to tumor patients are being developed as cancer vaccines. In the present invention, since a partial peptide of SOX6 is used, the tumor to be treated (including prevention) may be any tumor that expresses SOX6, and particularly expresses SOX6 at a high level. Other gliomas, liver cancer, lung cancer, pancreatic cancer, esophageal cancer, melanoma, prostate cancer, breast cancer, kidney cancer, or leukemia are also treated. The main treatment target is a human patient having such a tumor, but it may be a vertebrate other than a human having a tumor.

治療対象となる腫瘍を有する患者に対し投与する癌ワクチンは、腫瘍特異的癌抗原となりうる配列番号1〜3または10をもつペプチドを含有してもよい。この場合、あらかじめ患者のHLAクラスIのタイプを調べ、それに適したペプチドを用いる。ここでは、患者のHLAクラスIタイプがA24である場合に、配列番号1〜3または10のペプチドを投与する。投与するペプチドは、一種類であっても複数種類であってもよい。投与部位に関しては、皮内投与、皮下投与、静脈内投与、腹腔内投与などが考えられ、特に限定されることはない。また、投与する際には、免疫誘導能を高めるアジュバントなどとともにペプチドを投与してもよい。また、投与されるペプチドは、生体内で分解されにくくするような修飾が施されていてもよい。   A cancer vaccine to be administered to a patient having a tumor to be treated may contain a peptide having SEQ ID NO: 1 to 3 or 10 that can be a tumor-specific cancer antigen. In this case, the patient's HLA class I type is examined in advance and a suitable peptide is used. Here, when the patient's HLA class I type is A24, the peptide of SEQ ID NO: 1 to 3 or 10 is administered. The peptide to be administered may be one type or a plurality of types. Regarding the administration site, intradermal administration, subcutaneous administration, intravenous administration, intraperitoneal administration, and the like can be considered, and there is no particular limitation. Moreover, when administering, you may administer a peptide with the adjuvant etc. which improve immunity induction ability. Moreover, the peptide to be administered may be modified so as not to be degraded in vivo.

また、上記癌ワクチンは、配列番号1〜3または10を有するペプチドを提示した抗原提示細胞を含有してもよい。ここで、細胞表面に提示されているペプチドは、配列番号1〜3または10を有するペプチドそのものでもよく、糖やリン酸などで修飾されてもよい。抗原提示細胞としては、樹状細胞の他にマクロファージ、B細胞等が考えられるが、抗原提示能の高さなどから、樹状細胞が好ましい。以下、樹状細胞の単離方法の例を記述する。   Further, the cancer vaccine may contain antigen-presenting cells presenting peptides having SEQ ID NOs: 1 to 3 or 10. Here, the peptide displayed on the cell surface may be the peptide itself having SEQ ID NO: 1 to 3 or 10, or may be modified with sugar, phosphoric acid or the like. In addition to dendritic cells, macrophages, B cells, and the like can be considered as antigen-presenting cells. Dendritic cells are preferred because of their high antigen-presenting ability. Hereinafter, an example of a method for isolating dendritic cells will be described.

まず、脊椎動物個体の末梢血から単核球を単離する。この単核球は、治療対象となる個体自身から分離することが好ましいが、他の個体から単離してもよい。また、この単核球はCD14陽性であることが好ましい。単離した単核球を、GM-CSF とIL-4 で7日前後培養すると、未熟な樹状細胞に分化誘導することができる。このようにして分化誘導された樹状細胞は、抗原提示分子であるMHC分子を高発現している。この未熟な樹状細胞のHLAクラスIタイプを調べ、A24である場合は、配列番号1〜3または10のペプチドを添加する。添加するのは、人工合成ペプチドに限らず、ペプチドを発現させた細胞の抽出物(extractやlysate)や精製物などでもよい。こうして得られた抗原提示樹状細胞を、腫瘍を有する個体に投与する。投与部位に関しては、皮内投与、皮下投与、静脈内投与、リンパ節内投与などが考えられ、特に限定されることはないが、生理的な樹状細胞の抗原提示が、樹状細胞投与部位の所属リンパ節にて行なわれることを考えると、リンパ節内への直接投与が好ましい。   First, mononuclear cells are isolated from the peripheral blood of vertebrate individuals. The mononuclear cells are preferably separated from the individual to be treated, but may be isolated from other individuals. The mononuclear cells are preferably CD14 positive. When the isolated mononuclear cells are cultured for about 7 days with GM-CSF and IL-4, they can be induced to differentiate into immature dendritic cells. The dendritic cells thus induced to differentiate highly express MHC molecules that are antigen-presenting molecules. The immature dendritic cell is examined for HLA class I type, and if it is A24, the peptide of SEQ ID NO: 1 to 3 or 10 is added. What is added is not limited to an artificially synthesized peptide, but may be an extract (extract or lysate) of a cell in which the peptide is expressed or a purified product. The antigen-presenting dendritic cells thus obtained are administered to an individual having a tumor. With regard to the administration site, intradermal administration, subcutaneous administration, intravenous administration, intralymphatic administration, etc. are conceivable, and although there is no particular limitation, physiological dendritic cell antigen presentation is not limited to dendritic cell administration site. In view of the fact that it is performed in the regional lymph nodes, direct administration into the lymph nodes is preferable.

また、上記癌ワクチンは、配列番号1〜3または10由来のペプチドを提示した抗原提示細胞の刺激によって樹立されたT細胞を含有してもよい。配列番号1〜3または10由来のペプチドを提示した抗原提示細胞に対し、T細胞を共培養し、抗原提示細胞で刺激する。このようにして樹立されたT細胞を腫瘍を有する個体に投与してもよい。ここでのT細胞は、細胞障害性T細胞が好ましいが、ヘルパーT細胞等でもよい。投与部位に関しては、皮内投与、皮下投与、静脈内投与、腫瘍内投与などが考えられ、特に限定されることはないが、細胞障害性T細胞の場合、抗原を発現する細胞を直接攻撃できるため、腫瘍内投与が好ましい。   The cancer vaccine may contain T cells established by stimulation of antigen-presenting cells presenting peptides derived from SEQ ID NOs: 1-3 or 10. T cells are co-cultured with antigen-presenting cells presenting peptides derived from SEQ ID NOs: 1-3 or 10 and stimulated with antigen-presenting cells. The T cells thus established may be administered to an individual having a tumor. The T cell here is preferably a cytotoxic T cell, but may be a helper T cell or the like. Regarding the administration site, intradermal administration, subcutaneous administration, intravenous administration, intratumoral administration, and the like are conceivable. Although there is no particular limitation, in the case of cytotoxic T cells, cells expressing the antigen can be directly attacked. Therefore, intratumoral administration is preferred.

<実施例1>抗原を提示した樹状細胞による細胞障害性T細胞の活性化
==実験初日==
HLAクラス1のタイプがA24(遺伝子型はA2402)の健常人末梢血から、以下のように単核球を分離した。まず、ヘパリン5mlで洗浄したシリンジで、末梢血を50ml採血した。等量のLymphoprep (Fresenius kabi Norge AS, Axis-Shield PoC AS, Oslo, Norway) を転倒混和し、遠心(20℃、2000 rpm、35分間 、ブレーキなし)し、中間層を吸引して採取した。これにPBSを加えて再混濁し、遠心(20℃、2000 rpm、10分間)する操作を3回繰り返して、得られた単核球を洗浄した。
<Example 1> Activation of cytotoxic T cells by dendritic cells presenting antigen == First day of experiment ==
Mononuclear cells were isolated from peripheral blood of healthy individuals with HLA class 1 type A24 (genotype is A2402) as follows. First, 50 ml of peripheral blood was collected with a syringe washed with 5 ml of heparin. An equal amount of Lymphoprep (Fresenius kabi Norge AS, Axis-Shield PoC AS, Oslo, Norway) was mixed by inversion, centrifuged (20 ° C., 2000 rpm, 35 minutes, without brake), and the intermediate layer was sucked and collected. PBS was added to re-turbidize, and the operation of centrifuging (20 ° C., 2000 rpm, 10 minutes) was repeated 3 times to wash the resulting mononuclear cells.

この単核球を初代細胞培養用培養皿(FALCON MULTIWELL PRIMARIA 24 well)に5x10個/ウエルの密度で播種し、37℃、5%CO存在下で4時間培養した。培養液はAIM-V(GIBCO)とRPMI-1640を1:1に混合したもの(基本培養液)を用いた。培養皿の底面に接着した細胞を回収し、4x10個/ウエルの密度で新しい24ウエルの培養皿に播種し、GM-CSF(10ng/ml), IL-4(1ng/ml)添加した基本培養液を用いて、37℃、5%CO存在下で7日間培養し、樹状細胞を分化させた。 The mononuclear cells were seeded in a culture dish for primary cell culture (FALCON MULTIWELL PRIMARIA 24 well) at a density of 5 × 10 6 cells / well and cultured at 37 ° C. in the presence of 5% CO 2 for 4 hours. The culture solution used was a mixture of AIM-V (GIBCO) and RPMI-1640 in 1: 1 (basic culture solution). Cells adhering to the bottom of the culture dish were collected, seeded in a new 24-well culture dish at a density of 4 × 10 5 cells / well, and GM-CSF (10 ng / ml), IL-4 (1 ng / ml) added Using the culture solution, the cells were cultured for 7 days at 37 ° C. in the presence of 5% CO 2 to differentiate the dendritic cells.

