JP2007246319A - Ceramic joined body having hollow structure - Google Patents

Ceramic joined body having hollow structure Download PDF

Info

Publication number
JP2007246319A
JP2007246319A JP2006070442A JP2006070442A JP2007246319A JP 2007246319 A JP2007246319 A JP 2007246319A JP 2006070442 A JP2006070442 A JP 2006070442A JP 2006070442 A JP2006070442 A JP 2006070442A JP 2007246319 A JP2007246319 A JP 2007246319A
Authority
JP
Japan
Prior art keywords
bonding
ceramic
joining
joined body
bonding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006070442A
Other languages
Japanese (ja)
Other versions
JP4870454B2 (en
Inventor
Motohiro Umetsu
基宏 梅津
Shinya Sato
伸也 佐藤
Noboru Miyata
昇 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2006070442A priority Critical patent/JP4870454B2/en
Publication of JP2007246319A publication Critical patent/JP2007246319A/en
Application granted granted Critical
Publication of JP4870454B2 publication Critical patent/JP4870454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic joined body having a hollow structure excellent in airtightness. <P>SOLUTION: The ceramic joined body having the hollow structure is formed by joining the joining surfaces of ceramic members to each other with a joining layer comprising a ceramic joining material having a melting temperature lower than that of the ceramic members. The joining layer has 0.01-0.2 mm thickness in a direction vertical to the joining surface, a corner part formed from a side wall surface adjacent to one joining surface and a planar surface adjacent to another joining surface is covered with a joining material meniscus having a recessed curved surface and a ratio δ/t of the distance (δ) between the corner part of the side wall surface and the shortest part on the joining material meniscus surface to the thickness (t) of the joining material is ≥0.5 and ≤10. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体製造装置、液晶パネル製造装置、検査機器等に好適に用いられる中空構造を有するセラミックス接合体に関するものである。 The present invention relates to a ceramic joined body having a hollow structure that is suitably used in a semiconductor manufacturing apparatus, a liquid crystal panel manufacturing apparatus, an inspection device, and the like.

セラミックスは軽量、高剛性、高強度、高硬度という特徴を有し、また、耐熱性、耐食性に優れているという特性を活かし、構造部材・耐摩耗部材・耐食部材として、特に、半導体製造装置や液晶パネル製造装置等で用いられている。
近年、装置の大型化、高速移動化にともない、装置用部材の軽量化が要求されており、軽量化の手段として、部材を中空構造にすることが行われている。また、高温で使用される部材の冷却機構として、中空構造部に冷却媒体を流入させる方法が取られることもある。
中空構造を有するセラミックス部材の製造方法として、複数の部品に分けて製造し、各々の部品をOリング等でシールし、ボルト等で機械的に固定する方法や、各々の部品を接合する方法が採用されている。このとき、機械的に固定する方法では、温度等の使用環境が限られ、部材の中空部の信頼性も低く、高い気密性が要求される部材に対しては、セラミックスの接合技術が採用されることが多い。
Ceramics have the characteristics of light weight, high rigidity, high strength, and high hardness, and also take advantage of their excellent heat resistance and corrosion resistance, especially as structural members, wear resistant members, and corrosion resistant members. It is used in liquid crystal panel manufacturing equipment.
In recent years, with the increase in size and speed of the apparatus, there has been a demand for weight reduction of the member for the apparatus, and as a means for weight reduction, the member is made to have a hollow structure. Further, as a cooling mechanism for a member used at a high temperature, a method of allowing a cooling medium to flow into the hollow structure portion may be taken.
As a method of manufacturing a ceramic member having a hollow structure, there are a method of manufacturing by dividing into a plurality of parts, sealing each part with an O-ring, etc., and mechanically fixing with a bolt or the like, and a method of joining each part. It has been adopted. At this time, in the method of mechanically fixing, the use environment such as temperature is limited, the reliability of the hollow portion of the member is low, and a ceramic joining technique is adopted for a member that requires high airtightness. Often.

セラミックス同士を接合して接合体を得る技術としては、ろう付け、拡散・圧着、焼結等が挙げられる。
例えば、未焼成のセラミックス成形体同士の突合せ面に、セラミックス成形体と同種のスラリーを塗布して得られた成形体の接合体を焼成してなる方法(例えば、特許文献1参照。)や、セラミックス焼結体同士の接合面に、接合材としてガラスを塗布して接合する方法(例えば、特許文献2参照。)などが知られている。
特開平2−258205号公報 特開平5−4876号公報
Examples of techniques for joining ceramics to obtain a joined body include brazing, diffusion / compression bonding, and sintering.
For example, a method in which a bonded body of a molded body obtained by applying a slurry of the same type as the ceramic molded body to the butted surfaces of the unfired ceramic molded bodies is fired (see, for example, Patent Document 1). Known is a method of applying and bonding glass as a bonding material to the bonding surfaces of ceramic sintered bodies (see, for example, Patent Document 2).
JP-A-2-258205 Japanese Patent Laid-Open No. 5-4876

中空構造を有するセラミックス接合体の製造方法として、上述した接合技術を採用した場合、セラミックスが脆性材料であるために、熱を加えると、接合部に割れや剥離等の欠陥が発生したり、接合材の濡れ性が悪く接合部に空隙が生じたり、接合が完全に行われない等の問題がある。そして、真空中で中空構造セラミックス接合体を用いた場合、中空構造部からガスが漏出したり、中空構造部に流入された冷却媒体が中空構造部外へ流出したりして、真空度が低下し、装置を汚染することなどが課題となっている。このように、セラミックス接合部材の接合部の品質および信頼性が問われる中、これまで、気密性の向上のために、接合部の形状や構造に着目されることがなかったのが現状である。 As a manufacturing method of a ceramic joined body having a hollow structure, when the above-described joining technique is adopted, since ceramic is a brittle material, when heat is applied, defects such as cracks and peeling occur in the joint, There are problems that the wettability of the material is poor and voids are formed in the joint, and that the joint is not completely performed. When a hollow structure ceramic joined body is used in a vacuum, the degree of vacuum decreases due to gas leaking from the hollow structure part or the cooling medium flowing into the hollow structure part flowing out of the hollow structure part. However, contamination of the device is a problem. As described above, while the quality and reliability of the bonded portion of the ceramic bonded member are questioned, the current situation is that attention has not been paid to the shape and structure of the bonded portion so as to improve the airtightness. .

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、セラミックス部材の接合層に隣接する接合材メニスカスの形状が、接合層厚みと一定の関係を有するときに、優れた気密性を示すことを知見し、本発明を完成するに至った。
すなわち、本発明は、気密性に優れた中空構造を有するセラミックス接合体を提供することを目的とする。
As a result of intensive studies to solve the above problems, the present inventors have achieved excellent airtightness when the shape of the bonding material meniscus adjacent to the bonding layer of the ceramic member has a certain relationship with the bonding layer thickness. As a result, the present invention has been completed.
That is, an object of the present invention is to provide a ceramic joined body having a hollow structure excellent in airtightness.

