JP2007246010A - Controller for hybrid electric car - Google Patents

Controller for hybrid electric car Download PDF

Info

Publication number
JP2007246010A
JP2007246010A JP2006074670A JP2006074670A JP2007246010A JP 2007246010 A JP2007246010 A JP 2007246010A JP 2006074670 A JP2006074670 A JP 2006074670A JP 2006074670 A JP2006074670 A JP 2006074670A JP 2007246010 A JP2007246010 A JP 2007246010A
Authority
JP
Japan
Prior art keywords
vehicle
engine
output system
motor
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006074670A
Other languages
Japanese (ja)
Inventor
Makoto Ogata
誠 緒方
Tatsuo Kiuchi
達雄 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2006074670A priority Critical patent/JP2007246010A/en
Priority to DE102007011410A priority patent/DE102007011410A1/en
Priority to CN2007100056685A priority patent/CN101038030B/en
Priority to US11/717,643 priority patent/US8010264B2/en
Publication of JP2007246010A publication Critical patent/JP2007246010A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the controller of a hybrid electric car for maintaining satisfactory driving performance of a vehicle by transmitting proper driving force or braking force to a driving wheel, even when a failure occurs in a motor output system. <P>SOLUTION: This controller of a hybrid electric car is provided with an engine output system for making an engine 2 generate and output driving force and a motor output system for making a motor 6 generate and output driving force, and the driving force output by each system can be transmitted to a driving wheel 16. A speed change map, to be used when the failure of the motor output system is detected among speed change maps for controlling an automatic transmission 8 for transmitting the driving force of the engine 2 to be output from the engine output system to the driving wheel 16, is configured so that downshift can be performed relatively early, and upshift can be performed later, according to the change in the driving conditions of a vehicle, in comparison with the speed change map to be used, when failure of the motor output system is not detected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はハイブリッド電気自動車の制御装置に関し、特にエンジンの駆動力と電動機の駆動力とがそれぞれ車両の駆動輪に伝達可能なハイブリッド電気自動車の制御装置に関する。   The present invention relates to a control device for a hybrid electric vehicle, and more particularly to a control device for a hybrid electric vehicle capable of transmitting an engine driving force and an electric motor driving force to driving wheels of a vehicle.

従来より、エンジンと電動機とを車両に搭載し、エンジンに駆動力を発生させて出力するエンジン出力システムと、電動機に駆動力を発生させて出力する電動機出力システムとを備え、両システムから出力される駆動力を車両の駆動輪に伝達可能とした、いわゆるパラレル型ハイブリッド電気自動車が開発され実用化されている。
このようなパラレル型ハイブリッド電気自動車として、エンジンと自動変速機とを機械的に断接するクラッチを設け、このクラッチの出力軸と自動変速機の入力軸との間に電動機の回転軸を連結したものが、例えば特許文献1によって提案されている。
Conventionally, an engine and an electric motor are mounted on a vehicle, and an engine output system that generates and outputs driving force to the engine and an electric motor output system that generates and outputs driving force to the motor are output from both systems. A so-called parallel type hybrid electric vehicle has been developed and put into practical use, which can transmit the driving force to be transmitted to the driving wheels of the vehicle.
As such a parallel type hybrid electric vehicle, a clutch for mechanically connecting and disconnecting an engine and an automatic transmission is provided, and a rotating shaft of an electric motor is connected between an output shaft of the clutch and an input shaft of the automatic transmission. For example, Patent Document 1 proposes.

特許文献1に示されるようなハイブリッド電気自動車においては、車両発進時にはクラッチを切断してバッテリからの電力供給により電動機をモータ作動させ、電動機の駆動力のみで車両を発進させる一方、発進後の車両走行時にはクラッチを接続してエンジンの駆動力と電動機の駆動力とが変速機を介して駆動輪に伝達可能となる。
このようにしてエンジンの駆動力及び電動機の駆動力を併用して車両を走行させることが可能なときには、車両の走行に必要なトルクをエンジンと電動機とに適切に配分し、配分されたトルクに応じて出力されるエンジンの駆動力とモータ作動する電動機の駆動力とを変速機を介して駆動輪に伝達することにより車両の走行を行う。また、このとき車両の走行状態に応じて適宜自動変速機の変速段及びクラッチの断接状態が制御される。
In a hybrid electric vehicle as disclosed in Patent Document 1, the clutch is disengaged when starting the vehicle, the motor is operated by supplying power from the battery, and the vehicle is started only by the driving force of the motor. During traveling, the clutch is connected so that the driving force of the engine and the driving force of the electric motor can be transmitted to the driving wheels via the transmission.
When it is possible to drive the vehicle using both the driving force of the engine and the driving force of the electric motor in this way, the torque necessary for driving the vehicle is appropriately distributed between the engine and the electric motor, and the distributed torque is obtained. The vehicle travels by transmitting the driving force of the engine and the driving force of the motor operated by the motor to the driving wheels via the transmission. At this time, the gear position of the automatic transmission and the clutch engagement / disengagement state are appropriately controlled according to the running state of the vehicle.

また、車両減速時には電動機を発電機作動させて回生制動力を発生させることにより車両の減速に必要な制動力を得ると共に、制動エネルギを電力に変換してバッテリを充電することによりエネルギ回収を行うようにしている。
特開平5−176405号公報
In addition, when the vehicle decelerates, the electric motor is operated to generate a regenerative braking force to obtain a braking force necessary to decelerate the vehicle, and energy is recovered by converting the braking energy into electric power and charging the battery. I am doing so.
JP-A-5-176405

このようなハイブリッド電気自動車において、電動機出力システムを構成する電動機やインバータ或いはバッテリなどに故障が発生した場合には、バッテリから電動機への電力供給を遮断し、エンジン出力システムが出力するエンジンの駆動力のみで車両の走行を行うことが考えられる。
しかしながら、この場合には電動機出力システムから出力される電動機の駆動力を利用することができないため、駆動輪に伝達される駆動力が不足して、良好な車両の走行性能を確保することができないという問題がある。
In such a hybrid electric vehicle, when a failure occurs in an electric motor, an inverter, or a battery constituting the electric motor output system, power supply from the battery to the electric motor is cut off, and the engine driving force output by the engine output system It is conceivable that the vehicle travels only with this.
However, in this case, since the driving force of the electric motor output from the electric motor output system cannot be used, the driving force transmitted to the driving wheels is insufficient, and good vehicle running performance cannot be ensured. There is a problem.

また、車両の減速時においても、電動機出力システムによる回生制動力を利用することができないため、駆動輪に伝達される制動力が不足して、適正に車両を減速することができないという問題がある。
本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、電動機出力システムに故障が発生した場合にも適正な駆動力や制動力が駆動輪に伝達されるようにして良好な車両の運転性能を維持することができるハイブリッド電気自動車の制御装置を提供することにある。
Further, since the regenerative braking force by the motor output system cannot be used even when the vehicle is decelerated, there is a problem that the braking force transmitted to the drive wheels is insufficient and the vehicle cannot be decelerated properly. .
The present invention has been made in view of such problems, and an object of the present invention is to ensure that proper driving force and braking force are transmitted to the drive wheels even when a failure occurs in the motor output system. Another object of the present invention is to provide a control apparatus for a hybrid electric vehicle capable of maintaining good vehicle driving performance.

上記目的を達成するため、本発明のハイブリッド電気自動車の制御装置は、エンジンに駆動力を発生させて上記エンジンの駆動力を出力するエンジン出力システムと、電動機に駆動力を発生させて上記電動機の駆動力を出力する電動機出力システムとを備え、それぞれのシステムから出力された駆動力が車両の駆動輪に伝達可能なハイブリッド電気自動車の制御装置において、複数の前進変速段を有し、上記エンジン出力システムから出力される上記エンジンの駆動力を上記駆動輪に伝達する自動変速機と、上記電動機出力システムの故障を検出する故障検出手段と、所定の変速マップに基づき上記車両の運転状態の変化に応じて上記自動変速機の変速段を切換制御し、上記故障検出手段によって上記電動機出力システムの故障が検出されたときには、上記故障検出手段によって上記電動機出力システムの故障が検出されないときに使用する変速マップと比較して、上記車両の運転状態の変化に応じたダウンシフトが早めに行われると共に、上記車両の運転状態の変化に応じたアップシフトが遅めに行われる変速マップを用いて上記自動変速機を制御する制御手段とを備えたことを特徴とする(請求項1)。   In order to achieve the above object, a control apparatus for a hybrid electric vehicle according to the present invention includes an engine output system that generates a driving force in an engine and outputs the driving force of the engine, and a motor driving force that generates the driving force of the motor. And a motor output system that outputs a driving force, wherein the driving force output from each system can be transmitted to driving wheels of the vehicle. An automatic transmission that transmits the driving force of the engine output from the system to the drive wheels, a failure detection means that detects a failure of the motor output system, and a change in the driving state of the vehicle based on a predetermined shift map. Accordingly, the shift stage of the automatic transmission is controlled to be switched, and a failure of the motor output system is detected by the failure detection means. In this case, a downshift corresponding to a change in the driving state of the vehicle is performed earlier than the shift map used when no failure of the motor output system is detected by the failure detection means, and the vehicle And a control means for controlling the automatic transmission using a shift map in which an upshift according to a change in the driving state is performed late.

このように構成されたハイブリッド電気自動車の制御装置によれば、電動機出力システムが正常な場合には、エンジン出力システムから出力されるエンジンの駆動力と電動機出力システムから出力される電動機の駆動力とが駆動輪に伝達可能となって車両の走行が行われると共に、車両の運転状態の変化に応じて適宜自動変速機のシフトアップやシフトダウンが行われる。   According to the hybrid electric vehicle control device configured as described above, when the motor output system is normal, the engine driving force output from the engine output system and the motor driving force output from the motor output system are Can be transmitted to the drive wheels and the vehicle travels, and the automatic transmission is appropriately shifted up and down in accordance with changes in the driving state of the vehicle.

一方、電動機出力システムに故障が検出された場合には、電動機出力システムに故障が検出されないときに比べ、車両の運転状態の変化に応じた自動変速機のダウンシフトが早めに行われると共に、アップシフトが遅めに行われ、エンジン出力システムから出力されるエンジンの駆動力が自動変速機を介して駆動輪に伝達される。   On the other hand, when a failure is detected in the motor output system, the automatic transmission is downshifted earlier in response to a change in the driving state of the vehicle, compared to when no failure is detected in the motor output system. The shift is performed late, and the driving force of the engine output from the engine output system is transmitted to the drive wheels via the automatic transmission.

