JP2007243070A - Oriented zinc oxide based thermoelectric conversion material and thermoelectric conversion device using it - Google Patents

Oriented zinc oxide based thermoelectric conversion material and thermoelectric conversion device using it Download PDF

Info

Publication number
JP2007243070A
JP2007243070A JP2006066739A JP2006066739A JP2007243070A JP 2007243070 A JP2007243070 A JP 2007243070A JP 2006066739 A JP2006066739 A JP 2006066739A JP 2006066739 A JP2006066739 A JP 2006066739A JP 2007243070 A JP2007243070 A JP 2007243070A
Authority
JP
Japan
Prior art keywords
thermoelectric
zinc oxide
sintered body
slurry
thermoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006066739A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kinemuchi
杵鞭  義明
Koji Watari
渡利  広司
Hisashi Kaga
久 加賀
Keizo Uematsu
敬三 植松
Satoshi Tanaka
諭 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Nagaoka University of Technology NUC
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Nagaoka University of Technology NUC filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006066739A priority Critical patent/JP2007243070A/en
Publication of JP2007243070A publication Critical patent/JP2007243070A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oriented zinc oxide based thermoelectric conversion material useful as a thermoelectric conversion material, a thermoelectric element and a thermoelectric conversion device or the like. <P>SOLUTION: A thermoelectric zinc oxide based sintered body comprising a zinc oxide as a principal component wherein a c-axis orientation by a Lotgering method is 0.9 or larger and relative density is 95% or larger at an X-ray diffraction peak on the particular face of the sintered body, and an excellent oriented thermoelectric conversion material and an excellent thermoelectric element with high electric conductivity or the like manufactured by applying a magnetic field to slurry including a zinc oxide based thermoelectric material powder, orienting the material powder while rotating the slurry, solidifying the slurry to manufacture a compact and thereafter sintering the compact can be provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、酸化亜鉛質熱電変換材料及びその製造方法に関するものであり、更に詳しくは、結晶配向性を有する配向熱電材料、その製造方法、これらの配向熱電材料を用いて製造した熱電素子及び熱電変換モジュール等に関するものである。本発明は、従来技術では作製することが困難であった高配向性と高密度を実現した配向酸化亜鉛質焼結体を作製することを可能にするものであり、それにより、電流が流れる方向に対して平行な面のc軸配向が0.9以上、相対密度が95%以上、熱電性能指数が2.5×10−4/K以上であり、高い電気伝導度を有する熱電酸化亜鉛質焼結体及びその熱電変換素子等の製品を提供するものである。 The present invention relates to a zinc oxide-based thermoelectric conversion material and a method for producing the same, and more specifically, an oriented thermoelectric material having crystal orientation, a method for producing the same, a thermoelectric element and a thermoelectric produced using these oriented thermoelectric materials. It relates to a conversion module and the like. The present invention makes it possible to produce an oriented zinc oxide sintered body that achieves high orientation and high density, which was difficult to produce with the prior art, and thereby allows the direction of current flow. The c-axis orientation of the plane parallel to the surface is 0.9 or more, the relative density is 95% or more, the thermoelectric figure of merit is 2.5 × 10 −4 / K or more, and the thermoelectric zinc oxide has high electrical conductivity. Products such as a sintered body and its thermoelectric conversion element are provided.

熱エネルギーを電気エネルギーに直接変換することが出来る熱電材料が注目されており、熱電材料の中でも酸化亜鉛質熱電材料は、原料が比較的安価・豊富で毒素元素を含まず、高温酸化性雰囲気での使用に向いている。酸化亜鉛質熱電材料の熱電特性ピークは、ZT=0.3 at 1273K(無配向バルク体)であり、実用化の目安とされているZT=1の約3割にとどまっている。   Thermoelectric materials that can directly convert thermal energy into electrical energy are attracting attention. Among thermoelectric materials, zinc oxide thermoelectric materials are relatively inexpensive and abundant, do not contain toxin elements, and can be used in high-temperature oxidizing atmospheres. Suitable for use. The thermoelectric characteristic peak of the zinc oxide-based thermoelectric material is ZT = 0.3 at 1273K (non-oriented bulk body), which is only about 30% of ZT = 1, which is a standard for practical use.

この主な原因として、低い電気伝導度が挙げられる。従来の導電性酸化物焼結体は、その単結晶材料に比べて、著しく電気伝導度が低い。これは、酸化物の電気伝導機構は、異方性が大きく、粒界散乱の影響を受けやすいためと考えられる。特に、酸化亜鉛結晶は、結晶軸方向(結晶面)によって諸特性の異方性を有することから、ある特定の結晶面を配向させることによって、諸特性が向上することが期待できる。   The main cause is low electrical conductivity. The conventional conductive oxide sintered body has remarkably low electric conductivity as compared with the single crystal material. This is presumably because the electrical conduction mechanism of oxide is highly anisotropic and easily affected by grain boundary scattering. In particular, since zinc oxide crystals have anisotropy of various characteristics depending on the crystal axis direction (crystal plane), it is expected that various characteristics are improved by orienting a specific crystal plane.