==実験7日目==
培養7日目に分化した樹状細胞を抗原提示細胞(antigen presenting cells;APCs)として用いた。得られた樹状細胞をirradiate (60Gy)したのち、合成・精製したペプチド(配列番号1〜3及び5のSOX6由来のペプチド)を10μM添加し、37℃、5%CO存在下で2時間培養して細胞に結合させ、PBSで2回洗浄し、刺激細胞(stimulator cells)とした。なお、コントロールとして、SOX6由来のペプチドのかわりにサイトメガロウィルス(CMV)由来のペプチド(配列番号4:QYDPVAALFF、Provenzano et al., Transfusion 43, pp1567-1574参照)を用いた実験を行った。
== Experiment day 7 ==
Dendritic cells differentiated on the seventh day of culture were used as antigen presenting cells (APCs). After the obtained dendritic cells were irradiated (60 Gy), 10 μM of the synthesized and purified peptide (the peptide derived from SOX6 of SEQ ID NOs: 1 to 3 and 5) was added, and the mixture was incubated at 37 ° C. in the presence of 5% CO 2 for 2 hours. The cells were cultured and bound to cells, washed twice with PBS, and used as stimulator cells. As a control, an experiment using a cytomegalovirus (CMV) -derived peptide (see SEQ ID NO: 4: QYDPVAALFF, Provenzano et al., Transfusion 43, pp1567-1574) instead of a SOX6-derived peptide was performed.

一方、この日(培養7日目当日)、実験15日目に樹状細胞を得るために、初日と同じ操作で単核球を培養した。
その過程で、単核球を4時間培養後、培養皿に接着せず、培養上清に浮遊している細胞を回収し、1x10個の細胞に対しIMag anti-human CD8 particules-DM (BD Biosciences社)100μlを、4℃、30分間反応させた。磁石を用いてCD8陽性細胞を吸着・回収し、応答細胞(responder cells)とした。
On the other hand, in order to obtain dendritic cells on this day (the 7th day of culture) and the 15th day of experiment, mononuclear cells were cultured by the same operation as the first day.
In the process, after 4 hours of culture Mononuclear cells, it does not adhere to the culture dish, the cells floating in the culture supernatant was collected, IMag anti-human CD8 to 1x10 7 cells particules-DM (BD Biosciences) 100 μl was reacted at 4 ° C. for 30 minutes. CD8 positive cells were adsorbed and collected using a magnet, and used as responder cells.

このようにして得られた応答細胞2x10個を、上記刺激細胞のウエルに添加し、共培養した。なお、培養液として、IL-1α(10 unit/ml), IL-2(20 unit/ml), IL-4(1 ng/ml), IL-6(125 unit/ml), IL-12(1 ng/ml)を添加した基本培養液を用いた。 2 × 10 5 responding cells thus obtained were added to the wells of the stimulating cells and co-cultured. In addition, IL-1α (10 unit / ml), IL-2 (20 unit / ml), IL-4 (1 ng / ml), IL-6 (125 unit / ml), IL-12 ( A basic culture solution supplemented with 1 ng / ml) was used.

==実験15日目==
培養7日目から培養し、分化させた樹状細胞を用いて、上記と同様の操作で刺激細胞を調整した。
また、培養7日目より刺激細胞と共培養した応答細胞を回収し、新たに調整した刺激細胞と、同様に共培養した。ただし、培養液は培養7日目に用いた上記培養液においてIL−12を含まない培養液を用いた。
なお、実験22日目に樹状細胞を得るための単核球の培養を、同様にして、新たに始めておいた。
== Experiment 15 day ==
Stimulatory cells were prepared in the same manner as described above using dendritic cells cultured and differentiated from day 7 of culture.
Moreover, the response cells co-cultured with the stimulator cells were collected from the 7th day of culture, and co-cultured with the newly prepared stimulator cells in the same manner. However, the culture solution used was a culture solution not containing IL-12 in the culture solution used on the seventh day of culture.
In addition, the culture of mononuclear cells to obtain dendritic cells on the 22nd day of the experiment was newly started in the same manner.

==実験22日目==
実験15日目と同様に、刺激細胞と共培養を続けている応答細胞を回収し、新たに調整した刺激細胞と共培養した。
なお、樹状細胞を得るための単核球の培養を始めたが、24ウエルの培養皿ではなく、96ウエルの培養皿を用い、4x10個/ウエルに調整して播種し、培養した。
== Experiment 22 day ==
As in the 15th day of the experiment, the responder cells that had been co-cultured with the stimulator cells were collected and co-cultured with the newly prepared stimulator cells.
In addition, although the culture | cultivation of the mononuclear cell for obtaining a dendritic cell was started, it seeded | inoculated and adjusted to 4 * 10 < 4 > piece / well using a 96-well culture dish instead of a 24-well culture dish.

==実験29日目==
96ウエルで培養した単核球を用いて分化誘導した樹状細胞に、0μM、0.1μM、1μM、10μMの各濃度のSOX6由来のペプチドあるいは0μM、0.1μM、1μM、10μMの各濃度のCMV由来のペプチドを添加して、37℃、5%CO存在下で2時間培養して細胞に結合させ、PBSで2回洗浄し、ターゲット細胞として用いた。
共培養を続けている応答細胞を回収し、エフェクター細胞として2x10個に調整した細胞を、こうして新たに調整したターゲット細胞のウエルに添加し、共培養した。
== Experiment 29th day ==
Dendritic cells differentiated using mononuclear cells cultured in 96 wells were subjected to 0 μM, 0.1 μM, 1 μM, 10 μM peptides derived from SOX6, or 0 μM, 0.1 μM, 1 μM, 10 μM concentrations. A peptide derived from CMV was added, and the cells were cultured for 2 hours at 37 ° C. in the presence of 5% CO 2 to bind to the cells, washed twice with PBS, and used as target cells.
Responding cells that continued to co-culture were collected, and cells adjusted to 2 × 10 4 as effector cells were added to the wells of the newly prepared target cells and co-cultured.

==実験31日目==
上記共培養から培養上清を回収し、以下のようにIFN-γELISAを行った。
前日に、一次抗体(anti-human IFN-γ monoclonal Ab, Endogen)を0.5μg/mlにPBSで希釈し、98ウエル・プレート(Nunc Maxisorp)に1ウエルあたり100μlを添加し、4℃で一晩放置してプレートをコートした。実験当日、1ウエルあたり300μlの5%FCS含有PBSで室温1時間処理し、ブロッキングした。ウエルを0.2% Tween−20含有PBSで3回洗浄した後、共培養から回収した培養上清50μlを添加し、ビオチン化2次抗体(Endogen、5%FCS含有PBSで0.5mg/mlに調整したもの)を50μl添加し、室温で2時間放置した。ウエルを0.2% Tween−20含有PBSで3回洗浄した後、ストレプトアビジン結合HRP (ExtraAvidine peroxidase conjugate, SIGMA E-2886、5%FCS含有PBSで4000倍希釈したもの)を100μl添加し、 室温で30分放置した。ウエルを0.2% Tween−20含有PBSで3回洗浄した後、TMBを基質にして発色させた(TMBは、TMB tablet 1錠をDMSO1mlに溶解しリン酸クエン酸バッファー9mlを加えて調整した)。25μlの1N HSOを添加し、反応を停止した。プレートリーダーで450nmの吸光度を測定し、既知の濃度のIFN-γで予め作製した標準曲線からIFN-γの濃度を算出し、結果を図1に示した。
== Experiment 31st day ==
The culture supernatant was collected from the co-culture and subjected to IFN-γ ELISA as follows.
On the previous day, the primary antibody (anti-human IFN-γ monoclonal Ab, Endogen) was diluted to 0.5 μg / ml with PBS, and 100 μl per well was added to a 98-well plate (Nunc Maxisorp). The plates were coated overnight. On the day of the experiment, 300 μl per well of 5% FCS-containing PBS was treated for 1 hour at room temperature for blocking. The wells were washed 3 times with PBS containing 0.2% Tween-20, 50 μl of culture supernatant recovered from co-culture was added, and biotinylated secondary antibody (0.5 mg / ml with PBS containing Endogen, 5% FCS) was added. 50 μl) was added and allowed to stand at room temperature for 2 hours. After the wells were washed 3 times with PBS containing 0.2% Tween-20, 100 μl of streptavidin-conjugated HRP (ExtraAvidine peroxidase conjugate, SIGMA E-2886, diluted 4000 times with PBS containing 5% FCS) was added, Left for 30 minutes. The wells were washed 3 times with PBS containing 0.2% Tween-20 and then developed with TMB as a substrate (TMB was prepared by dissolving 1 tablet of TMB tablet in 1 ml of DMSO and adding 9 ml of phosphate citrate buffer. ). 25 μl of 1N H 2 SO 4 was added to stop the reaction. The absorbance at 450 nm was measured with a plate reader, the concentration of IFN-γ was calculated from a standard curve prepared in advance with a known concentration of IFN-γ, and the results are shown in FIG.

==結果==
HLA−A24に結合し得ると予想されたSOX6由来ペプチド(表1参照)のうち、SOX6-360、SOX6-504、およびSOX6-628を添加された樹状細胞との共培養により刺激された細胞障害性T細胞(エフェクター細胞)は、各々の抗原ペプチドを提示した樹状細胞をターゲットとして共培養した時、様々なコントロールに比して、IFN-γ放出量が増加した(図1)。このことは、SOX6ペプチドに由来するペプチド(SOX6-360、SOX6-504、およびSOX6-628)を抗原提示細胞に添加すると、それらのペプチドを提示する抗原提示細胞が得られ、得られた抗原提示細胞によってT細胞を刺激することにより各ペプチドを特異的に認識するT細胞が誘導されたことを示す。
== Result ==
Of SOX6-derived peptides predicted to be able to bind to HLA-A24 (see Table 1), cells stimulated by co-culture with dendritic cells supplemented with SOX6-360, SOX6-504, and SOX6-628 When T-cells (effector cells) were co-cultured with dendritic cells presenting the respective antigen peptides as targets, the amount of IFN-γ released increased compared to various controls (FIG. 1). This is because, when peptides derived from SOX6 peptides (SOX6-360, SOX6-504, and SOX6-628) are added to antigen-presenting cells, antigen-presenting cells that present those peptides are obtained, and the obtained antigen presentation It shows that T cells specifically recognizing each peptide were induced by stimulating T cells with cells.