また、上記ハイブリッド電気自動車の制御装置において、上記エンジン出力システムから上記自動変速機に伝達される駆動力を遮断可能なクラッチと、上記電動機の回転数を検出する回転数検出手段とを更に備え、上記制御手段は、上記車両の減速時に上記故障検出手段によって上記故障が検出されない場合には、上記回転数検出手段によって検出された回転数に応じ、上記電動機が発生可能な回生制動トルクとして上限減速トルクを設定すると共に上記車両の減速に必要な減速トルクとして要求減速トルクを設定し、上記要求減速トルクが上記上限減速トルク以下であるときには、上記クラッチを切断して上記要求減速トルクを発生するように上記電動機出力システムを制御する一方、上記要求減速トルクが上記上限減速トルクより大きいときには、上記クラッチを接続して上記エンジンからの減速トルクと上記電動機からの回生制動トルクとの合計が上記要求減速トルクとなるように上記エンジン出力システム及び上記電動機出力システムを制御し、上記車両の減速時に上記故障検出手段によって上記故障が検出された場合には、少なくとも上記エンジンの回転数がアイドル回転数近傍に低下するまでは上記クラッチを常時接続することを特徴とする(請求項2)。   The hybrid electric vehicle control apparatus further includes a clutch capable of interrupting a driving force transmitted from the engine output system to the automatic transmission, and a rotation speed detection means for detecting the rotation speed of the electric motor. If the failure is not detected by the failure detection means during deceleration of the vehicle, the control means sets an upper limit deceleration as a regenerative braking torque that can be generated by the electric motor according to the rotation speed detected by the rotation speed detection means. In addition to setting a torque, a required deceleration torque is set as a deceleration torque necessary for the deceleration of the vehicle. When the required deceleration torque is equal to or less than the upper limit deceleration torque, the clutch is disconnected to generate the required deceleration torque. The required output torque is greater than the upper limit deceleration torque. In this case, the engine output system and the motor output system are controlled by connecting the clutch so that the sum of the deceleration torque from the engine and the regenerative braking torque from the electric motor becomes the required deceleration torque, If the failure is detected by the failure detection means during deceleration of the vehicle, the clutch is always connected at least until the engine speed decreases to near the idle speed. ).

このように構成されたハイブリッド電気自動車の制御装置によれば、電動機出力システムが正常な場合には、車両の減速の際に電動機の回転数に応じて電動機が発生可能な回生制動トルクとして上限減速トルクを設定すると共に車両の減速に必要な減速トルクとして要求減速トルクを設定し、要求減速トルクが上限減速トルク以下であれば、クラッチを切断して電動機出力システムのみにより要求減速トルクが伝達される一方、要求減速トルクが上限減速トルクより大きいときには、クラッチを接続してエンジンからの減速トルクと上記電動機からの回生制動トルクとの合計が上記要求減速トルクとなるように上記エンジン出力システム及び上記電動機出力システムが制御される。   According to the control apparatus for a hybrid electric vehicle configured as described above, when the motor output system is normal, the upper limit deceleration as the regenerative braking torque that can be generated by the motor according to the rotation speed of the motor when the vehicle decelerates. Set the torque and set the required deceleration torque as the deceleration torque required for vehicle deceleration. If the required deceleration torque is below the upper limit deceleration torque, the clutch is disconnected and the required deceleration torque is transmitted only by the motor output system. On the other hand, when the requested deceleration torque is larger than the upper limit deceleration torque, the engine output system and the electric motor are connected so that the sum of the deceleration torque from the engine and the regenerative braking torque from the electric motor becomes the requested deceleration torque when the clutch is connected. The output system is controlled.

一方、電動機出力システムに故障が検出された場合には、車両の減速の際に少なくともエンジンの回転数がアイドル回転数近傍に低下するまではクラッチが常時接続される。   On the other hand, when a failure is detected in the motor output system, the clutch is always connected at least until the engine speed decreases to near the idle speed when the vehicle is decelerated.

本発明のハイブリッド電気自動車の制御装置によれば、電動機出力システムに故障が検出された場合には、電動機出力システムに故障が検出されないときに比べ、車両の運転状態の変化に応じた自動変速機のダウンシフトが早めに行われると共に、アップシフトが遅めに行われるようにしたので、電動機出力システムの故障によって電動機の駆動力が得られない状態であっても、車両の駆動に必要な駆動力を確保することが可能となり、良好な走行性能を維持して駆動力不足による運転フィーリングの低下を防止することができる。   According to the control apparatus for a hybrid electric vehicle of the present invention, when a failure is detected in the motor output system, the automatic transmission according to a change in the driving state of the vehicle is compared with a case where no failure is detected in the motor output system. Because the downshift of the motor is performed early and the upshift is performed late, the drive required for driving the vehicle is possible even when the motor drive power cannot be obtained due to the failure of the motor output system. It is possible to ensure the power, maintain good running performance, and prevent the driving feeling from being lowered due to insufficient driving force.

また、車両の減速時においても、電動機出力システムに故障が検出された場合には、車両の運転状態の変化に応じて自動変速機のダウンシフトが早めに行われるので、電動機出力システムから制動力を得ることができなくても、早めにダウンシフトされた変速段を介して得られるエンジン出力システムの制動力により、車両を適正に減速させることができる。   In addition, even when the vehicle is decelerating, if a failure is detected in the motor output system, the automatic transmission is downshifted early according to changes in the vehicle operating state. Even if it is not possible to obtain the vehicle, the vehicle can be appropriately decelerated by the braking force of the engine output system obtained through the shift stage shifted down early.

更に、電動機出力システムに故障が検出されないときには、エンジン出力システムから出力されるエンジンの駆動力に電動機出力システムから出力される電動機の駆動力を併用することができるため、電動機を搭載せずにエンジンのみを駆動源とする車両の自動変速機と比較して早めにシフトアップを行うことが可能となる。この結果、エンジン出力システムと電動機出力システムとを併用して車両の駆動を行った場合には、車両の駆動に必要な駆動力を得ながらエンジンの燃費を向上させることができる。   Further, when no failure is detected in the motor output system, the engine driving force output from the engine output system can be used in combination with the engine driving force output from the engine output system. It is possible to shift up early compared to an automatic transmission of a vehicle that uses only the drive source. As a result, when the vehicle is driven using both the engine output system and the motor output system, the fuel efficiency of the engine can be improved while obtaining the driving force necessary for driving the vehicle.

また、請求項2のハイブリッド電気自動車の制御装置によれば、電動機出力システムに故障が検出された場合には、車両の減速の際に少なくともエンジンの回転数がアイドル回転数近傍に低下するまではクラッチが常時接続されるので、エンジン出力システムからの制動力を継続して駆動輪に伝達することができ、車両を適正に減速させることができる。   According to the control apparatus for a hybrid electric vehicle of claim 2, when a failure is detected in the motor output system, at least until the engine speed decreases to near the idle speed when the vehicle decelerates. Since the clutch is always connected, the braking force from the engine output system can be continuously transmitted to the drive wheels, and the vehicle can be decelerated appropriately.

図1は本発明の一実施形態であるハイブリッド電気自動車1の制御装置の要部構成図である。ディーゼルエンジン(以下エンジンという)2の出力軸にはクラッチ4の入力軸が連結されており、クラッチ4の出力軸は永久磁石式同期電動機(以下電動機という)6の回転軸を介して前進変速段(以下では単に変速段という)が5段の自動変速機(以下変速機という)8の入力軸が連結されている。また、変速機8の出力軸はプロペラシャフト10、差動装置12及び駆動軸14を介して左右の駆動輪16に接続されている。   FIG. 1 is a block diagram of a main part of a control device for a hybrid electric vehicle 1 according to an embodiment of the present invention. An input shaft of a clutch 4 is connected to an output shaft of a diesel engine (hereinafter referred to as an engine) 2, and the output shaft of the clutch 4 is moved forward via a rotating shaft of a permanent magnet type synchronous motor (hereinafter referred to as an electric motor) 6. An input shaft of an automatic transmission (hereinafter referred to as “transmission”) 8 having five speeds (hereinafter simply referred to as “shift speed”) is connected. The output shaft of the transmission 8 is connected to the left and right drive wheels 16 via a propeller shaft 10, a differential device 12 and a drive shaft 14.

従って、クラッチ4が接続されているときには、エンジン2の出力軸と電動機6の回転軸の両方が、変速機8を介して駆動輪16と機械的に接続可能となり、クラッチ4が切断されているときには電動機6の回転軸のみが変速機8を介して駆動輪16と機械的に接続可能となる。
電動機6は、バッテリ18に蓄えられた直流電力がインバータ20によって交流電力に変換されて供給されることによりモータとして作動し、その駆動トルクが変速機8によって適切な速度に変速された後に駆動輪16に伝達されるようになっている。また、車両減速時には、電動機6が発電機として作動し、駆動輪16の回転による運動エネルギが変速機8を介し電動機6に伝達されて交流電力に変換されることにより回生制動トルクを発生する。そして、この交流電力はインバータ20によって直流電力に変換された後、バッテリ18に充電され、駆動輪16の回転による運動エネルギが電気エネルギとして回収される。
Therefore, when the clutch 4 is connected, both the output shaft of the engine 2 and the rotating shaft of the electric motor 6 can be mechanically connected to the drive wheels 16 via the transmission 8, and the clutch 4 is disconnected. Sometimes only the rotating shaft of the electric motor 6 can be mechanically connected to the drive wheels 16 via the transmission 8.
The electric motor 6 operates as a motor when the DC power stored in the battery 18 is converted into AC power by the inverter 20 and supplied thereto, and after the driving torque is shifted to an appropriate speed by the transmission 8, the driving wheel is driven. 16 is transmitted. Further, when the vehicle is decelerated, the electric motor 6 operates as a generator, and kinetic energy generated by the rotation of the drive wheels 16 is transmitted to the electric motor 6 through the transmission 8 and converted into AC power, thereby generating regenerative braking torque. Then, the AC power is converted into DC power by the inverter 20, and then charged in the battery 18. The kinetic energy generated by the rotation of the drive wheels 16 is recovered as electric energy.