先行技術文献には、出発原料に針状酸化亜鉛粒子を用い、押し出し成型法により酸化亜鉛結晶をc軸方向に配向させ、バリスタ特性を有する酸化亜鉛質焼結体を作製することが記載されている(特許文献1)。更に、他の先行技術文献には、出発原料に形状異方性を有するZnO又はその前駆体粉末材料を用いてドクターブレード法により配向酸化亜鉛質焼結体を作製することが記載されている(特許文献2)。   The prior art document describes using acicular zinc oxide particles as a starting material and orienting zinc oxide crystals in the c-axis direction by an extrusion molding method to produce a zinc oxide-based sintered body having varistor characteristics. (Patent Document 1). Furthermore, another prior art document describes that an oriented zinc oxide sintered body is produced by a doctor blade method using ZnO having a shape anisotropy as a starting material or a precursor powder material thereof ( Patent Document 2).

しかしながら、出発原料に形状異方性粒子を用いると製造コストが高くなり、また、ドクターブレード法による配向焼結体の作製は生産性が悪い。また、上述の方法では、c軸配向度は0.86と低く、相対密度も90%と低く、その結果、熱電出力因子は、3.0×10−4(W/mK)@800℃に留まっていた。 However, when shape anisotropic particles are used as a starting material, the manufacturing cost is increased, and the production of an oriented sintered body by the doctor blade method is poor in productivity. In the above method, the degree of c-axis orientation is as low as 0.86 and the relative density is as low as 90%. As a result, the thermoelectric power factor is 3.0 × 10 −4 (W / mK 2 ) @ 800 ° C. Stayed in.

特公平4−48746号公報Japanese Patent Publication No. 4-48746 特開2002−16297号公報JP 2002-16297 A

このような状況の中で、本発明者らは、上記従来技術に鑑みて、c軸配向度が高く、相対密度が高く、高い電気伝導度を有する酸化亜鉛質熱電材料を低製造コスト及び高生産性で作製することが可能な新しい技術を開発することを目標として鋭意研究を積み重ねた結果、従来技術では作製することが困難であった配向度と密度が高く、高い電気伝導度を有する配向酸化亜鉛質熱電変換材料を作製できることを見出し、本発明を完成するに至った。本発明は、結晶配向度及び密度の高い配向酸化亜鉛質熱電変換材料、その製造方法及びその配向酸化亜鉛質熱電変換材料を用いて作製した熱電性能に優れた熱電素子、と熱電変換デバイス及び熱電変換モジュールを提供することを目的とするものである。   In such a situation, in view of the above-described conventional technology, the present inventors have developed a zinc oxide thermoelectric material having a high degree of c-axis orientation, a high relative density, and a high electrical conductivity at a low production cost and high cost. As a result of intensive research aimed at developing new technologies that can be produced with productivity, orientation with high electrical conductivity and high degree of orientation and density, which was difficult to produce with conventional technology The inventors have found that a zinc oxide-based thermoelectric conversion material can be produced, and have completed the present invention. The present invention relates to an oriented zinc oxide thermoelectric conversion material having a high degree of crystal orientation and density, a production method thereof, a thermoelectric element having excellent thermoelectric performance produced using the oriented zinc oxide thermoelectric conversion material, a thermoelectric conversion device, and a thermoelectric The object is to provide a conversion module.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)酸化亜鉛を主成分とする熱電酸化亜鉛質焼結体であって、1)該焼結体の特定面でのX線回折ピークにおいて、Lotgering法によるc軸配向度が0.90以上である、2)相対密度が95%以上である、ことを特徴とする熱電酸化亜鉛質焼結体。
(2)前記焼結体の熱電性能指数が、2.5×10−4/K以上である、前記(1)に記載の熱電酸化亜鉛質焼結体。
(3)酸化亜鉛質熱電材料粉末を含むスラリーに対して、磁場を印加し、該スラリーを回転させながら該材料粉末を配向させるとともに、該スラリーを固化して成型体を作製した後、該成型体を焼結することを特徴とする熱電酸化亜鉛質焼結体の製造方法。
(4)原料粉末のZnOとAlのモル比が、ZnO:Al=100−2*x:x(0.1≦x≦5)である、前記(3)に記載の熱電酸化亜鉛質焼結体の製造方法。
(5)前記スラリーの回転数が、1〜100回転/分である、前記(3)に記載の熱電酸化亜鉛質焼結体の製造方法。
(6)少なくとも8テスラの磁場を印加して、スラリーを水平面内で回転させる、前記(3)に記載の熱電酸化亜鉛質焼結体の製造方法。
(7)前記(1)から(3)のいずれかに記載の熱電酸化亜鉛質焼結体が熱電素子として用いられていることを特徴とする熱電変換デバイス。
(8)前記(1)から(3)のいずれかに記載の熱電酸化亜鉛質焼結体が熱電素子として用いられていることを特徴とする熱電変換モジュール。
The present invention for solving the above-described problems comprises the following technical means.
(1) A thermoelectric zinc oxide sintered body containing zinc oxide as a main component, and 1) an x-ray diffraction peak on a specific surface of the sintered body has a c-axis orientation degree of 0.90 or more by the Lottgering method 2) A thermoelectric zinc oxide sintered body characterized by having a relative density of 95% or more.
(2) The thermoelectric zinc oxide sintered body according to (1), wherein the thermoelectric performance index of the sintered body is 2.5 × 10 −4 / K or more.
(3) A magnetic field is applied to the slurry containing the zinc oxide-based thermoelectric material powder, the material powder is oriented while rotating the slurry, and the slurry is solidified to produce a molded body, and then the molding is performed. A method for producing a thermoelectric zinc oxide sintered body characterized by sintering the body.
(4) The molar ratio of ZnO and Al 2 O 3 in the raw material powder is ZnO: Al 2 O 3 = 100−2 * x: x (0.1 ≦ x ≦ 5), as described in (3) above A method for producing a thermoelectric zinc oxide sintered body.
(5) The method for producing a thermoelectric zinc oxide sintered body according to (3), wherein the number of revolutions of the slurry is 1 to 100 revolutions / minute.
(6) The method for producing a thermoelectric zinc oxide sintered body according to (3), wherein a magnetic field of at least 8 Tesla is applied to rotate the slurry in a horizontal plane.
(7) A thermoelectric conversion device, wherein the thermoelectric zinc oxide sintered body according to any one of (1) to (3) is used as a thermoelectric element.
(8) A thermoelectric conversion module, wherein the thermoelectric zinc oxide sintered body according to any one of (1) to (3) is used as a thermoelectric element.