<実施例2>SOX6由来ペプチドによる刺激によって樹立された細胞障害性T細胞のSOX6発現細胞に対する反応性
[1]SOX6の発現解析
SOX6を発現している細胞を明らかにすることにより、具体的にどのような細胞が、本発明の方法の対象となるかを調べた。
<Example 2> Reactivity of cytotoxic T cells established by stimulation with SOX6-derived peptides to SOX6-expressing cells [1] Expression analysis of SOX6 Specifically, by clarifying cells expressing SOX6, It was examined which cells are the target of the method of the present invention.

==RT−PCRによる解析==
ヒト正常組織(成人脳及び精巣、及びヒト胎児脳)、グリオーマ細胞株(GI−1、U87、及びT98G)、患者から単離されたグリオーマ組織(グリオブラストーマ組織、及びアストロサイトーマ組織)、ヒト腫瘍細胞株(888mel、928mel、586mel、LK2、PC9、LU99、RERF−LC−MA、TE8、PK56、PK1、PC3、MDA231、RCC6、RCC8、KU7、及びMolt4)におけるSOX6のmRNAの発現を定量的PCRにより解析した。
== Analysis by RT-PCR ==
Normal human tissues (adult brain and testis, and human fetal brain), glioma cell lines (GI-1, U87, and T98G), glioma tissues isolated from patients (glioblastoma tissue, and astrocytoma tissue), Quantification of SOX6 mRNA expression in human tumor cell lines (888mel, 928mel, 586mel, LK2, PC9, LU99, RERF-LC-MA, TE8, PK56, PK1, PC3, MDA231, RCC6, RCC8, KU7, and Molt4) Analyzed by dynamic PCR.

RNAを単離する材料としての細胞は、以下のように入手した。まず、グリオーマ細胞株SF126とMarcusはHealth Science Research Resources Bank (Osaka, Japan)から購入した。U-87-MG とT98G (glioma), GI-1 (gliosarcoma), 888mel, 928mel と586mel (melanoma) Molt4 (leukemia and lymphoma), PC9, LU99, LK2, RERF-LC-MA (lung cancer), RCC6 and RCC8 (renal cell cancer), TE8 (esophageal cancer), PK1 と PK59 (pancreas cancer) 、MDA231 (breast cancer) は American Type Culture Collection (Manassas, VA)より購入した。また、グリオーマ組織は、慶應義塾大学倫理委員会承認(No. 12-21-2)の説明文に対して同意の得られた手術患者の腫瘍検体より得た。これらの細胞株、または組織から、RNeasy(キアゲン社)を用いて全RNAを単離した。また、ヒト正常組織の全RNAはCLONTECH Laboratories, Inc.より購入した。これらの全RNAに対し、AMV Reverse transcriptase XL (Takara Bio Inc.,Ohtsu,Japan)及びオリゴdTプライマーを用いて逆転写反応を行い、cDNAを合成した。   Cells as material for isolating RNA were obtained as follows. First, glioma cell lines SF126 and Marcus were purchased from Health Science Research Resources Bank (Osaka, Japan). U-87-MG and T98G (glioma), GI-1 (gliosarcoma), 888mel, 928mel and 586mel (melanoma) Molt4 (leukemia and lymphoma), PC9, LU99, LK2, RERF-LC-MA (lung cancer), RCC6 and RCC8 (renal cell cancer), TE8 (esophageal cancer), PK1 and PK59 (pancreas cancer), and MDA231 (breast cancer) were purchased from American Type Culture Collection (Manassas, VA). In addition, glioma tissue was obtained from tumor specimens of surgical patients who had consented to the explanation text approved by Keio University Ethics Committee (No. 12-21-2). Total RNA was isolated from these cell lines or tissues using RNeasy (Qiagen). In addition, total human normal tissue RNA was purchased from CLONTECH Laboratories, Inc. These total RNAs were subjected to reverse transcription using AMV Reverse transcriptase XL (Takara Bio Inc., Ohtsu, Japan) and oligo dT primers to synthesize cDNA.

これらのcDNAに対し、以下のように定量的PCRを行い、SOX6のmRNAの発現について検討した。SOX6に対するプライマーは
forward primer, 5'-GATGCCATCAACTCCACAGC-3'(配列番号6)
reverse primer, 5'-GCTGCAGAGCCATTCATTGC-3'(配列番号7)
を用い、 内部コントロールとしてのβ-actinに対するプライマーは
forward primer, 5'-GGCACCCAGCACAATGAAG-3'(配列番号8)
reverse primer, 5'-GCCGATCCACACGGAGTACT-3'(配列番号9)
を用いた。定量的PCRの条件は95℃10分、その後、変性を95℃で30秒,アニーリングを60℃で1分の過程を50サイクル行い、最後に伸長反応を72℃で1分間行った。結果を図2Aに示した。なお、各組織でのSOX6の発現量は、それぞれの組織におけるβアクチンの発現量で標準化した。
These cDNAs were subjected to quantitative PCR as follows to examine the expression of SOX6 mRNA. Primers for SOX6
forward primer, 5'-GATCGCCATCAACTCCACAGC-3 '(SEQ ID NO: 6)
reverse primer, 5'-GCTGCAGAGCCCATTCATGC-3 '(SEQ ID NO: 7)
The primer for β-actin as an internal control is
forward primer, 5'-GGCACCCACACAATGAAG-3 '(SEQ ID NO: 8)
reverse primer, 5'-GCCGATCCACACGGAGACTACT-3 '(SEQ ID NO: 9)
Was used. Quantitative PCR was performed at 95 ° C. for 10 minutes, followed by 50 cycles of denaturation at 95 ° C. for 30 seconds, annealing at 60 ° C. for 1 minute, and finally extension reaction at 72 ° C. for 1 minute. The results are shown in FIG. 2A. In addition, the expression level of SOX6 in each tissue was standardized by the expression level of β-actin in each tissue.

==ウエスタン・ブロッティングによる解析==
次に、タンパク質レベルでのSOX6の発現をウエスタン・ブロッティングによって調べた。まず、上記と同様にして得られた細胞を回収し、破砕バッファー(最終濃度20mM HEPES、最終濃度0.25Mショ糖を純水950mlに加え、PH 7.5に調整した)と共にDounce型ホモジナイザーにいれ、氷上にて細胞を破砕した。破砕液を1000gで7分間遠心し、上清を破棄し、核や未破砕細胞を含む沈殿を回収した。この沈殿に、SDSゲル用ローディングバッファーを加えて溶解し、電気泳動用サンプルとした。これらのサンプルを、SDS−PAGEを用い、各レーンに20μgずつ泳動した。メンブレンにトランスファーし、10μg/mlに調製した抗SOX6抗体(CHEMICON社)によってSOX6タンパク質を認識し、AP結合ヤギ抗ウサギIgG (Fc) 抗体 (2000倍希釈、Cappel, Aurora, Ohio)を反応させた後、Nitro blue tetrazolium (Boehringer Mannheim, GmbH, Germany) と 5-bromo-4-chloro-3-indolyl phosphate (Sigma Chemical Co., St. Louis, MO)の混合液にて発色させた。結果を図2Bに示した。
== Analysis by Western blotting ==
Next, the expression of SOX6 at the protein level was examined by Western blotting. First, the cells obtained in the same manner as above were collected, put into a Dounce homogenizer together with a disruption buffer (final concentration 20 mM HEPES, final concentration 0.25 M sucrose added to 950 ml of pure water and adjusted to PH 7.5), and placed on ice. The cells were disrupted with The disrupted solution was centrifuged at 1000 g for 7 minutes, the supernatant was discarded, and the precipitate containing nuclei and unbroken cells was collected. An SDS gel loading buffer was added to the precipitate and dissolved to prepare a sample for electrophoresis. These samples were run in an amount of 20 μg in each lane using SDS-PAGE. SOX6 protein was recognized by anti-SOX6 antibody (CHEMICON) prepared to 10 μg / ml and reacted with AP-conjugated goat anti-rabbit IgG (Fc) antibody (2000-fold diluted, Cappel, Aurora, Ohio) Subsequently, color was developed with a mixture of Nitro blue tetrazolium (Boehringer Mannheim, GmbH, Germany) and 5-bromo-4-chloro-3-indolyl phosphate (Sigma Chemical Co., St. Louis, MO). The results are shown in FIG. 2B.

==結果==
SOX6は、これまでに発現が報告された、ヒト胎児脳、成人精巣、グリオーマ細胞株、グリオーマ組織のみならず、メラノーマ、小細胞肺癌、非小細胞肺癌、扁平上皮肺癌、食道癌、膵癌、前立腺癌、乳癌、腎癌、慢性骨髄性白血病、T細胞性白血病由来の細胞株においても、発現が検出された。(図2A)。
== Result ==
SOX6 is expressed not only in human fetal brain, adult testis, glioma cell line, glioma tissue, but also melanoma, small cell lung cancer, non-small cell lung cancer, squamous lung cancer, esophageal cancer, pancreatic cancer, prostate Expression was also detected in cell lines derived from cancer, breast cancer, kidney cancer, chronic myeloid leukemia, and T cell leukemia. (FIG. 2A).