一方、エンジン2の駆動トルクは、クラッチ4が接続されているときに電動機6の回転軸を経由して変速機8に伝達され、適切な速度に変速された後に駆動輪16に伝達されるようになっている。従って、エンジン2の駆動トルクが駆動輪16に伝達されているときに電動機6がモータとして作動する場合には、エンジン2の駆動トルクと電動機6の駆動トルクとがそれぞれ変速機8を介して駆動輪16に伝達されることになる。即ち、車両の駆動のために駆動輪16に伝達されるべき駆動トルクの一部がエンジン2から供給されると共に、残部が電動機6から供給される。   On the other hand, the drive torque of the engine 2 is transmitted to the transmission 8 via the rotating shaft of the electric motor 6 when the clutch 4 is connected, and is transmitted to the drive wheels 16 after being shifted to an appropriate speed. It has become. Therefore, when the electric motor 6 operates as a motor when the driving torque of the engine 2 is transmitted to the driving wheels 16, the driving torque of the engine 2 and the driving torque of the electric motor 6 are respectively driven via the transmission 8. It will be transmitted to the wheel 16. That is, a part of the drive torque to be transmitted to the drive wheels 16 for driving the vehicle is supplied from the engine 2 and the remaining part is supplied from the electric motor 6.

また、バッテリ18の充電率(以下SOCという)が低下してバッテリ18を充電する必要があるときには、電動機6が発電機として作動すると共に、エンジン2の駆動力の一部を用いて電動機6を駆動することにより発電が行われ、発電された交流電力をインバータ20によって直流電力に変換した後にバッテリ18に充電するようにしている。
車両ECU22(制御手段)は、車両やエンジン2の運転状態、及びエンジンECU24、インバータECU26並びにバッテリECU28からの情報などに応じて、クラッチ4の接続・切断制御及び変速機8の変速段切換制御を行うと共に、これらの制御状態や車両の発進、加速、減速など様々な運転状態に合わせてエンジン2や電動機6を適切に運転するための統合制御を行う。
When the charging rate (hereinafter referred to as SOC) of the battery 18 decreases and the battery 18 needs to be charged, the electric motor 6 operates as a generator, and the electric motor 6 is turned on using a part of the driving force of the engine 2. Power generation is performed by driving, and the generated AC power is converted into DC power by the inverter 20 and then the battery 18 is charged.
The vehicle ECU 22 (control means) performs connection / disconnection control of the clutch 4 and gear stage switching control of the transmission 8 in accordance with the operation state of the vehicle and the engine 2 and information from the engine ECU 24, the inverter ECU 26, and the battery ECU 28. At the same time, integrated control for appropriately driving the engine 2 and the electric motor 6 is performed in accordance with these control states and various driving states such as start, acceleration, and deceleration of the vehicle.

そして車両ECU22は、このような制御を行う際に、アクセルペダル30の踏込量を検出するアクセル開度センサ32や、車両の走行速度を検出する車速センサ34及び電動機6の回転数を検出する回転数センサ(回転数検出手段)36の検出結果に基づき、車両の走行に必要な総駆動トルク並びに車両の減速時に必要な総減速トルクを演算し、これら総駆動トルク及び総減速トルクから、エンジン2が発生するトルク及び電動機6が発生するトルクを設定している。   When the vehicle ECU 22 performs such control, the accelerator opening sensor 32 that detects the depression amount of the accelerator pedal 30, the vehicle speed sensor 34 that detects the traveling speed of the vehicle, and the rotation that detects the rotation speed of the electric motor 6. Based on the detection result of the number sensor (rotational speed detection means) 36, the total driving torque required for traveling of the vehicle and the total deceleration torque required for deceleration of the vehicle are calculated, and the engine 2 is calculated from these total driving torque and total deceleration torque. And the torque generated by the electric motor 6 are set.

エンジンECU24は、エンジン2の始動・停止制御やアイドル制御、或いは排ガス浄化装置(図示せず)の再生制御など、エンジン2自体の運転に必要な各種制御を行うと共に、車両ECU22によって設定されたエンジン2に必要とされるトルクをエンジン2が発生するよう、エンジン2の燃料の噴射量や噴射時期などを制御する。
一方、インバータECU26は、車両ECU22によって設定された電動機6が発生すべきトルクに基づきインバータ20を制御することにより、電動機6をモータ作動または発電機作動させて運転制御する。また、電動機6やインバータ20の温度を検出する温度センサ(図示せず)からの出力信号を受けて、電動機6の温度を車両ECU22に送るほか、電動機6やインバータ20の作動状態を監視して、その情報を車両ECU22に送っている。
The engine ECU 24 performs various controls necessary for the operation of the engine 2 such as start / stop control of the engine 2, idle control, or regeneration control of an exhaust gas purification device (not shown), and the engine set by the vehicle ECU 22 The fuel injection amount and injection timing of the engine 2 are controlled so that the engine 2 generates the torque required for the engine 2.
On the other hand, the inverter ECU 26 controls the operation of the motor 6 by operating the motor 6 or the generator by controlling the inverter 20 based on the torque that should be generated by the motor 6 set by the vehicle ECU 22. In addition to receiving an output signal from a temperature sensor (not shown) that detects the temperature of the electric motor 6 and the inverter 20, the temperature of the electric motor 6 is sent to the vehicle ECU 22, and the operating state of the electric motor 6 and the inverter 20 is monitored. The information is sent to the vehicle ECU 22.

バッテリECU28は、バッテリ18の温度や、バッテリ18の電圧、インバータ20とバッテリ18との間に流れる電流などを検出すると共に、これらの検出結果からバッテリ18のSOCを求めると共に、バッテリ18の作動状態を監視している。そして、求めたSOCやバッテリ18の作動状態を上記検出結果と共に車両ECU22に送っている。
ハイブリッド電気自動車1は以上のように構成されており、エンジン2及びエンジンECU24がエンジン出力システムを構成し、電動機6、バッテリ18、インバータ20、インバータECU26、及びバッテリECU28が電動機出力システムを構成している。
The battery ECU 28 detects the temperature of the battery 18, the voltage of the battery 18, the current flowing between the inverter 20 and the battery 18, obtains the SOC of the battery 18 from these detection results, and operates the battery 18. Is monitoring. Then, the obtained SOC and the operating state of the battery 18 are sent to the vehicle ECU 22 together with the detection result.
The hybrid electric vehicle 1 is configured as described above. The engine 2 and the engine ECU 24 constitute an engine output system, and the electric motor 6, the battery 18, the inverter 20, the inverter ECU 26, and the battery ECU 28 constitute an electric motor output system. Yes.

このように構成されたハイブリッド電気自動車1において、車両を走行させるために車両ECU22を中心として行われる制御の概要は以下の通りである。
まず、車両が停車状態にあってエンジン2が停止しており、チェンジレバー(図示せず)がニュートラル位置にあるときに運転者がスタータスイッチ(図示せず)によってエンジン2を始動する操作を行うと、車両ECU22は変速機8がニュートラル位置となって電動機6と駆動輪16との機械的な接続が遮断されていると共にクラッチ4が接続されていることを確認した後、インバータECU26に対してエンジン2の始動に必要な電動機6の駆動トルクを指示すると共に、エンジンECU24にエンジン2を運転するよう指示する。
In the hybrid electric vehicle 1 configured as described above, an outline of control performed mainly by the vehicle ECU 22 in order to drive the vehicle is as follows.
First, when the vehicle is stopped and the engine 2 is stopped, and the change lever (not shown) is in the neutral position, the driver performs an operation of starting the engine 2 with a starter switch (not shown). The vehicle ECU 22 confirms that the transmission 8 is in the neutral position and that the mechanical connection between the electric motor 6 and the drive wheel 16 is cut off and the clutch 4 is connected, and then the inverter ECU 26 The drive torque of the electric motor 6 necessary for starting the engine 2 is instructed, and the engine ECU 24 is instructed to operate the engine 2.

インバータECU26は車両ECU22からの指示に基づき、電動機6をモータ作動させて駆動トルクを発生させ、エンジン2をクランキングし、エンジンECU24がエンジン2への燃料の供給を開始することによりエンジン2が始動してアイドル運転を行う。
この状態で、運転者がチェンジレバーをドライブ位置などに操作すると、車両ECU22はクラッチ4を切断すると共に変速機8の変速段を変速マップに従って発進開始時の変速段とする。そして、運転者がアクセルペダル30を踏み込むと、車両ECU22はアクセル開度センサ32によって検出されたアクセルペダル30の踏込量に応じ、車両を発進させるために駆動輪16に伝達すべき駆動トルクを求め、この駆動トルクと変速機8で使用中の変速段とに基づき電動機6の出力トルクを設定する。
Based on an instruction from the vehicle ECU 22, the inverter ECU 26 operates the motor 6 to generate drive torque, cranks the engine 2, and the engine ECU 24 starts supplying fuel to the engine 2, thereby starting the engine 2. Then idle driving.
In this state, when the driver operates the change lever to the drive position or the like, the vehicle ECU 22 disengages the clutch 4 and sets the shift stage of the transmission 8 to the shift stage at the start of start according to the shift map. When the driver depresses the accelerator pedal 30, the vehicle ECU 22 obtains a driving torque to be transmitted to the driving wheels 16 in order to start the vehicle according to the depression amount of the accelerator pedal 30 detected by the accelerator opening sensor 32. The output torque of the electric motor 6 is set on the basis of this driving torque and the gear stage being used in the transmission 8.

インバータECU26は、車両ECU22が設定した電動機6の出力トルクに応じてインバータ20を制御し、バッテリ18の直流電力がインバータ20によって交流電力に変換されて電動機6に供給される。電動機6は交流電力が供給されることによってモータ作動して駆動力を発生し、電動機6の駆動力は変速機8を介して駆動輪16に伝達され、車両が発進する。   The inverter ECU 26 controls the inverter 20 according to the output torque of the electric motor 6 set by the vehicle ECU 22, and the DC power of the battery 18 is converted into AC power by the inverter 20 and supplied to the electric motor 6. The electric motor 6 is actuated by the supply of AC power to generate a driving force, and the driving force of the electric motor 6 is transmitted to the driving wheels 16 via the transmission 8 to start the vehicle.

車両が発進加速して電動機6の回転数がエンジン2のアイドル回転数の近傍まで上昇すると、クラッチ4を接続してエンジン2の駆動力を駆動輪に伝達することが可能となり、車両ECU22は更なる車両の加速及びその後の走行のために、駆動輪16に伝達すべき駆動トルクを求める。そして、この駆動トルクを変速機8で使用中の変速段や車両の運転状態等に応じてエンジン2の出力トルクと電動機6の出力トルクとに適切に振り分け、エンジンECU24やインバータECU26に指示すると共に、必要に応じて変速機8やクラッチ4を制御する。   When the vehicle starts to accelerate and the rotational speed of the electric motor 6 rises to the vicinity of the idle rotational speed of the engine 2, the clutch 4 can be connected to transmit the driving force of the engine 2 to the drive wheels, and the vehicle ECU 22 further The driving torque to be transmitted to the driving wheels 16 is determined for the acceleration of the vehicle and the subsequent driving. The drive torque is appropriately distributed between the output torque of the engine 2 and the output torque of the electric motor 6 according to the gear stage being used in the transmission 8, the driving state of the vehicle, etc., and the engine ECU 24 and the inverter ECU 26 are instructed. The transmission 8 and the clutch 4 are controlled as necessary.