次に、本発明について更に詳細に説明する。
本発明は、酸化亜鉛を主成分とする熱電酸化亜鉛質焼結体であって、該焼結体の特定面でのX線回折ピークにおいて、Lotgering法によるc軸配向度が0.90以上である、相対密度が95%以上である、ことを特徴とするものである。本発明では、前記焼結体の熱電性能指数が、2.5×10−4/K以上であること、を好ましい実施態様としている。
Next, the present invention will be described in more detail.
The present invention is a thermoelectric zinc oxide sintered body containing zinc oxide as a main component, and an x-ray diffraction peak on a specific surface of the sintered body has a c-axis orientation degree of 0.90 or more by the Lottgering method. The relative density is 95% or more. In this invention, it is set as the preferable embodiment that the thermoelectric performance index of the said sintered compact is 2.5 * 10 < -4 > / K or more.

また、本発明は、上記熱電酸化亜鉛質焼結体の製造方法であって、酸化亜鉛質熱電材料粉末を含むスラリーに対して、磁場を印加し、該スラリーを回転させながら該材料粉末を配向させるとともに、該スラリーを固化して成型体を作製した後、該成型体を焼結することを特徴とするものである。本発明では、前記方法において、原料粉末のZnOとAlのモル比が、ZnO:Al=100−2*x:x(0.1≦x≦5)であること、前記スラリーの回転数が、1〜100回転/分であること、少なくとも8テスラの磁場を印加して、スラリーを水平面内で回転させること、を好ましい実施態様としている。 Further, the present invention is a method for producing the thermoelectric zinc oxide sintered body, wherein a magnetic field is applied to the slurry containing the zinc oxide thermoelectric material powder, and the material powder is oriented while rotating the slurry. In addition, after the slurry is solidified to produce a molded body, the molded body is sintered. In the present invention, in the above method, the molar ratio of the raw material ZnO and Al 2 O 3 is ZnO: Al 2 O 3 = 100−2 * x: x (0.1 ≦ x ≦ 5), The preferred embodiment is that the number of revolutions of the slurry is 1 to 100 revolutions / minute, and a magnetic field of at least 8 Tesla is applied to rotate the slurry in a horizontal plane.

また、本発明は、前記の熱電酸化亜鉛質焼結体が熱電素子として用いられていることを特徴とする熱電変換モジュールの点、及び前記の熱電酸化亜鉛質焼結体が熱電素子として用いられていることを特徴とする熱電変換デバイスの点、に特徴を有するものである。   Further, the present invention provides a thermoelectric conversion module characterized in that the thermoelectric zinc oxide sintered body is used as a thermoelectric element, and the thermoelectric zinc oxide sintered body is used as a thermoelectric element. It is characterized by the point of the thermoelectric conversion device characterized by the above.

次に、本発明の熱電酸化亜鉛質焼結体の製造方法について説明する。本発明の酸化亜鉛質熱電材料の製造方法においては、ZnOとAlのモル比がZnO:Al=100−2*x:x(0.1≦x≦5)の間の組成を主成分とする粉末を原料として用いる。この場合、特に、モル比ZnO:Al=98:1であることが熱電特性を高めるために好ましい。 Next, the manufacturing method of the thermoelectric zinc oxide sintered compact of this invention is demonstrated. In the method for producing a zinc oxide electrolyte thermoelectric material of the present invention, the molar ratio of ZnO and Al 2 O 3 is ZnO: Al 2 O 3 = 100-2 * x: x between (0.1 ≦ x ≦ 5) A powder having a composition as a main component is used as a raw material. In this case, in particular, a molar ratio of ZnO: Al 2 O 3 = 98: 1 is preferable in order to improve thermoelectric characteristics.

また、酸化亜鉛質熱電材料に、IIA族元素、IIIB族元素、3d、4d、5d遷移金属元素等をドーパントとして添加することが出来る。これにより、酸化亜鉛質熱電材料のキャリア濃度を1.0×1019から1.0×1021に調整することが出来、その結果、熱電特性を高めることが可能となる。 Moreover, a IIA group element, a IIIB group element, 3d, 4d, 5d transition metal element, etc. can be added to a zinc oxide thermoelectric material as a dopant. Thereby, the carrier concentration of the zinc oxide-based thermoelectric material can be adjusted from 1.0 × 10 19 to 1.0 × 10 21, and as a result, the thermoelectric characteristics can be enhanced.