上記した本発明の目的は、セラミックス部材の接合面同士が、該セラミックス部材よりも溶融温度の低いセラミックス接合材からなる接合層を介して接合されてなる中空構造を有するセラミックス接合体であって、前記接合層は接合面に垂直な方向に0.01〜0.2mmの厚みtを有しており、かつ、一方の接合面に隣接する側壁面と他方の接合面に隣接する平面で形成される、中空部に面した角隅部が凹状曲面の接合材メニスカスにより被覆されており、かつ、前記側壁面の角縁部から接合材メニスカス面上の最短部までの距離δと、接合層厚みtとの比δ/tが0.5以上10以下であることを特徴とする中空構造を有するセラミックス接合体によって達成される。 An object of the present invention described above is a ceramic joined body having a hollow structure in which joining surfaces of ceramic members are joined via a joining layer made of a ceramic joining material having a melting temperature lower than that of the ceramic member, The bonding layer has a thickness t of 0.01 to 0.2 mm in a direction perpendicular to the bonding surface, and is formed of a side wall surface adjacent to one bonding surface and a plane adjacent to the other bonding surface. And the corner delta facing the hollow portion is covered with a concave curved bonding material meniscus, and the distance δ from the corner edge of the side wall surface to the shortest portion on the bonding material meniscus surface, and the bonding layer thickness This is achieved by a ceramic joined body having a hollow structure, wherein the ratio δ / t to t is 0.5 or more and 10 or less.

本発明のセラミックス接合体によれば、セラミックス部材の接合面同士を接合する接合材が、中空部に面する接合領域において、接合層に隣接する角隅部を接合層厚みとの関係で一定の形状により被覆する構造になっているため、接合部の欠陥発生が抑制され、中空構造を有するセラミックス接合体中の接合部の気密性を高めることができる。 According to the ceramic joined body of the present invention, the joining material for joining the joining surfaces of the ceramic members has a constant corner corner adjacent to the joining layer in the joining region facing the hollow portion in relation to the joining layer thickness. Since the structure is covered by the shape, the occurrence of defects in the bonded portion is suppressed, and the airtightness of the bonded portion in the ceramic bonded body having a hollow structure can be improved.

以下、本発明の実施の形態を図面に基づいて更に詳しく説明する。
図1に示す本発明のセラミックス接合体1は、セラミックス部材の接合面同士が、セラミックス部材よりも溶融温度の低いセラミックス接合材からなる接合層を介して接合され、中空箱型の構造となっており、この接合層は、図2に示すように、接合面に対して垂直方向に0.01〜0.20mmの厚みt(接合層厚みとも呼ぶ。)を有しており、一方の接合面に隣接する側壁面と他方の接合面に隣接する平面で形成される、中空部に面した角隅部が凹状曲面の接合材メニスカスにより被覆されており、前記側壁面の角縁部から接合材メニスカス面上の最短部までの距離δ(メニスカスの被覆距離とも呼ぶ。)と接合材厚みtの比δ/tが0.5以上10以下となっている。
Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.
The ceramic joined body 1 of the present invention shown in FIG. 1 has a hollow box structure in which the joining surfaces of ceramic members are joined together via a joining layer made of a ceramic joining material having a melting temperature lower than that of the ceramic member. As shown in FIG. 2, this bonding layer has a thickness t (also referred to as a bonding layer thickness) of 0.01 to 0.20 mm in the direction perpendicular to the bonding surface, and one bonding surface. Formed by a side wall surface adjacent to the other bonding surface and a corner corner facing the hollow portion covered with a concave curved bonding material meniscus, and from the corner edge of the side wall surface to the bonding material The ratio δ / t between the distance δ (also referred to as the meniscus coating distance) to the shortest portion on the meniscus surface and the bonding material thickness t is 0.5 or more and 10 or less.

図1(a)に斜視図で本発明の一実施例を示すセラミックス接合体1は、そのA−A線断面図である図1(b)に示すように、セラミックス部材としての基板11と、予め加工によりリブを付与した部材12と、これらの部材を接合する接合材13から構成される。 1A is a perspective view showing a ceramic joined body 1 according to an embodiment of the present invention, as shown in FIG. It is comprised from the member 12 which provided the rib previously by processing, and the joining material 13 which joins these members.

図1(b)のX部を拡大した図2に示すように、接合部の角隅部に形成される接合材メニスカスは凹状曲面13b(接合材メニスカス面とも呼ぶ。)を有する。この接合材凹状曲面13bは、接合材13がセラミックス部材11および部材12と十分な濡れ性を持っており、リブ部の接合面に隣接する側壁面12b、および、基板部材の接合面に隣接する平面11bと融着した接合材の接触角が鋭角になることにより形成される。 As shown in FIG. 2 in which the portion X in FIG. 1B is enlarged, the bonding material meniscus formed at the corners of the bonding portion has a concave curved surface 13b (also referred to as a bonding material meniscus surface). The bonding material concave curved surface 13b is such that the bonding material 13 has sufficient wettability with the ceramic members 11 and 12, and the side wall surface 12b adjacent to the bonding surface of the rib portion and the bonding surface of the substrate member. It is formed by the contact angle of the bonding material fused with the flat surface 11b becoming an acute angle.

ここで、接触角は具体的には45°よりも小さければ良く、さらに望ましくは30°よりも小さければ良い。このようにセラミックス部材と接合材との濡れ性を確保し、接合層を取囲むように凹状曲面の接合材メニスカスを形成することにより、上述したような接合層の欠陥が発生し難くなるだけでなく、接合層に内部欠陥が生じた場合であっても、接合層を取囲む接合材メニスカスにより気密性を担保することができるという作用がある。さらには、接合材メニスカスにより接合部に十分な接合強度を付与することができる。
ここで、「一方の接合面に隣接する側壁面と他方の接合面に隣接する平面で形成される、中空部に面した角隅部」は、正確には、リブ部の側壁面の接合層側延長上に接合層の側壁面を仮想し、接合面に隣接するリブ部および接合層の側壁面と基板平面で形成される角隅部として捉えられる。
Here, specifically, the contact angle may be smaller than 45 °, and more desirably smaller than 30 °. Thus, by ensuring the wettability between the ceramic member and the bonding material and forming the concave curved bonding material meniscus so as to surround the bonding layer, the above-described defects in the bonding layer are less likely to occur. In addition, even when an internal defect occurs in the bonding layer, there is an effect that the airtightness can be secured by the bonding material meniscus surrounding the bonding layer. Furthermore, sufficient bonding strength can be imparted to the bonded portion by the bonding material meniscus.
Here, the “corner corner facing the hollow portion formed by the side wall surface adjacent to one bonding surface and the plane adjacent to the other bonding surface” is precisely the bonding layer on the side wall surface of the rib portion. The side wall surface of the bonding layer is virtually assumed on the side extension, and is regarded as a corner portion formed by the rib portion adjacent to the bonding surface and the side wall surface of the bonding layer and the substrate plane.