一方、正常組織におけるSOX6タンパク質の発現は、精巣以外では検出されなかった(図2B)。更に、SOX6は、グリオーマ細胞株(Marcus、U87、KNS-42、SF126)だけでなく、肺癌細胞株(PC9)、肝細胞癌株(HepG2)、膵臓癌株(Panc-1)においては、タンパク質レベルでも発現が検出された。   On the other hand, the expression of SOX6 protein in normal tissues was not detected except in testis (FIG. 2B). Furthermore, SOX6 is a protein not only in glioma cell lines (Marcus, U87, KNS-42, SF126) but also in lung cancer cell lines (PC9), hepatocellular carcinoma lines (HepG2) and pancreatic cancer lines (Panc-1). Expression was also detected at the level.

以上より、SOX6は、ヒト成人正常組織においては精巣しか発現が検出されないものの、腫瘍細胞においては、広く発現が検出された。このことは、SOX6由来のペプチドを用いた癌ワクチンが、グリオーマだけでなく、多種の腫瘍に効果があることを示している。さらに、正常組織では、ほとんど発現が検出されないため、この癌ワクチンは副作用が少ないと考えられる。   As described above, SOX6 was detected only in testis in normal human adult tissues, but was widely detected in tumor cells. This indicates that a cancer vaccine using a peptide derived from SOX6 is effective not only for glioma but also for various tumors. Furthermore, since almost no expression is detected in normal tissues, this cancer vaccine is considered to have few side effects.

[2]エフェクター細胞から放出されるIFN-γ量による、SOX6発現細胞に対する反応性の評価
==実験29日目==
この日まで、実施例1と同様にしてエフェクター細胞を調整した。なお、単核球を得る健常人のHLAクラス1のタイプをA24(遺伝子型はA2402)とし、添加したペプチドとして配列番号1〜3のペプチドを用い、コントロールのペプチドとしてCMV由来のペプチド(配列番号4:QYDPVAALFF)を用いた。
[2] Evaluation of reactivity to SOX6-expressing cells by the amount of IFN-γ released from effector cells == Experiment 29th day ==
Up to this date, effector cells were prepared in the same manner as in Example 1. In addition, the HLA class 1 type of a healthy person who obtains mononuclear cells is A24 (genotype is A2402), the peptide of SEQ ID NOs: 1 to 3 is used as the added peptide, and the CMV-derived peptide (SEQ ID NO: SEQ ID NO. 4: QYDPVAALFF).

一方、マイトマイシン(200pg/ml)を添加した培養液(AIM-V(GIBCO)とRPMI-1640を1:1に混合したもの)を用い、37℃、5%CO存在下で、ヒト・グリオーマ細胞KNS−81(HLA−A24とSOX6が共に発現しており、HLA−A2は発現していない細胞)を60分間培養したのち、5回PBSで洗浄した後、96ウエルの培養皿(COSTER 3595-96 well)に、5x10個/ウエルに調整し、ターゲット細胞として播種した。 On the other hand, human glioma was added at 37 ° C. in the presence of 5% CO 2 using a culture solution to which mitomycin (200 pg / ml) was added (AIM-V (GIBCO) and RPMI-1640 mixed 1: 1). Cells KNS-81 (cells expressing both HLA-A24 and SOX6 but not HLA-A2) were cultured for 60 minutes, washed 5 times with PBS, and then incubated in a 96-well culture dish (COSTER 3595 -96 well) at 5 × 10 3 cells / well and seeded as target cells.

このターゲット細胞に対し、エフェクター細胞を0個(グラフでは、エフェクター細胞:ターゲット細胞(E/T ratio)=0)、5x10個(E/T ratio=10)、1x10個(E/T ratio=20)、2x10個(E/T ratio=40)のそれぞれを加え、共培養した。 For this target cell, 0 effector cells (in the graph, effector cell: target cell (E / T ratio) = 0), 5 × 10 4 (E / T ratio = 10), 1 × 10 5 (E / T ratio) = 20) Each of 2 × 10 5 (E / T ratio = 40) was added and co-cultured.

なお、コントロールとして、ヒト・グリオーマ細胞KNS−81の代わりに、CIR−24細胞(HLA−A24が発現しており、SOX6は発現していない細胞)とグリオーマ細胞U87 (HLA−A2とSOX6が共に発現しており、HLA−A24は発現していない細胞)を用いて、実験を行った。   As controls, instead of human glioma cell KNS-81, CIR-24 cells (cells in which HLA-A24 is expressed but SOX6 is not expressed) and glioma cells U87 (in which HLA-A2 and SOX6 are both expressed) Experiments were carried out using cells that were expressed but not HLA-A24.

==実験31日目==
上記共培養から培養上清を回収し、IFN-γELISAを行った。図3に結果を示す。
== Experiment 31st day ==
The culture supernatant was collected from the co-culture and subjected to IFN-γ ELISA. The results are shown in FIG.

==結果==
SOX6由来の部分ペプチド(SOX6-504、およびSOX6-628)を用いて誘導された細胞障害性T細胞(エフェクター細胞)は、ターゲット細胞であるグリオーマ細胞(KNS−81)に反応して、コントロールに比して細胞数比依存的にIFN-γ放出量の増加を示した(図3)。このことは、SOX6-504またはSOX6-628を提示している抗原提示細胞を用いて刺激することにより樹立したT細胞は、SOX6とHLA−24を発現しているグリオーマ細胞(KNS−81)を特異的に認識し得ることを示す。樹立したT細胞はU87(HLA−A201とSOX6が共に発現しているがHLA−A24は発現していない細胞)に反応しないことから、これらのSOX6特異的T細胞はHLA−A24拘束性に抗原を認識することが示された。
== Result ==
Cytotoxic T cells (effector cells) induced with partial peptides derived from SOX6 (SOX6-504 and SOX6-628) respond to target glioma cells (KNS-81) and serve as controls. In comparison, the amount of IFN-γ released increased in a cell number ratio dependent manner (FIG. 3). This is because T cells established by stimulation with antigen-presenting cells presenting SOX6-504 or SOX6-628 are glioma cells (KNS-81) expressing SOX6 and HLA-24. It shows that it can be specifically recognized. Since the established T cells do not react with U87 (a cell in which both HLA-A201 and SOX6 are expressed but not HLA-A24), these SOX6-specific T cells are HLA-A24-restricted antigens. Was shown to recognize.

[3]エフェクター細胞の細胞傷害活性による、SOX6発現細胞に対する反応性の評価
==実験28日目==
この日まで、実施例1と同様にしてエフェクター細胞を調整した。なお、単核球を得る人のHLAクラス1のタイプをA24(A2402)とし、添加したペプチドとして配列番号1及び2のペプチドを用いた。なお、本実施例では、単核球を得るための末梢血には、健常人末梢血(結果は図4)だけでなく、グリオーマ患者末梢血(結果は図5)も用いた。
[3] Evaluation of reactivity to SOX6-expressing cells based on cytotoxicity of effector cells == Experiment 28th day ==
Up to this date, effector cells were prepared in the same manner as in Example 1. The type of HLA class 1 of the person who obtains mononuclear cells was A24 (A2402), and the peptides of SEQ ID NOS: 1 and 2 were used as added peptides. In this example, as peripheral blood for obtaining mononuclear cells, not only healthy human peripheral blood (result is FIG. 4) but also glioma patient peripheral blood (result is FIG. 5).

ターゲット細胞として、HLA−A,B欠損ヒトB細胞株CIRにHLA−A2402のcDNAを導入したCIR−A2402、CIR−A24株にSOX6遺伝子を導入したCIR−A2402−SOX6、CIRにHLA−A0201のcDNAとSOX6遺伝子を導入したCIR−A0201−SOX6、HLA−A24とSOX6を共に発現しているグリオーマ細胞(Marcus、SF126、KNS−42)、HLA−A24とSOX6を共に発現している他の癌細胞(肝細胞癌由来HepG2、肺癌由来PC9)を準備した。なお、CIR−A2402−SOX6細胞及びCIR−A0201−SOX6細胞でSOX6が発現していることは、上記ウエスタン・ブロッティングによって確認した(図2B)。   As target cells, CIR-A2402 in which HLA-A2402 cDNA was introduced into HLA-A, B-deficient human B cell line CIR, CIR-A2402-SOX6 in which SOX6 gene was introduced into CIR-A24, and HLA-A0201 into CIR. CIR-A0201-SOX6 introduced with cDNA and SOX6 gene, glioma cells expressing both HLA-A24 and SOX6 (Marcus, SF126, KNS-42), other cancers expressing both HLA-A24 and SOX6 Cells (hepatocellular carcinoma-derived HepG2, lung cancer-derived PC9) were prepared. The expression of SOX6 in CIR-A2402-SOX6 cells and CIR-A0201-SOX6 cells was confirmed by the Western blotting (FIG. 2B).

これらの細胞5X10個に対して500μlのFetal Bovine Serum(FBS)、51Cr(1.85MBq/50μl)を50μl添加し、37℃、5%CO2下で60分振蕩培養した。その後洗浄を3回行い、5x10/100μlに調整して96穴プレート(COSTER 3595-96 well)の各ウエルに100μlずつ添加した。 50 μl of 500 μl of Fetal Bovine Serum (FBS) and 51 Cr (1.85 MBq / 50 μl) was added to 6 of 5 × 10 6 cells, and the mixture was shaken and cultured at 37 ° C. under 5% CO 2 for 60 minutes. Performed subsequently washed 3 times, was added in 100 [mu] l to each well of a 96-well plate was adjusted to 5x10 3 / 100μl (COSTER 3595-96 well ).