本発明の方法では、原料として前記酸化亜鉛質熱電材料粉末を主成分とし、これに水、エタノール、イソプロパノール等の溶媒、ポリアクリル酸アンモニウム、クエン酸アンモニウム、ポリエチレンイミン等の分散剤を加えてスラリーを作製する。本発明では、このスラリーに磁場を印加して、該スラリー中に含まれる酸化亜鉛質熱電材料粒子を強磁場によって配向せしめることが重要である。   In the method of the present invention, the zinc oxide thermoelectric material powder is used as a main ingredient as a raw material, and a slurry such as water, a solvent such as ethanol or isopropanol, a dispersant such as ammonium polyacrylate, ammonium citrate, or polyethyleneimine is added to the slurry. Is made. In the present invention, it is important to apply a magnetic field to the slurry so that the zinc oxide thermoelectric material particles contained in the slurry are oriented by a strong magnetic field.

磁場は、前記酸化亜鉛質熱電材料粒子である場合、8テスラ(以下、Tで表す)以上の磁場を用いることが必要である。特に、9T以上、更には、10T以上が配向度を高める上で好ましい。   In the case of the zinc oxide thermoelectric material particles, it is necessary to use a magnetic field of 8 Tesla (hereinafter referred to as T) or more. In particular, 9T or more, and more preferably 10T or more are preferable for increasing the degree of orientation.

このとき用いる原料の平均粒子径(累積重量比50%のときの粒子径)の平均が、レーザー回折法で20μm以下、特に、10μm以下、更には、1μm以下であることが望ましい。これにより、高い配向度と密度を有する酸化亜鉛質焼結体を得ることが容易に可能になる。   The average of the average particle size of the raw materials used at this time (particle size when the cumulative weight ratio is 50%) is preferably 20 μm or less, particularly 10 μm or less, and more preferably 1 μm or less by laser diffraction. This makes it possible to easily obtain a zinc oxide sintered body having a high degree of orientation and density.

なお、磁場発生装置は、一般の超伝導磁石を備えた装置を使用することが出来るが、この場合、磁場は水平磁場であることが配向度を高める点で好ましい。更に、水平磁場と同じ面内でスラリーを回転することによって、酸化亜鉛質熱電材料の磁化困難軸であるc軸を配向させることも可能である。このときのスラリーの回転数は、1から100回転/分が望ましく、更には、30回転/分程度が特に好ましい。   In addition, although the apparatus provided with the general superconducting magnet can be used for a magnetic field generator, in this case, it is preferable that a magnetic field is a horizontal magnetic field at the point which raises an orientation degree. Furthermore, by rotating the slurry in the same plane as the horizontal magnetic field, it is possible to orient the c-axis, which is the hard axis of magnetization of the zinc oxide thermoelectric material. The number of revolutions of the slurry at this time is preferably 1 to 100 revolutions / minute, and more preferably about 30 revolutions / minute.

また、本発明では、スラリー中の粒子を磁場中で配向させるとともに、スラリーを固化して成型することが重要である。成型には、磁場発生装置内で、鋳込み成型法、ゲルキャスト法等の周知の成型方法を用いることが出来る。   In the present invention, it is important to orient the particles in the slurry in a magnetic field and to solidify and mold the slurry. For the molding, a known molding method such as a casting molding method or a gel casting method can be used in the magnetic field generator.

次に、本発明では、得られた成型体を焼成して、主結晶を配向させた配向焼結体を得ることが重要である。焼結は、常圧焼結法、ホットプレス、ホットフォージング、HIP焼結法等を用いることが出来るが、特に、製造コスト面で常圧焼結法が望ましい。また、焼成に関しては、成型体中の一次粒子は焼成時に粒成長するが、そのときに、より大きな一次粒子が所定の方向に配向していると、その周辺に存在する微粉末も同じ配向方向に成長が進むようになる。   Next, in the present invention, it is important to obtain an oriented sintered body having the main crystal oriented by firing the obtained molded body. For sintering, an atmospheric pressure sintering method, hot press, hot forging, HIP sintering method, or the like can be used. In particular, the atmospheric pressure sintering method is desirable in terms of manufacturing cost. As for firing, the primary particles in the molded body grow during grain firing. At that time, if larger primary particles are oriented in a predetermined direction, the fine powder existing in the periphery also has the same orientation direction. Growth will begin to progress.

上記のようにして作製された熱電酸化亜鉛質焼結体の配向度は、磁場の印加方向に対して垂直な軸のc軸配向度が、5Tの磁場を印加しながらスラリーを水平面内で回転させると0.5以上になり、更に、8Tの磁場を印加しながらスラリーを水平面内で回転させると0.9以上になる。このような配向性を有する酸化亜鉛質熱電材料を用いた場合、c軸と垂直な面方向の電気伝導度が高いために、c面方向の熱電特性、すなわち、性能指数Zが高いという特徴が得られる。   The degree of orientation of the thermoelectric zinc oxide sintered body produced as described above is such that the slurry is rotated in a horizontal plane while applying a magnetic field whose c-axis orientation is perpendicular to the direction in which the magnetic field is applied. If the slurry is rotated in a horizontal plane while applying a magnetic field of 8T, it becomes 0.9 or more. When a zinc oxide thermoelectric material having such an orientation is used, the electrical conductivity in the plane direction perpendicular to the c-axis is high, so that the thermoelectric characteristics in the c-plane direction, that is, the figure of merit Z is high. can get.