エンジンECU24及びインバータECU26は、車両ECU22が設定した出力トルクを受けてエンジン2及び電動機6をそれぞれ制御し、クラッチ4が接続されているときにはエンジン2及び電動機6の出力トルクが変速機8を介して駆動輪16に伝達される一方、クラッチ4が切断されているときには電動機6が発生した出力トルクが変速機8を介して駆動輪16に伝達され車両が走行する。   The engine ECU 24 and the inverter ECU 26 receive the output torque set by the vehicle ECU 22 to control the engine 2 and the electric motor 6, respectively. When the clutch 4 is connected, the output torque of the engine 2 and the electric motor 6 is transmitted via the transmission 8. While being transmitted to the drive wheels 16, the output torque generated by the electric motor 6 is transmitted to the drive wheels 16 via the transmission 8 when the clutch 4 is disengaged, and the vehicle travels.

また、このとき車両ECU22は、アクセル開度センサ32によって検出されたアクセルペダル30の踏込量や車速センサ34によって検出された走行速度などの車両の運転状態に応じ、変速機8の変速段を適宜切換制御すると共に、変速段の切り換えに合わせてエンジン2や電動機6のトルクを適切に制御するよう、エンジンECU24及びインバータECU26に対して指示すると共にクラッチ4の断接を制御している。   Further, at this time, the vehicle ECU 22 appropriately changes the gear position of the transmission 8 according to the driving state of the vehicle such as the depression amount of the accelerator pedal 30 detected by the accelerator opening sensor 32 and the traveling speed detected by the vehicle speed sensor 34. In addition to switching control, the engine ECU 24 and the inverter ECU 26 are instructed to control the torque of the engine 2 and the electric motor 6 appropriately in accordance with the switching of the shift speed, and the connection / disconnection of the clutch 4 is controlled.

ところで、車両ECU22はインバータECU26及びバッテリECU28から送られてくる情報に基づき、電動機出力システムに故障が発生したか否かを監視している。電動機出力システムの故障としては、インバータ20に用いられているインバータ回路(図示せず)の不具合や、バッテリ18内のセルの不良などがあり、このような故障が電動機出力システムに発生した場合は、車両ECU22がバッテリ18とインバータ20との電気的な接続を遮断するようインバータECU26に指示する。インバータECU26は、この指示に従ってインバータ20を制御し、バッテリ18とインバータ20との電気的な接続を遮断する。   Meanwhile, the vehicle ECU 22 monitors whether or not a failure has occurred in the motor output system based on information sent from the inverter ECU 26 and the battery ECU 28. The failure of the motor output system includes a failure of an inverter circuit (not shown) used in the inverter 20 and a failure of a cell in the battery 18, and when such a failure occurs in the motor output system. The vehicle ECU 22 instructs the inverter ECU 26 to cut off the electrical connection between the battery 18 and the inverter 20. Inverter ECU 26 controls inverter 20 in accordance with this instruction, and disconnects the electrical connection between battery 18 and inverter 20.

このようにしてバッテリ18とインバータ20との電気的な接続が遮断されることにより、電動機6はモータ及び発電機のいずれとしても作動せず、クラッチ4が接続されているときにはエンジン2の駆動力によってエンジン2と共に回転する。
電動機6が作動しなくなることにより、電動機出力システムからの駆動力を駆動輪16に伝達することができなくなるが、このような場合であっても駆動輪16に必要な駆動力が伝達されるようにするため、車両ECU22は車両の運転状態に応じた変速機8の変速段制御を行う際に使用する変速マップを、電動機出力システムの故障の有無に応じて切り換えている。
When the electrical connection between the battery 18 and the inverter 20 is thus cut off, the electric motor 6 does not operate as either a motor or a generator, and the driving force of the engine 2 when the clutch 4 is connected. To rotate with the engine 2.
When the electric motor 6 stops operating, it becomes impossible to transmit the driving force from the electric motor output system to the driving wheel 16. Even in such a case, the necessary driving force is transmitted to the driving wheel 16. Therefore, the vehicle ECU 22 switches the shift map used when performing the shift speed control of the transmission 8 according to the driving state of the vehicle depending on whether or not the motor output system is broken.

この車両ECU22による変速マップ切換制御は図2に示すフローチャートに従い所定の制御周期で行われる。
変速マップ切換制御が開始されると、ステップS1ではインバータECU26及びバッテリECU28からの情報に基づき、電動機出力システムに故障が発生したか否かを判定する(故障検出手段)。
The shift map switching control by the vehicle ECU 22 is performed at a predetermined control cycle according to the flowchart shown in FIG.
When the shift map switching control is started, it is determined in step S1 whether or not a failure has occurred in the motor output system based on information from the inverter ECU 26 and the battery ECU 28 (failure detection means).

ステップS1で電動機出力システムに故障が発生していない、即ち電動機出力システムが正常であると判定した場合にはステップS2に進んでシフトアップ用変速マップSU1及びシフトダウン用変速マップSD1を選択する一方、電動機出力システムに故障が発生したと判定した場合にはステップS3に進んでシフトアップ用変速マップSU2及びシフトダウン用変速マップSD2を選択し、その制御周期を終了する。   If it is determined in step S1 that the motor output system has not failed, that is, the motor output system is normal, the process proceeds to step S2 to select the shift-up shift map SU1 and the shift-down shift map SD1. If it is determined that a failure has occurred in the motor output system, the process proceeds to step S3, where the shift-up shift map SU2 and the shift-down shift map SD2 are selected, and the control cycle ends.

このようにしてステップS1の判定を制御周期毎に繰り返すことにより、電動機出力システムに故障が発生したか否かに応じて適宜シフトアップ用変速マップSU1及びシフトダウン用変速マップSD1の組合せ、又はシフトアップ用変速マップSU2及びシフトダウン用変速マップSD2の組合せを選択するようにしている。
これら変速マップは、いずれもアクセル開度センサ32によって検出されたアクセルペダル30の踏込量と車速センサ34によって検出された走行速度とに応じて変速機8の変速段のシフトアップ及びシフトダウンを行う際に使用される。
In this way, by repeating the determination in step S1 for each control cycle, a combination of shift-up shift map SU1 and shift-down shift map SD1 or a shift is appropriately performed depending on whether or not a failure has occurred in the motor output system. A combination of the upshift map SU2 and the downshift map SD2 is selected.
These shift maps shift up and down the shift stage of the transmission 8 according to the depression amount of the accelerator pedal 30 detected by the accelerator opening sensor 32 and the travel speed detected by the vehicle speed sensor 34. Used when.

図3は、これらの変速マップのうち、電動機出力システムが正常な場合に選択されるシフトアップ用変速マップSU1を示しており、アクセルペダル30の踏み込み量と走行速度とに応じて、2速から3速へのシフトアップ線(2→3)、3速から4速へのシフトアップ線(3→4)及び4速から5速へのシフトアップ線(4→5)が設定されている。
従って、車両運転状態の変化によりアクセルペダル30の踏み込み量と走行速度とによって定まる点が2速から3速へのシフトアップ線を図の左方から右方へと横切ると、車両ECU22は変速機8の変速段を2速から3速へとシフトアップする。また、3速から4速へのシフトアップ線及び4速から5速へのシフトアップ線についても同様であり、アクセルペダル30の踏み込み量と走行速度とによって定まる点が各シフトアップ線を図の左方から右方に横切ったときにそれぞれ対応するシフトアップが行われる。
FIG. 3 shows a shift-up shift map SU1 that is selected when the motor output system is normal among these shift maps. From the second speed according to the depression amount of the accelerator pedal 30 and the traveling speed, FIG. A shift up line to 3rd speed (2 → 3), a shift up line from 3rd speed to 4th speed (3 → 4) and a shift up line from 4th speed to 5th speed (4 → 5) are set.
Therefore, when the point determined by the depression amount of the accelerator pedal 30 and the traveling speed crosses the shift-up line from the second speed to the third speed from the left to the right in the figure, the vehicle ECU 22 changes the transmission. Shift up the 8th gear from 2nd gear to 3rd gear. The same applies to the upshift line from the 3rd speed to the 4th speed and the upshift line from the 4th speed to the 5th speed, and the points determined by the depression amount of the accelerator pedal 30 and the traveling speed are shown in the figure. A corresponding upshift occurs when crossing from left to right.

なお、このシフトアップ用変速マップSU1は、電動機6の出力トルクが併用されることから、電動機を搭載せずにエンジンのみを駆動源とする車両に適用される自動変速機の変速マップと比較して、シフトアップが早めに行われるような設定となっている。この結果、エンジン2と電動機6とを併用して車両の駆動を行った場合に、車両の駆動に必要な駆動力を得ながらエンジン2の燃費を向上させることができる。   This shift-up shift map SU1 is used in combination with the shift map of an automatic transmission that is applied to a vehicle that uses only the engine as a drive source without mounting the motor because the output torque of the motor 6 is used together. Therefore, the shift up is performed early. As a result, when the vehicle is driven by using the engine 2 and the electric motor 6 in combination, the fuel efficiency of the engine 2 can be improved while obtaining a driving force necessary for driving the vehicle.

また、図3に示すように、電動機出力システムが正常な場合には最低変速段が2速であって、車両の発進時には変速段を2速として車両の発進が開始される。
これに対し、図4は電動機出力システムに故障が検出された場合に選択されるシフトアップ用変速マップSU2を示しており、アクセルペダル30の踏み込み量と走行速度とに応じて、1速から2速へのシフトアップ線(1→2)、2速から3速へのシフトアップ線(2→3)、3速から4速へのシフトアップ線(3→4)及び4速から5速へのシフトアップ線(4→5)が図中に実線で示すようにして設定されている。
Further, as shown in FIG. 3, when the motor output system is normal, the lowest gear position is the second speed, and when the vehicle starts, the vehicle starts starting with the second gear position.
On the other hand, FIG. 4 shows a shift-up shift map SU2 that is selected when a failure is detected in the motor output system. Depending on the amount of depression of the accelerator pedal 30 and the traveling speed, the first to second shift maps are shown. Shift-up line to 1st speed (1 → 2) Shift-up line from 2nd to 3rd speed (2 → 3) Shift-up line from 3rd speed to 4th speed (3 → 4) and 4th speed to 5th speed Shift-up lines (4 → 5) are set as indicated by solid lines in the figure.