この51Crでラベルしたターゲット細胞に対し、ウエルあたり、エフェクター細胞を3x10個(E/T ratio=60)、1.5x10個(E/T ratio=30)、7.5X10個(E/T ratio=15)のそれぞれを加え、37℃、5%CO存在下で4時間培養した。 To the target cells labeled with this 51 Cr, per well, 3x10 5 cells of effector cells (E / T ratio = 60) , 1.5x10 5 cells (E / T ratio = 30) , 7.5X10 4 cells (E / T ratio = 15) was added and cultured at 37 ° C. in the presence of 5% CO 2 for 4 hours.

各ウエルのcpm(cpm experimental release)を計測し、特異的溶解度(Percentage of specific lysis)を以下の式から算出した。
特異的溶解度= (cpm−csr)/(cmr−csr) x100
(なお、csr(cpm spontaneous release)はエフェクター細胞を含まない培地を添加したウエルのcpmであり、cmr(cpm maximal release)はエフェクター細胞を含まない0.1% Triton Xを添加したウエルのcpmである。)
The cpm (cpm experimental release) of each well was measured, and the specific solubility (Percentage of specific lysis) was calculated from the following equation.
Specific solubility = (cpm-csr) / (cmr-csr) x100
(Note that csr (cpm spontaneous release) is the cpm of the well added with the medium not containing the effector cell, and cmr (cpm maximal release) is the cpm of the well added with 0.1% Triton X not containing the effector cell. is there.)

==結果==
CIR−A24−SOX6、グリオーマ細胞由来Marcus、グリオーマ細胞由来SF126、グリオーマ細胞由来KNS−42、肝癌由来HepG2、肺癌由来PC9は、HLA−A24とSOX6を発現している細胞である。図4(健常人由来の末梢血リンパ球からCTLを誘導した場合)及び図5(グリオーマ患者由来の末梢血リンパ球からCTLを誘導した場合)に示したように、SOX6-504またはSOX6-628を添加され樹状細胞との共培養により刺激された細胞障害性T細胞(エフェクター細胞)であるCTL(SOX6-504)とCTL(SOX6-628)は、これらのHLA−A24とSOX6を発現している細胞をE/T ratio依存性に溶解した。
== Result ==
CIR-A24-SOX6, glioma cell-derived Marcus, glioma cell-derived SF126, glioma cell-derived KNS-42, liver cancer-derived HepG2, and lung cancer-derived PC9 are cells expressing HLA-A24 and SOX6. As shown in FIG. 4 (when CTL is induced from peripheral blood lymphocytes derived from healthy individuals) and FIG. 5 (when CTL is induced from peripheral blood lymphocytes derived from glioma patients), SOX6-504 or SOX6-628 CTL (SOX6-504) and CTL (SOX6-628), which are cytotoxic T cells (effector cells) stimulated by coculture with dendritic cells, express these HLA-A24 and SOX6 Cells were lysed in an E / T ratio dependent manner.

一方、SOX6を発現しているがHLA−A24を発現していない細胞CIR−A0201−SOX6や、HLA−A24を発現しているがSOX6を発現していない細胞CIR−A2402に対する溶解性が低いことから、CTL(SOX6-504)とCTL(SOX6-628)は、HLA拘束性にSOX6を発現する細胞を広く、特異的に傷害し得ることが示された。   On the other hand, it has low solubility in cell CIR-A0201-SOX6 expressing SOX6 but not expressing HLA-A24 and cell CIR-A2402 expressing HLA-A24 but not expressing SOX6 From these results, it was shown that CTL (SOX6-504) and CTL (SOX6-628) can damage HLA-restricted cells that express SOX6 widely and specifically.

[4]エフェクター細胞のターゲット細胞に対する特異性
SOX6由来のペプチドの刺激により樹立したエフェクター細胞の、SOX6と無関係なペプチドを表面に有する細胞に対する細胞障害活性を調べることにより、エフェクター細胞のターゲット細胞に対する特異性を調べた。
[4] Specificity of effector cells to target cells By examining the cytotoxic activity of effector cells established by stimulation with peptides derived from SOX6 on cells having peptides unrelated to SOX6 on the surface, the specificity of effector cells to target cells I examined the sex.

基本的には、実施例2[3]と同様に実験を行ったが、ターゲット細胞として、
(1)HLA-A24とSOX6が共に発現しているグリオーマ細胞株Marcus
(2)HLA-A24を発現していてSOX6を発現していないCIR-A2402に、配列番号1を有するペプチドSOX6-504を結合させたCIR-A2402(SOX6-504)または配列番号2を有するペプチドSOX6-628を結合させたCIR-A2402(SOX6-628)
(3)非特異的細胞障害を測定するためのコントロールとして、CIR-A2402に対し、CMV由来の無関係なペプチド(配列番号4)を結合させたCIR-A2402(CMV)
(4)無処理のCIR-A2402
を用いた。実施例2[3]に記載の手順にて、上記細胞を51Crでラベルし、5x10/100μlに調整して96穴プレートの各ウエルに100μlずつ添加した。
Basically, the experiment was performed in the same manner as in Example 2 [3].
(1) Glioma cell line Marcus expressing both HLA-A24 and SOX6
(2) CIR-A2402 (SOX6-504) obtained by binding peptide SOX6-504 having SEQ ID NO: 1 to CIR-A2402 expressing HLA-A24 but not SOX6 or peptide having SEQ ID NO: 2 CIR-A2402 combined with SOX6-628 (SOX6-628)
(3) CIR-A2402 (CMV) in which an unrelated peptide derived from CMV (SEQ ID NO: 4) is bound to CIR-A2402 as a control for measuring nonspecific cytotoxicity
(4) Untreated CIR-A2402
Was used. In the procedure described in Example 2 [3], labeled the cells with 51 Cr, were added in 100 [mu] l to each well of a 96-well plate was adjusted to 5x10 3/100 [mu] l.

エフェクター細胞として、ペプチドSOX6-504の刺激により樹立したCTL(SOX6-504)とペプチドSOX6-628の刺激により樹立したCTL(SOX6-628)を準備した。エフェクター細胞はウエルあたり1x10個(ET ratio=20:1を、96穴プレート上のターゲット細胞に添加した。これらを37℃、5%CO存在下で4時間培養後、各ウエルの cpm (cpm experimental release)を計測し、特異的溶解度(Percentage of specific lysis)を上記式から算出した。図6に結果を示す。 As effector cells, CTL (SOX6-504) established by stimulation with peptide SOX6-504 and CTL (SOX6-628) established by stimulation with peptide SOX6-628 were prepared. 1 × 10 5 effector cells per well (ET ratio = 20: 1 was added to target cells on a 96-well plate. After culturing at 37 ° C. in the presence of 5% CO 2 for 4 hours, cpm ( cpm experimental release) was measured, and the specific solubility was calculated from the above equation, and the results are shown in FIG.

CTL(SOX6-504)及びCTL(SOX6-628)は、HLA-A24とSOX6が共に発現しているMarcusや、SOX6由来のペプチドSOX6-504またはSOX6-628を結合させたCIR-A2402に対する溶解率は、無関係なペプチドであるペプチドを結合させたCIR-A2402や無処理のCIR-A2402に対する溶解率に比べて高かった。このことから、CTL(SOX6-504)及びCTL(SOX6-628)は、それぞれSOX6-504及びSOX6-628を提示した細胞に対し、特異的に細胞障害を起こすことが示された。   CTL (SOX6-504) and CTL (SOX6-628) are soluble in Marcus expressing both HLA-A24 and SOX6, and CIR-A2402 bound with SOX6-derived peptide SOX6-504 or SOX6-628. Was higher than the dissolution rate in CIR-A2402 to which a peptide which is an irrelevant peptide was bound or in untreated CIR-A2402. From this, it was shown that CTL (SOX6-504) and CTL (SOX6-628) specifically cause cell damage to cells presenting SOX6-504 and SOX6-628, respectively.

このように、本実施例では、SOX6由来のペプチドで誘導されたエフェクター細胞のターゲット細胞に対する特異性が高いことが示され、従って、SOX6由来のペプチドが癌ワクチンとして用いられた時、副作用が低いと考えられる。   Thus, in this Example, it was shown that the specificity of the effector cells induced with the SOX6-derived peptide to the target cells is high, and therefore, when the SOX6-derived peptide is used as a cancer vaccine, the side effects are low. it is conceivable that.

<実施例3>変異導入型SOX6由来ペプチドによる刺激によって樹立された細胞障害性T細胞のSOX6発現細胞に対する反応性
[1]変異導入型ペプチドSOX6-504Mを提示した樹状細胞による細胞障害性T細胞の活性化と増殖能の評価
基本的には、実施例1と同様の手順で細胞障害性T細胞(CTL:エフェクター細胞)を誘導した。単核球を得る末梢血として、同様にHLAクラス1のタイプがA2402の健常人末梢血を用い、添加したペプチドとして、SOX6-504(配列番号1)及びSOX6-504M(配列番号10)を用いた。
Example 3 Reactivity of Cytotoxic T Cells Established by Stimulation with Mutant-Induced SOX6-Derived Peptide to SOX6-expressing Cells [1] Cytotoxicity by Dendritic Cells Presenting Mutant-Induced Peptide SOX6-504M Evaluation of cell activation and proliferative ability Basically, cytotoxic T cells (CTL: effector cells) were induced by the same procedure as in Example 1. Similarly, peripheral blood from which a mononuclear cell is obtained is HLA class 1 type A2402 healthy human blood. As added peptides, SOX6-504 (SEQ ID NO: 1) and SOX6-504M (SEQ ID NO: 10) are used. It was.