なお、ここで、c軸配向度とは、Lotgering法で算出されるものであって、x線回折により得られたI(hkl)ピーク強度をそれぞれ求め、これらのピーク強度の和に対し、I(00l)の割合を示し、以下の式で与えられるfで算出されるものである。
f=(P−P)/(1−P
Here, the degree of c-axis orientation is calculated by the Lottgering method, and each of the I (hkl) peak intensities obtained by x-ray diffraction is obtained. This indicates the ratio of (00l) and is calculated by f given by the following equation.
f = (P−P 0 ) / (1−P 0 )

ここで、PはP=ΣI(00l)/ΣI(hkl)で表され、配向試料から得られたピーク強度である。PはP=ΣI0(00l)/ΣI0(hkl)で表され、ICDD(無配向試料)から得られるピーク強度である。 Here, P is represented by P = ΣI ( 001 ) / ΣI (hkl) , and is the peak intensity obtained from the oriented sample. P 0 is represented by P 0 = ΣI 0 (00l) / ΣI 0 (hkl) , and is a peak intensity obtained from ICDD (non-oriented sample).

ここで、性能指数Zとは、電気伝導度をσ、ゼーベック係数をS、熱伝導度をkとしたとき、Z=σS/kで定義されるもので、熱電材料の効率を示すものである。更に、本発明の配向熱電素子において、電流が流れる方向に対して平行な面のc軸配向度が0.9以上、性能指数zが2.7×10−4/K以上であることにより、熱電素子として優れた性能を発現することが可能となる。 Here, the figure of merit Z is defined as Z = σS 2 / k, where σ is the electrical conductivity, S is the Seebeck coefficient, and k is the thermal conductivity, and indicates the efficiency of the thermoelectric material. is there. Furthermore, in the oriented thermoelectric element of the present invention, the degree of c-axis orientation of the plane parallel to the direction of current flow is 0.9 or more and the figure of merit z is 2.7 × 10 −4 / K or more. It becomes possible to exhibit excellent performance as a thermoelectric element.

従来、酸化亜鉛結晶を配向させた酸化亜鉛質焼結体を作製することは、例えば、出発原料に針状酸化亜鉛粒子を使用すること、あるいは、形状異方性を有する酸化亜鉛やその前駆体材料を使用し、ドクターブレード法を利用することにより、種々試みられていた。しかし、従来法では、配向度の向上や相対密度の向上に限界があり、高い電気伝導度を有する優れた配向熱電変換材料を作製することは困難であった。これに対し、本発明は、原料粉末を含むスラリーに対して、磁場を印加し、該スラリーを回転させながら配向させることで、高い配向度と高い密度を共に有する配向酸化亜鉛質焼結体を作製することを可能にしたものであり、それによって、従来法では提供することが出来なかった高い電気伝導度を有する優れた熱電変換材料を提供することを実現可能にしたものである。   Conventionally, producing a zinc oxide-based sintered body in which zinc oxide crystals are oriented includes, for example, using acicular zinc oxide particles as a starting material, or zinc oxide having a shape anisotropy or a precursor thereof. Various attempts have been made by using materials and utilizing the doctor blade method. However, the conventional method has a limit in improving the degree of orientation and the relative density, and it has been difficult to produce an excellent oriented thermoelectric conversion material having high electrical conductivity. In contrast, in the present invention, an oriented zinc oxide sintered body having both a high degree of orientation and a high density is obtained by applying a magnetic field to the slurry containing raw material powder and orienting the slurry while rotating. This makes it possible to produce an excellent thermoelectric conversion material having high electrical conductivity that could not be provided by a conventional method.

本発明により、次のような効果が奏される。
(1)結晶配向度及び密度が高く、高い電気伝導度を有する新しい酸化亜鉛質熱電変換材料を提供することが出来る。
(2)上記熱電変換材料からなる熱電素子、該熱電変換材料を熱電素子として用いた熱電変換デバイス及び熱電変換モジュールを提供することが出来る。
(3)原料粉末を含むスラリーに磁場を印加することで、結晶配向度及び密度の高い酸化亜鉛質焼結体を作製し、提供することが出来る。
(4)酸化亜鉛を主成分とする高配向熱電酸化亜鉛質焼結体及び該焼結体からなる熱電素子を提供することが出来る。
(5)上記熱電素子を利用した熱電変換デバイス及び熱電変換モジュールを提供することが出来る。
(6)本発明により、従来技術では困難であった配向度と密度が高い酸化亜鉛質熱電材料焼結体の作製が可能になり、粒界散乱の低減に起因する高い電気伝導度を有する優れた配向熱電変換材料を提供することが可能となる。
(7)本発明により、従来技術では困難であった、高い絶対値のゼーベック係数及び低い熱伝導度を維持したまま、高い電気伝導度を有する優れた配向熱電変換材料を提供することが可能となった。
The following effects are exhibited by the present invention.
(1) A new zinc oxide thermoelectric conversion material having high crystal orientation and high density and high electrical conductivity can be provided.
(2) A thermoelectric element made of the thermoelectric conversion material, a thermoelectric conversion device using the thermoelectric conversion material as a thermoelectric element, and a thermoelectric conversion module can be provided.
(3) By applying a magnetic field to the slurry containing the raw material powder, a zinc oxide sintered body having a high degree of crystal orientation and high density can be produced and provided.
(4) A highly oriented thermoelectric zinc oxide sintered body containing zinc oxide as a main component and a thermoelectric element comprising the sintered body can be provided.
(5) A thermoelectric conversion device and a thermoelectric conversion module using the thermoelectric element can be provided.
(6) According to the present invention, it becomes possible to produce a sintered body of a zinc oxide-based thermoelectric material having a high degree of orientation and density, which has been difficult with the prior art, and has an excellent electrical conductivity due to reduction of grain boundary scattering. It is possible to provide an oriented thermoelectric conversion material.
(7) According to the present invention, it is possible to provide an excellent oriented thermoelectric conversion material having high electrical conductivity while maintaining a high absolute value Seebeck coefficient and low thermal conductivity, which was difficult with the prior art. became.