さらに、この接合材メニスカスは、一方のセラミックス部材の接合面に隣接する側壁面の角縁部、すなわち前記リブ部の角縁部12cから接合材メニスカス面上の最短部13cまでの距離δと接合層厚みtとの比δ/tが0.5以上10以下となっている。
ここで、δ/tが0.5未満の場合は、接合材メニスカスが、接合層および接合層に隣接する角隅部を十分に被覆することができなくなり気密性が低下して好ましくない。逆に、δ/tが10を超えて大きいと接合材とセラミックス部材との熱膨張差の影響が大きくなり、接合材メニスカス部あるいは、接合層にクラックが発生し気密性や接合強度が低下するため好ましくない。
Further, this bonding material meniscus is bonded to the distance δ from the corner edge of the side wall surface adjacent to the bonding surface of one ceramic member, that is, the corner edge 12c of the rib portion to the shortest portion 13c on the bonding material meniscus surface. The ratio δ / t with respect to the layer thickness t is 0.5 or more and 10 or less.
Here, when δ / t is less than 0.5, the bonding material meniscus cannot sufficiently cover the bonding layer and the corner portion adjacent to the bonding layer, which is not preferable because airtightness is lowered. On the other hand, if δ / t is greater than 10, the influence of the difference in thermal expansion between the bonding material and the ceramic member increases, and cracks occur in the bonding material meniscus part or bonding layer, resulting in a decrease in airtightness and bonding strength. Therefore, it is not preferable.

なお、図1(b)に示すように、接合材13はセラミックス接合体1の外壁側接合部も被覆するように形成されるが、外壁側接合部の被覆部分は必要に応じ、研削、研磨等により取り除かれても良い。また、接合層厚みtとメニスカスの被覆距離δとの比率は、均等である必要はなく、上記範囲内においてばらつきがあっても良い。
さらに、図2に示す接合層13は、接合面に対して垂直方向に0.01〜0.20mmの厚みtを有している。接合層厚みtが0.01mm未満の場合は、接合強度が著しく低下してしまうため加工時や装置への組み込み時の負荷により接合部が外れたり、外れに至らない場合であっても内部にクラックが生じ、気密が低下したりする。また、接合層厚みtが0.20mmを越える場合は、接合材メニスカス部あるいは、接合層自体に、熱膨張差に起因するクラックが生じ気密性が低下する。
In addition, as shown in FIG.1 (b), although the joining material 13 is formed so that the outer wall side junction part of the ceramic joined body 1 may also be covered, the coating | coated part of an outer wall side junction part is ground and polished as needed. It may be removed by such as. Further, the ratio between the bonding layer thickness t and the meniscus coating distance δ need not be uniform, and may vary within the above range.
Further, the bonding layer 13 shown in FIG. 2 has a thickness t of 0.01 to 0.20 mm in the direction perpendicular to the bonding surface. If the bonding layer thickness t is less than 0.01 mm, the bonding strength will be significantly reduced, so that even if the bonded part is detached or does not come off due to the load during processing or incorporation into the apparatus, Cracks occur and airtightness decreases. On the other hand, when the bonding layer thickness t exceeds 0.20 mm, cracks due to the difference in thermal expansion occur in the bonding material meniscus portion or the bonding layer itself, and the airtightness decreases.

ここで、本発明のセラミックス構造体の製造方法について説明する。
第一に、軽量化や中空溝配置など目的に応じた形状に加工されたセラミックス部材を作製する。セラミックス部材の構成としては、図1(a)では、基板と予め加工によりリブを付与した部材の2つの部材からなる構成としたが、図3(a)に示すセラミックス接合体2のように、基板21と、基板21に対向する天板22と、基板21と天板22の間に配置されたリブ23と、これらの3つの部材からなる構成としてもよい。また、図1および図3に示す構造では、周辺部にリブを設けるとともに内部にもリブを設けているが、さらに複雑な構造のリブを設けてもよく、内部にリブを設けない箱型の構造体であってもよい。また、本例のような直方体形状に限られるものではなく、中空のものであれば種々の形状が採用可能である。接合体内部の中空構造は筒状、格子状、ハニカム状、ピン状、リブのない箱型構造等の種々の構造が採用できる。また、接合体形状についても図1および図3に示したような直方体形状に限られるものではなく、中空のものであれば種々の形状が採用可能である。
Here, the manufacturing method of the ceramic structure of this invention is demonstrated.
First, a ceramic member processed into a shape according to the purpose such as weight reduction or hollow groove arrangement is produced. As a structure of the ceramic member, in FIG. 1 (a), it is composed of two members, a substrate and a member provided with ribs by processing in advance, but like the ceramic joined body 2 shown in FIG. 3 (a), It is good also as a structure which consists of these three members, the board | substrate 21, the top plate 22 facing the board | substrate 21, the rib 23 arrange | positioned between the board | substrate 21 and the top board 22. FIG. Further, in the structure shown in FIG. 1 and FIG. 3, ribs are provided in the peripheral portion and ribs are also provided in the inside. It may be a structure. Moreover, it is not restricted to a rectangular parallelepiped shape like this example, A various shape is employable if it is a hollow thing. Various structures such as a cylindrical shape, a lattice shape, a honeycomb shape, a pin shape, and a box structure without ribs can be adopted as the hollow structure inside the joined body. Also, the shape of the joined body is not limited to the rectangular parallelepiped shape as shown in FIGS. 1 and 3, and various shapes can be adopted as long as it is hollow.

ここで、セラミックス部材の接合面の表面は、平面度を接合層厚みtの1/2以下とし、平面度10〜100μm、表面粗さ0.1〜0.5μmとすることが好ましい。
その理由は、接合層厚みtの1/2を超える平面度を有する接合面同士を接合した場合、接合面間の隙間の最大距離が接合層厚み以上となる可能性が有り、これにより未接合部が形成され、気密性が大きく低下してしまうため好ましくないからである。
Here, the surface of the bonding surface of the ceramic member preferably has a flatness of ½ or less of the bonding layer thickness t, a flatness of 10 to 100 μm, and a surface roughness of 0.1 to 0.5 μm.
The reason is that when bonding surfaces having flatness exceeding 1/2 of the bonding layer thickness t are bonded to each other, the maximum distance of the gap between the bonding surfaces may be equal to or greater than the bonding layer thickness. This is because the portion is formed and the airtightness is greatly reduced.