==CTL細胞数の変化の測定==
ペプチド特異的CTL樹立の過程で、7日目に2x10個/ウエルに調整したCD8陽性T細胞のウエル当たりの細胞数を、経時的に(14日目、21日目、28日目)測定した。SOX6-504の刺激により樹立したCTL(SOX6-504)とSOX6-504Mの刺激により樹立したCTL(SOX6-504M)のそれぞれに対し、3ウエルずつで実験を行った。それぞれ細胞を回収した時点で、IMag anti-human CD8 particules-DMでCD8陽性T細胞を単離し、細胞数を測定した。結果を図7のグラフに示す。
== Measurement of CTL cell number change ==
In the process of peptide-specific CTL establishment, the number of cells per well of CD8 positive T cells adjusted to 2 × 10 5 cells / well on day 7 was measured over time (14th day, 21st day, 28th day). did. Experiments were performed in three wells for each of CTL established by stimulation with SOX6-504 (SOX6-504) and CTL established by stimulation with SOX6-504M (SOX6-504M). When the cells were collected, CD8 positive T cells were isolated with IMag anti-human CD8 particules-DM, and the number of cells was measured. The results are shown in the graph of FIG.

[2]SOX6-504Mによる刺激によって樹立された細胞障害性T細胞の細胞傷害活性の評価
基本的には、実施例1で述べたように、ペプチド特異的CTLを誘導し、実施例2[3]と同様の手順で細胞傷害活性を測定した。単核球を得る末梢血は、HLAクラス1のタイプがA2402の健常人末梢血を用いた。
[2] Evaluation of cytotoxic activity of cytotoxic T cells established by stimulation with SOX6-504M Basically, as described in Example 1, peptide-specific CTLs were induced, and Example 2 [3 The cytotoxic activity was measured by the same procedure as described above. As peripheral blood for obtaining mononuclear cells, peripheral blood of a healthy person having HLA class 1 type A2402 was used.

ターゲット細胞としては、HLA−A,B欠損ヒトB細胞株CIRにHLA−A2402のcDNAを導入したCIR−A2402、CIR−A2402株にSOX6遺伝子を導入したCIR−A2402(CIR−A2402−SOX6)、SOX6遺伝子を導入したCIR−A0201(CIR−A0201−SOX6)、HLA−A24とSOX6が共に発現しているグリオーマ細胞(Marcus、SF126、KNS−42)、肺癌由来のPC9細胞株、肝癌由来のHepG2株を用い、E/T ratioは、20/1、60/1、0/1の3通りで実験を行った。37℃、5%CO存在下で4時間共培養後、各ウエルのcpmを計測し、特異的溶解度を上記式から算出した。結果を図8に示す。 As target cells, CIR-A2402 in which HLA-A2402 cDNA was introduced into HLA-A, B-deficient human B cell line CIR, CIR-A2402 (CIR-A2402-SOX6) in which SOX6 gene was introduced into CIR-A2402 strain, CIR-A0201 (CIR-A0201-SOX6) introduced with SOX6 gene, glioma cells expressing both HLA-A24 and SOX6 (Marcus, SF126, KNS-42), PC9 cell line derived from lung cancer, HepG2 derived from liver cancer The strains were used, and the E / T ratio was tested in three ways: 20/1, 60/1, and 0/1. After co-culture at 37 ° C. in the presence of 5% CO 2 for 4 hours, the cpm of each well was measured, and the specific solubility was calculated from the above formula. The results are shown in FIG.

さらに、健常人末梢血及びグリオーマ患者末梢血由来のペプチド特異的CTLを、再度樹立し、CIR−A2402、CIR−A2402−SOX6、グリオーマ細胞(Marcus、SF126)を用いて、上記実験より6日前の22日目に51 Cr release cytotoxicity assayを行った。結果を図9(健常人末梢血由来のCTL)と図11(グリオーマ患者末梢血由来のCTL)に示す。 Furthermore, peptide-specific CTLs derived from healthy human peripheral blood and peripheral blood of glioma patients were re-established, and CIR-A2402, CIR-A2402-SOX6, glioma cells (Marcus, SF126) were used 6 days before the above experiment. On the 22nd day, 51 Cr release cytotoxicity assay was performed. The results are shown in FIG. 9 (CTL derived from peripheral blood of a healthy person) and FIG. 11 (CTL derived from peripheral blood of a glioma patient).

==結果==
健常人末梢血由来のSOX6-504-CTLとSOX6-504M-CTLは、HLA-A24とSOX6が共に発現している細胞である、CIR-A2402-SOX6、Marcus、SF126、KNS-42、PC9、HepG2をE/T ratio依存性に溶解した。また、その特異的溶解度は、SOX6を発現しているがHLA-A2402を発現してない細胞CIR-A0201-SOX6や、HLA-A2402を発現しているがSOX6を発現していない細胞CIR-A2402に対する特異的溶解度に比べて低いことから、SOX6-504-CTLとSOX6-504M-CTLは、HLA拘束性にSOX6を発現する細胞に対し、特異的に細胞障害を起こし得ることが示された(図8)。
== Result ==
SOX6-504-CTL and SOX6-504M-CTL derived from healthy human peripheral blood are cells in which both HLA-A24 and SOX6 are expressed, CIR-A2402-SOX6, Marcus, SF126, KNS-42, PC9, HepG2 was dissolved in an E / T ratio dependency. Further, the specific solubility thereof is the cell CIR-A0201-SOX6 expressing SOX6 but not expressing HLA-A2402, or the cell CIR-A2402 expressing HLA-A2402 but not expressing SOX6. SOX6-504-CTL and SOX6-504M-CTL were shown to be capable of causing specific cytotoxicity against HLA-restricted cells that express SOX6. FIG. 8).

22日目に51 Cr release cytotoxicity assayを行っても、28日目の測定と同様の結果が得られた(図9)。このデータを用いて、CTL(SOX6-504M)とCTL(SOX6-504)の間で、同じターゲット細胞に対する特異的溶解度の違いが容易に比較できるように図示した(図10)。このように、CTL(SOX6-504M)の細胞傷害活性は、CTL(SOX6-504)の細胞傷害活性に比べて高いことが明らかである。 Even when the 51 Cr release cytotoxicity assay was performed on the 22nd day, the same result as the measurement on the 28th day was obtained (FIG. 9). Using this data, the difference in specific solubility of CTL (SOX6-504M) and CTL (SOX6-504) with respect to the same target cells can be easily compared (FIG. 10). Thus, it is clear that the cytotoxic activity of CTL (SOX6-504M) is higher than that of CTL (SOX6-504).

なお、同様の結果はHLA-A2402陽性グリオーマ患者由来の末梢血リンパ球から誘導したCTLにおいても確認された(図11)。   Similar results were confirmed in CTLs derived from peripheral blood lymphocytes derived from HLA-A2402-positive glioma patients (FIG. 11).

[3]SOX6-504Mの刺激により誘導されたCTL(SOX6-504M)の、SOX6-504に対する効果
基本的には、実施例2[3]と同様に実験を行ったが、ターゲット細胞として、
(1)HLA-A24とSOX6が共に発現しているグリオーマ細胞株Marcus
(2)HLA-A24を発現していてSOX6を発現していないCIR-A2402に、ペプチドSOX6-504(配列番号1)を結合させたCIR-A2402(SOX6-504)
(3)非特異的細胞障害を測定するためのコントロールとして、CIR-A2402に対し、CMV由来の無関係なペプチド(配列番号4)を結合させたCIR-A2402(CMV)
(4)無処理のCIR-A2402
を用いた。実施例2[3]に記載の手順にて、上記細胞を51Crでラベルし、5x10/100μlに調整して96穴プレートの各ウエルに100μlずつ添加した。
[3] Effect of CTL (SOX6-504M) induced by stimulation with SOX6-504M on SOX6-504 Basically, an experiment was performed in the same manner as in Example 2 [3].
(1) Glioma cell line Marcus expressing both HLA-A24 and SOX6
(2) CIR-A2402 (SOX6-504) in which peptide SOX6-504 (SEQ ID NO: 1) is bound to CIR-A2402 expressing HLA-A24 but not SOX6
(3) CIR-A2402 (CMV) in which an unrelated peptide derived from CMV (SEQ ID NO: 4) is bound to CIR-A2402 as a control for measuring nonspecific cytotoxicity
(4) Untreated CIR-A2402
Was used. In the procedure described in Example 2 [3], labeled the cells with 51 Cr, were added in 100 [mu] l to each well of a 96-well plate was adjusted to 5x10 3/100 [mu] l.

エフェクター細胞として、ペプチドSOX6-504Mの刺激により樹立したCTL(SOX6-504M)を準備した。エフェクター細胞はウエルあたり1x10個(ET ratio=20:1)を、96穴プレート上のターゲット細胞に添加した。これらを37℃、5%CO存在下で4時間培養後、各ウエルのcpmを計測し、特異的溶解度を上記式から算出した。図12に結果を示す。 As effector cells, CTL (SOX6-504M) established by stimulation with peptide SOX6-504M was prepared. 1 × 10 5 effector cells per well (ET ratio = 20: 1) were added to target cells on a 96-well plate. These were cultured at 37 ° C. in the presence of 5% CO 2 for 4 hours, cpm of each well was measured, and specific solubility was calculated from the above formula. The results are shown in FIG.