次に、実施例に基いて本発明を具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。   Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.

原料粉末として、平均粒子径0.5μm、純度99.99%以上のZnO粉末と、平均粒子径0.2μm以下、純度99.999以上のAl粉末を、モル比ZnO:Al=98:1にて秤量した。これらの原料粉末を、ボールミルを用いて24時間湿式混合した。得られた混合粉末を1100℃、12時間合成した。得られた合成粉末を、溶媒及びアルミナボールと共に、アルミナ容器に入れ、遊星ボールミルを用いて4−10時間の粉砕を行った。溶媒にはエタノールを用いた。得られたスラリーを乾燥後、微細合成粉末を得た。 As a raw material powder, a molar ratio ZnO: Al 2 O is used: a ZnO powder having an average particle diameter of 0.5 μm and a purity of 99.99% or more and an Al 2 O 3 powder having an average particle diameter of 0.2 μm or less and a purity of 99.999 or more. Weighed at 3 = 98: 1. These raw material powders were wet mixed using a ball mill for 24 hours. The obtained mixed powder was synthesized at 1100 ° C. for 12 hours. The obtained synthetic powder was put into an alumina container together with a solvent and alumina balls, and pulverized for 4 to 10 hours using a planetary ball mill. Ethanol was used as the solvent. After the obtained slurry was dried, a fine synthetic powder was obtained.

得られた粉末の平均粒子径をレーザー回折法により求めた結果、D50=0.7−2.0μmであった。微細合成粉末は、溶媒をエタノールとし、分散性を高めるために、分散剤を粉末に対して0.5重量%添加し、固体含有量が30容量%となるように混合し、成型用スラリーを作製した。スラリーは、内径30mm、高さ20mmのテフロン(登録商標)製の型に5cc流し込み、磁場を印加しながらスラリーを30回転/分の条件で回転させながらスラリーを乾燥させた。テフロン(登録商標)製の型を、磁場に対して、図1のように装置内に配置し、所定の条件で実験を行った。なお、磁力は、磁石の中心部からの距離による変化率をあらかじめ測定しておき、テフロン(登録商標)製の型の配置位置により変化させた。表1に、実験条件と熱電性能指数等の特性を示す。 As a result of obtaining an average particle size of the obtained powder by a laser diffraction method, it was D 50 = 0.7-2.0 μm. In the fine synthetic powder, ethanol is used as a solvent, and in order to improve dispersibility, 0.5% by weight of a dispersant is added to the powder, and the mixture is mixed so that the solid content is 30% by volume. Produced. 5 cc of the slurry was poured into a Teflon (registered trademark) mold having an inner diameter of 30 mm and a height of 20 mm, and the slurry was dried while rotating the slurry at 30 rpm while applying a magnetic field. A Teflon (registered trademark) mold was placed in the apparatus as shown in FIG. 1 with respect to a magnetic field, and an experiment was performed under predetermined conditions. Note that the rate of change of the magnetic force according to the distance from the center of the magnet was measured in advance, and was changed depending on the position of the Teflon (registered trademark) mold. Table 1 shows characteristics such as experimental conditions and thermoelectric figure of merit.

試料を、表1に示す条件により、常圧・大気中雰囲気で焼成し、焼結体を作製した。該焼結体より、磁場の印加方向に対して、長さ15mm、幅3mm、厚み3mmの直方体試料を作製し、熱電特性評価装置(真空理工(製))により、電気伝導度及びゼーベック係数を、室温から800℃の条件下で、測定した。また、熱伝導度の測定には、上記焼結体より、直径10mm、厚さ2mmの円盤状試料を作製し、レーザーフラッシュ法により、室温から800℃の条件下で、測定した。   The sample was fired under atmospheric pressure and atmospheric conditions under the conditions shown in Table 1 to produce a sintered body. A rectangular parallelepiped sample having a length of 15 mm, a width of 3 mm, and a thickness of 3 mm is produced from the sintered body in the direction of application of the magnetic field. The measurement was performed under conditions of room temperature to 800 ° C. Further, for the measurement of thermal conductivity, a disk-shaped sample having a diameter of 10 mm and a thickness of 2 mm was prepared from the sintered body, and measured by a laser flash method under conditions of room temperature to 800 ° C.

また、熱電性能指数Zは、式Z=σS/kより算出した。更に、c軸配向度fの測定には、上記直方体試料を用い、得られたピーク強度から、Lotgering法により結晶配向を求めた。それらの結果を表1に示す。本発明の試料は、配向度が0.9以上、相対密度が99%以上、性能指数が2.7×10−4/K以上と非常に大きい値を示した。 The thermoelectric performance index Z was calculated from the formula Z = σS 2 / k. Furthermore, for the measurement of the degree of c-axis orientation f, the above rectangular solid sample was used, and the crystal orientation was determined from the obtained peak intensity by the Lottgering method. The results are shown in Table 1. The sample of the present invention showed a very large value with an orientation degree of 0.9 or more, a relative density of 99% or more, and a figure of merit of 2.7 × 10 −4 / K or more.

比較例1
上記実施例と同様にして作製したスラリーに、磁場を0Tから10Tまで印加し、スラリーを乾燥させて、成型体を作製した。焼結条件として、焼結温度を1200℃から1400℃とした。熱電特性の評価方法は、実施例と同様である。表2に、実験条件と熱電性能指数等の特性を示す。得られた試料番号4から7は、高い相対密度を示したが、低い配向度により、性能指数は2.5×10−4/K未満と低い値を示した。一方、試料番号8は、高い配向度を示したが、密度が約92%と低いために、性能指数も2.4×10−4/Kと低い値を示した。また、試料番号9から13は、出発原料に平均粒径2μmの粉末を用いて試料作製を行ったが、低い配向度もしくは低い密度により、性能指数も低くなった。
Comparative Example 1
A magnetic field was applied from 0T to 10T to the slurry prepared in the same manner as in the above Example, and the slurry was dried to prepare a molded body. As a sintering condition, the sintering temperature was 1200 ° C. to 1400 ° C. The method for evaluating the thermoelectric characteristics is the same as in the examples. Table 2 shows characteristics such as experimental conditions and thermoelectric figure of merit. The obtained sample numbers 4 to 7 showed high relative density, but due to the low degree of orientation, the figure of merit showed a low value of less than 2.5 × 10 −4 / K. On the other hand, Sample No. 8 showed a high degree of orientation, but because the density was as low as about 92%, the figure of merit also showed a low value of 2.4 × 10 −4 / K. Sample Nos. 9 to 13 were prepared using a powder having an average particle diameter of 2 μm as a starting material, but the figure of merit was lowered due to the low degree of orientation or low density.

以上詳述したように、本発明は、配向酸化亜鉛質熱電変換材料及びそれを用いた熱電変換デバイスに係るものであり、本発明により、配向度と密度が高い酸化亜鉛質熱電材料焼結体を作製し、提供することが可能であり、それにより、粒界散乱の低減と、それに起因する高い電気伝導度を有する熱電変換材料を提供することが可能である。熱電変換を利用した発電は、比較的低品質の熱においても直接電気に変換することが可能であるために、現状の未利用の廃熱を回収できる技術であり、原料が比較的安価・豊富で毒素元素を含まない熱電変換材料は、多方面での利用の可能性があるが、本発明は、当該技術分野で広く利用することが可能な新しい熱電変換材料を提供するものとして有用である。   As described in detail above, the present invention relates to an oriented zinc oxide thermoelectric conversion material and a thermoelectric conversion device using the same, and according to the present invention, a zinc oxide thermoelectric material sintered body having a high degree of orientation and density. It is possible to produce and provide a thermoelectric conversion material having reduced grain boundary scattering and high electrical conductivity resulting therefrom. Power generation using thermoelectric conversion can directly convert even relatively low-quality heat into electricity, so it is a technology that can recover the current unused waste heat, and the raw materials are relatively inexpensive and abundant. However, the present invention is useful as a new thermoelectric conversion material that can be widely used in the technical field. .

実験装置の概略図を示す。A schematic diagram of the experimental apparatus is shown.

Claims (8)

酸化亜鉛を主成分とする熱電酸化亜鉛質焼結体であって、(1)該焼結体の特定面でのX線回折ピークにおいて、Lotgering法によるc軸配向度が0.90以上である、(2)相対密度が95%以上である、ことを特徴とする熱電酸化亜鉛質焼結体。   A thermoelectric zinc oxide sintered body containing zinc oxide as a main component, wherein (1) an x-ray diffraction peak on a specific surface of the sintered body has a c-axis orientation degree of 0.90 or more by the Lottgering method (2) A thermoelectric zinc oxide sintered body characterized by having a relative density of 95% or more. 前記焼結体の熱電性能指数が、2.5×10−4/K以上である、請求項1に記載の熱電酸化亜鉛質焼結体。 The thermoelectric zinc oxide sintered body according to claim 1, wherein the sintered body has a thermoelectric performance index of 2.5 × 10 −4 / K or more. 酸化亜鉛質熱電材料粉末を含むスラリーに対して、磁場を印加し、該スラリーを回転させながら該材料粉末を配向させるとともに、該スラリーを固化して成型体を作製した後、該成型体を焼結することを特徴とする熱電酸化亜鉛質焼結体の製造方法。   A magnetic field is applied to the slurry containing the zinc oxide thermoelectric material powder, the material powder is oriented while rotating the slurry, and the slurry is solidified to produce a molded body. A method for producing a thermoelectric zinc oxide sintered body characterized by comprising the steps of: 原料粉末のZnOとAlのモル比が、ZnO:Al=100−2*x:x(0.1≦x≦5)である、請求項3に記載の熱電酸化亜鉛質焼結体の製造方法。 The thermoelectric zinc oxide according to claim 3, wherein the molar ratio of the raw material ZnO to Al 2 O 3 is ZnO: Al 2 O 3 = 100-2 * x: x (0.1 ≦ x ≦ 5). A method for producing a sintered body. 前記スラリーの回転数が、1〜100回転/分である、請求項3に記載の熱電酸化亜鉛質焼結体の製造方法。   The manufacturing method of the thermoelectric zinc oxide sintered compact of Claim 3 whose rotation speed of the said slurry is 1-100 rotations / min. 少なくとも8テスラの磁場を印加して、スラリーを水平面内で回転させる、請求項3に記載の熱電酸化亜鉛質焼結体の製造方法。   The method for producing a thermoelectric zinc oxide sintered body according to claim 3, wherein a magnetic field of at least 8 Tesla is applied to rotate the slurry in a horizontal plane. 請求項1から3のいずれかに記載の熱電酸化亜鉛質焼結体が熱電素子として用いられていることを特徴とする熱電変換デバイス。   A thermoelectric conversion device, wherein the thermoelectric zinc oxide sintered body according to any one of claims 1 to 3 is used as a thermoelectric element. 請求項1から3のいずれかに記載の熱電酸化亜鉛質焼結体が熱電素子として用いられていることを特徴とする熱電変換モジュール。   A thermoelectric conversion module, wherein the thermoelectric zinc oxide sintered body according to any one of claims 1 to 3 is used as a thermoelectric element.
JP2006066739A 2006-03-10 2006-03-10 Oriented zinc oxide based thermoelectric conversion material and thermoelectric conversion device using it Pending JP2007243070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006066739A JP2007243070A (en) 2006-03-10 2006-03-10 Oriented zinc oxide based thermoelectric conversion material and thermoelectric conversion device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006066739A JP2007243070A (en) 2006-03-10 2006-03-10 Oriented zinc oxide based thermoelectric conversion material and thermoelectric conversion device using it

Publications (1)

Publication Number Publication Date
JP2007243070A true JP2007243070A (en) 2007-09-20

Family

ID=38588281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006066739A Pending JP2007243070A (en) 2006-03-10 2006-03-10 Oriented zinc oxide based thermoelectric conversion material and thermoelectric conversion device using it

Country Status (1)

Country Link
JP (1) JP2007243070A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016500780A (en) * 2012-09-27 2016-01-14 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Gas turbine with heat flux sensor
US9461226B2 (en) 2010-04-08 2016-10-04 Samsung Electronics Co., Ltd. Thermoelectric material and method of preparing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9461226B2 (en) 2010-04-08 2016-10-04 Samsung Electronics Co., Ltd. Thermoelectric material and method of preparing the same
JP2016500780A (en) * 2012-09-27 2016-01-14 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Gas turbine with heat flux sensor

Similar Documents

Publication Publication Date Title
Katsuyama et al. Synthesis of Ca 3 Co 4 O 9 ceramics by polymerized complex and hydrothermal hot-pressing processes and the investigation of its thermoelectric properties
JP2008028048A (en) Manufacturing method of thermoelectric material consisting of calcium/cobalt-layered oxide single crystal
Populoh et al. Nanostructured Nb-substituted CaMnO3 n-type thermoelectric material prepared in a continuous process by ultrasonic spray combustion
On et al. Influence of sintering behavior on the microstructure and electrical properties of BaTiO3 lead-free ceramics from hydrothermal synthesized precursor nanoparticles
JP3867134B2 (en) Method for producing composite oxide sintered body
JP4502493B2 (en) Zinc oxide sintered body and method for producing the same
JP2007243070A (en) Oriented zinc oxide based thermoelectric conversion material and thermoelectric conversion device using it
JP2009004542A (en) Thermoelectric material and manufacturing method thereof
JP4592209B2 (en) Method for producing crystal-oriented bulk ZnO-based sintered material and thermoelectric conversion device produced thereby
Zhao et al. Enhanced thermoelectric performance of tin oxide through antimony doping and introducing pore structures
JP3896480B2 (en) Method for producing composite oxide sintered body
JP3896479B2 (en) Method for producing composite oxide sintered body
JP4281988B2 (en) Method for producing oriented thermoelectric material
JP4375793B2 (en) Method for manufacturing thermoelectric material
JP2010030855A (en) Crystal-oriented structure and method for manufacturing the same
SC Bose et al. Process dependent thermoelectric transport properties of Ca3Co4O9
JP2010080828A (en) Thermoelectric material, and method of manufacturing the same
JP2006269452A (en) Oriented thermoelectric material and method of manufacturing the same
JP4400861B2 (en) Oriented thermoelectric material and method for producing the same
CN113087015B (en) Core-shell nano-particles prepared by heterogeneous precipitation method and method for preparing nano-ceramics
JP4423122B2 (en) Method for producing oriented thermoelectric material
JP4281989B2 (en) Method for producing oriented thermoelectric material
JP2023002878A (en) Thermoelectric material, manufacturing method for the same, and thermoelectric power generation element
JP4636872B2 (en) Oriented thermoelectric material and method for producing the same
JP2020077801A (en) Thermionic element and manufacturing method of the same