このマップを使用した場合にも、シフトアップ用変速マップSU1の場合と同様にしてシフトアップが行われるが、図4に示すようにシフトアップ用変速マップSU2には、シフトアップ用変速マップSU1にはない1速から2速へのシフトアップ線が設定されている。即ち、電動機出力システムに故障が発生場合には最低変速段が1速となり、車両の発進時には変速段を1速として車両の発進が開始される。   Even when this map is used, the upshift is performed in the same manner as in the upshift map SU1, but as shown in FIG. 4, the upshift map SU2 includes the upshift map SU1. There is no upshift line from 1st to 2nd. That is, when a failure occurs in the motor output system, the lowest gear is set to the first speed, and when the vehicle is started, the vehicle is started with the gear set as the first speed.

また、図中にはシフトアップ用変速マップSU1の各シフトアップ線を点線で示すが、これらシフトアップ線に対し、シフトアップ用変速マップSU2の対応するシフトアップ線はいずれも、同じアクセルペダル30の踏み込み量に対して、より高速側でシフトアップが行われるようになっている。即ち、シフトアップ用変速マップSU2を用いた場合には、シフトアップ用変速マップSU1を用いた場合よりも車両の運転状態の変化に応じたシフトアップが遅めに行われることになる。   Further, in the drawing, each shift-up line of the shift-up shift map SU1 is indicated by a dotted line. In contrast to these shift-up lines, the corresponding shift-up lines of the shift-up shift map SU2 are all the same accelerator pedal 30. Upshifting is performed at a higher speed with respect to the amount of stepping on. That is, when the shift-up shift map SU2 is used, the shift-up according to the change in the driving state of the vehicle is performed later than when the shift-up shift map SU1 is used.

図5は、電動機出力システムが正常な場合に選択されるシフトダウン用変速マップSD1を示しており、アクセルペダル30の踏み込み量と走行速度とに応じて、5速から4速へのシフトダウン線(4←5)、4速から3速へのシフトダウン線(3←4)及び3速から2速へのシフトダウン線(2←3)が設定されている。
従って、車両運転状態の変化によりアクセルペダル30の踏み込み量と走行速度とによって定まる点が5速から4速へのシフトダウン線を図の右方から左方へと横切ると、車両ECU22は変速機8の変速段を5速から4速へとシフトダウンする。また、4速から3速へのシフトダウン線及び3速から2速へのシフトダウン線についても同様であり、アクセルペダル30の踏み込み量と走行速度とによって定まる点が各シフトダウン線を図の右方から左方へ横切ったときにそれぞれ対応するシフトダウンが行われる。
FIG. 5 shows a shift-down shift map SD1 that is selected when the motor output system is normal. A shift-down line from the fifth speed to the fourth speed according to the depression amount of the accelerator pedal 30 and the traveling speed. (4 ← 5) A downshift line (3 ← 4) from the fourth speed to the third speed and a downshift line (2 ← 3) from the third speed to the second speed are set.
Therefore, when the point determined by the depression amount of the accelerator pedal 30 and the traveling speed crosses the downshift line from the 5th speed to the 4th speed from the right side to the left side in the figure, the vehicle ECU 22 changes the transmission. Shift down the 8th gear from 5th gear to 4th gear. The same applies to the downshift line from the 4th speed to the 3rd speed and the downshift line from the 3rd speed to the 2nd speed. The points determined by the amount of depression of the accelerator pedal 30 and the traveling speed indicate the respective downshift lines. A corresponding downshift occurs when crossing from right to left.

また、電動機出力システムが正常な場合には、図5に示すように2速までしかシフトダウンが行われず、前述したとおり次の車両の発進時には変速段を2速として車両の発進が開始される。
これに対し、図6は電動機出力システムに故障が発生した場合に選択されるシフトダウン用変速マップSD2を示しており、アクセルペダル30の踏み込み量と走行速度とに応じて、5速から4速へのシフトダウン線(4←5)、4速から3速へのシフトダウン線(3←4)、3速から2速へのシフトダウン線(2←3)及び2速から1速へのシフトダウン線(1←2)が図中に実線で示すようにして設定されている。
Further, when the motor output system is normal, the downshift is performed only up to the second speed as shown in FIG. 5, and as described above, the start of the vehicle is started with the second gear position when the next vehicle starts. .
On the other hand, FIG. 6 shows a shift-down shift map SD2 that is selected when a failure occurs in the motor output system. Depending on the depression amount of the accelerator pedal 30 and the traveling speed, the fifth to fourth speeds are shown. Downshift line (4 ← 5) downshift line from 4th gear to 3rd gear (3 ← 4) downshift line from 3rd gear to 2nd gear (2 ← 3) and 2nd gear to 1st gear The downshift line (1 ← 2) is set as indicated by the solid line in the figure.

このマップを使用した場合にも、シフトダウン用変速マップSD1の場合と同様にしてシフトダウンが行われるが、図6に示すようにシフトダウン用変速マップSD2には、シフトダウン用変速マップSD1にはない2速から1速へのシフトダウン線が設定されている。従って、電動機出力システムに故障が発生した場合には、走行速度の低下に従って1速までシフトダウンが行われ、前述したとおり次の車両の発進時には変速段を1速として車両の発進が開始される。   Even when this map is used, the downshift is performed in the same manner as in the downshift map SD1, but as shown in FIG. 6, the downshift map SD2 includes the downshift map SD1. There is no shift down line from 2nd gear to 1st gear. Therefore, when a failure occurs in the motor output system, downshifting is performed to the first speed as the traveling speed decreases, and as described above, when the next vehicle starts, the vehicle starts starting with the first gear position. .

また、図中にはシフトダウン用変速マップSD1の各シフトダウン線を点線で示すが、これらシフトアップ線に対し、シフトダウン用変速マップSD2の対応するシフトダウン線はいずれも、同じアクセルペダル30の踏み込み量に対して、より高速側でシフトダウンが行われるようになっている。即ち、シフトダウン用変速マップSD2を用いた場合には、シフトダウン用変速マップSD1を用いた場合よりも車両の運転状態の変化に応じたシフトダウンが早めに行われることになる。   In the drawing, each downshift line of the downshift map SD1 is indicated by a dotted line, but the corresponding downshift line of the downshift map SD2 is the same accelerator pedal 30 with respect to these upshift lines. The shift down is performed at a higher speed with respect to the amount of stepping on. That is, when the downshift map SD2 is used, the downshift according to the change in the driving state of the vehicle is performed earlier than when the downshift map SD1 is used.

このように設定された各変速マップを選択して使用することにより、駆動輪16への駆動力の伝達は次のようにして行われる。
電動機出力システムが正常であり、変速マップの切換制御によってシフトアップ用変速マップSU1及びシフトダウン用変速マップSD1が選択された場合には、前述のようにして運転者が車両の発進操作を行うと、車両ECU22はクラッチ4を切断すると共に、選択した変速マップに従って変速機8の変速段を2速とする。そして、車両ECU22がアクセルペダル30の踏込量に応じて設定した駆動輪16に伝達すべき駆動トルクから変速段が2速のときの電動機6の出力トルクを設定し、設定された電動機6の駆動トルクに従い、インバータECU26がインバータ20を制御することにより、電動機6の駆動力が変速機8を介して駆動輪16に伝達され、車両が発進する。
By selecting and using each shift map set in this way, the driving force is transmitted to the drive wheels 16 as follows.
When the motor output system is normal and the shift-up shift map SU1 and the shift-down shift map SD1 are selected by the shift map switching control, the driver starts the vehicle as described above. The vehicle ECU 22 disengages the clutch 4 and sets the speed of the transmission 8 to the second speed according to the selected shift map. Then, the output torque of the electric motor 6 when the shift speed is the second speed is set from the driving torque to be transmitted to the driving wheel 16 set by the vehicle ECU 22 according to the depression amount of the accelerator pedal 30, and the set driving of the electric motor 6 is set. The inverter ECU 26 controls the inverter 20 according to the torque, whereby the driving force of the electric motor 6 is transmitted to the driving wheels 16 through the transmission 8 and the vehicle starts.

このように、電動機出力システムが正常な場合には、変速機8の変速段を2速として電動機6により車両を発進させるようにしたので、車両のスムーズな発進を可能とすることができる。
車両が発進加速して電動機6の回転数がエンジン2のアイドル回転数の近傍まで上昇すると、クラッチ4を接続してエンジン2の駆動力を駆動輪に伝達することが可能となり、車両ECU22は更なる車両の加速及びその後の走行のために、駆動輪16に伝達すべき駆動トルクを決定する。そして、この駆動トルクから変速機8で使用中の変速段に応じてエンジン2及び電動機6から出力すべき要求トルクを求め、この要求トルクを車両の運転状態に応じてエンジン2側と電動機6側に適切に振り分ける。
As described above, when the motor output system is normal, the vehicle is started by the electric motor 6 with the speed of the transmission 8 set to the second speed, so that the vehicle can be started smoothly.
When the vehicle starts to accelerate and the rotational speed of the electric motor 6 rises to the vicinity of the idle rotational speed of the engine 2, the clutch 4 can be connected to transmit the driving force of the engine 2 to the drive wheels, and the vehicle ECU 22 further The driving torque to be transmitted to the driving wheels 16 is determined for the acceleration of the vehicle and the subsequent driving. Then, a required torque to be output from the engine 2 and the electric motor 6 is obtained from the drive torque according to the gear stage being used in the transmission 8, and the required torque is obtained from the engine 2 side and the electric motor 6 side according to the driving state of the vehicle. Appropriately.

また、このようにして車両が走行する際に、車両ECU22は選択したシフトアップ用変速マップSU1及びシフトダウン用変速マップSD1に基づき、アクセル開度センサ32が検出したアクセルペダル30の踏み込み量や車速センサ34が検出した走行速度の変化に応じて変速機8の変速段をシフトアップしたりシフトダウンしたりすると共に必要に応じてクラッチ4を制御する。   Further, when the vehicle travels in this way, the vehicle ECU 22 determines the depression amount of the accelerator pedal 30 and the vehicle speed detected by the accelerator opening sensor 32 based on the selected shift-up shift map SU1 and shift-down shift map SD1. The shift stage of the transmission 8 is shifted up or down according to the change in the traveling speed detected by the sensor 34, and the clutch 4 is controlled as necessary.