==結果==
CTL(SOX6-504M)は、ネガティブコントロールであるCIR-A2402(CMV)やCIR-A2402に対する特異的溶解度と比較し、Marcusや、CIR-A2402(SOX6-504)に対し、高い特異的溶解度を示した。このことから、変異型ペプチドを用いて誘導されるCTL(SOX6-504M)が、腫瘍が本来HLA上に提示する野生型ペプチドであるSOX6-504を提示した細胞を特異的に認識し、細胞傷害を起こすことができることが示された。
== Result ==
CTL (SOX6-504M) shows high specific solubility for Marcus and CIR-A2402 (SOX6-504) compared to specific solubilities for negative controls CIR-A2402 (CMV) and CIR-A2402. It was. From this, the CTL (SOX6-504M) induced by using the mutant peptide specifically recognizes cells presenting SOX6-504, which is a wild-type peptide originally presented by the tumor on HLA, and cytotoxicity. It was shown that it can cause

<結論>
以上より、配列番号10を有するペプチドを用いて、その抗原ペプチドを提示した抗原提示細胞を作製することができ、さらに、その抗原提示細胞によって刺激することにより、各ペプチドのみならずSOX6を発現した細胞を認識する、特異的T細胞が誘導されることが示された。
<Conclusion>
As described above, an antigen-presenting cell presenting the antigenic peptide can be produced using the peptide having SEQ ID NO: 10, and further, not only each peptide but also SOX6 was expressed by stimulation with the antigen-presenting cell. It has been shown that specific T cells that recognize the cells are induced.

本発明における実施例において、HLA−A24と結合することが予想されたSOX6由来のペプチドを添加された樹状細胞との共培養により誘導された細胞障害性T細胞(エフェクター細胞)を、それらHLA−A24結合性のSOX6由来のペプチドを提示した樹状細胞をターゲットとして共培養した時に、放出されるIFN-γを測定した結果を表すグラフである。In an example of the present invention, cytotoxic T cells (effector cells) induced by co-culture with dendritic cells to which a peptide derived from SOX6, which was expected to bind to HLA-A24, was added. -A graph showing the results of measuring IFN-γ released when co-cultured with dendritic cells presenting A24-binding SOX6-derived peptides as targets. 本発明における実施例において、定量的RT−PCTによるSOX6の発現解析の結果を示した図である。In the Example in this invention, it is the figure which showed the result of the expression analysis of SOX6 by quantitative RT-PCT. 本発明における実施例において、ウエスタン・ブロッティングによるSOX6の発現解析の結果を示した図である。In the Example in this invention, it is the figure which showed the result of the expression analysis of SOX6 by Western blotting. 本発明における実施例において、HLA−A24と結合することが予想されたSOX6由来のペプチドを添加された樹状細胞との共培養により誘導された細胞障害性T細胞(エフェクター細胞)を、HLA−A24及びSOX6を発現するグリオーマ細胞(KNS−81)をターゲットとして共培養した時に、放出されるIFN-γを測定した結果を表すグラフである。In the examples of the present invention, cytotoxic T cells (effector cells) induced by co-culture with dendritic cells to which a peptide derived from SOX6, which was expected to bind to HLA-A24, was added. It is a graph showing the result of measuring IFN-γ released when co-cultured with glioma cells (KNS-81) expressing A24 and SOX6 as targets. 本発明における実施例において、HLA−A2402の健常人末梢血から単離され、SOX6由来のペプチドSOX6-504及びSOX6-628を添加された樹状細胞との共培養により誘導された細胞障害性T細胞(CTL:エフェクター細胞)に対し、CIR−A2402、CIR−A2402−SOX6、Marcus、SF126、KNS−42、HepG2、PC9をターゲット細胞として共培養した時に算出した、ターゲット細胞の特異的溶解度を示したグラフである。In the Examples of the present invention, cytotoxic T induced by co-culture with dendritic cells isolated from healthy human peripheral blood of HLA-A2402 and supplemented with SOX6-derived peptides SOX6-504 and SOX6-628. The specific solubility of target cells calculated when CIR-A2402, CIR-A2402-SOX6, Marcus, SF126, KNS-42, HepG2, and PC9 are co-cultured as target cells for cells (CTL: effector cells) is shown. It is a graph. 本発明における実施例において、HLA−A2402のグリオーマ患者末梢血から単離され、SOX6由来のペプチドSOX6-504及びSOX6-628を添加された樹状細胞との共培養により誘導された細胞障害性T細胞(CTL:エフェクター細胞)に対し、CIR−A2402、CIR−A2402−SOX6、Marcus、SF126をターゲット細胞として共培養した時に算出した、ターゲット細胞の特異的溶解度を示したグラフである。In an example of the present invention, cytotoxic T induced by co-culture with dendritic cells isolated from peripheral blood of HLA-A2402 glioma patients and supplemented with SOX6-derived peptides SOX6-504 and SOX6-628. It is the graph which showed the specific solubility of the target cell calculated when coculturing CIR-A2402, CIR-A2402-SOX6, Marcus, and SF126 as a target cell with respect to a cell (CTL: effector cell). 本発明における実施例において、HLA−A2402の健常人末梢血から単離され、SOX6由来のペプチドSOX6-504(A)またはSOX6-628(B)を添加された樹状細胞との共培養により誘導された細胞障害性T細胞(CTL:エフェクター細胞)に対し、(A)Marcus、CIR−A2402(SOX6-504)、CIR−A2402(CMV)、CIR−A2402または(B)Marcus、CIR−A2402(SOX6-628)、CIR−A2402(CMV)、CIR−A2402をターゲット細胞として共培養した時に算出した、ターゲット細胞の特異的溶解度を示したグラフである。In Examples of the present invention, HLA-A2402 was isolated from healthy human peripheral blood and induced by co-culture with dendritic cells to which SOX6-derived peptide SOX6-504 (A) or SOX6-628 (B) was added. (A) Marcus, CIR-A2402 (SOX6-504), CIR-A2402 (CMV), CIR-A2402 or (B) Marcus, CIR-A2402 ( It is the graph which showed the specific solubility of the target cell calculated when coculturing SOX6-628), CIR-A2402 (CMV), and CIR-A2402 as a target cell. 本発明を用いた実施例において、HLA−A2402の健常人末梢血由来のCTL(SOX6-504M)の増殖能を、経時的な(7日目、14日目、21日目、28日目)細胞数の変化として測定した結果を表すグラフである。In Examples using the present invention, the proliferation ability of CTL (SOX6-504M) derived from healthy human peripheral blood of HLA-A2402 was measured over time (7th day, 14th day, 21st day, 28th day). It is a graph showing the result measured as a change of cell number. 本発明を用いた実施例において、HLA−A2402の健常人末梢血由来のCTL(SOX6-504M)及びCTL(SOX6-504)をエフェクター細胞とし、CIR−A2402、CIR−A2402−SOX6、CIR−A0201−SOX6、Marcus、SF−126、KNS−42、PC9、HepG2をターゲット細胞として共培養した時に算出した、ターゲット細胞の特異的溶解度を示したグラフである。なお、ターゲット細胞の特異的溶解度の測定は、実験開始後28日目に行った。In Examples using the present invention, CTL (SOX6-504M) and CTL (SOX6-504) derived from HLA-A2402 healthy human peripheral blood were used as effector cells, and CIR-A2402, CIR-A2402-SOX6, CIR-A0201 -It is the graph which showed the specific solubility of the target cell calculated when co-cultivating SOX6, Marcus, SF-126, KNS-42, PC9, and HepG2 as a target cell. The specific solubility of the target cells was measured on the 28th day after the start of the experiment. 本発明を用いた実施例において、HLA−A2402の健常人末梢血由来のCTL(SOX6-504M)及びCTL(SOX6-504)をエフェクター細胞とし、CIR−A2402、CIR−A2402−SOX6、Marcus、SF−126をターゲット細胞として共培養した時に算出した、ターゲット細胞の特異的溶解度を示したグラフである。なお、ターゲット細胞の特異的溶解度の測定は、実験開始後22日目に行った。In Examples using the present invention, CTL (SOX6-504M) and CTL (SOX6-504) derived from HLA-A2402 healthy human peripheral blood were used as effector cells, and CIR-A2402, CIR-A2402-SOX6, Marcus, SF It is the graph which showed the specific solubility of the target cell calculated when -126 was co-cultured as a target cell. The specific solubility of the target cells was measured on the 22nd day after the start of the experiment. 図9のグラフを、同じターゲット細胞に対する特異的溶解度を比較した棒グラフとして表した図である。It is the figure which represented the graph of FIG. 9 as a bar graph which compared the specific solubility with respect to the same target cell. 本発明を用いた実施例において、HLA−A2402のグリオーマ患者末梢血由来のCTL(SOX6-504M)及びCTL(SOX6-504)をエフェクター細胞とし、CIR−A2402、CIR−A2402−SOX6、Marcus、SF−126をターゲット細胞として共培養した時に算出した、ターゲット細胞の特異的溶解度を示したグラフである。なお、ターゲット細胞の特異的溶解度の測定は、実験開始後22日目に行った。In Examples using the present invention, CTL (SOX6-504M) and CTL (SOX6-504) derived from peripheral blood of HLA-A2402 glioma patients were used as effector cells, and CIR-A2402, CIR-A2402-SOX6, Marcus, SF It is the graph which showed the specific solubility of the target cell calculated when -126 was co-cultured as a target cell. The specific solubility of the target cells was measured on the 22nd day after the start of the experiment. 本発明を用いた実施例において、CTL(SOX6-504M)をエフェクター細胞とし、Marcus、CIR−A2402(SOX6-504)、CIR−A2402(CMV)、CIR−A2402をターゲット細胞として共培養した時に算出した、ターゲット細胞の特異的溶解度を示したグラフである。In Examples using the present invention, calculation is performed when CTL (SOX6-504M) is an effector cell and Marcus, CIR-A2402 (SOX6-504), CIR-A2402 (CMV), and CIR-A2402 are co-cultured as target cells. It is the graph which showed the specific solubility of the target cell.