次に、セラミックス部材の材質としては、アルミナ、イットリア、炭化ケイ素、窒化ケイ素、サイアロン、チタニア等が挙げられ、特に限定はされないが、熱膨張差に起因する接合不良を防ぐためにも、同一材質同士か、あるいは熱膨張差が小さい材質同士のものが好ましい。 Next, examples of the material of the ceramic member include alumina, yttria, silicon carbide, silicon nitride, sialon, titania, and the like. Although not particularly limited, the same material may be used to prevent poor bonding due to a difference in thermal expansion. Or the thing of materials with a small thermal expansion difference is preferable.

接合材の材質は、接合されるセラミックス部材よりも溶融温度の低いセラミックスで構成され、特に限定はされないが、セラミックス部材の溶融温度以下となるように、例えば、アルミナ、シリカ、マグネシア、カルシア等から、複数の材料を適宜選択し、組成を調整したもの等が挙げられる。また、接合材の平均粒子径は、5.0μm以下とすることが好ましい。平均粒子径が5.0μmを超えて大きいと接合材の焼結性が悪くなり、接合材中に内部欠陥が生成する場合が有り、気密性が低下してしまう。
また、接合材の形態としては、特に限定はしないが、バインダーと可塑剤を添加したペースト状であることが好ましく、ペーストの粘度としては50〜300Pa・secに調整することが好ましい。バインダーとしてはポリビニルアルコール、ポリエチレングリコール、ポリビニールブチラール、ポリエチレンオキサイド、ポリビニールアセタール、アクリル樹脂、メチルセルロース、エチルセルロース、カルボキシルメチルセルロース、ワックスエマルジョン等を用いるのが好ましく、可塑剤としてはフタル酸ジブチル、フタル酸ジメチル、アジピン酸ジオクチル等を用いることが好ましい。溶媒としては、水、アルコールの他、α-テルピネオール、ブチルカルビトール、カルビトールアセテート等の有機溶剤を用いることができる。
The material of the bonding material is composed of ceramics having a melting temperature lower than that of the ceramic member to be bonded, and is not particularly limited. For example, alumina, silica, magnesia, calcia, etc. In addition, a material in which a plurality of materials are appropriately selected and the composition is adjusted may be used. Moreover, it is preferable that the average particle diameter of a joining material shall be 5.0 micrometers or less. If the average particle diameter is larger than 5.0 μm, the sinterability of the bonding material is deteriorated, an internal defect may be generated in the bonding material, and the airtightness is lowered.
Further, the form of the bonding material is not particularly limited, but it is preferably a paste with a binder and a plasticizer added, and the viscosity of the paste is preferably adjusted to 50 to 300 Pa · sec. As the binder, it is preferable to use polyvinyl alcohol, polyethylene glycol, polyvinyl butyral, polyethylene oxide, polyvinyl acetal, acrylic resin, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, wax emulsion or the like, and plasticizers such as dibutyl phthalate and dimethyl phthalate. It is preferable to use dioctyl adipate. As the solvent, in addition to water and alcohol, organic solvents such as α-terpineol, butyl carbitol, carbitol acetate and the like can be used.

また、バインダーおよび可塑剤および溶媒の添加量は、接合材中のセラミックス粉末固形分を20〜60重量%の比率となるように調整した方が好ましい。接合材として用いるセラミックス粉末の量がペースト全体に対して20重量%未満であると、接合層中に空隙が生成する原因となるとともに、接合材メニスカスにより接合部を所定厚みで被覆することが困難となる。また、粉体の量がペースト全体に対して60重量%を超えると、ペーストの粘度が高くなり過ぎて接合面に均質にペーストを塗布することができず、接合強度の低下を引き起こすとともに、δ/tの値を10以下とすることが困難となる。 Moreover, it is preferable to adjust the addition amount of a binder, a plasticizer, and a solvent so that the ceramic powder solid content in a joining material may become a ratio of 20 to 60 weight%. When the amount of the ceramic powder used as the bonding material is less than 20% by weight with respect to the entire paste, it causes a void in the bonding layer, and it is difficult to cover the bonding portion with a predetermined thickness with the bonding material meniscus. It becomes. On the other hand, when the amount of the powder exceeds 60% by weight with respect to the entire paste, the viscosity of the paste becomes too high, and the paste cannot be uniformly applied to the joint surface, causing a decrease in joint strength and δ It becomes difficult to set the value of / t to 10 or less.

次に、上記のように作製された接合材を、目的に応じた形状に加工されたセラミックス部材の接合面上に均一の厚さになるように塗布する。接合材の塗布方法としては、例えば、接合材をペースト状として、スクリーン版により印刷する等、接合面に均一の厚さに塗布できる方法であれば、特に限定はしない。接合材の塗布厚さは、接合材の固形分、熱処理条件、収縮率により決定され、最終的に接合層厚みが、0.01〜0.20mmとなるように、適宜調整を行う。 Next, the bonding material produced as described above is applied so as to have a uniform thickness on the bonding surface of the ceramic member processed into a shape according to the purpose. The method for applying the bonding material is not particularly limited as long as it is a method that can be applied to the bonding surface with a uniform thickness, for example, by printing the bonding material in a paste form using a screen plate. The coating thickness of the bonding material is determined by the solid content of the bonding material, the heat treatment conditions, and the shrinkage rate, and is appropriately adjusted so that the final bonding layer thickness is 0.01 to 0.20 mm.

次に、セラミックス部材の接合は、接合面同士を貼り合わせたセラミックス部材の上面に、荷重を付加し、接合材の溶融温度以上、セラミックス部材の融点以下の温度範囲で熱処理することにより、接合界面で溶融拡散もしくは焼結させることで実施する。このとき、熱処理温度は、接合材の溶融温度の50℃程度高い温度で実施することが好ましい。熱処理温度が、溶融温度近辺では、接合材の粘性が高く、十分な濡れ性を有しないため、接合層が0.20mmを超えて大きくなったり、接合材メニスカスが凸状曲面となったりするためクラックが生じやすくなるし、接合材メニスカスが凹状曲面の場合のように接合部を取囲む構造にならないため、気密性が確保できない。また、接合材の溶融温度よりも50℃以上高くなると、接合材の粘性が低くなり過ぎて、接合材メニスカスの被覆距離δが小さくなったり、接合層の厚みが0.01mm未満になったりし、接合層を十分に被覆できず気密性が低下し、接合強度も不十分となる。
熱処理時の荷重は5.0〜100g/cm2であるのが好ましく、荷重が5.0g/cm2未満であると、接合材の密着性が悪くなって気密性が低下し、100g/cm2を超えると接合層の厚さを0.01mm以上とすることが困難となるだけでなく、セラミックス部材が荷重により塑性変形し、未接合部が形成されてしまう虞がある。
Next, the bonding of the ceramic member is performed by applying a load to the upper surface of the ceramic member in which the bonding surfaces are bonded together, and heat-treating in a temperature range above the melting temperature of the bonding material and below the melting point of the ceramic member. It is carried out by melt diffusion or sintering. At this time, the heat treatment temperature is preferably about 50 ° C. higher than the melting temperature of the bonding material. When the heat treatment temperature is in the vicinity of the melting temperature, the bonding material has high viscosity and does not have sufficient wettability, so the bonding layer becomes larger than 0.20 mm or the bonding material meniscus becomes a convex curved surface. Cracks are likely to occur, and airtightness cannot be ensured because the structure does not surround the joint as in the case where the joint material meniscus is a concave curved surface. Further, when the temperature is higher by 50 ° C. or more than the melting temperature of the bonding material, the viscosity of the bonding material becomes too low, and the covering distance δ of the bonding material meniscus becomes small, or the thickness of the bonding layer becomes less than 0.01 mm. Further, the bonding layer cannot be sufficiently covered, the airtightness is lowered, and the bonding strength is also insufficient.
Is preferably a load is 5.0~100g / cm 2 during the heat treatment, when the load is less than 5.0 g / cm 2, airtightness decreases becomes poor adhesion of the bonding material, 100 g / cm If it exceeds 2 , it becomes difficult not only to make the thickness of the bonding layer 0.01 mm or more, but also the ceramic member may be plastically deformed by a load and an unbonded portion may be formed.

このような条件で製造された本発明のセラミックス接合体は、接合層に内部欠陥が存在せず、接合部が接合材メニスカスにより所定形状で被覆されることにより、高い気密性を発現する。よって、本発明のセラミックス構造体は、半導体製造装置や液晶製造装置などの精密機器用部材として、ステージ部材、テーブル、ガイドレール等、あるいは一般構造用部材として、その駆動源がサーボモータ、リニアモータ、超音波モータ等であるステージ、ガイド材、治具等に用いることが可能であり、構造体中の中空部が優れた気密性を有しているため、冷却媒体として、冷却水やHeガス等を流入させることができる。 The ceramic joined body of the present invention manufactured under such conditions exhibits high airtightness when the joining layer is covered with a joining material meniscus in a predetermined shape without any internal defects in the joining layer. Therefore, the ceramic structure of the present invention is a member for precision equipment such as a semiconductor manufacturing apparatus or a liquid crystal manufacturing apparatus, a stage member, a table, a guide rail or the like, or a general structural member whose drive source is a servo motor or linear motor. It can be used for stages such as ultrasonic motors, guide materials, jigs, etc., and since the hollow portion in the structure has excellent airtightness, cooling water or He gas can be used as a cooling medium. Etc. can be introduced.

以下、本発明の実施例と比較例を具体的に挙げ、本発明をより詳細に説明する。
(実施例1)
(1)セラミックス接合体の作成
基板部材(部材1)として、形状100mm×100mm×10mmのアルミナ焼結体を1枚、リブを付与した部材(部材2)として、形状100mm×100mm×20mmに、幅10mmのリブが田の字に配置されるように、形状35mm×35mm×10mmのザグリ溝を、マシニング加工により設けたアルミナ焼結体を1枚作製した。各焼結体の接合面を、平面研削加工により、平面度を10μm、表面粗さを0.3μmとした。
接合材として、アルミナ、シリカ、カルシアを用い、それぞれ重量比20:40:40でボールミル混合後、乾燥粉砕した複合粉末を作製した。この複合粉末に対して、バインダーとしてポリビニルアルコール30重量%、可塑剤としてフタル酸ジブチルを20%投入し、遊星ミル混合機により撹拌、混合することで、接合材をペースト状とした。
次に、接合材を部材1の接合面に、#100のスクリーン版を用いて印刷し、各接合面を合わせ、電気炉にて、大気中、1350℃、3時間の熱処理を行った。尚、接合体は、側壁面の角縁部から接合材メニスカス面上の最短部までの距離δ、接合層厚みtにおいて、接合材の印刷厚さおよび熱処理時に付加する荷重を制御することによって、tを0.02〜0.20mm、δ/tを0.5〜10となるようした。
このようにして、中空構造を有するアルミナ部材からなるセラミックス接合体を作成した。
Hereinafter, the present invention will be described in more detail with specific examples and comparative examples of the present invention.
Example 1
(1) Creation of a ceramic joined body As a substrate member (member 1), one alumina sintered body having a shape of 100 mm × 100 mm × 10 mm and a member (member 2) provided with ribs in a shape of 100 mm × 100 mm × 20 mm, One alumina sintered body in which counterbored grooves having a shape of 35 mm × 35 mm × 10 mm were formed by machining so that ribs having a width of 10 mm were arranged in a square shape was produced. The joined surface of each sintered body was subjected to surface grinding to have a flatness of 10 μm and a surface roughness of 0.3 μm.
As a bonding material, alumina, silica, and calcia were used, and a composite powder was prepared by ball mill mixing at a weight ratio of 20:40:40, and then dry pulverized. To this composite powder, 30% by weight of polyvinyl alcohol as a binder and 20% of dibutyl phthalate as a plasticizer were added, and stirred and mixed with a planetary mill mixer to make a bonding material in a paste form.
Next, the bonding material was printed on the bonding surface of the member 1 using a # 100 screen plate, the bonding surfaces were combined, and heat treatment was performed in the air at 1350 ° C. for 3 hours in an electric furnace. In the bonded body, by controlling the printing thickness of the bonding material and the load applied during heat treatment at the distance δ from the corner edge of the side wall surface to the shortest portion on the bonding material meniscus surface and the bonding layer thickness t, t was set to 0.02 to 0.20 mm, and δ / t was set to 0.5 to 10.
Thus, the ceramic joined body which consists of an alumina member which has a hollow structure was created.

(2)評価
得られた接合体の接合層厚みtと側壁面の角縁部から接合材メニスカス面上の最短部までの距離δの計測は、接合体を接合面に対して垂直に切断し、その断面を光学顕微鏡により観察することに行った。
また、得られた中空構造を有するアルミナ部材からなる接合体の気密性の評価は、Heリーク量を測定して行った。Heリーク量の測定は、ボンビング法(JIS−Z2230準拠)により、Heリーク検知機(日電アネルバ製:ASM 151 TURBO)を用いて行った。リーク量の評価結果を、δ/tの計算値とともに表1にまとめて示した。
ここで、No.1のリーク量の測定値において、1.2×10-6を1.2E-6と略記した。以下のリーク量の測定値においても同様な略記を行った。
(2) Evaluation The measurement of the bonding layer thickness t of the obtained bonded body and the distance δ from the corner edge of the side wall surface to the shortest part on the bonding material meniscus surface is performed by cutting the bonded body perpendicular to the bonded surface. The cross section was observed with an optical microscope.
Moreover, evaluation of the airtightness of the joined body made of the alumina member having the hollow structure was performed by measuring the amount of He leak. The amount of He leak was measured by a bombing method (based on JIS-Z2230) using a He leak detector (manufactured by Nidec Deneru: ASM 151 TURBO). The evaluation results of the leak amount are shown together in Table 1 together with the calculated value of δ / t.
Here, no. In the measured value of the leak amount of 1, 1.2 × 10 −6 was abbreviated as 1.2E-6. Similar abbreviations were made for the following measured values of leakage amount.

Figure 2007246319
Figure 2007246319

(実施例2)
中空構造を有するセラミックス接合体を構成する部材の材質として、表2に示したようにイットリア、炭化ケイ素、窒化ケイ素、アルミナを用いて、実施例1で作製した部材1および部材2と同形状の部材を作製した。
中空構造を有するセラミックス接合体は、部材1と部材2の各部材が同一材質としたイットリア接合体、炭化ケイ素接合体、窒化ケイ素接合体を、各材質に適した接合処理により作製した。また、イットリアと熱膨張係数が比較的近似しているアルミナを部材1、イットリアを部材2としたアルミナ−イットリア接合体も作製した。
実施例1と同様に、各接合体は、側壁面の角縁部から接合材メニスカス面上の最短部までの距離δ、接合層厚みtにおいて、接合材の印刷厚さおよび熱処理時に付加する荷重を制御することによって、tを0.10〜0.20mm、δ/tを0.5〜10となるようにした。
得られた中空構造を有するセラミックス接合体は、気密性の評価として、実施例1と同様の方法でHeリーク量を測定した。リーク量の評価結果を、δ/tの計算値とともに、表2にまとめて示した。
(Example 2)
As shown in Table 2, yttria, silicon carbide, silicon nitride, and alumina are used as the material of the member constituting the ceramic joined body having a hollow structure, and the same shape as the member 1 and member 2 produced in Example 1 is used. A member was prepared.
A ceramic joined body having a hollow structure was prepared by joining treatments suitable for each material, including an yttria joined body, a silicon carbide joined body, and a silicon nitride joined body in which the members 1 and 2 were made of the same material. Also, an alumina-yttria joined body was produced in which alumina having a thermal expansion coefficient relatively similar to that of yttria was member 1 and yttria was member 2.
As in Example 1, each bonded body has a printing thickness of the bonding material and a load applied during heat treatment at a distance δ from the corner edge of the side wall surface to the shortest portion on the bonding material meniscus surface and the bonding layer thickness t. By controlling, t was set to 0.10 to 0.20 mm, and δ / t was set to 0.5 to 10.
The obtained ceramic joined body having a hollow structure was measured for the amount of He leak by the same method as in Example 1 for evaluation of airtightness. The evaluation results of the leak amount are shown together in Table 2 together with the calculated value of δ / t.

Figure 2007246319
Figure 2007246319

(比較例1)
中空構造を有するセラミックス接合体の材質として、アルミナを用いて、実施例1と同様の方法でアルミナ部材からなる接合体を作製した。尚、接合体は、側壁面の角縁部から接合材メニスカス面上の最短部までの距離δ、接合層厚みtにおいて、接合材の印刷厚さおよび熱処理時に付加する荷重を制御することによって、tを0.02〜0.20mm、δ/tを0〜0.5、10〜20となるようにした。
得られた中空構造を有するセラミックス接合体は、気密性の評価として、実施例1と同様の方法でHeリーク量を測定した。リーク量の評価結果を、δ/tの計算値とともに、表3にまとめて示した。
(Comparative Example 1)
A joined body made of an alumina member was produced in the same manner as in Example 1 using alumina as the material of the ceramic joined body having a hollow structure. In the bonded body, by controlling the printing thickness of the bonding material and the load applied during heat treatment at the distance δ from the corner edge of the side wall surface to the shortest portion on the bonding material meniscus surface and the bonding layer thickness t, t was 0.02 to 0.20 mm, and δ / t was 0 to 0.5 and 10 to 20.
The obtained ceramic joined body having a hollow structure was measured for the amount of He leak by the same method as in Example 1 as an evaluation of hermeticity. The evaluation results of the leak amount are shown together in Table 3 together with the calculated value of δ / t.

Figure 2007246319
Figure 2007246319

(比較例2)
中空構造を有するセラミックス接合体の材質として、イットリア、炭化ケイ素、窒化ケイ素、アルミナを用いて、実施例1で作製した部材1および部材2と同形状の部材を作製した。
中空構造を有するセラミックス接合体は、部材1と部材2の各部材が同一材質としたイットリア接合体、炭化ケイ素接合体、窒化ケイ素接合体を、各材質に適した接合処理により作製した。また、イットリアと熱膨張係数が比較的近似しているアルミナを部材1、イットリアを部材2としたアルミナ−イットリア接合体も作製した。
尚、接合体は、側壁面の角縁部から接合材メニスカス面上の最短部までの距離δ、接合層厚みtにおいて、接合材の印刷厚さおよび熱処理時に付加する荷重を制御することによって、tを0.02〜0.20mm、δ/tを0〜0.5、10〜15となるようにした。 得られた中空構造を有するセラミックス接合体は、気密性の評価として、実施例1と同様の方法でHeリーク量を測定した。リーク量の評価結果を、δ/tの計算値とともに、表4にまとめて示した。
(Comparative Example 2)
Members having the same shape as the members 1 and 2 produced in Example 1 were produced using yttria, silicon carbide, silicon nitride, and alumina as the material of the ceramic joined body having a hollow structure.
A ceramic joined body having a hollow structure was prepared by joining treatments suitable for each material, including an yttria joined body, a silicon carbide joined body, and a silicon nitride joined body in which the members 1 and 2 were made of the same material. Also, an alumina-yttria joined body was produced in which alumina having a thermal expansion coefficient relatively similar to that of yttria was member 1 and yttria was member 2.
In the bonded body, by controlling the printing thickness of the bonding material and the load applied during heat treatment at the distance δ from the corner edge of the side wall surface to the shortest portion on the bonding material meniscus surface and the bonding layer thickness t, t was set to 0.02 to 0.20 mm, and δ / t was set to 0 to 0.5 and 10 to 15. The obtained ceramic joined body having a hollow structure was measured for the amount of He leak by the same method as in Example 1 for evaluation of airtightness. The evaluation results of the leak amount are shown together in Table 4 together with the calculated value of δ / t.

Figure 2007246319
Figure 2007246319

ここで、JISの規定によれば、気密性の合否判定は、Heリーク量が1×10-4atm・cc/sec以上となる接合体は不合格とされている。
したがって、この規定に従い、実施例と比較例のセラミックス接合体について、合否判定を行うと、接合層厚みtと接合材メニスカスの被覆距離δとの比率δ/tが、本発明の範囲内である実施例1および実施例2のセラミックス接合体は、Heリーク量が10-6〜10-10atm・cc/secと十分な気密性を有しており合格であった。
それに対して、δ/tが本発明の範囲外である比較例3および比較例4では、Heリーク量が1×10-4atm・cc/sec以上と大きくなっており、十分な気密性が得られず不合格であった。
Here, according to the regulations of JIS, the determination of whether or not the airtightness is acceptable is that a joined body having a He leak amount of 1 × 10 −4 atm · cc / sec or more is rejected.
Therefore, according to this regulation, when the pass / fail judgment is made for the ceramic joined bodies of the example and the comparative example, the ratio δ / t between the joining layer thickness t and the covering distance δ of the joining material meniscus is within the scope of the present invention. The ceramic joined bodies of Example 1 and Example 2 were satisfactory because the amount of He leak was 10 −6 to 10 −10 atm · cc / sec and sufficient airtightness.
On the other hand, in Comparative Example 3 and Comparative Example 4 in which δ / t is outside the range of the present invention, the He leak amount is as large as 1 × 10 −4 atm · cc / sec, and sufficient airtightness is achieved. It was not obtained and it was unacceptable.

以上説明したように、本発明によれば、セラミックス部材の接合面同士が、該セラミックス部材よりも溶融温度の低いセラミックス接合材からなる接合層を介して接合されてなる中空構造のセラミックス接合体であって、前記接合層は接合面に垂直な方向に0.01〜0.2mmの厚みtを有しており、一方の接合面に隣接する側壁面と他方の接合面に隣接する平面で形成される、中空部に面した角隅部が凹状曲面の接合材メニスカスにより被覆されており、前記側壁面の角縁部から接合材メニスカス面上の最短部までの距離δと、接合層厚みtの比δ/tを0.5以上10以下とすることで気密性に優れた中空構造セラミックス接合体を作製することができた。 As described above, according to the present invention, a ceramic bonded body having a hollow structure in which bonding surfaces of ceramic members are bonded via a bonding layer made of a ceramic bonding material having a melting temperature lower than that of the ceramic member. The bonding layer has a thickness t of 0.01 to 0.2 mm in a direction perpendicular to the bonding surface, and is formed of a side wall surface adjacent to one bonding surface and a plane adjacent to the other bonding surface. The corner portion facing the hollow portion is covered with a concave curved bonding material meniscus, the distance δ from the corner edge of the side wall surface to the shortest portion on the bonding material meniscus surface, and the bonding layer thickness t By setting the ratio δ / t between 0.5 and 10 inclusive, it was possible to produce a hollow structure ceramic joined body excellent in airtightness.

(a)本発明の一実施例を示すセラミックス接合体1の斜視図。(b)A−A線断面図。(A) The perspective view of the ceramic joined body 1 which shows one Example of this invention. (B) AA sectional view. X部の拡大図である。It is an enlarged view of the X section. (a)本発明の他の実施例を示すセラミックス接合体2の斜視図。(b)B−B線断面図。(A) The perspective view of the ceramic joined body 2 which shows the other Example of this invention. (B) BB sectional drawing.

符号の説明Explanation of symbols

1,2:セラミックス接合体
11,21,22:基板
12:リブを付与した部材
23:リブ
13,24:接合材
11a,12a:接合面
11b:平面部
12b:側壁面
12c:角縁部
13a:接合層
13b:接合材メニスカス面
13c:角縁部との最短部
1, 2: Ceramic bonded bodies 11, 21, 22: Substrate 12: Ribbed member 23: Ribs 13, 24: Bonding material 11a, 12a: Bonding surface 11b: Flat surface portion 12b: Side wall surface 12c: Square edge portion 13a : Bonding layer 13b: bonding material meniscus surface 13c: shortest portion with corner edge

Claims (1)

セラミックス部材の接合面同士が、該セラミックス部材よりも溶融温度の低いセラミックス接合材からなる接合層を介して接合されてなる中空構造を有するセラミックス接合体であって、前記接合層は接合面に垂直な方向に0.01〜0.2mmの厚みtを有しており、かつ、一方の接合面に隣接する側壁面と他方の接合面に隣接する平面で形成される、中空部に面した角隅部が凹状曲面の接合材メニスカスにより被覆されており、かつ、前記側壁面の角縁部から接合材メニスカス面上の最短部までの距離δと、接合層厚みtとの比δ/tが0.5以上10以下であることを特徴とする中空構造を有するセラミックス接合体。 A ceramic bonded body having a hollow structure in which bonding surfaces of ceramic members are bonded via a bonding layer made of a ceramic bonding material having a melting temperature lower than that of the ceramic member, the bonding layer being perpendicular to the bonding surface The angle facing the hollow portion is formed by a side wall surface adjacent to one joint surface and a plane adjacent to the other joint surface, having a thickness t of 0.01 to 0.2 mm in any direction. The corner δ is covered with a concave curved bonding material meniscus, and the ratio δ / t between the distance δ from the corner edge of the side wall surface to the shortest portion on the bonding material meniscus surface and the bonding layer thickness t is A ceramic joined body having a hollow structure, which is 0.5 to 10 inclusive.
JP2006070442A 2006-03-15 2006-03-15 Ceramic bonded body having hollow structure Active JP4870454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006070442A JP4870454B2 (en) 2006-03-15 2006-03-15 Ceramic bonded body having hollow structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070442A JP4870454B2 (en) 2006-03-15 2006-03-15 Ceramic bonded body having hollow structure

Publications (2)

Publication Number Publication Date
JP2007246319A true JP2007246319A (en) 2007-09-27
JP4870454B2 JP4870454B2 (en) 2012-02-08

Family

ID=38591002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070442A Active JP4870454B2 (en) 2006-03-15 2006-03-15 Ceramic bonded body having hollow structure

Country Status (1)

Country Link
JP (1) JP4870454B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246321A (en) * 2006-03-15 2007-09-27 Taiheiyo Cement Corp Low thermal expansion ceramic joined body having hollow structure
US20100055498A1 (en) * 2008-09-01 2010-03-04 COMMISSARIAT A L'ENERGIE ATOMIQUE and INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE Process for the Moderately Refractory Assembling of Articles Made of SiC-Based Materials by Non-Reactive Brazing in an Oxidizing Atmosphere, Brazing Compositions, and Joint and Assembly Obtained by this Process
WO2012043441A1 (en) * 2010-09-29 2012-04-05 住友大阪セメント株式会社 Ceramic member
US20130266363A1 (en) * 2012-04-05 2013-10-10 General Atomics High durability joints between ceramic articles, and methods of making and using same
WO2014133068A1 (en) * 2013-02-27 2014-09-04 京セラ株式会社 Ceramic bonded body and channel body
JP5729517B1 (en) * 2014-03-28 2015-06-03 Toto株式会社 Reaction sintered silicon carbide member
WO2016031973A1 (en) * 2014-08-28 2016-03-03 京セラ株式会社 Ceramic bonded body and heat exchanger provided with same
JP2016150500A (en) * 2015-02-17 2016-08-22 日本特殊陶業株式会社 Ceramic member with tunnel and method for manufacturing the same
JP2016155734A (en) * 2015-02-26 2016-09-01 京セラ株式会社 Ceramic joint body, ceramic flow channel body and heat exchanger including the ceramic flow channel body
JP2020083711A (en) * 2018-11-27 2020-06-04 京セラ株式会社 Ceramic joined body and manufacturing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167285A (en) * 2000-11-30 2002-06-11 Ngk Spark Plug Co Ltd Metal-ceramic joint body and vacuum switch unit using it
JP2003212670A (en) * 2002-01-25 2003-07-30 Ngk Insulators Ltd Joined product of different kinds of materials and its manufacturing process
JP2004179353A (en) * 2002-11-27 2004-06-24 Taiheiyo Cement Corp Stage member
JP2007246321A (en) * 2006-03-15 2007-09-27 Taiheiyo Cement Corp Low thermal expansion ceramic joined body having hollow structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167285A (en) * 2000-11-30 2002-06-11 Ngk Spark Plug Co Ltd Metal-ceramic joint body and vacuum switch unit using it
JP2003212670A (en) * 2002-01-25 2003-07-30 Ngk Insulators Ltd Joined product of different kinds of materials and its manufacturing process
JP2004179353A (en) * 2002-11-27 2004-06-24 Taiheiyo Cement Corp Stage member
JP2007246321A (en) * 2006-03-15 2007-09-27 Taiheiyo Cement Corp Low thermal expansion ceramic joined body having hollow structure

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246321A (en) * 2006-03-15 2007-09-27 Taiheiyo Cement Corp Low thermal expansion ceramic joined body having hollow structure
US20100055498A1 (en) * 2008-09-01 2010-03-04 COMMISSARIAT A L'ENERGIE ATOMIQUE and INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE Process for the Moderately Refractory Assembling of Articles Made of SiC-Based Materials by Non-Reactive Brazing in an Oxidizing Atmosphere, Brazing Compositions, and Joint and Assembly Obtained by this Process
JP2010059048A (en) * 2008-09-01 2010-03-18 Commiss Energ Atom Method for assembling moderately refractory article made of sic-based material by non-reactive brazing of brazing composition in oxidizing atmosphere, and refractory joint and assembly obtained by the method
US10093582B2 (en) 2008-09-01 2018-10-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Process for the moderately refractory assembling of articles made of SiC-based materials by non-reactive brazing in an oxidizing atmosphere, brazing compositions, and joint and assembly obtained by this process
WO2012043441A1 (en) * 2010-09-29 2012-04-05 住友大阪セメント株式会社 Ceramic member
JP2012072025A (en) * 2010-09-29 2012-04-12 Sumitomo Osaka Cement Co Ltd Ceramic member
US9776380B2 (en) 2010-09-29 2017-10-03 Sumitomo Osaka Cement Co., Ltd. Ceramic member
US20130266363A1 (en) * 2012-04-05 2013-10-10 General Atomics High durability joints between ceramic articles, and methods of making and using same
JP2013216566A (en) * 2012-04-05 2013-10-24 General Atomics High durability joint between ceramic article, and method of making and using the same
US9132619B2 (en) 2012-04-05 2015-09-15 General Atomics High durability joints between ceramic articles, and methods of making and using same
JP6001761B2 (en) * 2013-02-27 2016-10-05 京セラ株式会社 Ceramic joined body and flow path body
WO2014133068A1 (en) * 2013-02-27 2014-09-04 京セラ株式会社 Ceramic bonded body and channel body
JP2015193534A (en) * 2014-03-28 2015-11-05 Toto株式会社 reaction sintered silicon carbide member
EP2924506A3 (en) * 2014-03-28 2015-10-28 Toto Ltd. Reaction sintered silicon carbide member
JP5729517B1 (en) * 2014-03-28 2015-06-03 Toto株式会社 Reaction sintered silicon carbide member
WO2016031973A1 (en) * 2014-08-28 2016-03-03 京セラ株式会社 Ceramic bonded body and heat exchanger provided with same
JPWO2016031973A1 (en) * 2014-08-28 2017-06-01 京セラ株式会社 Ceramic joined body and heat exchanger provided with the same
JP2016150500A (en) * 2015-02-17 2016-08-22 日本特殊陶業株式会社 Ceramic member with tunnel and method for manufacturing the same
JP2016155734A (en) * 2015-02-26 2016-09-01 京セラ株式会社 Ceramic joint body, ceramic flow channel body and heat exchanger including the ceramic flow channel body
JP2020083711A (en) * 2018-11-27 2020-06-04 京セラ株式会社 Ceramic joined body and manufacturing method therefor
JP7061555B2 (en) 2018-11-27 2022-04-28 京セラ株式会社 Ceramic joint and its manufacturing method

Also Published As

Publication number Publication date
JP4870454B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP4870454B2 (en) Ceramic bonded body having hollow structure
KR101960264B1 (en) Residual stress free joined SiC ceramics and the processing method of the same
JP5459969B2 (en) Chemical vapor deposition silicon carbide articles
JPWO2002083596A1 (en) Ceramic bonded body, substrate holding structure and substrate processing apparatus
JP2008211098A (en) Vacuum suction apparatus, manufacturing method thereof and method of sucking object to be sucked
KR101534460B1 (en) Handle substrate for composite substrate for semiconductor
JP4870455B2 (en) Low thermal expansion ceramic joined body having hollow structure
JP2003128473A (en) Ceramic bonded body and its manufacturing method
JP6231721B2 (en) Porous ceramic structure
JP5016303B2 (en) Electrostatic chuck and electrostatic chuck device
JP6512401B2 (en) Reaction sintered silicon carbide member
JP5486345B2 (en) Manufacturing method of ceramic sintered body
JP7251001B2 (en) Ceramic sintered bodies and substrates for semiconductor devices
JP4612707B2 (en) Electrostatic chuck, electrostatic chuck device, and manufacturing method of electrostatic chuck
JP5085959B2 (en) Ceramic material
JP2005239453A (en) Ceramic structure
JP2008184352A (en) Ceramic connector and its manufacturing method
JP7247409B1 (en) High temperature susceptor with low thermal conductivity shaft
WO2021206148A1 (en) Ceramic, probe-guiding part, probe card and socket for inspecting package
JP6444078B2 (en) Electrode embedded body
JP2008174443A (en) Ceramic bonded body and method of manufacturing the same
JP2006066733A (en) Ceramic structure, and member for positioning device and member for manufacturing semiconductor/liquid crystal using ceramic structure
JP2007246325A (en) Ceramic joined body
JP2005234338A (en) Mirror for position measurement
JP2003335583A (en) Joined body of alumina sintered bodies and their joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111117

R150 Certificate of patent or registration of utility model

Ref document number: 4870454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250