即ち、アクセルペダル30の踏み込み量と走行速度とによって定まる点が前述のように図3に示すシフトアップ用変速マップSU1のシフトアップ線を横切るとシフトアップが行われ、図5に示すシフトダウン用変速マップSD1のシフトダウン線を横切るとシフトダウンが行われる。
従って、車両が発進して加速した場合、走行速度の上昇に伴い変速機8の変速段は順次シフトアップされていくが、前述のように車両発進時の変速段が2速となっているため、発進時の変速段を1速とする場合よりも5速までのシフトアップ回数を減らしてスムーズな加速を行うことが可能となる。
That is, when the point determined by the amount of depression of the accelerator pedal 30 and the traveling speed crosses the shift-up line of the shift-up shift map SU1 shown in FIG. 3 as described above, the upshift is performed, and the downshift shown in FIG. A downshift is performed when crossing the downshift line of the shift map SD1.
Therefore, when the vehicle starts and accelerates, the speed of the transmission 8 is sequentially shifted up as the traveling speed increases, but the speed at the time of starting the vehicle is 2nd as described above. As a result, smooth acceleration can be performed by reducing the number of upshifts up to the fifth speed compared to the case where the shift stage at the start is the first speed.

一方、電動機出力システムに故障が検出され、変速マップ切換制御によりシフトアップ用変速マップSU2及びシフトダウン用変速マップSD2が選択された場合には、前述のようにして運転者が車両の発進操作を行うと、車両ECU22はクラッチ4を切断すると共に、選択した変速マップに従って変速機8の変速段を1速とする。
また、このときには電動機6が作動しないため、車両ECU22は、エンジン2からアクセルペダル30の踏込量に対応したトルクを出力するようにエンジンECU24に指示すると共に、クラッチ4を半クラッチ制御する。エンジンECU24は車両ECU22からの指示を受けて、アクセル開度センサ32によって検出されたアクセルペダル30の踏み込み量とエンジン2の回転数とに応じたトルクを出力するようにエンジン2を制御し、半クラッチ状態のクラッチ4を介してエンジン2の駆動力が変速機8を介して駆動輪16に伝達されることにより車両が発進する。
On the other hand, when a failure is detected in the motor output system and the shift-up shift map SU2 and the shift-down shift map SD2 are selected by the shift map switching control, the driver starts the vehicle as described above. When this is done, the vehicle ECU 22 disengages the clutch 4 and sets the gear position of the transmission 8 to the first speed according to the selected shift map.
At this time, since the electric motor 6 does not operate, the vehicle ECU 22 instructs the engine ECU 24 to output a torque corresponding to the depression amount of the accelerator pedal 30 from the engine 2 and controls the clutch 4 by half clutch. In response to an instruction from the vehicle ECU 22, the engine ECU 24 controls the engine 2 to output torque corresponding to the amount of depression of the accelerator pedal 30 detected by the accelerator opening sensor 32 and the rotational speed of the engine 2. The driving force of the engine 2 is transmitted to the drive wheels 16 via the transmission 8 via the clutch 4 in the clutch state, whereby the vehicle starts.

電動機6から駆動輪16には駆動力が伝達されないものの、このとき変速機8で使用される変速段は1速であるため、駆動輪16には車両の発進に必要な駆動力を伝達することが可能となり、車両発進時の駆動力不足による運転性能及び運転フィーリングの低下を防止することができる。
車両が発進加速して電動機6の回転数がエンジン2のアイドル回転数近傍まで上昇し、クラッチ4を完全に接続すると、車両ECU22は更なる車両の加速及びその後の走行のために、駆動輪16に伝達すべき駆動トルクを決定する。そして、この駆動トルクから変速機8で使用中の変速段に応じてエンジン2から出力すべき要求トルクを求め、この要求トルクをエンジン2が出力するようにエンジンECU24に指示する。
Although no driving force is transmitted from the electric motor 6 to the driving wheel 16, the gear stage used in the transmission 8 at this time is the first speed, and therefore the driving force necessary for starting the vehicle is transmitted to the driving wheel 16. Therefore, it is possible to prevent a decrease in driving performance and driving feeling due to insufficient driving force when starting the vehicle.
When the vehicle starts and accelerates, the rotational speed of the electric motor 6 rises to near the idle rotational speed of the engine 2 and the clutch 4 is completely connected, the vehicle ECU 22 drives the drive wheels 16 for further acceleration of the vehicle and subsequent travel. The driving torque to be transmitted to is determined. Then, a required torque to be output from the engine 2 is obtained from the drive torque in accordance with the gear stage being used in the transmission 8, and the engine ECU 24 is instructed to output the required torque by the engine 2.

また、車両ECU22は選択したシフトアップ用変速マップSU2及びシフトダウン用変速マップSD2に基づき、アクセル開度センサ32が検出したアクセルペダル30の踏み込み量や車速センサ34が検出した走行速度の変化に応じて変速機8の変速段をシフトアップしたりシフトダウンしたりすると共に必要に応じてクラッチ4を制御する。
即ち、アクセルペダル30の踏み込み量と走行速度とによって定まる点が前述のようにして図4に示すシフトアップ用変速マップSU2のシフトアップ線を横切るとシフトアップが行われ、図6に示すシフトダウン用変速マップSD2のシフトダウン線を横切るとシフトダウンが行われる。
Further, the vehicle ECU 22 responds to changes in the amount of depression of the accelerator pedal 30 detected by the accelerator opening sensor 32 and changes in travel speed detected by the vehicle speed sensor 34 based on the selected shift-up shift map SU2 and shift-down shift map SD2. Thus, the gear stage of the transmission 8 is shifted up or down, and the clutch 4 is controlled as necessary.
That is, when the point determined by the amount of depression of the accelerator pedal 30 and the traveling speed crosses the shift-up line of the shift-up shift map SU2 shown in FIG. 4 as described above, the shift-up is performed, and the shift-down shown in FIG. A downshift is performed when crossing the downshift line of the shift map SD2.

このとき、シフトアップ用変速マップSU2及びシフトダウン用変速マップSD2はシフトアップ用変速マップSU1及びシフトダウン用変速マップSD1と比較して、アクセルペダル30の踏み込み量及び走行速度の変化に対して遅めにシフトアップが行われると共に早めにシフトダウンが行われるようになっている。従って、電動機6から駆動力が得られずエンジン2の駆動力のみで駆動輪16の駆動を行っていても駆動力が不足するようなことがなく、駆動力不足による運転性能や運転フィーリングの低下を防止することができる。   At this time, the shift-up shift map SU2 and the shift-down shift map SD2 are slower than the shift-up shift map SU1 and the shift-down shift map SD1 with respect to changes in the depression amount and travel speed of the accelerator pedal 30. For this reason, a shift up is performed and a shift down is performed early. Accordingly, even if the driving force 16 is not obtained from the electric motor 6 and the driving wheels 16 are driven only by the driving force of the engine 2, the driving force does not become insufficient. A decrease can be prevented.

車両ECU22は、電動機出力システムに故障が発生したか否かにより、以上のような変速マップの切換制御を行うほか、アクセルペダル30の踏み込みが解除されて車両が減速走行を行うときのクラッチ4の制御も切り換えている。
即ち、車両減速時には前述したように電動機6の回生制動力により車両の減速を適正に行えるようにしているが、電動機出力システムに故障が発生した場合にはこのような回生制動力を利用することができないため、クラッチ2の制御を切り換えることによって、電動機出力システムに故障が発生した場合であっても適正な減速が行われるようにしているのである。
The vehicle ECU 22 performs switching control of the shift map as described above depending on whether or not a failure has occurred in the motor output system, and also the clutch 4 when the depression of the accelerator pedal 30 is released and the vehicle decelerates. Control is also switched.
In other words, when the vehicle decelerates, as described above, the vehicle can be appropriately decelerated by the regenerative braking force of the electric motor 6. However, when a failure occurs in the motor output system, such a regenerative braking force should be used. Therefore, by switching the control of the clutch 2, proper deceleration is performed even when a failure occurs in the motor output system.

この車両ECU22によるクラッチ制御の切換制御は図7に示すフローチャートに従い所定の制御周期で行われる。
クラッチ制御の切換制御が開始されると、図2の変速マップ切換制御のステップS1と同様に、ステップS11でインバータECU26及びバッテリECU28からの情報に基づき、電動機出力システムに故障が発生したか否かを判定する(故障検出手段)。
The switching control of the clutch control by the vehicle ECU 22 is performed at a predetermined control cycle according to the flowchart shown in FIG.
When the clutch control switching control is started, whether or not a failure has occurred in the motor output system based on the information from the inverter ECU 26 and the battery ECU 28 in step S11 as in step S1 of the shift map switching control in FIG. (Failure detection means).

ステップS11で電動機出力システムに故障が発生していない、即ち電動機出力システムが正常であると判定した場合にはステップS12に進んでクラッチ制御Aを選択する一方、電動機出力システムに故障が発生したと判定した場合にはステップS13に進んでクラッチ制御Bを選択し、その制御周期を終了する。
このようにしてステップS11の判定を制御周期毎に繰り返すことにより、電動機出力システムに故障が発生したか否かに応じてクラッチ制御A又はクラッチ制御Bを選択するようにしている。
If it is determined in step S11 that the motor output system has not failed, that is, the motor output system is normal, the process proceeds to step S12 to select the clutch control A, while the motor output system has failed. When it determines, it progresses to step S13, the clutch control B is selected, and the control period is complete | finished.
Thus, by repeating the determination in step S11 for each control cycle, the clutch control A or the clutch control B is selected depending on whether or not a failure has occurred in the motor output system.

車両ECU22は、車両の減速走行時に、このようにして選択されたクラッチ制御と併せ、次のようにエンジン2及び電動機6の制御を行う。
電動機出力システムが正常な場合に、アクセルペダル30の踏み込みが解除されると、車両ECU22は回転数センサ36によって検出された電動機6の回転数と変速機8で使用中の変速段とに基づき、車両の減速を適正に行うために必要な減速トルクを要求減速トルクとして設定する。
The vehicle ECU 22 controls the engine 2 and the electric motor 6 as follows in addition to the clutch control selected in this manner when the vehicle is decelerated.
When the depression of the accelerator pedal 30 is released when the motor output system is normal, the vehicle ECU 22 determines the speed of the motor 6 detected by the speed sensor 36 and the gear stage being used in the transmission 8. A deceleration torque necessary for appropriately decelerating the vehicle is set as a required deceleration torque.

この要求減速トルクは、図8に実線で示すように変速機8の変速段毎に個別に設定されており、それぞれの変速段に対応する要求減速トルクは、電動機6の回転数の上昇と共に増大する特性を有している。また、図8に示すように、高速側の変速段であるほど大きい要求減速トルクが設定されるようになっている。
また、車両ECU22は、回転数センサ36によって検出された電動機6の回転数において電動機6が発生可能な回生制動トルクの上限値を上限減速トルクとして設定する。この上限減速トルクは電動機6の仕様により電動機6の回転数に応じて定まるものであり、図8に一点鎖線で示すように、低い回転数の領域では一定の値を有する一方で、高回転側では電動機6の回転数の増大と共に減少するような特性を有している。また、図8に示すように、2乃至5速の各変速段に対応して設定される要求減速トルクに対し、上限減速トルクはN2乃至N5の各回転数において大小関係が逆転している。
The required deceleration torque is individually set for each gear stage of the transmission 8 as indicated by a solid line in FIG. 8, and the required deceleration torque corresponding to each gear stage increases as the rotational speed of the electric motor 6 increases. It has the characteristic to do. In addition, as shown in FIG. 8, a larger required deceleration torque is set for a higher speed gear.
Further, the vehicle ECU 22 sets the upper limit value of the regenerative braking torque that can be generated by the electric motor 6 at the rotational speed of the electric motor 6 detected by the rotational speed sensor 36 as the upper limit deceleration torque. This upper limit deceleration torque is determined according to the rotational speed of the electric motor 6 according to the specifications of the electric motor 6, and has a constant value in the low rotational speed region, as shown by a dashed line in FIG. However, the motor 6 has such a characteristic that it decreases as the rotational speed of the motor 6 increases. Further, as shown in FIG. 8, the magnitude relationship of the upper limit deceleration torque is reversed at each rotation speed of N2 to N5 with respect to the required deceleration torque set corresponding to each of the second to fifth gears.

このような上限減速トルクに対し、要求減速トルクの方が大きい場合には、電動機6の回生制動トルクのみでは要求減速トルクを得ることができないため、クラッチ4を接続してエンジン2による減速トルクと電動機6の回生制動による減速トルクとを合わせて要求減速トルクを得るようにしている。
また、要求減速トルクが上限減速トルク以下の場合には、電動機6の回生制動トルクのみで要求減速トルクを得ることができるため、クラッチ4を切断して電動機6の回生制動のみで要求減速トルクを得る。
When the requested deceleration torque is larger than the upper limit deceleration torque, the requested deceleration torque cannot be obtained only by the regenerative braking torque of the electric motor 6. The required deceleration torque is obtained together with the deceleration torque due to regenerative braking of the electric motor 6.
Further, when the required deceleration torque is equal to or less than the upper limit deceleration torque, the required deceleration torque can be obtained only by the regenerative braking torque of the electric motor 6, so that the required deceleration torque can be obtained only by the regenerative braking of the electric motor 6 by cutting the clutch 4. obtain.

このように制御を行うことによって、可能な限り電動機6の回生制動を利用して減速時のエネルギ回収を行うようにしている。従って、電動機出力システムが正常な場合に選択されるクラッチ制御Aでは、要求減速トルクと上限減速トルクとの大小関係に従ってクラッチ4の断接状態が制御される。
一方、電動機出力システムに故障が検出された場合に、アクセルペダル30の踏み込みが解除されると、電動機6による回生制動力を得ることができないため、車両ECU22はクラッチ4を接続状態とすると共に、エンジンECU24に対し、燃料供給の中止や、排気ブレーキを有する場合には排気ブレーキの作動などのような、エンジン2の減速運転を行うように指示する。
By performing control in this way, energy recovery during deceleration is performed using regenerative braking of the electric motor 6 as much as possible. Therefore, in the clutch control A selected when the motor output system is normal, the connection / disconnection state of the clutch 4 is controlled according to the magnitude relationship between the required deceleration torque and the upper limit deceleration torque.
On the other hand, when a failure is detected in the motor output system, if the depression of the accelerator pedal 30 is released, the regenerative braking force by the motor 6 cannot be obtained, so the vehicle ECU 22 puts the clutch 4 in a connected state, The engine ECU 24 is instructed to perform the deceleration operation of the engine 2 such as stopping the fuel supply or operating the exhaust brake when the exhaust brake is provided.

エンジンECU24は車両ECU22からの指示に従い、燃料供給を中止したり、排気ブレーキを有する場合には排気ブレーキを作動させたりして、エンジン2の減速運転を行う。
この結果、エンジン2の減速トルクがクラッチ4を経て変速機8から駆動輪16に伝達されることにより車両が減速する。このとき回転数センサ36によって検出される回転数は、クラッチ4が接続されていることによってエンジン2の回転と一致するが、車両の減速に伴い走行速度が低下し、回転数センサ36によって検出された回転数に基づき、エンジン2の回転数がアイドル回転数近傍まで低下したことを検知すると、車両ECU22はエンジン2の回転数がアイドル回転数より低下しないようにするためクラッチ4を切断する。
The engine ECU 24 performs the deceleration operation of the engine 2 by stopping the fuel supply or operating the exhaust brake if it has an exhaust brake in accordance with an instruction from the vehicle ECU 22.
As a result, the deceleration torque of the engine 2 is transmitted from the transmission 8 to the drive wheels 16 via the clutch 4, whereby the vehicle is decelerated. The rotational speed detected by the rotational speed sensor 36 at this time coincides with the rotational speed of the engine 2 because the clutch 4 is connected, but the traveling speed decreases as the vehicle decelerates, and is detected by the rotational speed sensor 36. When it is detected that the rotational speed of the engine 2 has decreased to the vicinity of the idle rotational speed based on the rotational speed, the vehicle ECU 22 disengages the clutch 4 so that the rotational speed of the engine 2 does not decrease below the idle rotational speed.

このように、電動機出力システムに故障が検出された場合に選択されるクラッチ制御Bにおいては、エンジン2の回転数がアイドル回転近傍に低下するまでクラッチ4を常時接続し、エンジン2の減速トルクによって車両の減速を行うようにしている。
この結果、電動機出力システムに故障が発生して電動機6の回生制動力を利用できない場合であっても、前述のように早めのシフトダウンが行われるシフトダウン用変速マップSD2の使用と相俟って、車両の適正な減速に必要な減速トルクを継続して駆動輪16に伝達することができ、車両を良好に減速させることができる。
Thus, in the clutch control B that is selected when a failure is detected in the motor output system, the clutch 4 is always connected until the rotational speed of the engine 2 decreases to the vicinity of the idle rotation, and the deceleration torque of the engine 2 The vehicle is decelerated.
As a result, even when a failure occurs in the motor output system and the regenerative braking force of the motor 6 cannot be used, the use of the shift down shift map SD2 in which the early downshift is performed as described above is combined. Thus, the deceleration torque required for proper deceleration of the vehicle can be continuously transmitted to the drive wheels 16, and the vehicle can be decelerated satisfactorily.

以上で本発明の一実施形態に係るハイブリッド電気自動車の制御装置についての説明を終えるが、本発明は上記実施形態に限定されるものではない。
例えば、上記実施形態では、電動機出力システムに故障が検出された場合の車両発進時の変速段を1速とし、電動機出力システムが正常な場合の車両発進時の変速段を2速としたが、それぞれの場合の車両発進時における変速段はこれに限られるものではなく、車両の仕様に応じて車両発進時における変速段を設定すると共に、電動機出力システムが正常な場合の変速段よりも電動機出力システムに故障が検出された場合の変速段の方が低速側となるようにすればよい。
Although the description of the control apparatus for a hybrid electric vehicle according to one embodiment of the present invention is finished above, the present invention is not limited to the above embodiment.
For example, in the above embodiment, the gear stage at the start of the vehicle when a failure is detected in the motor output system is set to the first speed, and the gear stage at the start of the vehicle when the motor output system is normal is set to the second speed. The gear stage at the time of vehicle start in each case is not limited to this, and the gear stage at the time of vehicle start is set according to the specification of the vehicle, and the motor output is higher than the gear stage when the motor output system is normal. What is necessary is just to make it the speed stage when a failure is detected in the system be on the low speed side.

更に、上記実施形態では、電動機6をクラッチ4と変速機8との間に配置するようにしたが、電動機6の配置はこれに限られるものではなく、例えばエンジン2とクラッチ4との間に電動機6を配置したハイブリッド電気自動車などのように、エンジン2の駆動力と電動機6の駆動力とがそれぞれ駆動輪16に伝達可能なハイブリッド電気自動車であれば同様の効果を得ることができる。   Furthermore, in the above embodiment, the electric motor 6 is arranged between the clutch 4 and the transmission 8. However, the arrangement of the electric motor 6 is not limited to this, and for example, between the engine 2 and the clutch 4. Similar effects can be obtained as long as the hybrid electric vehicle can transmit the driving force of the engine 2 and the driving force of the electric motor 6 to the drive wheels 16 such as a hybrid electric vehicle in which the electric motor 6 is disposed.

また、上記実施形態では変速機8を前進5段の自動変速機としたが、変速段の数及び自動変速機の形式はこれに限られるものではなく、無段変速機などであっても良い。
更に、上記実施形態では回転数センサ36で検出された電動機6の回転数を用いたが、変速機8の出力回転数を検出し、これを変速比を用いて電動機6の回転数に変換しても良いし、電動機6の回転数に応じて変化する量から電動機6の回転数を求めるようにしても良い。
In the above embodiment, the transmission 8 is an automatic transmission with five forward speeds. However, the number of shift speeds and the type of automatic transmission are not limited to this, and may be a continuously variable transmission or the like. .
Furthermore, in the above embodiment, the rotation speed of the electric motor 6 detected by the rotation speed sensor 36 is used. However, the output rotation speed of the transmission 8 is detected and converted into the rotation speed of the electric motor 6 using the gear ratio. Alternatively, the rotational speed of the electric motor 6 may be obtained from an amount that changes according to the rotational speed of the electric motor 6.

なお、上記実施形態ではエンジン2をディーゼルエンジンとしたが、エンジン形式はこれに限られるものではなく、ガソリンエンジンなどでも良い。   In the above embodiment, the engine 2 is a diesel engine, but the engine type is not limited to this, and a gasoline engine or the like may be used.

本発明の一実施形態に係るハイブリッド電気自動車の全体構成図である。1 is an overall configuration diagram of a hybrid electric vehicle according to an embodiment of the present invention. 図1のハイブリッド電気自動車の制御装置で行われる変速マップ切換制御のフローチャートである。3 is a flowchart of shift map switching control performed by the hybrid electric vehicle control device of FIG. 1. シフトアップ用変速マップSU1を示す図である。FIG. 6 is a diagram showing a shift-up shift map SU1. シフトアップ用変速マップSU2を示す図である。FIG. 6 is a diagram showing a shift-up shift map SU2. シフトダウン用変速マップSD1を示す図である。It is a figure which shows shift map SD1 for a downshift. シフトダウン用変速マップSD2を示す図である。It is a figure which shows shift map SD2 for a downshift. 図1のハイブリッド電気自動車の制御装置で行われるクラッチ制御の切換制御のフローチャートである。FIG. 2 is a flowchart of clutch control switching control performed by the hybrid electric vehicle control device of FIG. 1. FIG. 電動機の上限減速トルクと要求減速トルクとの関係を示す図である。It is a figure which shows the relationship between the upper limit deceleration torque of an electric motor, and a request | requirement deceleration torque.

符号の説明Explanation of symbols

1 ハイブリッド電気自動車
2 エンジン
4 クラッチ
6 電動機
8 自動変速機
16 駆動輪
18 バッテリ
20 インバータ
22 車両ECU(故障検出手段、制御手段)
26 インバータECU
28 バッテリECU
36 回転数センサ(回転数検出手段)
DESCRIPTION OF SYMBOLS 1 Hybrid electric vehicle 2 Engine 4 Clutch 6 Electric motor 8 Automatic transmission 16 Drive wheel 18 Battery 20 Inverter 22 Vehicle ECU (failure detection means, control means)
26 Inverter ECU
28 Battery ECU
36 Rotational speed sensor (Rotational speed detection means)

Claims (2)

エンジンに駆動力を発生させて上記エンジンの駆動力を出力するエンジン出力システムと、電動機に駆動力を発生させて上記電動機の駆動力を出力する電動機出力システムとを備え、それぞれのシステムから出力された駆動力が車両の駆動輪に伝達可能なハイブリッド電気自動車の制御装置において、
複数の前進変速段を有し、上記エンジン出力システムから出力される上記エンジンの駆動力を上記駆動輪に伝達する自動変速機と、
上記電動機出力システムの故障を検出する故障検出手段と、
所定の変速マップに基づき上記車両の運転状態の変化に応じて上記自動変速機の変速段を切換制御し、上記故障検出手段によって上記電動機出力システムの故障が検出されたときには、上記故障検出手段によって上記電動機出力システムの故障が検出されないときに使用する変速マップと比較して、上記車両の運転状態の変化に応じたダウンシフトが早めに行われると共に、上記車両の運転状態の変化に応じたアップシフトが遅めに行われる変速マップを用いて上記自動変速機を制御する制御手段と
を備えたことを特徴とするハイブリッド電気自動車の制御装置。
An engine output system that generates driving force in the engine and outputs the driving force of the engine, and a motor output system that generates driving force in the motor and outputs the driving force of the motor, are output from the respective systems. In a control apparatus for a hybrid electric vehicle that can transmit the drive force to the drive wheels of the vehicle,
An automatic transmission having a plurality of forward shift stages and transmitting the driving force of the engine output from the engine output system to the driving wheels;
A failure detection means for detecting a failure of the motor output system;
Based on a predetermined shift map, the shift stage of the automatic transmission is switch-controlled according to a change in the driving state of the vehicle, and when a failure of the motor output system is detected by the failure detection means, the failure detection means Compared with the shift map used when no failure of the motor output system is detected, a downshift is performed earlier according to a change in the driving state of the vehicle, and an increase according to a change in the driving state of the vehicle is performed. A control device for a hybrid electric vehicle, comprising: a control unit that controls the automatic transmission using a shift map in which shifting is performed late.
上記エンジン出力システムから上記自動変速機に伝達される駆動力を遮断可能なクラッチと、
上記電動機の回転数を検出する回転数検出手段とを更に備え、
上記制御手段は、上記車両の減速時に上記故障検出手段によって上記故障が検出されない場合には、上記回転数検出手段によって検出された回転数に応じ、上記電動機が発生可能な回生制動トルクとして上限減速トルクを設定すると共に上記車両の減速に必要な減速トルクとして要求減速トルクを設定し、上記要求減速トルクが上記上限減速トルク以下であるときには、上記クラッチを切断して上記要求減速トルクを発生するように上記電動機出力システムを制御する一方、上記要求減速トルクが上記上限減速トルクより大きいときには、上記クラッチを接続して上記エンジンからの減速トルクと上記電動機からの回生制動トルクとの合計が上記要求減速トルクとなるように上記エンジン出力システム及び上記電動機出力システムを制御し、上記車両の減速時に上記故障検出手段によって上記故障が検出された場合には、少なくとも上記エンジンの回転数がアイドル回転数近傍に低下するまでは上記クラッチを常時接続することを特徴とする請求項1に記載のハイブリッド電気自動車の制御装置。
A clutch capable of interrupting a driving force transmitted from the engine output system to the automatic transmission;
A rotation speed detecting means for detecting the rotation speed of the electric motor;
If the failure is not detected by the failure detection means during deceleration of the vehicle, the control means sets an upper limit deceleration as a regenerative braking torque that can be generated by the electric motor according to the rotation speed detected by the rotation speed detection means. In addition to setting a torque, a required deceleration torque is set as a deceleration torque necessary for the deceleration of the vehicle. When the required deceleration torque is equal to or less than the upper limit deceleration torque, the clutch is disconnected to generate the required deceleration torque. When the required deceleration torque is greater than the upper limit deceleration torque, the clutch is connected and the sum of the deceleration torque from the engine and the regenerative braking torque from the motor is Controlling the engine output system and the motor output system to be torque, 2. If the failure is detected by the failure detection means during deceleration of the vehicle, the clutch is always connected at least until the engine speed decreases to near the idle speed. The control apparatus of the hybrid electric vehicle described in 1.
JP2006074670A 2006-03-14 2006-03-17 Controller for hybrid electric car Pending JP2007246010A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006074670A JP2007246010A (en) 2006-03-17 2006-03-17 Controller for hybrid electric car
DE102007011410A DE102007011410A1 (en) 2006-03-14 2007-03-08 Control unit for a hybrid electric vehicle
CN2007100056685A CN101038030B (en) 2006-03-14 2007-03-13 Control device for a hybrid electric vehicle
US11/717,643 US8010264B2 (en) 2006-03-14 2007-03-14 Control device for a hybrid electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006074670A JP2007246010A (en) 2006-03-17 2006-03-17 Controller for hybrid electric car

Publications (1)

Publication Number Publication Date
JP2007246010A true JP2007246010A (en) 2007-09-27

Family

ID=38590732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006074670A Pending JP2007246010A (en) 2006-03-14 2006-03-17 Controller for hybrid electric car

Country Status (1)

Country Link
JP (1) JP2007246010A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100843445B1 (en) * 2006-03-17 2008-07-03 미츠비시 후소 트럭 앤드 버스 코포레이션 Control device of hybrid electric vehicle
JP2011110943A (en) * 2009-11-24 2011-06-09 Denso Corp Controller for vehicle drive system
KR20140048004A (en) * 2012-10-15 2014-04-23 콘티넨탈 오토모티브 시스템 주식회사 Method and apparatus for controlling shift quality of hybrid vehicle
JP2014104827A (en) * 2012-11-27 2014-06-09 Honda Motor Co Ltd Control apparatus for hydrostatic pressure assist vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253232A (en) * 1985-04-30 1986-11-11 Mazda Motor Corp Electronically controlled speed change gear for automobile
JPH0655941A (en) * 1992-08-04 1994-03-01 Aqueous Res:Kk Hybrid type vehicle
JPH09308007A (en) * 1996-05-08 1997-11-28 Toyota Motor Corp Controller of hybrid vehicle
JP2003269597A (en) * 2002-03-19 2003-09-25 Mitsubishi Motors Corp Control device for hybrid vehicle
JP2004251452A (en) * 2004-02-20 2004-09-09 Nissan Motor Co Ltd Controller for hybrid vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253232A (en) * 1985-04-30 1986-11-11 Mazda Motor Corp Electronically controlled speed change gear for automobile
JPH0655941A (en) * 1992-08-04 1994-03-01 Aqueous Res:Kk Hybrid type vehicle
JPH09308007A (en) * 1996-05-08 1997-11-28 Toyota Motor Corp Controller of hybrid vehicle
JP2003269597A (en) * 2002-03-19 2003-09-25 Mitsubishi Motors Corp Control device for hybrid vehicle
JP2004251452A (en) * 2004-02-20 2004-09-09 Nissan Motor Co Ltd Controller for hybrid vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100843445B1 (en) * 2006-03-17 2008-07-03 미츠비시 후소 트럭 앤드 버스 코포레이션 Control device of hybrid electric vehicle
JP2011110943A (en) * 2009-11-24 2011-06-09 Denso Corp Controller for vehicle drive system
KR20140048004A (en) * 2012-10-15 2014-04-23 콘티넨탈 오토모티브 시스템 주식회사 Method and apparatus for controlling shift quality of hybrid vehicle
JP2014104827A (en) * 2012-11-27 2014-06-09 Honda Motor Co Ltd Control apparatus for hydrostatic pressure assist vehicle

Similar Documents

Publication Publication Date Title
KR100843445B1 (en) Control device of hybrid electric vehicle
US8010264B2 (en) Control device for a hybrid electric vehicle
JP4348557B2 (en) Control device for hybrid electric vehicle
JP2007245805A (en) Controller for hybrid electric car
JP2007237775A (en) Controller of hybrid electric vehicle
JP4562195B2 (en) Shift control device for hybrid electric vehicle
JP4637770B2 (en) Control device for hybrid electric vehicle
EP1731802A2 (en) Oil pressure control
JP4973113B2 (en) Vehicle control device
JP2007314097A (en) Controller for hybrid car and control method for hybrid car
JP2002213266A (en) Vehicular driving force control device
JP5024274B2 (en) Engine start control device for hybrid vehicle
JP6668842B2 (en) Control device for hybrid vehicle
JP2011079451A (en) Controller for hybrid electric vehicle
JP2016052210A (en) Vehicular drive apparatus
JP5233658B2 (en) Engine start control device for hybrid vehicle
JP2018103729A (en) Shift control device for hybrid vehicle
JP4567619B2 (en) Control device for hybrid electric vehicle
JP5182072B2 (en) Oil pump drive device for hybrid vehicle
JP2005257004A (en) Controller of hybrid car
JP2007246010A (en) Controller for hybrid electric car
JP2008075718A (en) Vehicular gear shift control device
JP5104061B2 (en) Vehicle shift control device
JP2004210028A (en) Hybrid vehicle
JP2006275097A (en) Vehicular shift control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110201

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110304