Claims (16)

配列番号10の配列を有するペプチド。   A peptide having the sequence of SEQ ID NO: 10. 配列番号10の配列を有するペプチドを提示した抗原提示細胞。   An antigen-presenting cell presenting a peptide having the sequence of SEQ ID NO: 10. 樹状細胞であることを特徴とする請求項2の抗原提示細胞。   The antigen-presenting cell according to claim 2, which is a dendritic cell. 請求項2または3に記載の抗原提示細胞によって誘導され、SOX6を発現する細胞を認識するT細胞。   A T cell that is induced by the antigen-presenting cell according to claim 2 and recognizes a cell that expresses SOX6. 細胞障害性T細胞であることを特徴とする請求項4のT細胞。   The T cell according to claim 4, which is a cytotoxic T cell. SOX6を発現する細胞がグリオーマであることを特徴とする請求項4のT細胞。   The T cell according to claim 4, wherein the cell expressing SOX6 is a glioma. SOX6を発現する細胞が肝癌細胞、肺癌細胞、膵癌細胞、食道癌細胞、メラノーマ、前立腺癌細胞、乳癌細胞、腎癌細胞、または白血病細胞であることを特徴とする請求項4のT細胞。   5. The T cell according to claim 4, wherein the cell expressing SOX6 is a liver cancer cell, lung cancer cell, pancreatic cancer cell, esophageal cancer cell, melanoma, prostate cancer cell, breast cancer cell, renal cancer cell, or leukemia cell. SOX6を発現する細胞が肝癌細胞、肺癌細胞、または膵癌細胞であることを特徴とする請求項4のT細胞。   The T cell according to claim 4, wherein the cell expressing SOX6 is a liver cancer cell, a lung cancer cell, or a pancreatic cancer cell. 配列番号10の配列を有するペプチドと、配列番号1〜3の各配列を有するペプチドから選択される一つ以上のペプチドと、を含有する癌ワクチン。   A cancer vaccine comprising a peptide having the sequence of SEQ ID NO: 10 and one or more peptides selected from peptides having the sequences of SEQ ID NOs: 1 to 3. 請求項2または3に記載の抗原提示細胞を含有する癌ワクチン。   A cancer vaccine comprising the antigen-presenting cell according to claim 2 or 3. 請求項4〜8のいずれかに記載のT細胞を含有する癌ワクチン。   The cancer vaccine containing the T cell in any one of Claims 4-8. SOX6を発現する癌細胞に対する癌ワクチンであることを特徴とする請求項9〜11のいずれかに記載の癌ワクチン。   The cancer vaccine according to any one of claims 9 to 11, which is a cancer vaccine against cancer cells expressing SOX6. グリオーマに対する癌ワクチンであることを特徴とする請求項9〜11のいずれかに記載の癌ワクチン。   The cancer vaccine according to any one of claims 9 to 11, which is a cancer vaccine against glioma. 肝癌、肺癌、膵癌、食道癌、メラノーマ、前立腺癌、乳癌、腎癌、または白血病に対する癌ワクチンであることを特徴とする請求項9〜11のいずれかに記載の癌ワクチン。   The cancer vaccine according to any one of claims 9 to 11, which is a cancer vaccine against liver cancer, lung cancer, pancreatic cancer, esophageal cancer, melanoma, prostate cancer, breast cancer, kidney cancer, or leukemia. 肝癌、肺癌、または膵癌に対する癌ワクチンであることを特徴とする請求項9〜11のいずれかに記載の癌ワクチン。   The cancer vaccine according to any one of claims 9 to 11, which is a cancer vaccine for liver cancer, lung cancer, or pancreatic cancer. ヒト以外の脊椎動物に対し、請求項9〜15のいずれかに記載の癌ワクチンを用いた腫瘍の治療方法。

A method for treating a tumor using the cancer vaccine according to any one of claims 9 to 15 against vertebrates other than humans.

JP2006073159A 2006-03-16 2006-03-16 Cancer vaccine Expired - Fee Related JP4840858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006073159A JP4840858B2 (en) 2006-03-16 2006-03-16 Cancer vaccine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006073159A JP4840858B2 (en) 2006-03-16 2006-03-16 Cancer vaccine

Publications (3)

Publication Number Publication Date
JP2007246451A true JP2007246451A (en) 2007-09-27
JP2007246451A5 JP2007246451A5 (en) 2009-04-30
JP4840858B2 JP4840858B2 (en) 2011-12-21

Family

ID=38591117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006073159A Expired - Fee Related JP4840858B2 (en) 2006-03-16 2006-03-16 Cancer vaccine

Country Status (1)

Country Link
JP (1) JP4840858B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072555A1 (en) * 2007-12-04 2009-06-11 Keio University Cancer vaccine
WO2010021112A1 (en) * 2008-08-19 2010-02-25 Oncotherapy Science, Inc. Hig2 and urlc10 epitope peptide and vaccines containing the same
WO2010032696A1 (en) * 2008-09-18 2010-03-25 学校法人慶應義塾 Diagnosis method and therapeutic method for cancer
JP2013256454A (en) * 2012-06-11 2013-12-26 Keio Gijuku Cancer immunotherapy
WO2016129335A1 (en) * 2015-02-09 2016-08-18 株式会社ライフアートビレッジ Method for screening for peptide for use in immune cell therapy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003046182A1 (en) * 2001-11-30 2003-06-05 Institute Of Gene And Brain Science Human glioma antigen originating in testis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003046182A1 (en) * 2001-11-30 2003-06-05 Institute Of Gene And Brain Science Human glioma antigen originating in testis

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137857A (en) * 2007-12-04 2009-06-25 Keio Gijuku Cancer vaccine
WO2009072555A1 (en) * 2007-12-04 2009-06-11 Keio University Cancer vaccine
CN102186491B (en) * 2008-08-19 2015-06-10 肿瘤疗法科学股份有限公司 Hig2 and urlc10 epitope peptide and vaccines containing the same
WO2010021112A1 (en) * 2008-08-19 2010-02-25 Oncotherapy Science, Inc. Hig2 and urlc10 epitope peptide and vaccines containing the same
CN104958753B (en) * 2008-08-19 2018-09-25 肿瘤疗法科学股份有限公司 HIG2 and URLC epitope peptides and vaccine comprising them
CN104958753A (en) * 2008-08-19 2015-10-07 肿瘤疗法科学股份有限公司 HIG2 and URLC10 epitope peptide and vaccines containing the same
US9119800B2 (en) 2008-08-19 2015-09-01 Oncotherapy Science, Inc. HIG2 and URLC10 epitope peptide and vaccines containing the same
WO2010032696A1 (en) * 2008-09-18 2010-03-25 学校法人慶應義塾 Diagnosis method and therapeutic method for cancer
JP5504163B2 (en) * 2008-09-18 2014-05-28 学校法人慶應義塾 Cancer diagnosis and treatment methods
CN102215870B (en) * 2008-09-18 2013-11-20 学校法人庆应义塾 Diagnosis method and therapeutic method for cancer
US8323659B2 (en) 2008-09-18 2012-12-04 Keio University Method for diagnosing and/or treating tumor
JP2013256454A (en) * 2012-06-11 2013-12-26 Keio Gijuku Cancer immunotherapy
WO2016129335A1 (en) * 2015-02-09 2016-08-18 株式会社ライフアートビレッジ Method for screening for peptide for use in immune cell therapy
JPWO2016129335A1 (en) * 2015-02-09 2017-12-14 株式会社ライフアートビレッジ Peptide screening method for immune cell therapy

Also Published As

Publication number Publication date
JP4840858B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP5182770B2 (en) Tumor associated peptides that bind MHC molecules
JP6435286B2 (en) Cancer vaccine composition
KR102341899B1 (en) Compositions and methods for personalized neoplasia vaccines
EP3199627B1 (en) Tumor antigen peptides
JP4840858B2 (en) Cancer vaccine
JP5114403B2 (en) SART3-derived peptides useful for cancer vaccine therapy for HLA-A3 supertype allele positive prostate cancer patients
JP5065273B2 (en) HLA-A24 molecule binding peptide derived from KIF
JP4840866B2 (en) Cancer vaccine
WO2012144726A2 (en) Tumor antigen proteins or genes of polo-like kinase 1
Tiriveedhi et al. Identification of HLA-A24-restricted CD8+ cytotoxic T-cell epitopes derived from mammaglobin-A, a human breast cancer–associated antigen
JP5267969B2 (en) Cancer vaccine
Schmitz et al. Identification of a naturally processed T cell epitope derived from the glioma-associated protein SOX11
WO2017086354A1 (en) Hla-a11 restrictive cytotoxic t cell epitope peptide
Shichijo et al. ABCE1, a member of ATP-binding cassette transporter gene, encodes peptides capable of inducing HLA-A2-restricted and tumor-reactive cytotoxic T lymphocytes in colon cancer patients
Li et al. Identification of a new HLA-A* 0201-restricted CD8+ T cell epitope from hepatocellular carcinoma-associated antigen HCA587
Izgi et al. Evaluation of two different adjuvants with immunogenic uroplakin 3A-derived peptide for their ability to evoke an immune response in mice
JP5709396B2 (en) Cancer vaccine
Rodeberg et al. Generation of tumoricidal PAX3 peptide antigen specific cytotoxic T lymphocytes
JP5984113B2 (en) Cancer immunotherapy
Dong et al. NK Receptors Replace CD28 As the Dominant Source of Signal 2 for Cognate Recognition of Cancer Cells by TAA-specific Effector CD8+ T Cells
KR20190015742A (en) Immunotherapy for cancer
JP5920742B2 (en) PSF1-derived peptide
Dong et al. NK Receptor Signaling Lowers TCR Activation Threshold, Enhancing Selective Recognition of Cancer Cells by TAA-Specific CTLs
JP2009035534A (en) Hla-a24-binding antigen peptide and use thereof
JP2021013301A (en) Hla-a24-restricted epitope peptide derived from methothelin

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110929

R150 Certificate of patent or registration of utility model

Ref document number: 4840858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees